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Abstract
White blood cells, WBCs for short, are an essential component of the human immune system. These cells are our body’s
first line of defense against infections and diseases caused by bacteria, viruses, and fungi, as well as abnormal and external
substances thatmay enter the bloodstream.AwrongWBCcount can signify dangerous viral infections, autoimmune disorders,
cancer, sarcoidosis, aplastic anemia, leukemia, tuberculosis, etc. A lot of these diseases and disorders can be extremely painful
and often result in death. Leukemia is among the more common types of blood cancer and when left undetected leads to
death. An early diagnosis is necessary which is possible by looking at the shapes and determining the numbers of young
and immature WBCs to see if they are normal or not. Performing this task manually is a cumbersome, expensive, and time-
consuming process for hematologists, and therefore computer-aided systems have been developed to help with this problem.
This paper proposes an improved method of classification of WBCs utilizing a combination of preprocessing, convolutional
neural networks (CNNs), feature selection algorithms, and classifiers. In preprocessing, contrast-limited adaptive histogram
equalization (CLAHE) is applied to the input images. A CNN is designed and trained to be used for feature extraction
along with ResNet50 and EfficientNetB0 networks. Ant colony optimization is used to select the best features which are
then serially fused and passed onto classifiers such as support vector machine (SVM) and quadratic discriminant analysis
(QDA) for classification. The classification accuracy achieved on the Blood Cell Images dataset is 98.44%, which shows the
robustness of the proposed work.

Keywords White blood cells · CNN · Classification · Preprocessing · Fusion · Selection

Introduction

Blood is an integral part of human physiology. It makes up
about 7% of an adult’s body weight [1]. It is composed of
55% plasma which allows it to flow freely throughout the
body using blood vessels [2]. Centered on the color, size,
texture, shape, and composition, the cellular components of
blood are separated into three cell types i.e., erythrocytes
(red blood cells or RBCs) [3], leukocytes (WBCs) [4, 5], and
thrombocytes (platelets) [6]. These elements, when observed
under a microscope, have distinct shapes and sizes, with
WBC being larger than the others due to the presence of
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nuclei and cytoplasm in them. This notable feature further
divides the WBCs into two types: granulocytes and agranu-
locytes. Granulocytes are defined by many granules present
inside their cytoplasm. These are the most common type of
WBC and are produced through granulopoiesis in the bone
marrow. There are four sub-types of granulocytes, differenti-
ated based on the color that the granules stain when exposed
to a compound dye. These types are neutrophils, eosinophils,
basophils, and mast cells. Agranulocytes lack granules in
their cytoplasm and are split into two categories—lympho-
cytes and monocytes [7, 8]. Figure 1 shows one of three
WBC types. A sample of 1µl of human blood contains about
4000–11,000 WBCs. The amount of neutrophils is between
40 and 70%, lymphocytes are between 20 and 45%, mono-
cytes are between 2 and 10%, eosinophils 1 and 6%, and
basophils less than 1% [9]. Although they are only 1% of the
whole blood volume, their function is very significant and
any imbalance can cause serious health complications [10],
e.g., leukemia [11], myelodysplastic syndrome, lymphoma,
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Fig. 1 Three different types of
WBCs: a neutrophils,
b eosinophils, c basophils

etc. To avoid such complications, diagnosticians and doc-
tors must know the exact count of WBCs in the body. Initial
attempts were made by Aldred S. Warthin in 1906 [12], who
suggested the use of a diluent that preserved the blood cells.
A manual count of the cells was then performed to deter-
mine the ratio of cells and their counts. Presently, there are
two commonly used ways to determine WBC count—one
is to do it manually by using a hemocytometer (microscope
staining process) [13] while another involves the use of an
automated analyzer.

Complete blood count [14] is a common blood analyzer
that provides a count of the unique blood cells present in
the body, allowing for the diagnosis of various disorders. For
example, a white blood cell count that is lower than normal,
called leukopenia [15], can be a sign or cause of marrow can-
cer, thyroid disorder, an autoimmune disease, typhoid fever,
or aplastic anemia, whereas a white blood cell count higher
than normal implies that a foreign substance is present in
the blood. This condition is called leukocytosis [16] and can
cause bone marrow malformation, polycystic ovaries, Addi-
son’s disease [17], and leukemia. To treat WBC disorders,
the most important aspect is early diagnosis. For example,
early diagnosis of leukemia, which is one of the deadliest
forms of cancer, greatly increases the chance of recovery,
particularly in children. To achieve this diagnosis, quick and
efficient ways are required, so that the quantity and state of
the different cells such as monocytes and lymphocytes may
be determined, and a conclusion drawn.

The core contributions of the presented research are as
under:

• Channel-wise CLAHE application to improve contrast in
the blood cell images.

• A 45-layer CNN named 4B-AdditionNet, for feature
extraction in combination with pre-existing networks.

• Ant colony optimization (ACO) for feature selection.
• Linear SVM (LSVM), Cubic SVM (CSVM), quadratic
support vectormachine (QSVM), linear discriminant anal-
ysis (LDA), fine K-nearest neighbor (FKNN), and coarse
K-nearest neighbor (CKNN) for classification.

The primary objective of this research is to propose a fully
automated, and efficient method for the categorization of
WBCs in blood smear images. First, each image of the dataset
is preprocessed using CLAHE based image enhancement.
This process involves the splitting of the image into three
separate images, each representing a single channel from the
red–green–blue (RGB) spectrum, trailed by the application
of CLAHE on each channel. Second, the feature extraction,
using two pre-existing networks in combinationwith our pro-
posed CNN network named as 4B-AdditionNet is created as
a part of this research. Ant colony-based feature selection is
utilized to the features extracted by pre-existing networks.
Afterward, features fusion is performed to get the benefits of
three different types of features. Finally, the classification is
performed on different classifiers.

The manuscript is depicted according to the following
divisions. An introduction is illustrated in Sect. Introduction.
Section Literature Review shows a momentary discussion of
current works. The main methodology of this manuscript is
encompassed in Sect. Materials and Methods. The experi-
ments and findings are covered in Sect. Results and Discus-
sion. Every experiment contains a unique combination of
features from the three networks. Each experiment’s results
are analyzed, with relevant information displayed in tables
and graphs. Finally, the conclusion and references impart the
end of the manuscript.

Literature review

A large amount of work has been done on the classifica-
tion of blood cells, particularly since the advent of modern
CNNs. A steady improvement in accuracy is achieved over
the years on most datasets. The importance of this task is evi-
dent from the criticality of early detection in the treatment
of cancer. Various types of pattern detection and automated
computer-based methods have been used in the past, but the
speed and accuracy of such methods are low. The feature
extraction algorithms such as Speeded Up Robust Features
(SURF) [18], Scale Invariant Feature Transform (SIFT) [19],
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Histogram of Oriented Gradients (HOG) [20], Grey Level
Co-occurrence Matrices (GLCM) [21], etc. have been used
with moderate success; however, there are still some lim-
itations. Also, CNNs have been used for this purpose and
have achieved high accuracy. The process of WBC detection
is divided into four main categories—preprocessing, feature
extraction, feature selection, and classification.

In preprocessing [22], various techniques have been
utilized over time. Prinyakupt et al. [23] performed prepro-
cessing by enhancing the nucleus region of the blood cells
by modifying the intensity of different color channels fol-
lowed by histogram equalization. Bikhet et al. [24] used the
technique of median filtering to remove noise from images,
followed by thresholding to separate the WBCs from their
backgrounds. Karthikeyan et al. [25] used the interpola-
tive Leishman-stained model to remove false areas from
blood smear images, followed by re-combining the frag-
mented parts of the images. Zhong et al. [26] combined the
hue–saturation-lightness (HSL) color space with RGB chan-
nels for creating a sparse image depiction and later used the
sparsity constraint for extracting relevant characteristics from
the cell nucleus.

Feature extraction is a process in which important features
or attributes of any input data are identified [27–31]. Kutlu
et al. [32] combined classes from the Blood Cell Count and
Detection (BCCD) and Leukocyte Images for Segmentation
and Classification (LISC) datasets to classify five kinds of
blood cells by applying Regional CNN (R-CNN) and trans-
fer learning on AlexNet [33], VGG16 [34], GooLeNet [35],
and ResNet50 [36]. Toğaçar et al. [37] used the AlexNet
model’s FC-8 layer, GoogLeNet model’s loss-3 layer, and
ResNet50 model’s FC-1000 layer for feature extraction.
These extracted features were then fused in different pro-
portions to achieve a 95.95% accuracy in the classification
ofWBCs. F.I. Kurniadi et al. [38] used the VGG-16 model in
combination with local binary pattern for extracting features.
Makem et al. [39] make use of color space transformation
using two-color spaces, cyan–magenta–yellow-key (CMYK)
and hue-saturation-value (HSV), along with Otsu’s thresh-
olding to segment the blood cell nuclei for feature extraction.
Kutlu et al. [32] exploited R-CNN and transfer learning
to obtain features using AlexNet, VGG16, GooLeNet, and
ResNet50.

Feature selection is the mean through which a large set of
extracted features is reduced to a more efficient, smaller set
by removing redundant and unproductive features [40]. The
accuracy of classification is highly dependent on the feature
selection process [41–44] since the selection of redundant or
inefficient features may lead to lower scores and increased
computational cost [27].Gupta et al. [45] improved the accu-
racy of WBC classification with the optimized binary bat
algorithm for dimensionality reduction which resulted in an
increase in accuracy compared to [46] and [47]. Sujamol

et al. [48] used a genetic algorithm called the inheritable
bi-objective combinatorial genetic algorithm (IBCGA) for
feature selection in ovarian cancer detection. Ghosh et al.
[49] used randomized least absolute shrinkage and selection
operator (LASSO) [50] for selecting features in the predic-
tion of cardiovascular disease.

Classification refers to the process during which an input
image is assigned a discrete class based on its features
[51–55]. This class is the one with the highest probabil-
ity score amongst all classes. Classification is the final and
usuallymost crucial stage. The success or failure of any algo-
rithm designed for such tasks depends on the classification
accuracy. While CNNs can classify an image by themselves
since they already have a classification layer, usually using
a softmax function [56], there is also the possibility of using
a different classifier on extracted features to achieve better
results. Baydilli et al. [57] used capsule networks on a small
dataset to classify WBCs achieving an accuracy of 96.86%.
Banik et al. [58] used nucleus segmentation and a novel CNN
to classify the BCCD dataset and accomplished an accuracy
of 96%. Gupta et al. [59] used decision-based tree classifi-
cation on the LISC dataset to achieve a 97.30% accuracy.
Almezhghwi et al. [60] used generative adversarial network
with deep CNN to classify WBCs to attain an accuracy of
98.8%. A small review of the literature is given in Table 1.

Materials andmethods

This unit illustrates a new CNN architecture named 4B-
AdditionNet and describes the proposed method along with
the steps undertaken to classify WBCs including pretrain-
ing of the new network, preprocessing of the dataset using
CLAHE, feature extraction using 4B-AdditionNet in combi-
nation with ResNet50 and EfficientNetB0, feature selection
using ant colony optimization, and classification using mul-
tiple classifiers. Figure 2 illustrates an overview of the
suggested process. The phases of the projected model are
discussed one by one in the upcoming text.

Image enhancement as a preprocessing step

CLAHE [61] is used on the entire dataset to improve
the contrast of the dataset images and to make cell bodies
more prominent. However, CLAHE can only work on one
color channel at a time. For this purpose, this research uses
a different technique. First, the image is split into its 3 con-
stituent color channels R, G, and B. Then CLAHE is applied
to each of these channels individually, resulting in 3 separate
images. These enhanced channel images are then merged
back together (see Fig. 3) to produce the final image which
has significantly improved contrast than the original.
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Table 1 Summary of literature review

Authors Years Methodology Dataset Accuracy

Prinyakupt et al. [23] 2015 Nucleus and cell segmentation using
thresholding, morphological operations, and
ellipse curve fitting Feature mining,
optimization, and grouping using linear and
naïve Bayes Predictor

Private + cellavision 98.00%

Bikhet et al. [24] 2000 Preprocessing using median filtering for noise
removal, and thresholding to separate WBCs
from their backgrounds –classification using
10 features per image

Private 91.00%

Karthikeyan et al. [25] 2020 Preprocessing using interpolative
Leishman-stained function – multi-directional
feature extraction—classification

Blood cell images 87.00%

Zhong et al. [26] 2019 Combination of the HSL color space with RGB
channels, along with sparsity constraint and
geometry constraint—classification

Private 96.50%

Kutlu et al. [32] 2020 Regional Convolutional Neural Networks, with
transfer-learning for classification

BCCD + LISC 97.52%

Toğaçar et al. [37] 2020 Maximal Information Coefficient (MIC) and
Ridge algorithms for feature
selection—AlexNet, GoogLeNet, and
ResNet50 for feature extraction – QDA for
classification

WBC 97.95%

F.I. Kurniadi et al. [38] 2019 Deep CNN (machine-crafted) and Local Binary
Pattern (LBP) (hand-crafted) features for
classification

Private 94.68%

Makem et al. [39] 2020 Color space transformation utilizing the CMYK
and HSV color spaces, followed by Otsu’s
thresholding for segmentation—PCA based
feature fusion

CellaVision + BloodSeg + JTSC 97.06%

Gupta et al. [45] 2019 Feature optimization using Optimized Binary
Bat Algorithm—classification using KNN,
Logistic Regression, Random Forest, and
Decision Tree

LISC 97.30%

Sujamol et al. [48] 2021 Feature optimization using Inheritable
Bi-objective Combinatorial

Genetic Algorithm (IBCGA)—XGBoost for
classification

The cancer genome atlas (TCGA) 91.86%

Ghosh et al. [49] 2021 Feature selection using Relief and Least
Absolute Shrinkage and Selection Operator
(LASSO)—classification using multiple
hybrid classifiers

Hungary + Cleveland + Switzerland + Statlog +
VA Long Beach

98.32%

Baydilli et al. [57] 2020 Classification of a small dataset using Capsule
Networks

LISC 96.86%

Banik et al. [58] 2020 Classification using a novel CNN model,
preceded by segmentation using color space
transformation and k-mean clustering
algorithm

BCCD 98.61%

Proposed CNN-based 4B-AdditionNet

This work contributes a new CNN-based architecture called
4B-AdditionNet (see Fig. 4 for block architecture and Table
2 for structural detail). The backbone structure of this net-
work is likeAlexNet; however, amodulewith four concurrent
branches is added after the first convolution layer which aids

in improving the accuracy of the network significantly by
extracting higher-level features at an earlier stage and feed-
ing it to the lower convolutional layers. The network starts
with an input layer that accepts RGB images of size 227×
227. These images are transferred to the first convolution
2D layer that has 96 filters of size 11×11. These filters are
applied to the image with a stride of 4 and padding of zero is
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Fig. 2 Depiction of the proposed model

Fig. 3 Visualization of CLAHE
application per color channel

used. The activation function for this layer is ReLU, which is
chased by a cross-channel normalization layer with window
size 5. The results are passed through a max-pooling layer
with a pool size of 3×3 and a stride of 2. The output of
this layer is transferred to 4 different groups of layers that
work in parallel with each other. This is where the network
adapts the Inception block-like approach and becomeswider.

This module contains four series of layers working in par-
allel, with three of them performing different convolutional
operations and one layer passing its input along after apply-
ing batch normalization. Each convolutional layer in these
blocks is tracked by batch normalization and a ReLU layer.
The filter sizes of these layers are set to extract the differ-
ent levels of features simultaneously by utilizing a mix of
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Fig. 4 Block architecture of the proposed CNN 4B-AdditionNet

smaller and larger filters working together, with their results
added elementwise in the end by an additional layer. The
visualizations of feature maps can be seen in Fig. 5. These
results are transferred to a grouped convolution layer. This
layer performs multiple convolutions at the same time on the
same input. There are two groups of 128 filters of size 5×
5. The stride value is 1 and padding is 2 on all sides. After
passing through the activation function layer, the output is
passed to a max-pooling layer with a pool size of 3×3 and a
stride of 2. The next layer is another convolution layer with
384 filters of size 3×3, with a stride of 1 and padding of 1
on each side.

After the activation function, another grouped convolution
layer with two groups of 192 filters each, with size 3×3,
stride 1, and padding 1, work on the input. This is followed
by the activation function with feeds into the last grouped
convolution layer of this network. This layer has two groups
of 128 filters each, with size 3×3, stride 1, and padding

1. After activation, a max-pooling layer down-samples the
output one last time using a pool size of 3×3 with a stride of
2 and padding of 0. At this stage, the convolution process is
over, and the data is ready to be flattened and fed to a series
of fully connected layers.

The neurons are fully connected layers that come up with
full connections to all the activations of the prior layer [62].
Thefirst fully connected layer has an input size of 9216 and an
output size of 4096. After the activation function, the data is
fed to a dropout layerwhosemain purpose in a neural network
is to prevent overfitting. This dropout layer has a probability
of 0.5, which means that there is a 50% chance for every
neuron of the previous layer to have its output discarded. The
dropout layer is observed by a second fully connected layer
with an input and output size of 4096. After the activation
function and another dropout layer, the data are fed to the
final fully connected layer with an input size of 4096, and
outcome size of 100. This output value is reliant on classes
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Table 2 Layer configuration
details for 4B-AdditionNet Layer # Layer name Feature map size Filter depth Stride Padding Misc. values

1 I (Input) 227×227×3 – – – –

2 C-1 55×55×96 11×11×3×96 [4 4] [ 0 0 0 0] –

3 R-1 55×55×96 – – – –

4 CCN-1 55×55×96 – – – Window size 5

5 P-1 27×27×96 – [2 2] [ 0 0 0 0] Pool size 3×3

6 BN-7(d) 27×27×96 – – – –

7 C-2(a) 27×27×32 1×1×96×32 [1 1] Same –

8 C-5(b) 27×27×64 7×7×96×64 [1 1] Same –

9 BN-4(b) 27×27×64 – – – –

10 R-5(b) 27×27×64 – – – –

11 C-6(b) 27×27×96 13×13×64×96 [1 1] Same –

12 C-7(c) 27×27×96 1×1×96×96 [1 1] Same –

13 BN-1(a) 27×27×32 – – – –

14 R-2(a) 27×27×32 – – – –

15 C-3(a) 27×27×64 3×3×32×64 [1 1] Same –

16 BN-2(a) 27×27×64 – – – –

17 R-3(a) 27×27×64 – – – –

18 C-4(a) 27×27×96 5×5×64×96 [1 1] – –

19 BN-3(a) 27×27×96 – – – –

20 R-4(a) 27×27×96 – – – –

21 BN-5(b) 27×27×96 – – – –

22 R-6(b) 27×27×96 – – – –

23 BN-6(c) 27×27×96 – – – –

24 R-7(c) 27×27×96 – – – –

25 ADD 27×27×96 – – – –

26 GC-1 27×27×256 Two groups of 5×
5×48×128

[1 1] [2 2 2 2] –

27 R-8 27×27×256 – – – –

28 CCN-2 27×27×256 – – – Window size 5

29 P-2 13×13×256 – [2 2] [0 0 0 0] Pool size 3×3

30 C-8 13×13×384 3×3×256×384 [1 1] [1 1 1 1] –

31 R-9 13×13×384 – – – –

32 GC-2 13×13×384 Two groups of 3×
3×192×192

[1 1] [1 1 1 1] –

33 R-10 13×13×384 – – – –

34 GC-3 13×13×256 Two groups of 3×
3×192×128

[1 1] [1 1 1 1] –

35 R-11 13×13×256 – – – –

36 P-3 6×6×256 – [2 2] [0 0 0 0] Pool size 3×3

37 FC-1 1×1×4096 – – – –

38 R-12 1×1×4096 – – – –

39 D-1 1×1×4096 – – – –

40 FC-2 1×1×4096 – – – –

41 R-13 1×1×4096 – – – –

42 D-2 1×1×4096 – – – –

43 FC-3 1×1×100 – – – –

44 P 1×1×100 – – – –

45 O (Output) – – – –
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Fig. 5 Feature maps extracted from a blood cell smear image using 4B-
AdditionNet’s ADD layer

of the dataset the network is initially trained on. The final
output is forwarded to the softmax layer, which applies the
softmax function on the input. The purpose of this function
is to transform all input values into a range between 0 and 1.
This allows these values to be treated as probabilities since
those are always between 0 and 1. The softmax function is
given in Eq. 1 below:

σ

(
→
z

)
i � ezi∑K

j�1 e
z j

(1)

where z is the input vector to the softmax function, zi are
the elements of the input vector, ezi is theexponential function
applied to each element,

∑K
j�1 e

z j is the normalization, to
ensure 0–1 values and K is the number of classes.

For this research, 4B-AdditionNet has been learned on the
CIFAR-100 [63]. This dataset holds 100 classes, each with
600 images (including train and test) for a total of 60,000
images. The process utilized 50,000 images for training and
the remaining 10,000 images for validation purposes.

Feature extraction

In this research, features are extracted using three different
CNNs. Features are extracted using the training images from
the Blood Cell Images dataset [64] which amount to a total
of 9957 images. 4B-AdditionNet extracts 4096 features per
image obtained from its FC-2 layer, whereas ResNet50 and
EfficientNetB0 extract 1000 features each obtained from the
FC1000 and dense|MatMul layer, respectively.

Feature selection

When features are extracted using CNNs, they are often in a
large quantity. To reduce the dimensions of those features by
selecting a subset, the process of feature selection is used. The
feature optimization algorithm chosen for this research is ant
colony optimization. It is a probabilistic method for choos-

Table 3 ACO parameter names and values

Parameter Value

Validation percentage 20

Number of ants 10

Max iteration 100

Initial pheromone concentration 1

Desirability of graph edges 1

Pheromone exponential param 1

desirability exponential param 1

Evaporation rate 0.2

ing optimal paths. It was first introduced by Dorigo in 1992
[65], based on the seeking comportment of an ant for find-
ing a feasible direction between its associated group and the
foodstuff source. In its early days, it was primarily employed
to unravel the famous traveling salesman challenge, but after
it was applied to various optimization problems as well. The
feature selection process followed is completed in the fol-
lowing actions:

ACO parameters mentioned in Table 3 are initialized,
where

a. the ants are implied by m,
b. the number of iterations is tmax,
c. the evaporation coefficient is ρ with a value of 0≤ρ

≤0,
d. the desirability of graph edges is η,
e. α ≥0 controls the relative weight of the pheromone,
f. β ≥0 controls the weight of η,
g. Q is the amount of initial pheromone concentration.

For each iteration t, every ant k begins by choosing a ran-
dom feature. To build a feature subset from the starting
feature, the ant follows the probabilistic transition rule
given in Eq. 2 below:

Pk
i j (t) �

⎧⎪⎨
⎪⎩

τα
i j (t).η

β
i j (t)∑

l∈Ski
τα
il .η

β
il (t)

,∀ j ∈ Ski

0, otherwise
, (2)

where Ski represents the feature sets that has not been cho-
sen yet, τi j (t) represents the pheromone trail between the
features i and j, ηi j (t) represents the heuristic desirability
to select feature j while ant k is in the feature i.
Assess each contesting feature subset using Eq. 3:

Accuracy � 1

K

K∑
i�1

1

2

(
AccuracyTraini + AccuracyTesti

)
,

(3)
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where K denotes the folds set for the K-fold cross-
validation procedure to gauge the subset accuracy.
The best feature subset is found and the pheromone trail
in the feature space is updated.
Repeat the process for all ants and finally select the subset
with the best accuracy.

Feature fusion

During this process, horizontal concatenation of multiple
feature vectors is accomplished to create a single feature vec-
tor that can be used for classification. The idea is to merge
all features in one feature vector column to possibly help
with the reduction of the error rate. In this research, future
fusion is used to create multiple feature vectors with differ-
ent combinations of features from the CNNs to create five
experiments. Features from 4B-AdditionNet, ResNet50, and
EfficientNetB0 have been fused serially.

Let fa , fr , and fe denote the three feature vectors acquired
from 4B-AdditionNet, ResNet50, and EfficientNetB0. Let
1× x , 1× y, and 1× z denote the dimensions of fa , fr , and
fe respectively. Then the vectors are defined as:

fa1×x � {a1×1, a1×2, a1×3, · · · , a1×x },

fr1×y � {
r1×1, r1×2, r1×3, · · · , r1×y

}
,

fe1×z � {e1×1, e1×2, e1×3, · · · , e1×z}

All obtained feature vectors are fused serially:

Fused vectors (FV )1×q �
3∑

i�1

{ fa1×x , fr1×y , fe1×z }.

Classification

The final step of the process is classification. This process is
utilized to predict class labels for the given data. Various clas-
sifiers such as SVM[66], LDA [67], andKNNhave been used
to classify WBCs into four categories. All classifiers utilize
fivefold cross-validation. The Linear SVM, Cubic SVM, and

Quadratic SVM classifiers utilize a Box Constraint of 1 and
a Coding Design of OneVsOne. These predictors are gauged
on several performance estimationmeasures. CSVM is noted
with themaximumaccuracywhile LDA is significantly faster
than the competition, with acceptable accuracy.

Results and discussion

The main objective of this study is to utilize a method to
classifyWBCs with the best possible accuracy. After prepro-
cessing using CLAHE, the proposed network is used along
with two other networks to obtain features. Once feature
selection is employed to create a feature vector, SVM, LDA,
and other predictors are used to evaluate the execution. This
portion contains the outcome and assessment of the intended
method. First, the details of the execution environment are
stated, followed by a brief description of the dataset and the
performance evaluation techniques. Finally, the experiments
performed are explained in detail.

Execution environment

The training process and experiments were conducted on
a Windows-based desktop PC with a 6-core Ryzen 3600
processor from AMD, 16GBs of DDR4-3200 RAM, and a
CUDA [68] enabled Nvidia GeForce GTX 1080Ti GPUwith
11 GBs of Video RAM (VRAM). The network design, train-
ing, and experimentation process were all performed using
MATLAB R2020b.

Dataset

The dataset chosen for this study is the Blood Cell Images
dataset [69]. It is an augmented version of the BCCD dataset
[70] which is publicly available with blood smears divided
into 3 classes, RBC, WBC, and Platelets. The Blood Cell
Images dataset is an augmented version of the BCCD dataset
and contains 12,500 augmented images of blood smears
divided into 4 categories—Eosinophil, Lymphocyte, Mono-
cyte, and Neutrophil as shown in Fig. 6. The image size of
the augmented set is 320×240, bit depth is 24, the number of

Fig. 6 Blood smear samples
from the BCCD dataset showing
four different types of blood
cells: a eosinophil,
b lymphocyte, c monocyte, and
4 neutrophil
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Table 4 Class details of the blood cell images dataset

Class Training samples Testing samples

Eosinophil 2497 623

Lymphocyte 2483 620

Monocyte 2478 620

Neutrophil 2499 624

Total 9957 2487

Table 5 Performance evaluation metrics

Performance measures Equation

Ac T P+T N
T P+T N+FP+FN

Sp T N
T N+FP

Se T P
T P+FN

Pr T P
T P+FP

F1-Score 2 ∗ Precision∗recall
Precision+recall

channels is 3 (R, G, B), and horizontal and vertical resolution
depth is 96 dots per inch (dpi). Table 4 shows the details of
the dataset samples.

Performance evaluationmethods

Evaluating a classification system’s efficiency is a major part
of building an accurate classifier. This study implements the
most commonly used evaluation metrics such as accuracy
(Ac), sensitivity (Se), specificity (Sp), F1 Score, and preci-
sion (Pr) [71]. The mathematical formulas for these methods
are given in Table 5.

Overview of performed experiments

Using different combinations of features from 4B-
AdditionNet, ResNet50, and EfficientNetB0, five tests are
performed to determine the top combination of features. The
details of these experiments are presented in Fig. 7. fivefold
cross-validation is opted in all experiments.

The best results are achieved in the last experiment
when using 100 features from 4B-AdditionNet, 400 from
ResNet50, and all 1000 from EfficientNetB0.

Test No. 1 (2100 features: 800 4B-AdditionNet + 700
ResNet50 + 600 EfficientNetB0)

This test contains a total of 2100 features with 800 from
4B-AdditionNet, 700 from ResNet50, and 600 from Effi-
cientNetB0. The final feature vector after fusion is of size
9957×2100. The Cubic SVM classifier achieved an Ac of
97.58% with a Se of 96.56%, Sp of 98.24%, Pr of 94.85%,
and an F1 score of 95.69%, with a runtime of 174.73 s. Table

6 shows the detailed results for all six classifiers. Figure 8
illustrates the training time and Ac for all six classifiers.

Figure 8 illustrates the relationship between training time
and Ac when evaluating a 9957×2100 feature vector. While
Cubic SVM is the most accurate of the six classifiers, LDA
strikes the best balance between Ac and speed by being the
fastest performing algorithm while having the third-best Ac.

Test No. 2 (1600 features: 700 4B-AdditionNet + 500
ResNet50 + 400 EfficientNetB0)

This test contains a total of 1600 features with 700 from
4B-AdditionNet, 500 from ResNet50, and 400 from Effi-
cientNetB0. The final feature vector after fusion is of size
9957×1600. The Cubic SVM classifier achieved an Ac of
97.53% with an Se of 96.60%, Sp of 98.16%, Pr of 94.63%,
and an F1 score of 95.60%, with a runtime of 112.71 s. Table
7 shows the detailed results for all six classifiers. Figure 9
illustrates the relationship between training time and Ac for
all six classifiers.

Figure 9 depicts the relationship between training time and
Ac when evaluating a 9957×1600 feature vector. It can be
observed again thatLDA is the fastest classifierwith the third-
best Ac, and CSVM remains the most accurate classifier.

Test No. 3 (1050 features: 500 4B-AdditionNet + 250
ResNet50 + 300 EfficientNetB0)

This test contains a total of 1050 features with 500 from
4B-AdditionNet, 250 from ResNet50, and 300 from Effi-
cientNetB0. The final feature vector after fusion is of size
9957×1050. The Cubic SVM classifier achieved an Ac of
97.47%with a Se of 96.16%, Sp of 98.34%, the Pr of 95.09%,
and an F1 score of 95.62%, with a runtime of 71.86 s. Table
8 shows the detailed results for all six classifiers. Figure 10
illustrates the relationship between training time and Ac for
all six classifiers.

Figure 10 shows once again that Cubic SVM remains the
most accurate classifier for this dataset, while LDA remains
the fastest.

Test No. 4 (650 features: 300 4B-AdditionNet + 150
ResNet50 + 200 EfficientNetB0)

This test contains a total of 650 features with 300 from
4B-AdditionNet, 150 from ResNet50, and 200 from Effi-
cientNetB0. The final feature vector after fusion is of size
9957×650. The Cubic SVM classifier achieved an Ac of
96.73%with a Se of 95.31%, Sp of 97.73%, the Pr of 93.37%,
and an F1 score of 94.33%, with a runtime of 42.16 s. Table
9 shows the detailed results for all six classifiers. Figure 11
shows the relationship between training time and Ac for all
six classifiers.
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Fig. 7 Details of the experiments

Table 6 Classifier performance
results of test no. 1 Classifier Ac (%) Se (%) Sp (%) Pr (%) F1 (%) Obs/sec Time (S)

CKNN 71.33 46.66 96.74 82.74 59.67 50 24.94

FKNN 92.36 91.03 96.76 90.38 90.70 51 25.24

LDA 95.18 91.59 97.00 91.08 91.33 700 21.1

LSVM 89.77 83.14 94.20 82.74 82.94 3200 126.63

CSVM 97.58 96.56 98.24 94.85 95.69 95 174.73

QSVM 96.98 95.15 97.92 93.88 94.51 110 126.1

Figure 11 highlights the sheer speed of LDA, which man-
ages a runtime of only 2.3 s with a respectable Ac of 88.21%.
While Cubic SVM takes significantly more time, it is also
much more accurate achieving an Ac of 96.73%.

Test No. 5 (1500 features: 100 4B-AdditionNet + 400
ResNet50 + 1000 EfficientNetB0)

This test contains a total of 1500 features with 100 from
4B-AdditionNet, 400 from ResNet50, and 1000 from Effi-
cientNetB0. The final feature vector after fusion is of size
9957×1500. The Cubic SVM classifier achieved an Ac of
98.44%with a Se of 97.80%, Sp of 98.87%, the Pr of 96.67%,
and an F1 score of 97.23%, with a runtime of 97.29 s. Table
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CKNN FKNN LDA LSVM CSVM QSVM
Training Time 24.94 25.24 21.1 126.63 174.73 126.1

Accuracy 71.33 92.36 95.18 89.77 97.58 96.98

0

50

100

150

200

Training Time Accuracy

Fig. 8 Time vs Ac plot for 2100 features

Table 7 Classifier performance
results of test no. 2 Classifier Ac (%) Se (%) Sp (%) Pr (%) F1 (%) Obs/s Time (S)

CKNN 70.84 45.21 96.35 80.59 57.93 66 19.19

FKNN 92.41 91.27 96.94 90.91 91.09 66 19.20

LDA 93.76 88.75 96.29 88.89 88.82 930 11.60

LSVM 89.10 81.66 93.95 81.89 81.77 4000 97.78

CSVM 97.53 96.60 98.16 94.63 95.60 130 112.71

QSVM 96.49 94.63 97.63 93.03 93.83 160 94.39

Fig. 9 Time vs Ac plot for 1600
features

CKNN FKNN LDA LSVM CSVM QSVM
Training Time 19.19 19.2 11.6 97.78 112.71 94.39

Accuracy 70.84 92.41 93.76 89.1 97.53 96.49

0
20
40
60
80

100
120

Training Time Accuracy

Fig. 10 Time vs Ac plot for
1050 features

CKNN FKNN LDA LSVM CSVM QSVM
Training Time 12.66 12.48 5.71 67.28 71.86 62.96

Accuracy 72.41 93.45 91.52 87.57 97.47 96.16

0

50

100

150

Training Time Accuracy

Table 8 Classifier performance
results of test no. 3 Classifier Ac (%) Se (%) Sp (%) Pr (%) F1 (%) Obs/s Time (s)

CKNN 72.41 49.54 96.37 82.03 61.77 100 12.66

FKNN 93.45 91.91 97.35 92.06 91.98 110 12.48

LDA 91.52 85.26 95.09 85.33 85.30 2500 5.71

LSVM 87.57 80.54 93.08 79.58 80.06 6200 67.28

CSVM 97.47 96.16 98.34 95.09 95.62 280 71.86

QSVM 96.16 93.75 97.55 92.75 93.25 350 62.96
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Table 9 Classifier performance
results of test no. 4 Classifier Ac (%) Se (%) Sp (%) Pr (%) F1 (%) Obs/s Time (s)

CKNN 71.87 47.98 96.11 80.51 60.13 180 7.81

FKNN 92.90 91.35 96.93 90.88 91.11 180 7.70

LDA 88.21 79.78 93.74 81.01 80.39 7300 2.30

LSVM 85.35 76.73 92.23 76.76 76.75 11,000 40.02

CSVM 96.73 95.31 97.73 93.37 94.33 730 42.16

QSVM 95.35 92.79 97.09 91.44 92.11 870 37.59

Fig. 11 Time vs Ac plot for 650
features

CKNN FKNN LDA LSVM CSVM QSVM
Training Time 7.81 7.7 2.3 40.02 42.16 37.59

Accuracy 71.87 92.9 88.21 85.35 96.73 95.35

0
20
40
60
80

100
120

Training Time Accuracy

Fig. 12 Time vs Ac plot for
1500 features

CKNN FKNN LDA LSVM CSVM QSVM
Training Time 18.3 17.94 10.24 91.23 97.29 83.44

Accuracy 73.79 94.14 94.96 89.51 98.44 97.29

0
20
40
60
80

100
120

Training Time Accuracy

10 shows the detailed results for all six classifiers. Figure 12
illustrates the relationship between training time and Ac for
all six classifiers.

In this test, the LDA classifier once again was exception-
ally fast and tookonly10.24 s to achieve anAcof 94.96%. It is
interesting to note here that LDA remains the fastest perform-
ing classifier throughout all five experiments, whereas Cubic
SVM remained the most accurate. The confusion matrix for
test no. 5 is shown in Fig. 13. There are a total of 2445 correct
classifications for eosinophil, 2479 for lymphocyte, 2473 for
monocyte, and 2401 for neutrophil.

It can be seen from the confusion matrix given that
the two classes most often misclassified are neutrophil and
eosinophil. There is a total of 87 cases where the classifier
misclassified a neutrophil as an eosinophil, and eosinophil
was misclassified as neutrophil. The results for other classes
are significantly more accurate. The most accurately classi-
fied class is lymphocyte which is incorrectly predicted only
four times.

Table 10 Classifier performance
results of test no. 5 Classifier Ac (%) Se (%) Sp (%) Pr (%) F1 (%) Obs/s Time (s)

CKNN 73.79 46.18 96.58 81.89 59.05 71 18.30

FKNN 94.14 93.87 97.67 93.09 93.48 72 17.94

LDA 94.96 91.03 96.86 90.67 90.85 1100 10.24

LSVM 89.51 82.18 94.13 82.41 82.29 4500 91.23

CSVM 98.44 97.80 98.87 96.67 97.23 170 97.29

QSVM 97.29 96.12 98.04 94.27 95.18 190 83.44
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Fig. 13 Confusion matrix for test no. 5

Table 11 Comparison with state of the art methods

Refs. Classifier Year Ac (%)

[59] CNN 2020 97.95

[52] CNN 2020 97.52

[86] Capsule Net 2020 96.86

Proposed Cubic SVM 2021 98.44

Difference with existing state of the art

In this section, the findings through our experiments are com-
pared to three recent studies onWBC classification. Table 11
contains the details of the methods along with our proposed
method.

Discussion

The primary focus of this study is an accurate classification
of WBCs. The proposed CNN 4B-AdditionNet is created
after extensive testing and experimentation. This network, in
combination with ResNet50 and EfficientNetB0, is used to
extract features from the Blood Cell Images dataset, which
is preprocessed using CLAHE. ACO-based feature selection
gives five different combinations of features which are fed to
6 classifiers to determine the accomplishment of the intended
method. The findings of five tests shared in Tables 6, 7, 8, 9,
10 portray the accomplishment of the suggested technique.
The performance in test no. 5 using 1500 features is found
to be the best. It is deduced that while there is a very grad-
ual decline in Ac as the number of features is decreased,
however, the relationship is not linear since the best Ac is
obtained in test no. 5 using 1500 features, which is better
than the results from the test no. 1 with 2000 features. It all
comes down to the feature selection process and the num-
ber of features used from the different networks. The other
interesting observation is that while Cubic SVM’s Acwavers
slightly in all the tests (96.73–98.44), some classifiers have
a much higher difference in accuracies across the experi-
ments, e.g., LDA (88.21 – 95.18). Also, while LDA achieves
its highest Ac in test no. 1, Cubic SVM does so in test no. 5.

Overall, Cubic SVM is the most accurate classifier but also
the slowest among the 6, whereas LDA is the fastest and has
respectable Ac.

Conclusion

The first conclusion is regarding CNN design that adding
width to a network rather than expanding it vertically, leads
to far more efficient-performing networks. While this had
already been put into effect by other researchers, this study
shows that even older networks like AlexNet can be signifi-
cantly improved just by the introduction of somewidth-based
convolution blocks. It is also construed that top classifi-
cation accuracies can be obtained on WBC datasets using
CNNs as feature extractors without any segmentation done
beforehand. In most research work, great emphasis is put
on segmentation methods which is a time-consuming task
since it requires a lot of fine-tuning to be applicable on entire
datasets. This study shows that in the case of WBCs, seg-
mentation can be skipped in favor of simpler preprocessing
techniques like CLAHE. Feature fusion technique allows an
increase in Ac by using the feature extraction process of mul-
tiple networks, and feature selection techniques like ACO
enable researchers to tackle the dimensionality curse and
keep the feature vectors relatively small even after fusion
of multiple feature sets. It can also be deduced that the Blood
Cell Images dataset has a slight problem of interclass simi-
larity when it comes to the eosinophil and neutrophil classes
which leads to the decrease in the overall Ac of classification.
The eosinophil and neutrophil classes have classification
accuracies of 97.92% and 96.08% respectively, which is sig-
nificantly lower than those of lymphocytes and monocytes
which are 99.84% and 99.80%, respectively.

Future work

While currently, existing methods have achieved very high
Ac in blood cell classification, there is still room for improve-
ment, as shown by this study. Further advances can be made
by fusion of the Blood Cell Images dataset with the LISC
dataset to add a fifth type of cell to the data, which will cre-
ate an even more versatile classifier that can perform better
across different datasets. Fusion of different networks can
also be used to improve performance further, particularly the
runtime of classification functions which can be significantly
reduced by lowering the number of features.
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