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Abstract
Due to the presence of two opposite directional thinking in relationships between countries and communication systems, the
systems may not always be balanced. Therefore, the perfectness between countries relations are highly important. It comes
from howmuch they were connected to each other for communication. In this study, first perfectly regular bipolar fuzzy graph
is introduced and examined the regularity of nodes. Then, the relationship between the adjacent nodes and their regularity are
visualized as a perfectly edge-regular bipolar fuzzy graphs. The totally accurate communication between all connected nodes
is explained by introducing completely open neighborhood degree and completely closed neighborhood degree of nodes and
edges in a bipolar fuzzy graph. Some algorithms and flowcharts of the proposed methods are given. Finally, two applications
of these cogitation are exhibited in two bipolar fuzzy fields. The first one is in international relationships between some
countries during cold-war era and the second one is in decision-making between teachers–students communication system
for the improvement of teaching.

Keywords Bipolar fuzzy graph · Perfectly regular bipolar fuzzy graph · Completely open & Closed neighborhood degree ·
International relationship

Introduction

Research background

In daily life of humanity, decision structure is build upon
the human thinking potency. Graph theory plays an essential
part to maintain the relationship and communication in var-
ious types of connected fields including computer network,
artificial intelligence, decision-making, engineering science,
signal processing, pattern recognition, image segmentation,
and medical science. If the nodes as well as edges in a graph
become uncertain [33], then fuzzy graph theory [26] gives
us more accuracy for decision-making in some real prob-
lems. Therefore, at present, fuzzy graph theory is one of the
important research areas. But once in while human decision
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generated two antithetical sides [35,37] which can come pos-
itive and negative sides, increasing and decreasing side, good
and bad relation, profit and loss, effect, and side effect.

Due to the existence of bipolar judgemental thinking, the
bipolar fuzzy sets and relations play a major role in extensive
number of real-life bipolar fuzzy fields including qualitative
model, cognitive mapping, cooperation, clustering, analysis
ofmulti-agent datamining, strategic decision in international
relationship, neurological modeling, analysis of diagnose of
major depressive, granular computing, etc. When the effects
of the nodes are positive and negative in the graphs, then the
notion of bipolar fuzzy graphs gives us more accurate result
for decision-making. During the recent time, the Wi-Fi net-
work system has been placed in many places of a big town
including office, court, educational field, town, bus stand,
railway station, etc. The speed of Wi-Fi network becomes
slow due to certain reasons like for excessive users, mechan-
ical disturbances, and natural disaster. Therefore, the speed
of Wi-Fi is uncertain. For natural disturbance and excessive
user, the Internet speed is not fixed. Then, there exists a bipo-
larity in the Wi-Fi machines as well as between every pair
of Wi-Fi machines. To handle these types of graphical sys-
tems, bipolar fuzzy graph plays an essential role. To control
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the total power of the Wi-Fi machine and the Internet speed
between twoWi-Fimachines, open and closed neighborhood
degrees of nodes and edges are introduced.

In fuzzy graphs [26], there is only one character of nodes
and edges whose membership values lie in [0, 1]. However,
if there is another opposite character for the nodes and edges
whose membership values lie in [−1, 0], then these types sit-
uations cannot be handled by means of fuzzy graphs. Bipolar
fuzzy graphs (BFGs) [5,31] gives the two opposite side infor-
mation about the nodes and edges. However, it cannot give
any information whether the system is perfectly regular or
not. The degree of nodes in BFGs gives the total information
and contribution of the positive and negative characters sep-
arately. Therefore, we do not have any idea about the highest
and lowest connected nodes and edges. Therefore, we cannot
order the nodes and edges in this case.

Motivation

Many events related to our real life can be modeled using
BFG. For instance, some people are connected by a group
in social media. Their relationships and communications to
each other are uncertain. Often, it may happen that between
any two friends, one may agree with an incident and dis-
agreewith another incident. Therefore, there exists bipolarity
between each pair of friends. To handle these type of situ-
ations, BFGs always conduct an essential part. It happens
many times that some friends send ‘GoodMorning’ or ‘Good
Night’ message in the group and personally to others. How-
ever, others may not reply to these type of messages. All of
these types of communication explain how much a man per-
fectly related and communicated to the others in that group
and personally. This type of social network group is called a
perfectly regular group if all people in this group are perfect
and is called a perfectly irregular group if all people in this
group are imperfect. This motivates us to introduce perfectly
regular and edge-regular BFG. However, a man can agree
or disagree about an information with his friends personally
and also in locally. This can be explained by open and closed
neighborhood degree of nodes and edges. Consequently, it
motivates us to define completely open neighborhood degree
and completely closed neighborhood degree.

Framework of this study

This manuscript is organized as follows: The next section
contains literature of review and some basic definitions
related to this manuscript. Perfectly regular and perfectly
edge-regular bipolar fuzzy graph with their properties are
initiated in “Perfectly regular and perfectly edge-regular
BFG”. The terms completely open neighborhood degree
and completely closed neighborhood degree are initiated
with their properties in “Completely open neighborhood

degree (COND) and completely closed neighborhood degree
(CCND) in a BFG”. Algorithms and flowcharts for calcu-
lating various types of degrees are described in “Algorithm
and flowchart for calculating COND and CCND in BFG”.
Applications of these substantive thoughts are conferred to
maintain international relationship and decision-making in
such real-life communication systems in “Applications of
BFG using COND and CCND”. Finally, a conclusion of all
these works is given in “Conclusion and future works”.

Literature review and preliminaries

Due to the presence of fuzziness or uncertainty in human
thinking, Zadeh [33] originated the concept of fuzzy sets.
Liao et al. [18] discussed about several types of fuzzy sets
with operations and applications in various multi-attribute
decision-making. Hesitancy degree-based correlation mea-
sures for hesitant fuzzy sets are described in [17]. Citil [8]
investigated many fuzzy problems based on Laplace trans-
form. Yuan et. al. [32] explained application of graph kernel
which is based on link prediction for signed in social net-
works. Gao et al. [12,13], respectively, introduced different
algorithms for partial multi-dividing ontology and Wiener
number in bicyclic molecular structures. Nguyen et al. [21]
established a notable techniques to handle knowledge graph
fusion in smart systems. Imran et al. [16] introduced different
types of network based on graph. Currently, fuzzy graph the-
ory [26] is extensively used innumerousfields.Mordeson and
Nair [19,20] created disjoint arcs and cycles in fuzzy graphs.
Strength of arcs in fuzzy graphs is explained in [7]. Gross et
al. [15] gives an approach of fuzzy graph matching in intel-
ligent analysis to maintain continuous situational awareness.
Different types of picture fuzzy graph and their application
are described in [9,29]. Fan et al. [11] explained the intuition
about bipartite fuzzy graph with its real-life approach. Based
on bipolarity of fuzzy sets, Zhang [35] presented the concep-
tual idea of bipolar fuzzy sets. Different types of operations
and properties of bipolar fuzzy sets and bipolar fuzzy rela-
tions with their applications in various real fields are briefly
discussed in [30,37]. Akram [1,2] first introduced the con-
cept of BFG, isomorphism on BFGs, complement, and its
application. After that, Yang et. al. [31] gave the generalized
concept of BFGs. Then, Akram et al. [3–5] defined trees,
cycles, paths, metric, forest, and cut node in BFG. Different
types of applications of BFGs founded in [6]. The concept of
fuzzy soft and bipolar fuzzy soft graphs and their application
in wireless Internet founded in [27,28]. Poulik and Ghorai
[23] initiated geodesic distance and different types of nodes
in BFGs with their applications. Different types of indices
and degrees in bipolar fuzzy graphs with applications are
explained in [22,25]. Poulik et al. [24] described different
operations and applications of interval-valued fuzzy graph.
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Ghorai [14] characterized regular bipolar fuzzy graphs using
fundamental sequences.

Now,we represent some elementary definitions in the next
sections.

Definition 1 [35] Let X be a non-empty set.

• The set A = {(x, ν p
A(x), νnA(x)) : x ∈ X} is said to be

a bipolar fuzzy set in X , where ν
p
A : X → [0, 1] and

νnA : X → [−1, 0] are mappings.
• Amapping A = (ν

p
A, νnA) : X × X → [0, 1]× [−1, 0] is

said to be a bipolar fuzzy relation on X , where ν
p
A(x, y) ∈

[0, 1] and νnA(x, y) ∈ [−1, 0].

The positive membership value ν
p
A(x), x ∈ V is the pos-

itive satisfaction degree of x corresponding to bipolar fuzzy
set A and the negative membership value νnA(x), x ∈ V is
the negative satisfaction degree of x .

Definition 2 [35] Let X be a non-empty set. Then, B =
(ν

p
B, νnB) : X × X → [0, 1] × [−1, 0] is called a bipo-

lar fuzzy relation on X , such that ν
p
B(a, b) ∈ [0, 1] and

νnB(a, b) ∈ [−1, 0].
Let A = (ν

p
A, νnA) be a bipolar fuzzy set on a set X .

If B = (ν
p
B, νnB) is a bipolar fuzzy relation on a set X ,

then B = (ν
p
B, νnB) is a bipolar fuzzy relation on A =

(ν
p
A, νnA) if ν

p
B(a, b) ≤ min{ν p

A(a), ν
p
A(b)} and νnB(a, b) ≥

max{νnA(a), νnA(b)} for all a, b ∈ X .

In 2011, Akram [5] first defined BFG as follows.

Definition 3 [5] A BFG G on a non-empty set X is a pair
G = (A, B), where A : X → [0, 1] × [−1, 0] is a bipolar
fuzzy set on X and B : X×X → [0, 1]×[−1, 0] is a bipolar
fuzzy relation in X , such that ν

p
B(ab) ≤ min{ν p

A(a), ν
p
A(b)}

and νnB(ab) ≤ min{νnA(a), νnA(b)}, for all a, b ∈ X .

For a given set V , an equivalence relation ∼ on V × V −
{(x, x)|x ∈ V } is defined as (x1, y1) ∼ (x2, y2) ⇔ either
(x1, y1) = (x2, y2) or x1 = y2, x2 = y1. The quotient set
obtained in this way is denoted by ˜V 2 , and the equivalent
class which contains the element (x,y) is denoted by xy or
yx . Yang et al. [31] defined the BFG in 2013.

Definition 4 [31] A BFG G is a triplet (V , A, B) of the crisp
graph G∗ = (V , E), where A = (ν

p
A, νnA) and B = (ν

p
B, νnB)

are the bipolar fuzzy sets in V and ˜V 2, respectively, for which

ν
p
B(ab) ≤ min{ν p

A(a), ν
p
A(b)}

and

νnB(ab) ≥ max{νnA(a), νnA(b)}

for all ab ∈ ˜V 2 with ν
p
B(ab) = νnB(ab) = 0 for all ab ∈

(˜V 2 − E).

Fig. 1 Example of a BFG G

Example 1 In Fig. 1, we consider a graph G∗ = (V , E),
whereV = {a1, a2, a3, a4, a5, a6} and E = {a1a2, a1a4, a1a6,
a2a3, a2a5, a3a6, a4a5, a5a6}. Every node and edge has two
components, positive and negative. All the positive and neg-
ative components of all the nodes and edges lie in [0, 1] and
[−1, 0], respectively. This means that ν

p
A(ai ), ν

p
B(a ja j ) ∈

[0, 1] and νnA(ai ), νnB(a ja j ) ∈ [−1, 0], ∀ai ∈ V ,∀aia j ∈
˜V 2.Here (ν

p
A(a1), νnA(a1)) = (0.7,−0.8), (ν p

A(a2), νnA(a2)) =
(0.6,−0.4). (ν

p
A(a1a2), νnA(a1a2)) = (0.2,−0.1). There-

fore, ν
p
B(a1a2) < min{ν p

A(a1), ν
p
A(a2)} and νnB(a1a2) >

max{νnA(a1), νnA(a2)}. Similarly, all the other edges and ver-
tices satisfy the condition ν

p
B(aia j ) ≤ min{ν p

A(ai ), ν
p
A(a j )}

and νnB(aia j ) ≥ max{νnA(ai ), νnA(a j )}, 1 ≤ i 
= j ≤ 6.
Therefore, G is a BFG.

The open neighborhood degree (OND) of a node a ∈ V in
a BFG G is denoted by deg(a) = (degp(a), degn(a)) and
is defined as degp(a) = ∑

a 
=b
ab∈˜V 2

ν
p
B(ab) and degn(a) =

∑

a 
=b
ab∈˜V 2

νnB(ab). If deg(a) = (d1, d2), ∀a ∈ V , G is called

(d1, d2)-regular.
For example, the BFG G of Fig. 1, we have deg(ai ) =

(0.8,−0.4)∀ai . Therefore, G is a (0.8,−0.4)-regular BFG.
Theorder of aBFGG is denotedbyO(G) = (Op(G), On(G))

and is defined as Op(G) = ∑

a∈V ν p(a) and On(G) =
∑

a∈V νn(a). Also, S(G) = (S p(G), Sn(G)) is the size
of G , where S p(G) = ∑

ab∈˜V 2 ν
p
B(ab) and Sn(G) =

∑

ab∈˜V 2 νnB(ab).
From the BFG G of Fig. 1, we see that O(G) = (4.3,−4.0)
and S(G) = (2.4,−1.2).

The closed neighborhood degree (CND) of a node a ∈ V
in a BFG G is denoted by deg[a] = (degp[a], degn[a]) and
is defined as degp[a] = degp(a) + ν

p
A(a) and degn[a] =

degn(a) + νnA(a). If deg[a] = ( f1, f2) ∀a ∈ V , then G is
called ( f1, f2)-totally regular.

For the BFG G of Fig. 1, deg[a2] = (1.4,−0.8) 
=
(1.8,−1.4) = deg[a5]. Therefore, G is not totally regular.
The degree of an edge ab ∈ E in a BFG G is denoted
by deg(ab) = (degp(ab), degn(ab)) and is defined as
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degp(ab) = ∑

a 
=c
ac∈˜V 2

ν
p
B(ac) + ∑

b 
=c
bc∈˜V 2

ν
p
B(bc) = ∑

ac∈˜V 2

ν
p
B(ac) + ∑

bc∈˜V 2 ν
p
B(bc) − 2ν p

B(ab) and degn(ab) =
∑

a 
=c
ac∈˜V 2

νnB(ac) + ∑

b 
=c
bc∈˜V 2

νnB(bc) = ∑

ac∈˜V 2 νnB(ac) +
∑

bc∈˜V 2 νnB(bc) − 2νnB(ab).

If deg(ab) = (k1, k2), ∀ab ∈ ˜V 2, then G is called
(k1, k2)-edge regular.

For the BFG G of Fig. 1, deg(a1a2) = (1.2,−0.6) 
=
(0.8,−0.4) = deg(a4a5). Therefore, G is not edge regular.

The total degree of an edge ab in a BFG G is denoted by
deg[ab] = (degp[ab], degn[ab]) and is defined asdegp[ab] =
degp(ab) + ν

p
B(ab) and degp[ab] = degp(ab) + ν

p
B(ab).

If deg[ab] = (t1, t2), ∀ab ∈ ˜V 2, G is called (t1, t2)-totally
edge-regular.

For the BFG G of Fig. 1, deg[a1a2] = (1.4,−0.7) 
=
(1.2,−0.6) = deg(a4a5). Therefore, G is not totally edge-
regular.

Definition 5 [22] The connectivity index of a BFG G =
(V , A, B) denoted by C IBF (G) is defined as

C IBF (G) = (

C I pBF (G),C InBF (G)
)

=
⎛

⎝

∑

ai ,a j∈V
ν
p
A(ai )ν

p
A(a j )CONN p

G(ai , a j ),

∑

ai ,a j∈V
νnA(ai )ν

n
A(a j )CONNn

G(ai , a j )

⎞

⎠ ,

whereC I pBF (G) andC InBF (G), respectively, denote the pos-
itive connectivity index and negative connectivity index ofG
andCONN p

G(ai , a j ) = (ν
p
B((ai , a j ))

∞) andCONNn
G(ai , a j ) =

(νnB((ai , a j ))
∞), respectively, denote the positive strength

of connectedness and negative strength of connectedness
between every pair of vertices (ai , a j ) in G.
Also, the average connectivity index of G denoted by
AC IBF (G) is defined as

AC IBF (G) = (AC I pBF (G), (AC I nBF (G))

= 1
mC2

⎡

⎣

∑

ai ,a j∈V
ν
p
A(ai )ν

p
A(a j )CONN p

G(ai , a j ),

∑

ai ,a j∈V
νnA(ai )ν

n
A(a j )CONNn

G(ai , a j )

⎤

⎦ ,

where |V | = m.

Definition 6 [25]TheWiener indexof aBFGG = (V , A, B)

is defined as

W IBF (G) = (

W I pBF (G),W InBF (G)
)

=
⎛

⎝

∑

ai ,a j∈V
ν
p
A(ai )ν

p
A(a j )d

p
g(G)(ai , a j ),

∑

ai ,a j∈V
νnA(ai )ν

n
A(a j )d

n
g(G)(ai , a j )

⎞

⎠ ,

where W I pBF (G) and W InBF (G) represent the positive and
negative Wiener index of G, respectively. d p

g(G)(ai , a j ) and
dng(G)(ai , a j ) are, respectively, the minimum and maximum
values of the sums of all positive and negative membership
values of all the edges on the geodesics from ai to a j .

Perfectly regular and perfectly edge-regular
BFG

In aBFG,we cannot justify a node,with a single node accord-
ing to the exceptional and unexceptional contributions. It
would be better, if the justification can be made with all the
nodes at the same time. In this matter, the OND and CND of
the nodes and their regularity in a BFG play an important fac-
tor. Therefore, the equal contribution of all the nodes and all
the edges in a BFG system are extremely helpful to maintain
the equivalency of the system. In this section, perfectly reg-
ular BFG is defined and some theorems connected to these
are discussed with examples. Perfectly edge regular BFG is
defined with its boundedness. Some properties related to this
are also established with examples.

Definition 7 A BFG is said to be a perfectly regular if it is
both regular BFG and totally regular BFG.

We consider a perfectly regular BFG G = (V , A, B).
Therefore, G must be regular BFG and totally regular BFG.
Then, the OND and CND of all the nodes of G are equal.
Hence, the positive and negative membership values of all
the nodes of G must be equal. Thus, we have the following
proposition.

Proposition 1 For a perfectly regular BFG G = (V , A, B),
A = (ν

p
A, νnA) is a constant function.

Proof Let G is perfectly regular BFG. Therefore, G is
both (d1, d2)-regular and ( f1, f2)-totally regular. Therefore,
degp[a] = degp(a)+ν

p
A(a) = degp(b)+ν

p
A(b) = degp[b]

and degn[a] = degn(a) + νnA(a) = degn(b) + νnA(b) =
degn[b], ∀a, b ∈ V .

However, degp(a) = d1 = degp(b), degn(a) = d2 =
degn(b) and degp[a] = f1 = degp[b], degn[a] = f2 =
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Fig. 2 A BFG G with membership values of all nodes as (0.7,−0.8)

Fig. 3 A (0.6,−0.8)-regular BFG G

degn[b], ∀a, b ∈ V . ⇒ ν
p
A(a) = ν

p
A(b) = f1 − d1 =

constant and νnA(a) = νnA(b) = f2 − d2 = constant ,
∀a, b ∈ V .

Hence, A = (ν
p
A, νnA) is a constant function. �

Example 2 From the BFG G of Fig. 2, we see that A =
(ν

p
A, νnA) is constant. However, deg(a1) 
= deg(a3). Hence,

G is not perfectly regular. Therefore, the converse of the
Proposition 1 is not true for all BFG.

Remark 1 The truthfulness of the converse of the Proposi-
tion 1 needs not be essential.

The measure of the total contribution between every pair
of nodes in a BFG actually depend upon the size of a BFG.
Therefore, when we want to determine the size of a perfectly
regular BFG, every edge comes two times in total. This is
explained in the next Theorem.

Theorem 1 Let G = (V , A, B) be a perfectly regular BFG
of the graph G∗ = (V , E). Then, size of G is S(G) =
|V |
2 (d1, d2), where (d1, d2) is the OND of a node in G.

Proof Since G is a perfectly regular BFG and (d1, d2) is the
OND of a node of G. Then, deg(a) = (d1, d2)∀a ∈ V .
Now,

∑

a∈V deg(a) = |V |(d1, d2) ⇒ ( ∑

a∈V
∑

a 
=b ν
p
B(ab),

∑

a∈V
∑

a 
=b νnB(ab)
) = |V |(d1, d2)

⇒ (

2
∑

ab∈˜V 2 ν
p
B(ab), 2

∑

ab∈˜V 2 νnB(ab)
) = |V |(d1, d2) ⇒

S(G) = |V |
2 (d1, d2). �

Example 3 Consider the BFG G of Fig. 3. Here, S(G) =
|V |
2 (d1, d2) = (1.5,−2.0). However, deg[a1] 
= deg[a2].
Therefore, G is not perfectly regular. Hence, the converse of
the Proposition 1 is not true in this BFG and the general case
is stated in Remark 2.

Fig. 4 A BFG G with membership values of all edges as (0.4,−0.5)

Remark 2 The converse of the Theorem 3 does not hold in
general.

An edge in a BFG maintains the relationship between the
two corresponding nodes. Therefore, the total contribution of
every edge of the BFG has an important sustainability. The
intuition about perfect regularity of a BFG in the sense of
edges is definitely important. Thus, we have introduced the
concept of perfectly edge-regular BFG in the next definition.

Definition 8 A BFG is said to be a perfectly edge-regular
BFG if it is both edge-regular and totally edge-regular.

We consider now a perfectly edge-regular BFG G =
(V , A, B). Then, the degree and total degree of all the edges
of G are equal. Therefore, the positive and negative mem-
bership values of all the edges of G remain same. Thus, we
have the proposition.

Proposition 2 For a perfectly edge-regular BFG G =
(V , A, B) of the graph G∗ = (V , E), B = (ν

p
B, νnB) is a

constant function.

Example 4 Consider the BFG G of Fig. 4. Here, B =
(ν

p
B, νnB) is constant. However, deg(a1a3) 
= deg(a1a2) and

this implies thatG is not perfectly regular. Thus, the converse
of Proposition 2 does not hold in general.

The maximum and minimum values of the total positive
and negative communication powers of all the nodes in aBFG
G are important factor to control a bipolar fuzzy connected
field. This means that the total of the positive membership
values and the total of the negative membership values of
all the nodes in a BFG G represent the order of the BFG G,
i.e., O(G) = (

∑

a∈V ν p(a),
∑

a∈V νn(a)). This implies that
the lower and upper boundary of the order of a BFG is very
important, which is stated in the next Theorem.

Theorem 2 (Boundedness property for the order of a per-
fectly edge-regular BFG) Let G be a perfectly edge-regular
BFG and |V | = k. Then,

∑

ai∈V {max ν
p
B(aia j )|i 
= j} ≤ Op(G) ≤ k and

−k ≤ On(G) ≤ ∑

ai∈V {min νnB(aia j )|i 
= j},
1 ≤ i, j ≤ k.
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Fig. 5 Example of a BFG G which satisfies Theorem 2

Proof Since |V | = k, let V = {a1, a2, . . . , ak}. ν p
A(ai ) ≤ 1

and −1 ≤ νnA(ai ), 1 ≤ i ≤ k.
Therefore,

∑

ai∈V ν
p
A(ai ) ≤ k and −k ≤ ∑

ai∈V νnA(ai ).
This implies Op(G) ≤ k and −k ≤ On(G). . . .(i)

Now, ν
p
B(aia j ) ≤ min{ν p

A(ai ), ν
p
A(a j )} and νnB(aia j ) ≥

max{νnA(ai ), νnA(a j )},
1 ≤ i, j ≤ k, i 
= j
⇒ max ν

p
B(aia j ) ≤ {ν p

A(ai ), ν
p
A(a j )} and min

νnB(aia j ) ≥ {νnA(ai ), νnA(a j )}, 1 ≤ i, j ≤ k, i 
= j
⇒ ∑

ai∈V {max ν
p
B(aia j )|i 
= j} ≤ ∑

ai∈V ν
p
A(ai ) and

∑

ai∈V {min νnB(aia j )|i 
= j} ≥ ∑

ai∈V νnA(ai ), 1 ≤ i, j ≤
k, i 
= j

⇒ ∑

ai∈V {max ν
p
B(aia j )|i 
= j} ≤ Op(G) and

∑

ai∈V {min
νnB(aia j )|i 
= j} ≥ On(G). . . . (ii)
Combining (i) and (ii), we have

∑

ai∈V {max ν
p
B(aia j )|i 
= j} ≤ Op(G) ≤ k and

−k ≤ On(G) ≤ ∑

ai∈V {min νnB(aia j )|i 
= j}, 1 ≤
i, j ≤ k. �

Example 5 From the BFG of Fig. 5, it is clearly seen that
|V | = 4, (Op(G), On(G)) = (2.4,−2.5),

∑

ai∈V {max ν
p
B

(aia j )|i 
= j} = 0.5 + 0.5 + 0.5 + 0.5 = 2.0,
∑

ai∈V {min νnB(aia j )|i 
= j} = −0.5 − 0.5 − 0.5 − 0.5 =
−2.0.

Now, 2.0 ≤ 2.4 ≤ 4 and −4 ≤ −2.5 ≤ −2.0
⇒ ∑

ai∈V {max ν
p
B(aia j )|i 
= j} ≤ Op(G) ≤ 4 and

−4 ≤ On(G) ≤ ∑

ai∈V {min νnB(aia j )|i 
= j}, 1 ≤ i, j ≤
4. Thus, G satisfies Theorem 2.

In chemical graph theory, different types of indices are ini-
tiated likes connectivity index, Wiener index, Randic index,
Zagreb index, etc. The concept of connectivity index and
Wiener index of BFGs and real applications are presented in
[22,25]. However, if BFGs are perfectly regular and perfectly
edge regular, then the connectivity index and Wiener index
can be found easily, which are explained in the following
theorems.

Theorem 3 Let G = (V , A, B) be a perfectly regular
BFG, such that |V | = m and (ν

p
B(aia j ), ν

p
B(aia j )) =

(e1, e2),∀ai , ai ∈ V . Then C I pBF (G) = m(m−1)
2 v21e1 and

C I nBF (G) = m(m−1)
2 v22e2, where (v1, v2) = (ν

p
A(ai ), νnA(ai )).

Proof Since G is a perfectly regular BFG, so by Propo-
sition 1, we have A = (ν

p
a , νna ) must be constant. Since

(v1, v2) = (ν
p
A(ai ), νnA(ai )),∀ai ∈ V .

Again, since (ν
p
B(aia j ), ν

p
B(aia j )) = (e1, e2),∀ai , ai ∈

V , then there exists an edge between every pair of nodes
in G and the membership values of all the nodes are same
i.e, (e1, e2). Therefore, the total number of edges in G is
mC2 = m(m−1)

2 .
Again, the strength of connectedness between two vertices
lies on an edge and is equal to the membership value of that
edge. So, CONN p

G(ai , a j ) = e1 and CONNn
G(ai , a j ) =

e2,∀ai , a j ∈ V .
Now,C I pBF (G)=∑

ai ,a j∈V ν
p
A(ai )ν

p
A(a j )CONN p

G(ai , a j )

=∑

ai ,a j∈V v1.v1.CONN p
G(ai , a j )=v21

mC2e1 = m(m−1)
2 v21e1

and
C InBF (G) = ∑

ai ,a j∈V νnA(ai )νnA(a j )CONNn
G(ai , a j )

=∑

ai ,a j∈V v2.v2.CONNn
G(ai , a j )=v22

mC2e2= m(m−1)
2 v22e2.

�

Note 1 If the perfectly regular BFG G of the Theorem 3 is
complete, then e1 = ν

p
B(aia j ) = min{ν p

A(ai ), ν
p
A(a j )} = v1

and e2 = νnB(aia j ) = max{νnA(ai ), νnA(a j )} = v2. Then,

C I pBF (G) = m(m−1)
2 v31 and C I nBF (G) = m(m−1)

2 v32 .

Corollary 1 For the BFG G of Note 1, AC IBF (G) =
(v31, v

3
2).

Proof Since the G satisfies all the conditions of Note 1, so
we have
e1 = v1 , e2 = v2, CONN p

G(ai , a j ) = e1 = v1 and
CONNn

G(ai , a j ) = e2 = v2,∀ai , a j ∈ V . Since G is com-
plete and |V | = m, so there is an edge between every pair of
vertices and the total number of edges in G is mC2.
Now, from the Definition 5, we have

AC I pBF (G) = 1
mC2

∑

ai ,a j∈V
ν
p
A(ai )ν

p
A(a j )CONN p

G(ai , a j )

=
mC2
mC2

v1.v1.e1 = v31and

AC I nBF (G) = 1
mC2

∑

ai ,a j∈V
νnA(ai )ν

n
A(a j )CONNn

G(ai , a j )

=
mC2
mC2

v2.v2.e2 = v32 .

∴ AC IBF (G) = (AC I pBF (G), AC I nBF (G)) = (v31, v
3
2). �

Theorem 4 Let G = (V , A, B) be perfectly regular com-
plete BFG, such that |V | = m and (ν

p
A(ai ), νnA(ai )) =

(v1, v2). Then, W I pBF (G) = m(m−1)
2 v31 and W InBF (G) =

m(m−1)
2 v32 .
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Proof Since G is perfectly regular complete BFG and |V | =
m, so from the Note 1, we have
ν
p
B(aia j ) = min{ν p

A(ai ), ν
p
A(a j )} = v1 and νnB(aia j ) =

max{νnA(ai ), νnA(a j )} = v2.
Now, d p

g(G)(a, b) = minimum value of the sums of all
positive membership values of all the edges on the geodesics
from a to b is equal to v1 and dng(G)(a, b) = maximum value
of the sums of all negativemembership values of all the edges
on the geodesics from a to b is equal to v2.
Therefore,W I pBF (G) = ∑

ai ,a j∈V ν
p
A(ai )ν

p
A(a j )d

p
g(G)(ai , a j )

= mC2v1.v1.v1 = m(m−1)
2 v31 and

W InBF (G) = ∑

ai ,a j∈V νnA(ai )νnA(a j )dng(G)(ai , a j )

= mC2v2.v2.v2 = m(m−1)
2 v32. �

Completely open neighborhood degree
(COND) and completely closed
neighborhood degree (CCND) in a BFG

We can measure the importance of a nodes not only by its
positive and negative characters but also by the sum of their
positive and negative characters. The positive neighborhood
degree of a node in aBFG equals or not-equals to the negative
neighborhood degree of that node. Therefore, the complete
neighborhood degrees, i.e., COND and CCND, of nodes are
very essential. In this section, COND and CCND of nodes in
a BFG are defined with their properties and examples.

Definition 9 The COND of a node a1 in a BFG G is denoted
by COND(a1) and is defined as COND(a1) = degp(a1) +
degn(a1).

The CCND of a node a1 in a BFG G is denoted by
CCND[a1] and is defined as CCND[a1] = degp[a1] +
degn[a1].

If all the nodes in a BFG G have equal contribution for
communication means, then G is perfectly regular BFG.
Then, using the Proposition 1,we can say that the positive and
negative membership values of every node of G are equal.
Now, using the Definition 9, we can effortlessly determine
the COND and CCND of a perfectly regular BFG, which is
stated in Proposition 3.

Proposition 3 For a perfectly regular BFG

(i) the CONDs of all the nodes are same and
(ii) the CCNDs of all the nodes are same.

Example 6 For the BFG G of Fig. 6, we have COND(ai ) =
0.8 and CCND(ai ) = 0.7, i = 1, 2, 3, 4, 5. Thus, the
CONDs andCCNDsof all the nodes ofG are same.However,
the membership values of some nodes are different. There-
fore, by Proposition 1, we have G which is not perfectly

Fig. 6 A connected BFG G

regular BFG. Therefore, the converse part of the Proposi-
tion 3 is not true in this case.

We can also measure the edges not only their positive
and negative communications but also their total commu-
nications. Therefore, the concepts of completely degrees of
nodes in a BFG, i.e., COND and CCND, are very essential.

Definition 10 The COND of an edge ab in a BFG G is
denoted by COND(ab) and is defined as COND(ab) =
degp(ab) + degn(ab). The CCND of a edge ab in a BFG
G is denoted by CCND[ab] and is defined as CCND[ab] =
degp[ab] + degn[ab] for all ab ∈ ˜V 2.

If the communication between every pair of nodes in a
BFG G is same, i.e., if the BFG G is perfectly edge-regular
BFG, then byProposition 2wehave, the positive and negative
membership values of every edge inG are same. Then, using
the Definition 10, we can effortlessly determine the COND
and CCND of all the edges which is stated in Proposition 4.

Proposition 4 For a perfectly edge-regular BFG

(i) the CONDs of all the edges are same and
(ii) the CCNDs of all the edges are same.

Example 7 For theBFGG ofFig. 6,wehaveCOND(aia j ) =
1.2,CCND(aia j ) = 1.4, for all edges aia j in G. However,
the membership values of some edges of G are different.
Therefore, by Proposition 2, we have G which is not per-
fectly edge-regular BFG. Therefore, the converse part of the
Proposition 4 is not true in this case.

Theorem 5 (Relation between COND and CCND in a BFG)
Let G = (V , A, B) be a BFG. Then

(i) COND(ai ) ≥ CCND(ai ) ⇔ ν
p
A(ai ) ≤ |νnA(ai )|,

COND(ai ) ≤ CCND(ai ) ⇔ ν
p
A(ai ) ≥ |νnA(ai )|,

∀ai ∈ V ,
and

(ii) COND(aia j ) ≥ CCND(aia j ) ⇔ ν
p
B(aia j ) ≤

|νnB(aia j )|,
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COND(aia j ) ≤ CCND(aia j ) ⇔ ν
p
B(aia j ) ≥

|νnB(aia j )|, ∀aia j ∈ ˜V 2.

Proof Let G = (V , A, B) be a BFG.

(i) Let ai ∈ V . Therefore, from the definition ofCOND and
CCND of a node, we haveCOND(ai )−CCND(a j ) =
−(ν

p
A(ai ) + νnA(ai )) ≥ (≤)0 ⇔ ν

p
A(ai ) ≤ (or ≥

)|νnA(ai )|.
Since ai is a arbitrary node inG, thereforeCOND(ai ) ≥
CCND(ai ) ⇔ ν

p
A(ai ) ≤ |νnA(ai )|, ∀ai ∈ V .

Similarly, COND(ai ) ≤ CCND(ai ) ⇔ ν
p
A(ai ) ≥

|νnA(ai )|, ∀ai ∈ V
(ii) Let aia j ∈ E . Then, from the definition of COND and

CCND of an edge, we have
COND(aia j ) − CCND(aia j ) = −(ν

p
B(aia j ) + νnB

(aia j )) ≥ (≤)0 ⇔ ν
p
B(aia j ) ≤ (or ≥)|νnB(aia j )|. Since

aia j is an arbitrary edge in G, therefore
COND(aia j ) ≥ CCND(aia j ) ⇔ ν

p
B(aia j ) ≤

|νnB(aia j )|, ∀aia j ∈ ˜V 2.
Similarly, COND(aia j ) ≤ CCND(aia j ) ⇔ ν

p
B(aia j )

≥ |νnB(aia j )|, ∀aia j ∈ ˜V 2.

�

Algorithm and flowchart for calculating
COND and CCND in BFG

In this section, the algorithms to determine the CONDs and
CCNDs of all the nodes and edges are proposed. Then, the
flowcharts of the proposed algorithms are presented.

Algorithm and flowchart to determinemost
communicable nodes in a BFG using COND and CCND

Using the Dijkstra’s algorithm [10] first draws a crisp graph
G∗ = (V , E), where V and E are, respectively, denote the
set of all nodes and edges with |V | = n and |E | = m.

Step 1. Put the membership values νA(ai ) = (ν
p
A(ai ), νnA

(ai )) of the nodes ai ’s, i = 1, 2, . . . , n, ν
p
A(ai ) ∈ [0, 1],

νnA(ai ) ∈ [−1, 0].
Step 2. Write the membership values νB(aia j ) = (ν

p
B(ai

a j ), ν
n
B(aia j )) of the edges aia j ∈ E , such that ν p

B(aia j ) ≤
min{ν p

A(ai ), ν
p
A(a j )}, νnB(aia j ) ≥ max{νnA(ai ), νnA(a j )},

ν
p
B(aia j ) ∈ [0, 1], νnB(aia j ) ∈ [−1, 0].
Step 3. Calculate ONDs of the nodes ai , i = 1, 2, . . . , n,

deg(ai ) = (degp(ai ), degn(ai )), where degp(ai ) = ∑

i 
= j
ai a j∈˜V 2

ν
p
B(aia j ), degn(ai ) = ∑

i 
= j
ai a j∈˜V 2

νnB(aia j ).

Fig. 7 Flowchart to determine most communicable nodes in BFG

Step 4. Calculate CNDs of the nodes ai , i = 1, 2, . . . , n,
deg[ai ] = (degp[ai ], degn[ai ]), where degp[ai ] = degp

(ai ) + ν
p
A(ai ) and degn[ai ] = degn(ai ) + νnA(ai ).

Step 5. Calculate COND(ai ) = degp(ai ) + degn(ai )
and CCND(ai ) = degp[ai ] + degn[ai ], i = 1, 2, . . . , n.

Step 6. Select maximum{COND(ai )} and maximum
{CCND(ai )} , i = 1, 2, . . . , n.

Step 7. Most communicable nodes.

Algorithm and flowchart to determinemost
communicable edges in a BFG using COND and CCND

Using the Dijkstra’s algorithm [10] first draws a crisp graph
G∗ = (V , E), where V and E are, respectively, denote the
set of all nodes and edges with |V | = n and |E | = m.

Step 1. Put the membership values νA(ai ) = (ν
p
A(ai ), νnA

(ai )) of the nodes ai ’s, i = 1, 2, . . . , n, ν
p
A(ai ) ∈ [0, 1],

νnA(ai ) ∈ [−1, 0].
Step2.Write themembershipvaluesνB(aia j )=(ν

p
B(aia j ),

νnB(aia j )) of the edges aia j ∈ ˜V 2, such that ν
p
B(aia j ) ≤

min{ν p
A(ai ), ν

p
A(a j )}, νnB(aia j ) ≥ max{νnA(ai ), νnA(a j )},

ν
p
B(aia j ) ∈ [0, 1], νnB(aia j ) ∈ [−1, 0].
Step 3. Calculate ONDs of the edges aia j ∈ ˜V 2,

deg(aia j ) = (degp(aia j ), degn(aia j )), where degp(aia j )

123



Complex & Intelligent Systems (2022) 8:1115–1127 1123

Fig. 8 Flowchart to determine
most communicable edges in
BFG

= ∑

i 
=k
ai ak∈˜V 2

ν
p
B(aiak) + ∑

j 
=k
a j ak∈˜V 2

ν
p
B(a jak), degn(aia j ) =

∑

i 
=k
ai ak∈˜V 2

νnB(aiak) + ∑

j 
=k
a j ak∈˜V 2

νnB(a jak).

Step 4. Calculate CNDs of the edges aia j ∈ E ,
deg[aia j ] = (degp[aia j ], degn[aia j ]),wheredegp[aia j ] =
degp(aia j ) + ν

p
B(aia j ) and degn[aia j ] = degn(aia j ) +

νnB(aia j ).
Step 5. CalculateCOND(aia j ) = degp(aia j )+degn(ai

a j ) and CCND(aia j ) = degp[aia j ] + degn[aia j ], for all
aia j ∈ ˜V 2.

Step 6. Selectmaximum{COND(aia j )} andmaximum

{CCND(aia j )} , for all aia j ∈ ˜V 2.
Step 7. Most communicable edges.

Applications of BFG using COND and CCND

In this section, we have constructed two real-life bipolar
fuzzymodels. First, one is international relationship between
east and west countries during the cold-war era and second
one is communication between teachers and students. Using
the COND and CCND, the selection of the highest com-
municated countries and best pair of countries according to
internal communication is determined for the first one and the
best communicated teachers for the second one are shown.

International relationship between countries during
the cold-war era

The original work is to find the most communicated coun-
tries in bipolar fuzzy decision-making problems. In a BFG
G = (V , A, B) with n nodes and m edges, COND(ai ) =
degp(ai ) + degn(ai ) and CCND(ai ) = degp[ai ] +
degn[ai ].Now, usingmax{COND(ai )} andmax{CCND(ai )}
for all i , we have to find the topmost communicated nodes for
which COND and CCND are maximum. Similarly, we have
to find the edges between two corresponding nodes for which
COND(aia j ) and CCND(aia j ), i 
= j are maximum are
the top most connected nodes according to communications.

At the time of cold war in 1950s, the race of confronta-
tion and all armament between the east and west countries
accrued a huge amount of energy. The energy could have
been a major possible cause of the Third World War. This
dangerous energetic relation and its computation have been
discussed as a bipolar crisp relational graph in [36], before
the enemies between USSR and China. The main interesting
fact is that the releasing of this accrued energy was disequi-
librium. The China card performed a main role at the end
of cold war. However, China and USSR reduced their own
enemies in the late 1960s. Since China and the U.S. were
facing the same enemy with USSR, so this was a common
enemy between China and the U.S. At that time, the presi-
dent of U.S. understood that the Taiwan problem is a major
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Fig. 9 Modeling of countries during the post-world war era as a BFG
with membership degree of the nodes as (1,−1)

interruption between China and the U.S. He made a plan
to open the door to China, and he fetched the relationship
between China and the U.S. that is a normalization course,
which was followed by western allies and Japan. After that,
the USSR collapse into some parts. However, there arises
a question that is “why the other countries agreed with this
normalization course between China and the U.S. ?”

Representation of membership values

The reason depended upon the relationship and communica-
tion in the sense of power, facility, security, import–export,
etc., and all these things depend upon a bipolar fuzzy rela-
tion that has been discussed in [34]. Here, we represent all
the good and bad relationships between every pair of coun-
tries as a BFG, which is shown in Fig. 9, that has been taken
from [34]. In Fig. 9, the nodes represent the countries Japan,
Vietnam, Cuba, Nato, U.S., Russia, E. European countries,
S. Korea, Taiwan, China, and N. Korea, and they are denoted
by J, V, C, N, US, R, ER, SK, T, CH, and NK, respectively.

Decision-making

From Table 1, we see that the COND and CCND between
the nodes CH and the US are more than the other nodes.
This means that the total connection (direct and indirect) of
China and the U.S. with other countries was better than the
other countries. From Table 2, we have the CCND of the
edge between the nodes CH and US is more than the other
edges. Therefore, the total relationship and communication
(direct and indirect) between China and the U.S. was at the
top level from the other countries.

Why the other countries agreed with the normal relation-
ship between China and the U.S.? The answer of the question
is “the total aggregate relation and communication of China
and the U.S. was at the highest level from the other countries.
Also the total internal relationship (for showing normalized

Fig. 10 Modeling of a communication system as a BFG G

to the other countries) between China and the U.S. was max-
imum than the other pair of countries.”

Therefore, China and the U.S was the most communi-
cated countries and the total internal communication between
China and the U.S was at the highest level.

Modeling of a communication system for
improvement of students

Here, first, we will model the communications between
teachers and students as a BFG. Then, using the COND and
CCND of the nodes, we have to select that nodes for which
the COND and CCND both are maximum. Then, we can find
that the most communicated teachers for the corresponding
nodes have the maximum COND and maximum CCND.

Model construction

During recent time, the improvement of student is very
indispensable in educational field. Now,most of the improve-
ment of a student depends upon (i) students’ skill, (ii)
communication with each other, (iii) good results in var-
ious examinations, (iv) taking part in various competitive
examinations, (v) study plan, etc. All these matters mainly
depend upon the communication between the students with
each other and the communication between the students
and teachers. Therefore, communications are very needed
in the present time. Now, we presume that, in an Institution,
there are five teachers in Mathematics Department. Here, we
demonstrate this communication system in this Institution as
a BFG (Fig. 10) between teachers and students.

Description of membership values

Here, each node performs as a teacher. The positive member-
ship value of each node represents the communication power
of a teacher with students. The communication varies teacher
to teacher due to lack of time, pressure of official works, etc.
Therefore, this is uncertain. Its value is 0 if the communi-
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Table 1 Nodes and their
corresponding COND, CCND
of the BFG G of Fig. 9

Node COND CCND Node COND CCND Node COND CCND

J 0.6 0.6 V 0.3 0.3 C −0.2 −0.2

N 1.3 1.3 US 2.3 2.3 R 1.2 1.2

ER 1.5 1.5 SK 0.6 0.6 T 0.4 0.4

CH 2.8 2.8 NK 0 0

Table 2 Edges and their
corresponding CCND of the
BFG G of Fig. 9

Edge CCND Edge CCND Edge CCND Edge CCND

SK-NK 1.2 J-CH 3.2 J-US 2.5 V-US 2.6

V-C −0.2 C-US 2.9 C-NK −0.5 N-US 2.9

N-CH 3.5 US-SK 2.1 US-T 2.2 US-CH 5.1

US-ER 3.2 US-R 3.4 R-ER 2.4 R-CH 3.2

ER-CH 3.7 SK-CH 3.0 T-CH 3.3 CH-NK 2.5

cation is ≤ 10%, and its value is 1 if the communication
is ≥ 90%. Therefore, this lies between 0 and 1. Also the
negative membership value of each node represents the inca-
pability of teachers to maintain this communication (because
of lacks of time, pressure of official works, etc). Therefore,
this is uncertain. Its value is − 1 if the incapability is ≥ 85%
and it’s value is 0 if the incapability is ≤ 10%. Therefore,
this lies between − 1 and 0.

The positive membership value of each edge represents
that the communication between two teachers for students
and its varies also due to lack of time, pressure of official
works, etc. Therefore, this is again uncertain. Its value is 0
if the communication is ≤ 15%, and its value is 1, if the
communication is≥ 80%. Therefore, this lies between 0 and
1. The negative membership value of each edge represents
the incapability of teachers to maintain this communication.
Therefore, this is uncertain. Its value is - 1 if the incapability
is ≥ 85% and its value is 0 if the incapability is ≤ 10%.
Therefore, this lies between - 1 and 0.

Decision-making

From Table 3, we have COND(t1) < COND(t3) <

COND(t4) < COND(t2) = COND(t5) andCCND(t1) <

CCND(t3) < CCND(t4) < CCND(t2) < CCND(t5).
max{COND(ti )} = 1.20 = COND(t2) = COND(t5)
and max{CCND[ti ]} = 1.55 = CCND[t5], for all i =
1, 2, 3, 4, 5. Thus, for the node t5, both the valueCOND(t5)
and CCND[t5] are maximum. min{COND(ti )} = 0.98 =
COND(t3) and min{CCND[ti ]} = 1.27 = CCND[t3],
for all i = 1, 2, 3, 4, 5. Thus, for the node t3, both the value
COND(t3) and CCND[t3] are minimum.

Since the COND and CCND of the node t5 both are high-
est, therefore the totally accurate communication of the node
t5 is maximum. Hence, the teacher t5 is the most communi-
cable teacher for development of future of students.

Therefore, using the help of maximum value of COND
and maximum value of CCND of the nodes, the selection of
the t5 teacher as a best communicate teacher is depicted.

Comperative analysis

In a fuzzy graphical model, there exists only one side mem-
bership value of each node and edge. Akram et al. [5,6] and
Poulik and Ghorai [25] have described different types of
applications of BFGs in wireless network, determination of
journey’s order using path, connectivities, and indices. How-
ever, in this work, different types of degrees of nodes have
been used. In our first model, there exists some good and bad
relations between countries which are of opposite to each
other anduncertain.Therefore, in this typeof situations, bipo-
lar fuzzy graph can be used to get better explanation. Also,
the degree of vertices in a fuzzy graph gives the total contri-
bution of the nodes in the system only. However, the degree
of nodes in a bipolar fuzzy graph gives the total information
and contribution of the positive and negative characters sep-
arately. Many decision-making problems on bipolar fuzzy
graphs had been done previously. However, in our proposed
methods, there are positive aswell as negative relations.Here,
the COND and CCND give the total combined (both posi-
tive and negative side) contribution of the countries in the
system. Based on COND and CCND, the highest communi-
cated countries in international communication systems and
the most communicated teacher in teacher–students commu-
nication system are determined.

Advantages and limitations

The main advantages of the proposed method are as follows:

• The relation of communication between some countries
have been analyzed here
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Table 3 Nodes and their
corresponding COND, CCND
of the BFG G of Fig. 10

Node COND CCND Node COND CCND Node COND CCND

t1 1.00 1.29 t2 1.20 1.45 t3 0.98 1.27

t4 1.12 1.37 t5 1.20 1.55

• The most communicated countries are shown using
COND and CCND in a BFG.

• This method can be applied to explain teacher–student
communication in education system for the improvement
of study under bipolar fuzzy information.

Some of the limitations of this work are as follows:

• Thisworkmainly focused onBFGand its related network
systems.

• This method is applicable only when two opposite-sided
directional thinking exist in a connected bipolar fuzzy
graphical system.

• If the membership values of the characters are given in
different environment, then the concept of BFG cannot
be applicable.

• Collection of real data may not be possible always.

Conclusion and future works

The degree of nodes and edges in a BFG have been applied
to analyze the international relationship between some coun-
tries and teacher students’ communication in education field.
The regularity of nodes and edges in a BFG plays an impor-
tant factor in many decision-making problem with bipolar
fuzzy environment for instances, shortest path, boundary and
interior stations in awireless network, water and electric con-
nection, etc. First, it contains perfectly regular BFG, which
is an interpretation of the degrees of nodes with their charac-
teristic. Second, regular interconnections between nodes are
visualized as a perfectly edge-irregular BFG with their prop-
erties. Third, the total complete communication of nodes in
a bipolar fuzzy environment has been described in terms of
COND and CCND with some theorems. Some algorithms
with corresponding flowcharts are exhibited to calculate the
most communicable nodes and edges in a BFG. Two applica-
tions of our research work have been discussed using COND
and CCND of BFGs. First one is to select the most commu-
nicated countries between countries at the time of cold-war
era. The second one is in decision-making to select the best
communicated teacher in a teacher–student communication
system. At last, a comparative analysis and some advantages
and limitations of this work have been described.

Based on the multiple characteristics of the nodes and
edges in graphs, there are a lot of future research scope,

such as: (i) complete degree in intuitionistic fuzzy graphs,
(ii) complete degree in pythagorean fuzzy graphs, (iii) com-
plete degree in m-polar fuzzy graphs, etc.
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