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Abstract
Polynomial Regression Surface (PRS) is a commonly used surrogate model for its simplicity, good interpretability, and
computational efficiency. The performance of PRS is largely dependent on its basis functions. With limited samples, how to
correctly select basis functions remains a challenging problem. To improve prediction accuracy, a PRS modeling approach
based on multitask optimization and ensemble modeling (PRS-MOEM) is proposed for rational basis function selection with
robustness. First, the training set is partitioned into multiple subsets by the cross validation method, and for each subset a
sub-model is independently constructed by optimization. To effectively solve these multiple optimization tasks, an improved
evolutionary algorithm with transfer migration is developed, which can enhance the optimization efficiency and robustness
by useful information exchange between these similar optimization tasks. Second, a novel ensemble method is proposed to
integrate the multiple sub-models into the final model. The significance of each basis function is scored according to the
error estimation of the sub-models and the occurrence frequency of the basis functions in all the sub-models. Then the basis
functions are ranked and selected based on the bias-corrected Akaike’s information criterion. PRS-MOEM can effectively
mitigate the negative influence from the sub-models with large prediction error, and alleviate the uncertain impact resulting
from the randomness of training subsets. Thus the basis function selection accuracy and robustness can be enhanced. Seven
numerical examples and an engineering problem are utilized to test and verify the effectiveness of PRS-MOEM.

Keywords Polynomial Response Surface · Basis function selection · Multitask optimization · Ensemble modeling

Introduction

Despite the tremendous promotion in computer processing
power, the computationally expensive problem occurs fre-
quently in multiple scientific and engineering disciplines
where complex computer simulations are used. In these
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cases, obtainingmore datameans additional experiments and
thus it results in highly non-trivial computational expense
(Forrester and Keane [1]). As a result, surrogate models have
been widely used to replace the complex simulation models
(Namura et al. [2]). Their application fields involve multi-
disciplinary design optimization (Yao et al. [3]), uncertainty
analysis (Yao et al. [4]), and so on.

At present, the commonly used surrogate models are:
Polynomial Response Surface (PRS) (Goel et al. [5]), Mul-
tivariate Adaptive Regression Splines (MARS) (Gu and
Wahba [6]), Kriging (Clark et al. [7]), Radial Basis Function
(RBF) (Yao et al. [8]), Support Vector Regression (SVR)
(Clarke et al. [9]). There are also some hybrid surrogate
modeling paradigms where different surrogate models are
combined to offer effective solutions ((Zhang et al. [10])(Yin
et al. [11]). Among these surrogates, PRS is a popular
surrogate model because of its simplicity, good interpretabil-
ity, and computational efficiency (Bhosekar and Ierapetritou
[12]). However, PRS is unsuitable for the non-linear, multi-
modal, multi-dimensional design landscapes (Forrester and
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Keane [1]). Because of the limitations existing in PRS,
some enhanced versions which include removing or sup-
pressing unnecessary variables are proposed, such as subset
selection (Furnival and Wilson [13]) or regularization (Tib-
shirani [14]). Subset selection methods address the trade-off
between prediction error and the regression model complex-
ity by selecting a subset of variables. Stepwise regression
is an effective way to solve the subset selection problem
(Hosseinpour et al. [15]). Borrowing the idea of stepwise
regression, Giustolisi et al. (O. Giustolisi and Doglioni
[16]) propose Evolutionary Polynomial Regression (EPR),
which uses an evolutionary process rather than follows the
hill-climbing method of stepwise regression. For the reg-
ularization method, Least absolute shrinkage and selection
(Lasso) is widely used (Tibshirani [14]), which shrinks some
coefficients and sets others to zero to retain the good features
of both subset selection and ridge regression. Zou et al. (Zou
and Hastie [17]) propose the elastic net (EN) technique to fix
the problem of failing to select correlated grouped variables
that existed in the Lasso.

Either for subset selection or regularizationmethods, their
performance is largely dependent on the basis functions
included in the model. By choosing the significant terms,
the prediction ability of the model would be enhanced. Com-
monly, the basis function selection is based on a specific
error estimation of the model. An error estimation method
that accords with the true error of the model could guide the
selection of basis functions more effectively. Currently, the
mean squared error estimationmethod based on cross valida-
tion (CV), such as prediction error sum of squares (PRESS)
(Goel et al. [18]), is a popular way to estimate the global
accuracy of the model. However, with limited samples avail-
able, the mean squared error estimation method based on
cross validation is influenced by the data partition scheme,
which may not estimate the true global average error well.
Thus, in this situation, it is difficult to select significant basis
functions effectively for PRS. To avoid the problem, Gu et
al. (Gu andWei [19]) propose a robust model structure selec-
tion method, which could select the significant model terms
according to the overall mean absolute error of the resampled
subsets. Although the method achieves good results in some
numerical examples, it leads to large computational costs.
Besides, the aforementioned modeling methods are based on
the error estimation of all the CV subsets, whichmay result in
incorrect basis function selection due to significant influence
from certain subsets with large estimation error (as discussed
in Sect. 2.3).

In this paper, a novel approach based on multitask opti-
mization and ensemble modeling (PRS-MOEM) is proposed
to effectively mitigate the negative influence of the subsets
with large estimation error due to the random partition, and
enhance the basis function selection accuracy and robust-
ness. First, multiple subsets are partitioned from the training

set based on cross validation. Instead of the traditional mod-
eling method which directly builds a single model guided
by the error estimation based on cross validation, multiple
sub-models are constructed by building the surrogate for
each subset. The multiple sub-model modeling processes are
solved in parallel by multiple optimization tasks. To improve
the optimization performance, multitask optimization can be
adopted (Ong and Gupta [20]; Naik and Rangwala [21]),
and an improved evolutionary algorithmwith transfer migra-
tion is developed to solve multitask optimization problem,
which can significantly enhance the optimization efficiency
and robustness by useful information exchange between the
similar optimization tasks. Second, a novel ensemblemethod
is proposed to integrate the multiple sub-models into the
final optimal one. Actually, there are relevant researches on
ensemble modeling which integrates multiple models into
one model. However, previous studies are usually conducted
by the weighted sum approach (Fang et al. [22]; Zhou and
Jiang [23]). Since some sub-models may deviate from the
true model greatly due to the specific training subset fea-
tures (the subsets are randomly partitioned), this weighted
sum approach may result in wrongly selecting basis func-
tions. Thus, the interpretability of the PRS model would be
reduced as well as its accuracy. To obtain a well performed
ensemble, in this paper a scoring method is proposed to mea-
sure the significance of each basis function according to
the error estimation of the sub-models and the occurrence
frequency of these basis functions in all the sub-models.
The basis functions are ranked according to the significance
scores in descending order. Each time add a basis function
into the ensemble and measure the model accuracy by the
bias-corrected Akaike’s information criterion (AICc). The
ensemble with the lowest AICc is chosen as the final model.
In this way, the negative influence from the sub-models with
large prediction error can be mitigated, and the uncertain
impact resulting from the random partition of subsets can
be alleviated. Thus the basis function selection accuracy as
well as algorithm robustness can be effectively enhanced.
The main contributions of this paper can be summarized as
follows:

– A PRS modeling problem is decomposed into multiple
subproblems, which are to build the sub-model for each
subset separately. Therefore, the potential of each sub-
set can be fully explored and the phenomenon of wrong
dominance by specific subsets can be mitigated.

– Multitask optimization is introduced to simultaneously
solve the subproblems, and an improved evolutionary
algorithmwith transfermigration is developed to enhance
the optimization efficiency and robustness.

– An ensemble modeling method for integrating multiple
sub-models is proposed. Using a novel scoring strategy,
the method sorts each basis function of the sub-models,
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combines them serially, and selects a final optimum
model.

The rest of the paper is organized as follows. In Sect.
2, a brief review of Polynomial Response Surface (PRS) is
introduced and the disadvantage of the traditional modeling
method based on CV is analyzed. In Sect. 3, the PRSmethod
based on Basis Function Selection by Multitask Optimiza-
tion and Ensemble Modeling (PRS-MOEM) is developed
in detail. In Sect. 4, the proposed PRS-MOEM is testified
with seven numerical examples and one practical engineer-
ing problem, followed by conclusions in the final section.

Preliminary

Polynomial regression surface

The PRS model is derived from the linear regression model,
the matrix form can be written as

ŷ(x) = [ f1(x), f2(x), . . . , fnvars(x)] · β (1)

where x = [x1, x2, ..., xm]T is a sampled point. m is the
number of variables. β = [β1, β2, ..., βnvars]T is the regres-
sion coefficients vector. [ f1(x), f2(x), ..., fnvars(x)] is the
basis function vector, and fi is a basis function. nvars is
the number of basis functions. Given a set of training points
x(l) ∈ R

m, l = 1, 2, ..., n, and the corresponding actual
response vector y = [y(1), y(2), ..., y(n)]T , the design matrix
is defined as

F =
⎡
⎣

f1(x(1)) · · · fnvars(x(1))

· · · · · · · · ·
f1(x(n)) · · · fnvars(x(n))

⎤
⎦ (2)

The least squares method is often used to solve the regression
coefficients as

β = F+ · y (3)

where F+ = (FTF)−1FT is the Moore-Penrose pseudo-
inverse of F.

To lower the mutual coherence of the design matrix, the
multivariable Legendre orthogonal polynomial (Fan et al.
[24]) is applied to form the basis function in this paper, which
is

fi (x) =
m∏
j=1

Lη j

(
x j

)
(4)

where η j is the order of the j th univariate Legendre polyno-
mial Lη j

(
x j

)
, and

∑m
j=1 η j = P , P is a user-defined highest

order of polynomials. Lη j

(
x j

)
is determined by the recursive

definition. It is supposed that L0
(
x j

) = 1 and L1
(
x j

) = x j ,
then

(
η j + 1

)
Lη j+1

(
x j

) = (
2η j + 1

)
x j Lη j

(
x j

)−η j Lη j−1
(
x j

)

(5)

Traditional PRSmodelingmethod based on cross
validation

PRS modeling first should define the basis function vec-
tor, which needs separate sample set for model validation
and basis function selection. However, with limited samples
available, it is difficult to obtain separate sample set for surro-
gate validation. To address this problem, the cross-validation
method is widely used as it can provide good error estimation
when the sample size is small (Bischl et al. [25]). For K -
fold cross-validation, the training set D = {(x(l), y(l)), l =
1, 2, ..., n} is randomly partitioned into K disjoint sets of
approximately equal size, denoted as D1, D2, ..., DK . Note
that for small data size, 10-fold cross-validation provides
almost unbiased estimate of prediction error. With a rela-
tively large number of samples, small K is preferred, such
as 5, to avoid high computational cost (Simon [26]). For
k = 1, 2, ..., K , Dk is the validation subset with the corre-
sponding training subset D(−k) = D − Dk . The candidate
basis function set is defined as � = { fi }i=1,...,nvars . The tra-
dition modeling method tries to find an active basis function
set from � by minimizing the error estimation of the final
model, where . Here ‘active’ means that the basis function
is selected into the final model, while ‘inactive’ is opposite.
First, the selected active basis function vector with Nactive

items is defined as

S = [ fa1, fa2, ..., faNactive ]T
fai ∈ �, 1 ≤ i ≤ Nactive

(6)

The design matrix F(−k) is constructed with the active basis
function vector S for D(−k) as

F(−k) = [
S(xk1),S(xk2), ...,S(xknk )

]T

xk j ∈ D(−k), 1 ≤ j ≤ nk

(7)

where the superscript T means the transverse of the matrix,
nk is the number of points in the subset D(−k). Then the
regression coefficient vector β(−k) is calculated by

β(−k) = (F(−k))+ · y(−k) (8)

where y(−k) is the actual response vector of the train-
ing samples in D(−k), and (F(−k))+ is the Moore-Penrose
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pseudo-inverse of F(−k). Based on S and β(−k), the sub-
model corresponding to the training subset D(−k) can be
obtained as

ŷk(x) = S(x) · β(−k) (9)

Based on Dk , the prediction error of the model can be
estimated. As the commonly used ordinary cross-validation
error estimation criterion (CV) would lead to large bias when
the sample size is small (Yanagihara et al. [27]), the bias-
corrected cross-validation criterion (CCV) is chosen in this
paper for error estimation, which is

�(β(−k)) = 1
n−nk

·
n−nk∑
i=1

(|y(i) − ŷk(x(i))|x(i)∈Dk
)

+ 1
nk

·
nk∑
j=1

( 1
2n |y( j) − ŷk(x( j))|x( j)∈D(−k) )

(10)

CCV calculates the prediction error of the model in the
first term, and considers the fitting error meanwhile in the
second term, which could avoid large bias with limited sam-
ples. For k = 1, 2, ..., K , repeat the aforementioned steps
and obtain the prediction errors of all the sub-models based
on the active basis function vector S. Byminimizing the error
sum

∑K
k=1 �(β(−k)), the optimal active basis function vector

can be obtained. The diagram of the above method is shown
in Fig. 1a, and the optimization task can be formulated as

Find S = [ fa1, fa2, ..., faNactive ]T , fai ∈ �

Min
K∑

k=1
�(β(−k))

s.t. β(−k) = (F(−k))+ · y(−k)

F(−k) = [
S(xk1),S(xk2), ...,S(xknk )

]T
xk j ∈ D(−k), 1 ≤ j ≤ nk,1 ≤ k ≤ K

Nactive ≤ min
1≤k≤K

(nk)−1

(11)

The number of active basis functions in the final model is
Nactive and has to meet the constraint Nactive ≤ min

1≤k≤K
(nk)−1 (Lee et al. [28]).

Disadvantage of the traditional PRSmodeling based
on cross validation

In solving Eq.(11), the optimal active basis function vector
S is obtained by minimizing the total sub-model error sum∑K

k=1 �(β(−k)), which may easily lead to incorrect selec-
tion due to the significant influence from certain sub-models
with large error estimation. A one-dimensional problem is
used for illustration and presented in Fig. 2. The sample set
is divided into two subsets, labeled as subset A (blue dots)

and subset B (red dots) respectively. To demonstrate the influ-
ence of the subsets on the final model construction, build the
optimal sub-models for each training subset first. With the
training subset A and the validation subset B, the sub-model
1 (brown dash line) is obtained by minimizing the subset
estimation error stated in Eq.(10). And similarly, the sub-
model 2 (red dash line) is obtained with the training subset
B and the validation subset A. Obviously, the nonlinear sub-
model 1 is more in line with the true model (green dash line),
and the sub-model 2 is just a linear model (only linear basis
functions are selected) which deviates a lot from the true
response. This indicates that with improper subset partition
(which may happen with large probability due to the random
CV partition method), the optimal model obtained by mini-
mizing the estimation error is far from the true model, which
means it fails to correctly identify the basis functions with
training subset B.

Then by solving Eq.(11) to minimize the total error sum
of all the subsets, the final model is obtained (black solid
line). It can be observed that the final model is also a lin-
ear model, which is very close to sub-model 2. It is because
the large error estimation of sub-model 2 dominated the total
error sum, which accordingly guides the optimization search
towards minimizing the error estimation of sub-model 2.
Therefore, the basis function selection of the final model is
close to the sub-model 2. The underlying reason for this prob-
lem is that the active basis function vector is optimized by
considering its performance on all the subsets (the total error
sum). Then the optimization process can be easily dominated
by some specific subsets for which the error estimation is
large. To address this problem, an intuitive idea is to optimize
the active basis function vector for each subset separately, so
that the potential of each subset can be fully explored and the
phenomenon of wrong dominance by specific subsets can be
mitigated. Then based on all the potential active basis func-
tion vectors, the final model can be ensemble according to a
certain criterion. Based on this idea, in this paper a novel PRS
modeling approach is proposed. It optimizes the active basis
function vector and constructs the corresponding sub-model
for each subset separately and in parallel based on multi-
task optimization (MO). Then the active basis functions are
scored and selected by ensemble modeling (EM). This PRS
modeling framework is developed in Sect. 3.

Multitask optimization

MO (Jin et al. [29]; Liao et al [30]) can simultaneously
solves multiple tasks in a single run and achieve better per-
formancewith positive knowledge transfer, which has shown
high efficiency on expensive optimization problem (Ding et
al. [31]; Wang et al. [32]). As discussed in the above section,
a PRS modeling optimization problem can be decomposed
into K subproblems which are optimizing active basis func-
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Fig. 1 The diagram of PRS modeling framework

tion vector for each subset separately. Due to the similarity
of these subproblems and the independence of optimization
processes, MO is introduced to construct the sub-model for
each subset in this paper. Suppose that S(−k) is feasible active
basis function vector of the kth optimization task �k , then
the subproblems are to be simultaneously addressed can be
formulated as

{
S(−1),S(−2), ...,S(−K )

}
= {argmin�1, argmin�2, ..., argmin�K } (12)

The details of the optimization problem are clarified in the
next section.

PRS-MOEMmethod

The PRS-MOEM framework is shown in Fig. 1b. It mainly
includes two key parts, namely the multitask optimization
to obtain potential active basis function vector and construct
optimal sub-models for all the subsets based on K -fold cross
validation, and the ensemble modeling to integrate all the
sub-models into the final model. Furthermore, to effectively
solve the multitask optimization problem, an improved evo-
lutionary algorithm with transfer migration is developed.

Multitask optimization for sub-model construction

For the subset Dk and D(−k), the active basis function vec-
tor can be obtained by solving the following optimization

Fig. 2 The illustration of PRS modeling being greatly influenced by
specific subsets

problem:

Find S(−k) = [ fa1, fa2, ..., f
aN (−k)

active
]T , fai ∈ �

Min �(β(−k))

s.t. β(−k) = (F(−k))+ · y(−k)

F(−k) = [
S(xk1),S(xk2), ...,S(xknk )

]T

xk j ∈ D(−k), 1 ≤ j ≤ nk

N (−k)
active ≤ nk−1

(13)

where S(−k) is the active basis function vector of the kth sub-
model trained by the subset D(−k), and N (−k)

active is the number
of items in this vector.
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For the K subsets, K optimization tasks have to be con-
ducted to construct all the sub-models. Considering that the
optimization processes of the K sub-models are indepen-
dent of each other, multitask optimization can be adopted
to solve the K optimization tasks in parallel. Meanwhile,
the optimization tasks are all for the same purpose as to
obtain the optimal surrogate based on the training sample
subsets obtained from the same true model. Thus these opti-
mization tasks have an inherent similarity. Previous research
has shown that positive transfer can outweigh the deleteri-
ous negative transfer especially when there are some prior
understandings of the similarity between the black-box opti-
mization tasks (Cheng et al. [33]; Feng et al. [34]). Thus,
herein the transfermigrationmethod is proposed to exchange
the useful information between the different optimization
tasks to enhance optimization efficiency, and the details are
presented in Sect. 3.3.

Another important issue in the optimization problem
Eq. (13) is the design space, i.e. the optional basis function set
� herein. In this paper, the multivariable Legendre orthogo-
nal polynomials are used to form the basis function set, the
items ofwhich are definedby the highest order (denoted as P)
of the polynomials. Theoretically, higher order is preferred
with larger design space to cover more possible situations.
However, with the quickly enlarged � due to the increase of
P , the optimization difficulty will increase dramatically due
to the fast increase of the optimization variable number.With
a long history of optimization algorithm research, it remains
a very challenging problem as how to effectively solve the
large-scale optimization problem with global convergence
capability. Thus with larger P , the optimization effective-
ness may not be guaranteed, and the optimization results
may be some local optimum which greatly affects the surro-
gate accuracy. With smaller P the optimization algorithm is
more robust to obtain the global optimum. But it may fail to
capture the high order polynomials of the true model. How
to properly define P is a difficult problem. In this paper, it
is proposed a pre-training method which conduct the multi-
task optimization under different highest order settings, i.e.
P = 1, 2, ..., Pmax , where Pmax is a user-defined maximum,

andobtain the preliminary objective values
�

�
P

k , k = 1, ..., K
for each subset optimization task under different P values.
Then for the kth subset, define the proper highest order as

Pk = argmin
P

{ �

�
P

k } (14)

With Pk , the kth sub-model is trained, and the corresponding
optimal active basis function vectorS(−k)∗ could be obtained.
The necessity of the highest order setting is illustrated in
Sect. 4.3.1.

Ensemblemodeling

How to combine the sub-models into the final ensemble with
good performance is an important and challenging issue. Pre-
vious studies generally use the weighted sum approach, but
it may lead to incorrect selection of basis functions due to the
similar reasons for the PRSmodeling based on total error sum
of all the subsets, as analyzed in Sect. 2.3. Thus, the inter-
pretability and accuracy of the ensemble are both reduced.
To address this problem, instead of directly summing all the
sub-models into an ensemble, it is proposed to construct the
final model by quantitatively scoring and rationally selecting
the basis functions in this paper.

First, a novel scoring method is proposed to measure the
significance of each basis function. There are two impor-
tant issues that should be taken into consideration during
scoring, namely the sub-model accuracy and basis function
occurrence frequency. On one hand, if a sub-model has high
accuracy as well as low complexity (fewer active basis func-
tion numbers), then it would more possibly match the true
model. Thus the active basis functions of this sub-model have
more significance for surrogate modeling and should have
a higher probability to be selected. On the other hand, if a
basis function becomes active inmany sub-models, it is more
likely to be included in the true model for its high occurrence
frequency among the sub-models. According to these con-
siderations, the significancemetric to score the basis function
is defined as

�s = ⋃
1≤k≤K

S(−k)∗ = { fi }i=1,...,Ns

f or i = 1, 2, ..., Ns; k = 1, 2, ..., K

scoreik =

⎧⎪⎨
⎪⎩

1
�

�
∗
k×N (−k)∗

active

if fi ∈ S(−k)∗

0 if fi /∈ S(−k)∗

scorei =
K∑

k=1
scoreik

(15)

where
�

�
∗
k is the optimal objective value for the kth sub-

model. N (−k)∗
active is the number of active basis functions in the

kth sub-model. fi denotes the i th component in the basis
function set �s which is the union of all the candidate basis
function sets S(−k)∗ of the sub-models, and Ns is the total
number of basis functions in �s . Each basis function fi (i =
1, 2, ..., Ns) is first scored in each sub-model and denoted as
scoreik . Then the final score scorei of each basis function is
obtained by summing up scoreik across all the sub-models.
From Eq.(15), it can be observed that the following rules are
applied for basis function selection:
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– First, if the i th basis function is inactive in the kth sub-
model, then the sub-score scoreik of this basis function
in this sub-model is zero. If it is active, then its sub-score
is calculated according to the accuracy and complexity
of this sub-model.

– Second, if a sub-model has smaller
�

�
∗
k , which means

this sub-model’s performance is goodwith high accuracy,
then the active basis functions in this sub-model tend to
have higher scores as this sub-model has larger possibility
to match the true model.

– Third, if a sub-model has larger N (−k)∗
active, which means

this sub-model is more complex with a large number of
basis functions, then the active basis functions in this
sub-model tend to have lower scores so as to prevent
over-fitting.

– Fourth, through adding the sub-scores of basis func-
tions across all the sub-models, the overall significant
assessment of each basis function can be obtained with
consideration for all the subsets.

After the scoring procedure, the sequence of the basis
functions according to the significance scores in descend-
ing order can be obtained, and the top N0 = min (Ns, n − 2)
elements are selected and composed the candidate significant
basis function set { f( j)} j=1,...,N0 . In this paper, it is proposed
to add one basis function of { f( j)} j=1,...,N0 into the ensem-
ble each time according to the ranking sequence and quantify
the accuracy of this ensemble. After the j th basis function
f( j) is added, there are j active basis functions in the current
ensemble, based on which the PRS model can be built based
on Sect. 2.1. Denote the prediction model of this ensemble
as ŷ( j)(x). Then the bias-corrected Akaike’s information cri-
terion (AICc) (Hurvich and Tsai [35]) is used to quantify the
model accuracy which is

AICc( j) = n × ln( 1n
n∑

l=1
(y(l) − ŷ( j)(x(l)))

2
)

+n × (ln(2π) + 1) + 2 j + 2 j × j+1
n− j−1

(16)

Until all the basis functions are added into the ensemble,
there are totally N0 candidate ensemble models. By compar-
ing AICc( j) (1 ≤ j ≤ N0), the ensemble with the minimum
AICc can be selected as the optimummodel with the highest
accuracy.

Evolutionary algorithmwith transfer migration

In the PRS-MOEM framework, the efficacy of solving
multitask optimization is very important. To enhance the
optimization effectiveness, the evolutionary genetic algo-
rithm (GA) is applied and improved in the following two
aspects. First, the chromosomes of GA are coded to indi-
cate the active states of basis functions. Second, a transfer

Fig. 3 The diagram of chromosome coding.

migration method is proposed to exchange useful informa-
tion between the different optimization tasks. The diagram
of chromosome coding is shown in Fig. 3. For the optimiza-
tion tasks, there are nvars = (p+m)!/p!m! basis functions
in the candidate set �. Then, compose the chromosome by
nvars bits with each bit corresponding to a basis function
state.m is the dimension number of the input variable vector
x. P = 1, 2, ..., Pmax is the highest order. The bit with the
value of 0 denotes that the corresponding basis function is
inactive, while the bit with the value of 1 is the opposite.
Note that searching the optimal chromosome is essentially
to find the most proper active basis functions vector in the
basis function set �.

To improve the optimization performance, a one-way cir-
cular transfer migration strategy is proposed to bridge the
parallel search with positive information exchange. Define
population of the kth optimization task in the i th genera-
tion as population(i)

k , which consists of three subpopulations

A(i)
k , B(i)

k ,C (i)
k . Rank the population according to the objec-

tive value in ascending order for minimization problem (or
descending order for maximization problem). A(i)

k is first

W% elite of ranked population, and C (i)
k is last W% of

ranked population. B(i)
k is the rest of the population(i)

k . For

k = 1, 2, ..., K , the population(i)
k is denoted as

population(i)
1 = {A(i)

1 , B(i)
1 ,C (i)

1 }
...

population(i)
k = {A(i)

k , B(i)
k ,C (i)

k }
...

population(i)
K = {A(i)

K , B(i)
K ,C (i)

K }.

(17)

Based on the idea of positive transfermigration to enhance
optimization efficiency, the multiple optimization tasks can
be mutually boosted and accelerated by transferring the
elite from task to task. The subpopulations between dif-
ferent optimization tasks migrate every G generation. For
simplicity, the transfer migration of subpopulations only
occurs in the adjacent optimization tasks. The diagram of
the transfer migration between populations in different opti-
mization tasks is shown in Fig. 5. For the optimization task
k = 1, 2, ..., K −1, the topW% elite subpopulation A(i)

k are
transferred to the task k + 1 and used to replace the bottom
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Fig. 4 The flowchart of
PRS-MOEM

Fig. 5 The diagram of the cyclical one-way transfer migration method

ranked subpopulation C (i)
k+1. The elite subpopulation A(i)

K is
transferred back to the task 1 and used to replace the bottom
ranked subpopulation C (i)

1 . The transfer migration fraction
W% is often set as 20%. The generation interval G for trans-
fer migration operation is set as 5 in this paper. The GA
search stops when the number of generations achieves a user-
defined maximal value. To demonstrate the advantage of the
proposed transfer migration, the performance with and with-
out the transfer migration would be compared in Sect. 4.3.2.

Algorithm of PRS-MOEM

To sum up, based on the preceding multitask optimiza-
tion and ensemble modeling framework, the flowchart of

PRS-MOEM is shown in Fig. 4, and the detailed steps are
explained as follows:

– Step 1:Design of experiments (DOE).Obtain the training
point set D = {(x(l), y(l)), l = 1, 2, ..., n} with DOE
methods, e.g. Latin hypercube design (LHD) (Dette and
Pepelyshev [36]).

– Step 2: Partition D into subsets by K -fold cross-
validation. The training set D = {(x(l), y(l)), l =
1, 2, ..., n} is randomly partitioned into K disjoint sets
of approximately equal size, denoted as D1, D2, ..., DK .
For k = 1, 2, ..., K , denote the training subset as
D(−k) = D − Dk and the validation subset as Dk .

– Step 3: Multitask optimization. For different highest
order settings P = 1, 2, ..., Pmax , compose the candidate
basis function set and conduct themultitask optimization.
GA is used as the optimization solver and the top W%
elite subpopulation migrate between different optimiza-
tion tasks every G generations. In this paper, W = 20
and G = 5. GA stops when the number of genera-
tions i achieves a user-defined preliminary value i pre.
In this paper, to save the computational time and define
the proper highest order, i pre = 10.

– Step 4: Determine the optimal active basis function
vector for each subset. For the kth optimization (k =
1, 2, ..., K ), define the proper highest order Pk byEq.(14)
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which has the minimum objective values
�

�
P

k . Then with
Pk , the kth sub-model is trained using multitask opti-
mization in Step 3 from the number of generations i pre
to a user-defined maximal values imax, and accordingly
obtain the optimal active basis function vector S(−k)∗ .

– Step 5: Ensemble modeling. Based on the optimal active
basis function vectors S(−k)∗ , compose the candidate
active basis function set �s = ⋃

1≤k≤K
S(−k)∗ and denote

the total elements number as Ns . Score the significance
of each basis function of this set by Eq.(15), and rank the
set in the descending order according to the scores. Select
the top N0 = min (Ns, n − 2) elements to compose the
candidate significant basis function set { f( j)} j=1,...,N0 .
Each time add one basis function of { f( j)} j=1,...,N0 into
the ensemble according to the ranking sequence and
quantify the accuracy of this ensemble with AICc. For
j = 1, ..., N0 , add the basis function f( j) into the
ensemble and calculate the accuracy AICc( j) of the cor-
responding PRS model. Select the ensemble with the
minimum AICc as the optimal model with the highest
accuracy.

Numerical examples

Test problem

To illustrate the effectiveness of the proposed method in
this paper, two types of problems are chosen: a). benchmark
numerical test functions (Jamil andYang [37]) and b). a prac-
tical engineering problem for sandwich panel design. The
details are given below:

1. Branin function:

f (x) = (x2 − 5.1x21
4π2 + 5x1

π
− 6)2

+10(1 − 1
8π ) cos(x1) + 10

x1 ∈ [−5, 10], x2 ∈ [0, 15]

(18)

2. Three-Hump function:

f (x) = 2x21 − 1.05x41 + x61
6 + x1x2 + x22

x1, x2 ∈ [−2, 2]
(19)

3. Giunta function:

f (x) = 0.6 + ∑2
i=1

⎡
⎣
sin( 16xi15 −1) + sin2( 16xi15 −1)

+ sin(4( 16xi15 −1))/50

⎤
⎦

x1, x2 ∈ [−1, 1]
(20)

4. Schaffer function:

f (x) = 0.5 + (sin((x21+x22 )
1
2 ))

2

−0.5

1+0.001×(x21+x22 )

x1 ∈ [−3, 3], x2 ∈ [−3, 3]
(21)

5. Biggs function:

f (x) =
10∑
i=1

(e−ti x1 − x3e−ti x2 − yi )
2

ti = 0.1i, yi = e−ti − 5e−10ti , i = 1, ..., 10

x j ∈ [0, 20], j = 1, 2, 3

(22)

6. Dette and Pepelyshev curved (DP3) function:

f (x) = 4(x1 − 2 + 8x2 − 8x22 )
2 + (3 − 4x2)2

+16
√
x3 + 1(2x3 − 1)2

xi ∈ [0, 1], i = 1, 2, 3

(23)

7. Colville function:

f (x) = 100(x21 − x2)2 + (x1 − 1)2 + (x3 − 1)2

+90(x23 − x4)2 + 10.1[(x2 − 1)2 + (x4 − 1)2]

+19.8(x2 − 1)(x4 − 1)

xi ∈ [−10, 10], i = 1, 2, 3, 4

(24)

The structural design of all-metal sandwich panels has
great success in many engineering applications (Stickel and
Nagarajan [38]), and the global deflection of the sandwich
panels is an essential structural response in the optimal
design. However, with finite element methods and natu-
ral tests, the calculation of the global deflection is time-
consuming and quite complex. To save the computation cost,
surrogate modeling methods are often applied which could
provide simple but reliable metamodels. In this paper, a
square-core type sandwich panel design problem is selected
to investigate the performance of the proposed method in
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Table 1 The description of the
design variables for the
sandwich panel design problem

Variable Description Range Units

L Panel length [3,7] m

h Panel height [4,16] mm

t1 Top and bottom plate thickness [2,4] mm

t2 Core stiffener thickness [1.5,4] mm

kh Core stiffener spacing factor [1.5,4]

n Symmetrical number of core stiffeners [2,6]

Fig. 6 The square-core type sandwich panel

the field of engineering (Kalnins et al. [39]), which is shown
in Fig. 6. The global deflection of the panel is determined
by six design variables, the description of which are out-
lined in Table 1. The response values of global deflection are
calculated by FEM commercial software ANSYS employ-
ing SHELL 181-4-node shell element, more details can be
found in the literature (Kalnins et al. [39]). The simulation
data are downloaded from http://www.cs.rtu.lv/jekabsons/
datasets.html and used in this paper for surrogate modeling.

Experimental settings

To verify the proposed PRS-MOEM method, it is com-
pared with the following popular surrogates: 1). Polynomial
Response Surface (PRS), 2). Least absolute shrinkage and
selection (Lasso), 3). Ordinary Kriging (OK), 4). Radial
Basis Function (RBF), 5). Elastic Net (EN) (Li et al. [41]),
and 6). The traditional PRS modeling method based on cross
validation (PRS-CCV) as introduced in Sect. 2.2. With the
reference to (Zhang et al. [10]; Yin et al. [11]; Fan et al. [24];
Gribonval et al. [40]; Li et al. [41]), the parameter settings
are presented in Table 2.

Root mean squared error (RMSE) and Maximum abso-
lute error (MAE) (Goel et al. [18]) are used to evaluate the
predictive capabilities of the surrogate models in this paper,
which are

RMSE =
√√√√ 1

nt

nt∑
l=1

(y(l) − ŷ(x(l)))

2

(25)

MAE = max |y(l) − ŷ(x(l))|, l = 1, 2, ..., nt (26)

where y(l) and ŷ(x(l)) denotes the actual response and the
predicted response at the lth test point, respectively, and nt is
the number of test points. For high-quality surrogate model,
RMSE and MAE should be both low.

For all the benchmark numerical examples in Eq.(18)–
(24), Latin hypercube design (LHD) is used for sampling
the training data set. For the sandwich panel design prob-
lem, the sample set of 500 points analyzed by finite element
simulation are downloaded from the online web source. The
data set is divided into 60 training points and 440 test points
randomly. Considering the effect of random sampling, 100
training sets are obtained for each test problem randomly, as
shown in Table 3, based on which the surrogate modeling is
conducted repeatedly and independently. Then the statistical
performance (the mean and variation of RMSE andMAE) of
different surrogate models can be investigated. The variation
of each prediction metric is depicted with box plots. A short
tail and a small size of the box plot signify a robust approx-
imation. In addition, the computational time (CPU time) of
the different surrogate modeling methods are also given, the
tests are performed on a personal computer with a 2.3GHz
CPU and 8GB RAM.

Result and discussion

Determination of the highest order

To illustrate the necessity of determining the highest order,
the optimization results of multitask optimization under dif-
ferent highest order settings P = 1, 2, ..., 10 for Schaffer
and Biggs functions are shown in Tables 4 and 5 respec-
tively. The lowest value in each column is shown in bold for

ease of comparison.
�

�
∗
k , k = 1, ..., 10 denotes the optimal

objective value for the kth sub-model. For the Schaffer test
function, it is observed that P = 8 is the best for the first,
fourth, sixth, seventh, eighth, and tenth subsets, and P = 9
is the best for the second, third, fifth, and ninth subsets. Sim-
ilarly, the most proper highest order for Biggs test function
is P = 5 or 6 for different subsets. The results show that the
optimum obtained by GA is greatly influenced by the highest
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Table 2 Parameters for
different surrogate models

Surrogate model Details

PRS The highest order of polynomials is P = 2.

Lasso The number of basis functions is set to 6n (where n is the number
of sample points) (Gribonval et al. [40]). The 10-fold cross-validation
method is used to choose the regularization parameter λ.

OK The constant regression function and Gaussian correlation model are
employed. In all cases, θ0 = 1m×1, and 0.1 ≤ θi ≤ 20 (Gribonval et al.
[10]), for i = 1, 2, ...,m, where m is the number of variables and 1m×1
is the vector whose entries are all equal to 1.

RBF The basis function is multiquadric with c = 0.9.

EN The number of basis functions is set as 6n. The ridge regulariza-
tion parameter is λ2 = 10e − 3 (Li et al. [41]), and the 10-fold
cross-validation method is used to determine the lasso regularization
parameter.

PRS-MOEM 10-fold cross-validation is used to partition the training set, and Pmax
is set to 10.

PRS-CCV The settings are the same as PRS-MOEM.

Table 3 Numerical setup for
test problems

Test problem No. of variables No. of training points No. of test points No. of training sets

Branin 2 30 1000 100

Three-Hump 2 30 1000 100

Giunta 2 30 1000 100

Schaffer 2 30 1000 100

Biggs 3 40 1331 100

DP3 3 40 1331 100

Colville 4 50 2400 100

Sandwich panel 6 60 440 100

Table 4 Optimal objective values of different highest order settings in Schaffer test

�

�
∗
1

�

�
∗
2

�

�
∗
3

�

�
∗
4

�

�
∗
5

�

�
∗
6

�

�
∗
7

�

�
∗
8

�

�
∗
9

�

�
∗
10

p=1 0.3535 0.2958 0.2580 0.2608 0.3215 0.3313 0.3417 0.3316 0.3214 0.3129

p=2 0.2196 0.1779 0.1608 0.1781 0.1995 0.1941 0.2418 0.2256 0.2118 0.2149

p=3 0.1718 0.1233 0.1032 0.1227 0.1511 0.1281 0.1991 0.1711 0.1546 0.1585

p=4 0.1385 0.0933 0.0783 0.0987 0.1251 0.1000 0.1710 0.1459 0.1286 0.1364

p=5 0.0949 0.0494 0.0422 0.0430 0.0684 0.0472 0.1134 0.0874 0.0753 0.0835

p=6 0.0104 0.0107 0.0131 0.0141 0.0164 0.0108 0.0156 0.0117 0.0122 0.0141

p=7 0.0121 0.0094 0.0090 0.0129 0.0087 0.0113 0.0107 0.0108 0.0122 0.0104

p=8 0.0083 0.0087 0.0098 0.0104 0.0080 0.0081 0.0096 0.0079 0.0090 0.0085

p=9 0.0086 0.0070 0.0079 0.0107 0.0070 0.0085 0.0120 0.0105 0.0082 0.0109

p=10 0.0099 0.0101 0.0093 0.0139 0.0105 0.0105 0.0112 0.0093 0.0079 0.0097

order settings. Take the Biggs test for example. When P is
increased from one to five, the optimal objective values of
all subsets are dramatically reduced by two orders. It clearly
indicated that with small P values, the high order nonlinear-
ity of the test function cannot be captured by the PRS model,
which leads to a large prediction error. When P = 5 or 6,
the optimal objective values of different subsets reach their

corresponding lowest point. The variation of the best P val-
ues among different optimization tasks mainly results from
two issues. One is the randomness of subset partition, which
leads to different features observed from different training
and validation subsets. The other is the inherent fluctuation
associated with GA. For the same subset, the differences
between the optimal objective values for P = 5 and 6 are
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Table 5 Optimal objective values of different highest order settings in Biggs test

�

�
∗
1

�

�
∗
2

�

�
∗
3

�

�
∗
4

�

�
∗
5

�

�
∗
6

�

�
∗
7

�

�
∗
8

�

�
∗
9

�

�
∗
10

p=1 80.480 29.719 44.188 37.597 69.097 31.865 56.890 43.688 43.987 52.452

p=2 50.496 16.863 21.530 23.027 38.039 14.256 32.230 22.262 23.478 31.537

p=3 23.434 8.099 9.235 8.062 14.977 4.824 15.798 9.091 7.216 13.712

p=4 3.003 1.765 1.508 1.502 1.357 2.195 2.175 1.430 1.777 1.431

p=5 0.677 1.060 0.941 0.802 0.933 0.677 0.857 0.684 0.789 0.890

p=6 0.859 1.252 1.100 0.897 0.887 0.834 0.855 0.802 0.874 0.896

p=7 1.442 1.551 1.558 1.664 1.633 1.424 1.496 1.438 1.715 1.902

p=8 390.260 419.350 401.280 341.440 449.220 388.470 487.460 356.290 448.270 398.710

p=9 362.250 404.040 419.130 356.190 440.090 370.120 386.590 417.470 325.820 371.260

p=10 350.290 330.060 330.020 311.580 333.840 322.640 376.070 268.100 327.370 361.600

Table 6 Comparison of the average optimal objective values for Schaffer and Biggs tests

Function E(
�

�
∗
1) E(

�

�
∗
2) E(

�

�
∗
3) E(

�

�
∗
4) E(

�

�
∗
5) E(

�

�
∗
6) E(

�

�
∗
7) E(

�

�
∗
8) E(

�

�
∗
9) E(

�

�
∗
10)

Schaffer Migration 0.0065 0.0069 0.0068 0.0074 0.0075 0.0071 0.0074 0.0084 0.0069 0.0069

No Migration 0.0083 0.0087 0.0079 0.0077 0.0077 0.0085 0.0075 0.0088 0.0073 0.008

Biggs Migration 2.243 2.038 2.327 1.896 2.023 1.824 1.884 2.821 2.493 3.144

No Migration 3.135 2.911 2.489 2.187 3.034 2.608 2.436 3.375 3.106 3.195

Fig. 7 The average convergence process for Schaffer and Biggs tests

very small, which indicates the stableness of GA in solving
the training optimization problems for the Biggs function at
this dimension. Then with the continued increase of P , the
optimal objective values dramatically increase again due to
the failure of GA to obtain the global optimum with the fast
increase of the design space dimension. Thus themost proper
highest order for the Biggs test is determined as P = 5 or 6
for different subsets, according to which the best active basis
function vector can be selected.

Effect of the transfer migration method

To demonstrate the advantage of the transfer migration, mul-
titask optimization is conducted with and without the step
of the transfer migration for the Schaffer test with the high-
est order setting P = 8 and for the Biggs test functions
with P = 5 respectively. The average convergence graphs
of the first optimization task for subset one obtained by
100 independent runs are shown in Fig. 7. Besides, the
average optimal objective values for ten optimization tasks
obtained by the 100 independent runs are shown in Table 6.

123



Complex & Intelligent Systems (2022) 8:1015–1034 1027

Fig. 8 The comparison between the RMSE boxplots obtained with and without transfer migration for Schaffer and Biggs tests

Table 7 Comparison between the average RMSE obtained with and
without transfer migration

Schaffer Biggs

Migration 0.1986 149.392

No Migration 0.2785 286.487

Table 8 Comparison of the average RMSE in Branin and Schaffer tests

Branin Schaffer

The model using AICc 6.3982 0.1804

The model using AIC 9.4983 0.4621

E(
�

�
∗
k), k = 1, ..., 10 denotes the average optimal objective

value for the kth optimization task. It can be observed that for
both Schaffer and Biggs test, the GAwith the transfer migra-
tion converges faster, and its average optimal objective values
are universally better than that without the transfermigration.
These confirm the proposed method can enhance the opti-
mization efficiency by means of positive transfer learning.
On the other hand, the results show that the randomness of
the subset partition could influence the optimization results
greatly. Take the Biggs test for example. The maximal opti-
mum is 3.144 for the tenth optimization task, and theminimal
optimum is 1.824 for the sixth optimization task. To further
investigate the effect of the proposed method on the predic-
tion accuracy of the model, PRS-MOEM is constructed with
and without the transfer migration. Box plots of the RMSE
and the mean RMSE results obtained by the 100 indepen-
dent runs for these two test functions are shown in Fig. 8
and Table 7. It could be easily seen that the model with the
transfermigration performsmuch better than that without the
transfer migration for both two tests, which verifies the effec-
tiveness of the proposed multitask optimization algorithm in
enhancing PRS modeling.

The above experiments clearly show the significance of
the transfer migrationmethod. However, it is noteworthy that
without priority information, it is still a challenging prob-
lem that whether the transfer between different optimization
tasks is positive or deleterious in practical engineering. In this
paper, the specific advantage is that the similarity of multi-
ple optimization tasks is ensured due to the training sample
subsets being obtained from the same true model. Thus, the
prediction accuracy of the model can be improved through
the useful information exchange between these related opti-
mization tasks.

Effect of the model selection criterion

To investigate the rationality of using AICc instead of AIC
to quantify the model accuracy in this paper, AICc and AIC
are applied to select the final model for Branin and Schaffer
test functions. Box plots of the RMSE and the mean RMSE
results obtained by 100 independent runs are shown in Fig. 10
and Table 8 respectively. It can be observed that when AICc
is chosen as the model selection criterion the box plot has
a smaller size and shorter tail, and the mean RMSE of the
models using AICc is much lower than that using AIC for
both two test functions. It suggests that AICc can select the
final model with better performance. To further study the
effect of using AIC and AICc on basis function selection
respectively, the curves of the measure values of the two
criteria with respect to the number of selected active basis
functions are shown in Fig. 9. It could be seen that the value
of AIC decreases gradually as the number of active basis
functions increases, but the value of AICc decreases first and
then increases significantly with the obvious turning point.
It suggests that AIC tends to choose more basis functions,
which could lead to the problem of over-fitting and result in
lower prediction accuracy. In the contrast, AICc can prevent
this risk effectively.
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Fig. 9 Values of AICc and AIC varying with the number of active basis functions in Branin and Schaffer test

Fig. 10 Boxplots of RMSE for the model using AICc and the model using AIC in Branin and Schaffer tests

Accuracy and robustness

The accuracy of the different models is evaluated by the aver-
age prediction metrics of the 100 independent runs. Tables 9
and 10 show the mean RMSE andMAE for the different sur-
rogate models respectively. The lowest value in each column
is shown in bold for ease of comparison.Moreover, to further
evaluate the robustness of different models, the variation of
RMSE and MAE is expressed with box plots in Figs. 11
and 12 respectively. The RMSE and MAE results show
that PRS-MOEM performs the best among the surrogates
in all the test problems except for the Schaffer test function.
For Three-Hump, DP3, and Colville problems, PRS-CCV
also performs well and the accuracy results are very close
to PRS-MOEM. However, for Branin, Giunta, Biggs, and
the sandwich panel design problem, PRS-MOEM performs
much better than PRS-CCV. To investigate the differences of
the selected active basis functions between these two mod-
els, the histograms that describe the frequency of active basis
functions obtained for the 100 training data sets of the Branin
and Giunta functions are shown in Fig. 13 respectively. It can
be seen that for PRS-CCV, except for some specific basis

functions, the others are all selected with similar frequen-
cies, which means PRS-CCV fails to identify the significant
basis functions accurately and stably under the randomlygen-
erated training sets. In the contrast, for PRS-MOEM, there
is a clear distinction of the frequencies between the signifi-
cant and the other basis functions, which further verified the
robustness of the proposed method.

Computational time

To show the computational cost of the different models, the
seven surrogates are repeatedly constructed for the different
test functions, Table 11 presents their average CPU time in
seconds obtained by 100 independent runs. It can be seen
that the average calculation time of PRS, OK, and RBF
are universally small for all test functions, Lasso and EN
have slightly larger calculation time. For PRS-MOEM and
PRS-CCV, they spend more time building a model, around
2 seconds, which is much larger than the other surrogate
modeling methods. But in practical engineering, this com-
putational burden is negligible compared to the high-fidelity
analysis of the training samples, e.g. it takes hundreds of
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Fig. 11 Box plots of RMSE for different surrogate models in a Branin, b Three-Hump, c Giunta, d Schaffer, e Biggs, f DP3, g Colville, and h the
sandwich panel design problem
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Fig. 12 Box plots of MAE for different surrogate models in a Branin, b Three-Hump, c Giunta, d Schaffer, e Biggs, f DP3, g Colville, and h the
sandwich panel design problem
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Table 9 Comparison of the average RMSE for different surrogate models

Branin Three-Hump Giunta Schaffer Biggs DP3 Colville SandwichPanel

PRS-MOEM 6.3176 0.1896 0.0185 0.1819 140.85 0.804 4.39E+04 0.0188

PRS-CCV 17.4893 0.1899 0.0244 0.2728 167.05 0.8068 4.39E+04 0.0208

PRS 28.1543 0.3322 0.1216 0.2819 193.47 2.2944 1.36E+05 0.0281

Lasso 12.1976 0.2333 0.0306 0.1953 219.03 1.6137 7.19E+04 0.029

OK 7.5634 0.2853 0.0205 0.1377 167.58 2.0293 1.71E+05 0.0264

RBF 10.3156 0.2845 0.0251 0.167 171.16 1.8659 1.78E+05 0.0282

EN 18.1909 0.2545 0.0209 0.2428 146.17 0.942 5.40E+04 0.0228

Table 10 Comparison of the average MAE for different surrogate models

Branin Three-Hump Giunta Schaffer Biggs DP3 Colville SandwichPanel

PRS-MOEM 37.328 0.896 0.077 1.391 1578.04 3.141 1.84E+05 0.1321

PRS-CCV 129.692 0.897 0.123 2.169 1720.47 3.152 1.84E+05 0.1349

PRS 139.968 0.929 0.435 1.031 1880.29 10.567 6.57E+05 0.1874

Lasso 74.156 1.1 0.143 0.75 2336.34 8.615 4.38E+05 0.2315

OK 64.926 1.991 0.11 0.601 1915.62 13.703 1.08E+06 0.2232

RBF 72.273 1.691 0.153 1.175 1874.1 10.899 9.45E+05 0.2283

EN 130.229 1.275 0.093 0.85 1734.27 4.102 2.70E+05 0.186

Table 11 Comparison of the average computational time (in seconds) for different surrogate models

Branin Three-Hump Giunta Schaffer Biggs DP3 Colville SandwichPanel

PRS-MOEM 1.571 1.569 1.519 1.533 2.059 1.845 2.010 2.098

PRS-CCV 2.079 1.547 1.798 1.931 2.075 1.930 2.094 2.220

PRS 0.006 0.003 0.003 0.002 0.005 0.005 0.004 0.008

Lasso 0.067 0.064 0.061 0.062 0.106 0.145 0.110 0.564

OK 0.007 0.007 0.006 0.008 0.016 0.017 0.026 0.033

RBF 0.005 0.006 0.005 0.007 0.026 0.031 0.031 0.008

EN 0.062 0.057 0.052 0.056 0.153 0.155 0.180 0.150

hours to run a single finite element analysis for a com-
plex flight vehicle structure. Thus for PRS modeling, it
is worthwhile to spend modest more computational cost
in selecting proper active basis function vector for better
surrogate accuracy. In the future, more effective evolution-
ary algorithms should be studied to enhance the global
optimization capability in solving large-scale optimization
problems.

Conclusion

In this paper, an improved PRS modeling approach PRS-
MOEM is proposed to enhance the prediction accuracy by
better selecting basis functions with robustness based on
the multitask optimization and ensemble modeling frame-
work. Unlike the traditional PRS modeling based on cross
validation which directly builds a single model guided by
the total error estimation of all the training subsets, the

proposed method constructs a sub-model for each train-
ing subset. By properly integrating all the sub-models, the
information of the subsets can be fully explored. To con-
struct all the sub-models effectively by solving the multitask
optimization problem, an improved evolutionary algorithm
with transfer migration is developed, which can signifi-
cantly enhance the optimization efficiency and robustness
by useful information exchange between similar optimiza-
tion tasks. To obtain a well performed ensemble based on
all the sub-models, a scoring method is proposed to mea-
sure the significance of each basis function according to
the error estimation of the sub-models and the occurrence
frequency of these basis functions in all the sub-models.
Then based on the AICc criterion, the significant basis
functions can be selected and the optimal ensemble can
be defined. PRS-MOEM can effectively mitigate the neg-
ative influence from the sub-models with large prediction
error, and alleviate the uncertain impact resulting from the
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Fig. 13 Frequency of active basis functions for PRS-MOEM and PRS-CCV in Branin and Giunta tests

randomness of training subsets. Thus the basis function selec-
tion accuracy and robustness can be effectively enhanced,
which are verified by seven numerical examples and one
practical engineering application example in the test sec-
tion. For future works, the applicability of PRS-MOEM
will be further investigated on a more diverse set of test
problems as well as complex practical engineering prob-
lems. Besides, the extension of PRS-MOEM to effectively
solve high dimensional problems is also a promising research
direction.
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