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Abstract
Shoeprints contain valuable information for tracing evidence in forensic scenes, and they need to be generated into cleaned,
sharp, and high-fidelity images. Most of the acquired shoeprints are found with low quality and/or in distorted forms. The
high-fidelity shoeprint generation is of great significance in forensic science. A wide range of deep learning models has been
suggested for super-resolution, being either generalized approaches or application specific. Considering the crucial challenges
in shoeprint based processing and lacking specific algorithms, we proposed a deep learning based GUV-Net model for high-
fidelity shoeprint generation. GUV-Net imitates learning features from VAE, U-Net, and GAN network models with special
treatment of absent ground truth shoeprints. GUV-Net encodes efficient probabilistic distributions in the latent space and
decodes variants of samples together with passed key features. GUV-Net forwards the learned samples to a refinement-unit
proceeded to the generation of high-fidelity output. The refinement-unit receives low-level features from the decoding module
at distinct levels. Furthermore, the refinement process is made more efficient by inverse-encoded in high dimensional space
through a parallel inverse encoding network. The objective functions at different levels enable themodel to efficiently optimize
the parameters by mapping a low quality image to a high-fidelity one by maintaining salient features which are important
to forensics. Finally, the performance of the proposed model is evaluated against state-of-the-art super-resolution network
models.
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Introduction

Shoeprints are often found in crime scenes with poor quality
images, and they have a critical role in podiatry investiga-
tions. Examining shoeprints becomes more challenging with
limited available data, poor information contents, unavail-
ability of ground truth and higher quality images, partial
and incomplete prints, and most importantly, the lack of
domain-specific processing algorithms [2,10,46,69,79,104].
Considering the aforementioned challenges, a higher res-
olution (HR) shoeprints with reduced noise and enhanced
quality have great importance for forensic purposes. High
quality (HR) shoeprints generation from their lower res-
olution (LR) counterparts offer high density, close looks,
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and detailed observations and therefore, they can facilitate
the analysis of the original prints acquired in the crime
scene. However, generating high quality shoeprints via lat-
est deep learning (DL) algorithms need special treatment of
LR images where the corresponding HR images are unavail-
able or insufficient. Recently, deep learning (DL) provides a
wide range of algorithms to the generation of high fidelity
images with the availability of HR-LR image pairs [15–
17,27,41,47,48,74,76,92]. Moreover, the realistic scenarios
lack perfect shoeprints to train deep learning models for HR
image generation. To better address the aforementioned chal-
lenges, we propose an end-to-end deep learning model for
generating high-fidelity shoeprints having no HR images.1

To the best of our knowledge, our proposed model is first-
of-its-kind to recover HR shoeprint images from their LR
ones.

Super-resolution (SR) is the generation of HR images
from theirLRcounterparts, and it has been studied fromusing
early convolution networks [15,16] to employ the recentGen-
erative Adversarial Networks (GAN) based models [50]. SR
learning strategies can be divided into interpolation-based
[43,100], learning-based [15,97,98], and reconstruction-
based [80]. SR includes the generation of single-LR ormulti-
LR images [61,99]. Single-image-super-resolution (SISR)
[101] is an ill-posed reverse problem in which a high-fidelity
image is generated from its lower LR image, and SISR
is also attempted in the this study. For HR image genera-
tion via SISR, the input LR image can be passed through a
model featured with either pre-upsampling [15,16,41], post-
upsampling [17,76], progressive upsampling [47,48,92], or
hourglass [27,52] learning approaches. The pre-upsampling
methods are simpler as they only require prior interpo-
lation, but they may circumvent checkerboard artifacts,
amplify noise and blurriness, and cause expensive com-
putation [42,77,84,85]. Similarly, post-upsampling methods
can reduce the computational complexity by extracting the
features at lower dimensional space, but the upsampling
process in single step increases the learning difficulty for
large scaling factors (i.e., 4×, 8×) [50,53,89]. The progres-
sive upsampling reduces the learning difficulty and improves
performance, but it may cause training instability due to
complicated model structure [47,48,92]. Similarly, the iter-
ative up-and-down methods can better mine the relationship
between the given LR and generated HR image pairs with
high quality reconstruction results [27,52,93]. The iterative
up-and-down approaches adapt the deconvolution (trans-
pose) operation instead of upsampling to overcome high
computational complexity and maintain accuracy [17]. In
addition, there are some algorithms specialized to sports and
medical images [26,33,38], surveillance and security sys-

1 Note the interpolated HR images are merely used for the optimization
of refinement-phase in terms of inverse-encoding.

tems [66,103], faces [87,96], scenes [81], arts [54], and so
on. Most of these areas provide both high and low quality
images for training DL models.

To the best of our knowledge, the proposed model (GUV-
Net, see Fig. 1) is the first attempt to generate high-fidelity
shoeprints from their low quality images with no original
ground truths (HRs) in the database [28]. Thus, we interpo-
lates (bicubic-interpolation) the original shoeprint images to
HR images, which enables the model to learn the generation
of good quality images while training. GUV-Net downsam-
ples and upsamples a given LR image and enable the model
to pass on low-level features to high level (high-resolution,
refinement) learning. GUV-Net utilizes all possible learn-
ing phases to generate high-fidelity images. Overall, the
model compresses the given input into a latent space,
learns probabilistic distributions, generates distinct sample
variants in a controlled way at the decoding side, passes
the key features from encoder to decoder and then from
decoder to refinement-phase (high spatial phase). Finally, the
model discriminates high quality generated images following
adversarial and other objective functions. GUV-Net borrows
features from the GAN, VAE, and U-Net architectures and
fuses them in an efficient way.

In addition to wide applications of GAN model [105],
GAN has also been used for SISR generation. GAN based
SISR generation is often visually pleasing but the generated
HR images may contain fake details and textures, which
deviate from the ground truths [89]. The undesirable gen-
eration in SR is caused by the inversion (taking LR from HR
and generating back into HR), in which the critical spatial
information may not be kept faithfully at the low dimen-
sional space (latent space) to recover back image both at
pixel and semantic levels [106]. GANs face the problem of
complex distributions of images and depends on extensive
high-fidelity data, which may make the convergence hard,
the model difficult to optimize hyper-parameters, unstable
to train, and sometimes GAN may produce visually absurd
outputs [4,29]. Despite the widespread use of GAN for high
resolution images, the generated samples often do not fully
capture the diversity of true distributions [12,67],whichmake
inadequate the solely GAN based model to the generation of
high fidelity shoeprints.

On the other hand, variational autoencoder (VAE) follows
the maximum likelihood principle with an encoder–decoder
structure, compresses input to latent space, which can be
more efficiently optimized compared to pixel space [67].
The inherent mathematical formulation in VAE makes it
relatively cheap and stable to train [29]. The negative log-
likelihood in the VAE objective function enables VAE to
generalize well to unseen data and cover all modes of data
so that mode collapse as observed in GAN can be avoided
[67,88]. In contrast to GAN for SR applications, VAE based
models are more in control during training and generating
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samples (i.e., beneficial for shoeprint generation with respect
to forensics) but may output blurry results [18,49,90]. In
VAE, the encoding distribution regularizes and matches the
latent space for LR and HR images and ensures the gen-
erative process to recover the missing information [35,67].
In addition to the GAN and VAE models, our model also
infuses the U-Net-like [70] features to carry out the shoeprint
super-resolution image generation from the challenging poor
quality data. The introduction of U-Net enables the model to
pass on spatial features from the compressing module to the
decompressingmodule via skip-connections tomaintain con-
textual features. In GUV-Net, similar skip-connections are
further extended to pass low level features into high dimen-
sional space (i.e., to refinement phase).

Based on the aforementioned information, the intended
model addresses the critical challenges faced in the genera-
tion of high-fidelity shoeprints from their poor quality images
with no ground-truths (HR images). Thus, combining the
good features of GAN, VAE, and U-Net models may be a
reliable way to generate the desired output. For this purpose,
GAN and VAE are infused by overcoming the downsides
of GAN (i.e., training and convergence instability [49], sen-
sitive to hyper-parameters [55], mode collapse [4,59]) and
VAE (i.e., blurriness [18,49,90] and over smoothness [49]
of the generated images) for high-fidelity image generation
[29,32,40,49,72]. Hence, the high quality images can be gen-
erated through trainingVAE in an adversarial manner [29] by
imposing a discriminator in the data space [49]. The infusion
of VAE into GAN brings training stability and optimization
in the manifold of latent-space structure [71,72]. The sam-
pling representation at the latent space of VAE can be utilized
as a generator in GAN [9,91]. Similarly, multi-scale struc-
ture similarity (MS-SSIM) and L1 norm have been attempted
to overcome the blurriness in VAE [90]. For latent space
optimization, the posterior and prior distributions can be dis-
criminated in order to generate a high quality images [57].

However, the infusion of GAN and VAE still has the
following issues: poor scalability in high dimensions, lim-
itations in scaling to high dimensions, expensive evaluation,
variational inferencing, lack of distributions matching both
in latent and visible spaces, and limited improvement in
the quality of generated images [71]. Both VAE and GAN
models for high fidelity image generation may synthesize
unnecessary patterns [7], which lose the importance for pro-
ducing high quality shoeprints with respect to forensics. To
avoid undesirable patterns and texture in HR shoeprints, the
infusion of U-Net into the generative models may control
and guide high fidelity image generation [20]. As U-Net
facilitates the preservation of spatial information [75], thus
the U-Net equipped models control the learned features to
generate the desired image against LR image. Considering
the pros-and-cons of GAN, VAE, and U-Net architectures,
the proposed GUV-Net model infuses the features of GAN,

VAE, and U-Net into a single DL model (Fig. 1), which
is trained in an end-to-end fashion, and thus high quality
shoeprints can be generated from their lower-quality coun-
terparts with no perfect/ground truth images. The model
optimizes the distribution in latent space and synthesize
the guided shape image generation by avoiding unnecessary
patterns in shoeprints. Similarly, the model overcomes the
blurriness result by conditioning the decoder part with the
reduced version (inverse-encoding unit) of interpolated HR
input (YHR). With the infusion of U-Net, the model can bet-
ter control and preserve the spatial information to output the
desired variant against LR image. In addition, the discrim-
inative property borrowed from GAN also overcomes the
deficiencies (blurriness) caused by the reconstruction-loss
(L2) andgenerates high quality shoeprintswith better percep-
tual ability. Themodelmaintains training stability to generate
HR (XHR) images learning from nice latent manifold struc-
ture together with skip spatial information. The generated
XHR images (fake) are then put in the adversarial training
against the corresponding interpolated ones (YHR) (Fig. 1).
Overall, the model generates the coarse image (XMR) in the
encoder–decoder structure up to the same level as XLR with
dimension h = h/n andw = w/n (where h,w are the height
and width of XLR obtained from Xo), and the high-fidelity
output (XHR) is obtained in the refinement unit. Different loss
terms are adopted at distinct levels to facilitate the generation
of high resolution shoeprints.

There are a wide range of specialized and generalized
applications of SR; however, to the best of our knowledge,
this study is the first attempt to address the challenges in
the super-resolution tasks for shoeprint images. The rest
of the paper is organized as follows: “Literature study”
provides related work in shoeprint based processing and
infusion models of GAN, VAE, and U-Net. “Methodol-
ogy” presents the methodology for GUV-Net structure and
training, and “Results evaluation and analysis” analyzes the
derived results, which are followed by the conclusion and
future directions in “Conclusion and future directions”.

Literature study

Shoeprint images have been studied in many areas, including
forensic podiatry [45,86,104], biological traits examination
and investigation [62], gender prediction [5,8,63], and body
morphological studies [95]. A number of operations under-
lying shoeprints have been performed including retrieving,
recognition, pattern matching via different approaches, and
these operations have been performed by many approaches,
including manual [3], semi-automated [2,24], automated [1,
68], and machine learning (ML) (in particular DL methods)
[15,97,104]. Among these, DLmethods have shown promis-
ing results in shoeprint related operations [14,22,56,104].
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Fig. 1 GUV_Net receives XLR (hight = h/n, width = w/n) shoeprint
image obtained from original shoeprint Xo (hight = h, width = w) and
generates an XHR (hight = h × n, width = w × n). The model trains
with generative loss-terms including LPS, λi L2, where i = 1, 2, 3,
and KL-divergence. Similarly, the discriminative loss-term composed
of DXY and L2, where the details can be seen in the Section of
loss-function. a) Prior to training, both XLR and YHR images are gen-
erated through interpolation methods. b) The network receives XHR as
input, extracts features and encodes into latent representation (Encoder),
learns probabilistic distribution (VAE), and passes (skip-connections)

spatial features into XMR together with decoded layer. The model sam-
ples from the learned latent space and further optimize the weights
at mid-level (XMR) against the interpolated image (YMR) as ground
truth. The XMR version is further processed for refinement process
together with passed features from the decoder at distinct levels. From
the refinement stage, the model generates high-fidelity (XHR) images
by optimizing the weights against YHR in high dimensional space. The
generativemodule ofGVU_Net only be used for evaluation purposes. c)
Discriminator resolves the real image (YHR) obtained by interpolation
and fake image (XHR) output by the generator

Regarding shoeprint enhancement, there are some conven-
tional approaches [21]; however, DL algorithms for generat-
ing super resolution version of the low quality shoeprints are
lacking.

A variety of models for Super resolution-SR have been
proposed, starting from the early convolution neural net-
works [15,16] to the latest GAN based networks [50]. To
generate high-fidelity HR images, the given HR images
are downscaled via interpolation into LR images and then
mapped back to the HR ones using different learning
approaches [15–17,41,47,48,76,92]. Someof these approaches
first upsample (pre-upsampling) the LR images to the HR
space, and then CNN learns in the HR space to refine the
coarse images [42,77,84,85]. Such methods are simple but
may amplify checkerboard artifacts, noise, and blurriness.
To reduce the complexity, feature extraction can be per-
formed at lower dimensional space (post-upsampling) and
then upscaled to HR space either with interpolation or with
transpose-convolution learning [17,50,53,89]. To reduce the
complexity in HR space, a progressive learning based strat-
egy have been adopted by the use of cascade CNNs to
generate HR images at smaller factors [47,48,92]. However,
more guidance and advanced training are needed for a com-

plicated model designing to avoid instability during training.
To bettermine themapping between LR–HRpairs of images,
iterative up and down sampling methods are applied with
effective learning to provide high quality images [27,52,93].
Such methods mostly adopt the encoder–decoder like struc-
ture to mine the non-linear relationship between the LR–HR
image space. Moreover, the aforementioned methods are
trained with the availability of HR versions. However, in our
case, the available original shoeprint images are not in good
quality and vulnerable to noise and distortion. Bear in mind
the above challenges and network architecture designs, our
model (GUV-Net) adopts feature extraction and learns both
at lower dimensional space and latent space (i.e., at encoder–
decoder structure), and at high dimensional space through
post upscaling via transpose convolution. Thus, GUV-Net
infuses the features from variational autoencoder into a U-
Net-like structure and append with adversarial as in GAN.

A wide range of deep learning models has been proposed
to address the challenges in SR [43,61,99,100] adopting
either GAN [29,32,40,49,72] or VAE [20] for the genera-
tive purpose. However, SR generation with GAN [4,11,67]
or VAE [18,49,90] in isolated forms faces challenges such as
training in stability, sensitivity to the nature of datasets and
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the low quality of output result. To compensate the down-
sides of generative models, several attempts have been made
to infuse GAN with VAE [4,29,49,55,59,90], and VAE with
U-Net [20] for output high-fidelity images. However, the
existing infused forms ofGANandVAE still have limitations
in terms of training complexity and generating high qual-
ity images [71], and lacking of approaches with no ground
truths (HR images). Furthermore, VAE is also infused into
U-Net structure for guided shape and controlled image gen-
eration with desired variants of the queried image [20]. For
images like shoeprints which are vulnerable to noise and
hard to find the cleaned and good quality ground truths,
the infusion of GAN, VAE, and U-Net architectures with
their positive aspects is expected to more effectively gener-
ate high resolution output retaining the original patterns and
textures. For this purpose, the proposed model adopts the
generative features from VAE with a control structure and
passing. Moreover, the adoption of VAE enables the optimal
and controlled image synthesis at latent space and stables the
HR shoeprint generation as vital to forensics. The adoption
of adversarial learning from GAN structure encourages the
model to synthesis a high quality realistic version of the given
shoeprint.

Methodology

SRneeds both low and high resolution images to train an end-
to-end deep learningmodel. Inmost cases, the LR images are
obtained from their HR counterparts through different degra-
dationmethods including interpolation, noise, blur, and so on
[89]. The benchmark datasets provide both LR and HR pairs
of images while some only provide HR images [93]. The
state-of-the-art (SOTA) models then use the desired scaling
factor to downsample the HR to LR images [17,89,93]. How-
ever, the unavailability of HR images makes SISR problem
more challenging. Moreover, the HR image generation from
dataset susceptible to noise which becomes more crucial to
model from their LR image. Sometimes, the generation of
HR from their LR counterparts with noise and distortion
may raise unnecessary regions in HR images (shoeprints)
which lose their critical role in the fields such as foren-
sics. Regarding the aforementioned challenges, our proposed
model (GUV-Net) provides a deep learning based SR model
specialized to shoeprint images. In this section, we describe
our network-architecture in details, objective function, and
training the understudied models. The network architecture
and training details are presented in the following section.

Network architecture

Our GUV-Net architecture is mainly divided into three units
including inverse-encoding or preparation of ground truth

samples (Fig. 1a), generation of fake images via the main
network (Fig. 1b), and adversarial learning (Fig. 1c).

Sample preparation

In normal circumstances, acquiring shoeprint images with
high resolution are rare and challenging, especially scanning
shoeoutsolewhile steppingon a scanning-machine.Thus, the
collected huge amount of dataset is lack of high resolution-
HR images and their LR counterparts [28]. Therefore, the
original shoeprint (Xo, with height = h and width = w) is
simultaneously downsampled (XLR) and upsmapled (YHR)
to generate both high-resolution and low-resolution images,
respectively. The isolated downsample and upsample may
not reflect the real distribution in realistic environment. The
overall downsampling and umpsampling can be formulated
as follows:

XLR = Ψ {Xo; (h/n, w/n)}
YHR = Υ {Xo; (h × n, w × n)}
YMR = ζ {YHR; ϕ}
YR = ζR{YMR; ϕR}

where Xo ∈ R
HWC
o , (1)

whereΨ and Υ are the inter-area and bi-cubic interpolations
used for LR and HR shoeprint images generation, respec-
tively. YMR is obtained at training time by the convolution
operation ζ over the learning parameters ϕ. The network fur-
ther convolves over YMR using learning parameter ζR with
linear activation and ends with a regression YR . GUV-Net
receives XLR and compares the middle phase (XMR) of the
main model with YHR, which enables the model to learn pro-
gressively at distinct levels. Similarly, during training, the
interpolated high-level real imageYHR convolves to amiddle-
level mapping (YMR) to optimize the mainstream learning of
XHR generation. YHR further contributes to discriminative
learning in a similar way as in GAN.

Variational inferencing and skip-connections

GUV-Net imitates and infuses three popular deep learning
structures including VAE, U-Net, and GAN models. The
aim of infusing VAE in GUV-Net is to extract features at
the compressed level and generate multiple corresponding
output among which the closed one will be chosen. The
generation viaVAE at lower dimensional space reduces com-
putational complexity and learning ability at detail level.
Furthermore, the sampling generation of a fake HR shoeprint
from the latent space enables the model to avoid the genera-
tion of unnecessary regions caused by the inclusion of GAN.
Similarly, the skip-connections S f incorporated from U-Net
enables the model to maintain the salient spatial features
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passing from encoder e{XLR; φ} to decoder d{e � S f ; ϑ}.
Both VAE and U-Net share the same encoding and decod-
ing structure in a harmonized way. The network structure of
GUV-Net adopts U-Net tomaintain necessary key patterns to
facilitate the generation of high-fidelity images, where VAE
empowers the model to utilize probabilistic distributions to
sample and generate variants of shoeprints.

Encoding: The infused form of VAE and U-Net receives
XLR (Eq. 1) and maps to a compressed form (zi ∈ R

k

where k is the dimension of latent space) at the bottleneck
(Fig. 1a). The input passes through five blocks where the
first three blocks are residual based and the remaining two
blocks are stacked convolutional layers. Eachblock endswith
batch normalization (BN) [37] and ReLu [60] to normal-
ize zero-centered around (μ) with standard deviation (σ ) by
regularizing internal covariate shift and providing a stable
learning environment to subsequent deep layers and latent
space optimization. All the convolution layers of the block
have the same kernel window-size (3× 3, withmore focus on
local features), non-linear operations (ReLu), strides of one
(1), and the same padding [30,36,83]. The size of the chan-
nels reduces by halves in each subsequent deep layer where
the loss of information can be compensated by increasing
the number of filters [78]. The encoding layer capable of the
network model to learn at different levels of XLR representa-
tion, from various dimensional spaces to a number of filters,
and finally generates latent variable (zi ).

Bottleneck layer: The encoder part (e{XLR; φ}) generates
probabilistic distributions (posterior) over the latent space
(zi ) and then forwards the latent sampling (Pi ) to the decoder
d{e � S f ; ϑ} in order to generate back the images (XMR)
(Fig. 1). In parallel, the encoder also maps the input (XLR) to
a linear regression value XR which further compares against
YR . To utilize the decoder as a generative part, e{XLR; φ}
maps XLR to posterior distribution P(z|XLR) in the latent
space z, as shown below:

zi ∼ Pi (z|XLR). (2)

The drawn sample (zi ) from the distribution Pi (z|XLR)maps
into the same shape of decoder (d{e�S f ; ϑ}) for the genera-
tion operations. The distribution regularizes both locally (μ)
and globally (σ ), where μ and σ are the mean and variance
for the sample in the given distribution. The sampling process
needs to back-propagate the error through the network which
is made possible by the parameterize-trick [44]. The decoder
then generates multiple outputs corresponding to the same
input from a distribution around the center rather than from
a fixed point. The latent space needs to be smoothly interpo-
lated between the distributions (i.e., via KL-divergence) for

the samples, so as to generate images with restored informa-
tion facilitating further the high-fidelity samples.

Decoding layer: On the decoding side, a random sample
(zi , f or i = 1, 2, . . . , n ) is generated from a probabilis-
tic distribution P(z|XLR) and then is projected to XMR, as
shown below:

XMR = d
{[zi � Ri ] � S f (XLR); ϑ

}
, (3)

Here, XMR is the reconstruction map corresponding to zi
with adjustable weights (�Ri ), which are regularized by
the objective function (see loss-function, “Objective func-
tion”) andfinallymergedwith the contextual skipped features
(�S f ). Besides KL-divergence, a reconstruction loss term
λ2L2 is also included between XMR and YMR.

Skip layers: As featured by U-Net, GUV-Net avoids the loss
of salient features [82] by passing the contextual informa-
tion (S f (XLR)) between e(XLR; φ) to d(zi ; ϑ) in order
to generate XMR with learned detail-level features. At each
encoding block, prior to down-sampling, the salient features
are retained and passed to the corresponding decoding layer.
These extracted features are merged (�) channel-wise (i.e.,
axis = 3), and then passed to the next layer followed by
the transpose convolution layers [102]. The transpose layer
expands the features’ window-size by avoiding to memo-
rize, and learns useful knowledge as necessary for generating
high resolution images. The skip-connections are merged
as element-wise-sum at the deeper decoding layer, and we
keep the number-of-features fixed and refined, which is very
important for pixel-wise prediction and generation [58].
However, the lower level merged skip-connections enable
variant features, preserving detailed information, and better
gradient propagation across the network [31,51]. Overall, the
skip-connections control and avoid the loss of spatial infor-
mation which needs to be retained in HR images required in
forensics.

Refinement and high-fidelity image generation

In the proposed study, during sample preparation, the original
image (Xo) interpolated to lower (XLR) and higher dimen-
sional spaces (YHR) which are then upsampled from XLR to
XHR while training with balanced computational complexity
and progressive learning at distinct scaling factors. GUV-Net
mainly prioritizes the generation of high-fidelity shoeprints
from their lower resolution noised versions,where the feature
learning complexity is dealt at lower dimensional space. The
output (XMR) from the infused structure borrowed from U-
Net with VAE further maps to high resolution version XHR,
as shown below:

XHR = Ctn
[{(XMR; Φ); LPS }; Ddisc

]
(4)

123



Complex & Intelligent Systems (2022) 8:933–947 939

Ctn denotes the learning of Φ given XMR. The terms Φ

and Ddisc denote the learning parameters and discriminative
learning at high spatial space, respectively. LPS is com-
posed of pixel-wise difference (P) and structure similarity
(S) based optimization. Thus, the learning process of high
dimensional space is optimized by the content and perceptual
objective function followed by the discriminator structure.
The inclusion of (1 − λ · SSIM, see loss-function 3.2) [62]
at higher-level tunes the network parameters and bring con-
textual similarities between given and generated images.

The encoder–decoder structure passes XMR and skip-
connections to the refinement unit (RU) (see refinement unit
in Fig. 1c). The network upscales XMR to HR space via
transpose convolution (2×2, 3×3). The learning and refine-
ment at higher dimensional space via transpose convolutional
operations [17,27,58,89,102] reduce computational com-
plexity, noise amplification, and blurriness [41]. Moreover,
the transpose-convolution operations bring new information
while training the projection of XLR to XHR image space
[17,58]. In RU, XMR further convolves through a stacked of
convolutional operations (3×Conv. R.B) where each is fol-
lowed by batch-normalization (B.N) and rectified linear unit
(ReLu). Similarly, the parameters through skip-connections
are upscaled through variant strides (16 × 16, 8 × 8, 4 × 4)
and filter-size (17×17, 9×9, 5×5). All the skip-connections
are projected to the same filter dimensionality with the use of
1× 1 convolutions which further merged element-wise-sum
along the third-dimension. The outcome from merged oper-
ation is proceeded to a convolutional layer and then merged
in the RU. This process continues to a convolution layer with
filter size 5×5 followed bymapping to HR image space with
a single feature map (filter size 7 × 7) activated via tangent
function. To avoid the checkerboard-like pattern and over-
smoothness in the high quality images [23,76], GUV-Net
uses the objective loss term (LPS ) to tune the mainstream
generative model.

In normal circumstances, the ground truth HR images are
available, which enable the model to fine-tune the network
parameters for an optimal HR space. However, in our case,
the ground truth HR images (YMR) are acquired by bi-cubic
interpolation from theoriginal lowquality images (Xo)which
may enable the model to only remember the mapping to the
interpolated ones. To avoid such phenomena and allow the
networkmodel to learn, a parallel compressing operation per-
formed from higher dimensional (YHR) to lower dimensional
(YMR). For a regression output, (YMR) space is followed to
YR which further enable parameter fine-tuning ofmainstream
network at level XMR.

Adversarial inferencing

To avoid the blurriness in VAE [25] infused with U-Net,
and bring sharpness and better quality in the generated

images [65], GUV-Net learns jointly generative and infer-
ence networks in an adversarialmanner (Fig. 1c).Adversarial
learning plays a min–max game to distinguish the original
and fake (generated or synthetic) images. Similarly, GUV-
Net brings the inferencing features to reason at the latent
space and generates high-quality samples [49]. VAE infused
with U-Net together with high-fidelity section (IU) is trained
as a generativemodel and tries to fool discriminator for reach-
ing better level of quality. In our case, the generator maps
XLR to XMR proceeded by XHR and the discriminator dis-
tinguishes YHR and XHR as real and fake, respectively. The
min-max game of learning in GAN can be formulated as
follows:

V (D,G) = min
G

max
D

(DXY ,GX ), (5)

Similarly, the generative (GX ) and discriminative (DXY )
operations can be illustrated in mathematical forms as fol-
lows:

GX = G{e(XLR; φ) → d(XMR; ϑ)︸ ︷︷ ︸
Feature extraction

→ Ctn(XHR; Φ)︸ ︷︷ ︸
RefiningUnit

}

GX = G(XLR, XHR; ω) where ω = {φ, ϑ,Φ} (6)

Thediscriminator performsbinary classificationby assigning
probability 1 to Y ∼ P(YHR) and 0 to X ∼ P(XHR). Hence,
the discriminator can be optimized as follows:

DXY = P(YHR)

P(YHR) + P(XHR)
(7)

The discriminator plays a vital role in the abstract recon-
struction error in the circumstances where VAE is infused
in the network model. The discriminator part measures the
sample similarity [49] at both element and feature levels. In
addition, the discriminator is made stronger to distinguish
between real and fake images by including L2 loss term.

Objective function

Discriminative loss function

The objective function for GUV-Net can be mainly divided
into discriminative and generative objective functions. The
discriminative objective function (DoF) is a combination of
sigmoid cross-entropy (DXY ) and regression loss (L2) func-
tions which can be formulated as whole in the following
equation.

DoF = DXY + L2, (8)

where DXY and L2 are the cross-entropy and mean square
error (MSE) losses between the real and fake images. DXY in
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Eq. (5) as a loss term for the discriminator seeks to maximize
the log probabilities of real and inverse probability for fake
images [25].

DXY = 1

n

n∑

k=1

[
log(D(Y k

HR)) + log(1 − D(G(Xk
LR)))

]
, (9)

where n denotes the number of batches. Similarly, the regres-
sion loss term L2 can be illustrated as follows:

L2 = 1

n

[ n∑

i=1

{XHR − YHR}2
]

Generative loss function

Similarly, the generative objective function (GoF) is com-
posed of multiple loss terms, which is the accumulated sum
with more weightage given to generative part (GX ) of GAN
for adversarial learning, as shown below:

GoF = GX + K L + λ1,2,3L2 + Lps (10)

In Eq. (10), the adversarial term adopted from the GAN
model seeks to minimize the inverse probability.

GX = 1

n

n∑

k=1

[
log(1 − D(G(XLR)))

]
. (11)

GX in GoF encourages the generator to produce samples
that being predicted fake by the discriminator with low prob-
ability [55]. The generative loss term takes part in min-max
game to distinguish real and fake images to produce a real-
istic high-fidelity image [25,50,73].

Moreover, K L in Eq. (10) is the KL-divergence, and it
computes the log difference between the probability of data
in actual distribution P(XLR) and that of the approximating
distribution Q(XLR). Thus, in the VAE part of GUV-Net,
the inferencemodel (Qφ(z|XLR)) approximates the posterior
(true) distribution (Pθ (z|XLR)) in terms of KL-divergence to
minimize the gap [44]:

K L (Qφ(z|XLR)||Pθ (z|XLR))) = Eqφ

[
log

qφ(z|x)
pθ (z|x)

]
.

(12)

Specifically in our case, KL-divergence measures the differ-
ence between the distribution N (μi , σi ) of inference model
with mean μi and variance σi , and standard normal distri-
bution N (0, I ) with mean 0 and unit variance I . After the
Bayesian inference simplification [13,19], KL-divergence
can be rewritten as follows:

K L (N (μ, σ )||N (0, I )) = 1

2

l∑

i=1

(
σ 2
i + μ2

i − 1 − exp(σ 2
i )

)
,

(13)

and by choosing I = 1, Eq. (13) becomes:

K L (N (μ, σ )||N (0, 1)) = 1

2

l∑

i=1

(
σi + μ2

i − 1 − exp(σi )
)
.

(14)

Similarly,L2 is the pixel-wise loss to efficiently evaluate
noisy imageswhile training [6]. The subscript ofλ in Eq. (10)
is 3, representing the three versions of L2 for pixel-wise
difference. For λ1, the difference between XLR and XMR can
be illustrated as follows:

λ1L2 = λ1.
1

r .c

[h−1∑

r=0

w−1∑

c=0

{XLR(r , c) − XMR(r , c)}2
]
,

(15)

where r and c denote the row and column indexes, respec-
tively. XLR(r , c) and XMR(r , c) denote the corresponding
pixel positions in the input (X ) and projected (Y ) images,
respectively. While h and w are the height and width of
both images, respectively. Similarly, for λ2, the element-wise
difference between XHR and YHR can be formulated by re-
writing Eq. (15) as follows:

λ2L2 = λ2.
1

r .c

[h−1∑

r=0

w−1∑

c=0

{XHR(r , c) − YHR(r , c)}2
]
. (16)

For λ3, the loss term can be formulated as follows:

λ3L2 = λ3.
1

n

[ n∑

i=1

{Xi
R − Y i

R}2
]
, (17)

where XR and YR are the regression values computed from
the encoder and inverse-encoding parts corresponding to
sample (i), respectively.

Furthermore, the refinement process at a higher spa-
tial level is optimized by following both pixel-wise loss
(L2) and structure similarity (SSIM) [6]. L2 favors higher
peak-to-single-noise-ratio (PSNR) while SSIM improves the
perceptual quality in the generated HR images [18,39]. The
final term Lps in Eq. (10) can be rewritten as follows:

Lps = Lp + (1 − Ls),

Lps = λ2L2 + (1 − Ls). (18)

The HR shoeprints should maintain the original structure in
terms of forensic applications; hence, the structure similarity
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Fig. 2 Two shoeprint samples are shown with each has two rows. The
generated shoeprints (first and third rows) by the SOTA models and
GUV-Net with highlighted regions (second and fourth rows). Each net-
work receives the input shoeprint and generates the corresponding HR

(upscaled by ×2) images. Bi-Cubic interpolated shoeprints are used as
ground truths (for details see “Result” section). Similarly, the corre-
sponding PSNR and SSIM metric values are also displayed

(SSIM) [6] index as an objective function is also included. It
also quantifies the perceptual quality of the degraded images.
By including SSIM as a loss term, GUV-Net penalizes the
learning parameters at high dimensional spaces between XHR

and YHR. SSIM focuses mainly on three properties of the
given images as shown in the following illustration.

Ls(XHR,YHR) = [
L(X ,Y )

] · [
C(X ,Y )

] · [
S(X ,Y )

]
, (19)

where L, C, and S denote the luminous, contrast, and struc-
ture differences between X and Y . SSIM enables GUV-Net
to generate high quality and visually pleasant images having
similarity in structure with their LR images.

Model training

To assess the performance of GUV-Net, some SOTA mod-
els included SRDensNet [89], SRGAN [50], IDN [34], and
EBRN [64] are also trained on the same training (84,000
images) and testing (4000 images) datasets [28], as well
as with fine-tuned hyper-parameters corresponding to the
current problem of HR shoeprints. All models, including
GUV-Net, are trained for super-resolution with upscaling
factors ×2 and ×4. ADAM is used for the optimization of
GUV-Net with an initial learning rate 10−4, with learning
decay 10−1 after every 20 epochs,β1 = 0.9, andβ2 = 0.999,
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Fig. 3 SR of shoeprint together with highlighted regions generated with upscaling factor ×2. Each image contains PSNR and MS-SSIM score.
The higher the score, the better the quality of the images is

which are also applied to the understudied SOTA models
[34,50,64,89].

Results evaluation and analysis

We compare the performance of GUV-Net against SOTA
models through both subjective and objective evaluation
methods. Some random images with their zoomed regions
of both input and generated SR images are shown. Similarly,
the corresponding values for PSNR, SSIM Fig. 2, and MS-
SSIM Fig. 3 are also calculated.

Bi-cubic interpolated shoeprints as ground truths

For computing PSNR, SSIM, and MS-SSIM, we used bi-
cubic interpolated shoeprint as ground truth. The interpolated
version is generated with a new dimension (h × n, w × n)
from that of original shoeprint images (h, w) for training
purpose. The original shoeprints have a variety of sizes and
dimensions. To bring them into the same dimensional struc-
ture, a variational scaling factor (η) is used. Recall Eq. (1),
YHR can be rewritten as follows:

YHR = Υ {Xo, (h × ηn, w × ηn)},

where η can be a fractional or multiple numbers chosen
according to the dimension of YHR. Therefore, the bi-cubic
interpolated shoeprints are not the versions created from XLR

images; hence, these upscaled images can be observed with
good quality. However, the trained models including GUV-
Net receive XLR during training and evaluation. Regarding
the aforementioned reason and absent ground truths, bi-cubic
interpolated shoeprints are used as a baseline to carry out both
subjective and empirical evaluations.

Performance evaluation

Based on the SR generation with upscaling factor ×2, GUV-
Net results higher PSNR and SSIM values against the trained
SOTA models (Fig. 2). Similarly, in the given visualization,
the patterns in cropped regions of shoeprints generated by
GUV-Net can be observedmore clearly as compared toSOTA
models. This reflects the learning specialization to shoeprint
by producing a better result in terms of noise and structure
similarities with that of ground truths.

To better assess the quality of SR images, we also used
another highly adapted evaluation metric (MS-SSIM) based
on the assumption of human visual system [94]. MS-SSIM
follows multi-scale processes for multi-stage sub-sampling
operations to subjectively compare the given images. For this
purpose, the generated images by SOTA models and GUV-
Net models are displayed in Fig. 3, where GUV-Net results
significant MS-SSIM score.

Furthermore, the generated results with upscaling factor
×4 can also be observed together with highlighted regions
(Fig. 4). The SR images generated by GUV-Net keep suf-
ficient original patterns and texture from the input image
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Fig. 4 Two shoeprint samples are selected from the testing dataset. Each sample is shown in generated form (first row) and zoomed-in region
(second row). The visualization shows the input and generated SR images by SOTA and GUV-Net models for the upscaling factor ×4

(XLR), as well as reduce the noise level by producing high
PSNR score compared to SOTA. GUV-Net also keeps the
low level features empowered by the direct connections from
the decoder part into the refinement module (see Fig. 1b).
Moreover, GUV-Net outperforms the SOTAmodels in terms
of the empirical evaluations using PSNR, SSIM, and MS-
SSIM as tabulated the averaged values in Table 1. In addition,
SRDensNet performs best at second position following dense
structure which is followed by GUV-Net for passing infor-
mation and refinement unit.

Ablation study

Exclusion of variational inferencing

GUV-Net generates samples through the decoding layer
by inferencing in the latent space optimized by the K L-
divergence. To know the importance of features borrowed
from VAE architecture, we re-designed GUV-Net by exclud-
ing the inferencing unit at the bottle-neck of encoder–decoder
structure. We trained the network with the same network-
parameters by solely adding autoencoder insteadofVAE.The
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Table 1 Average PSNR, SSIM, and M-SSIM values for the testing
dataset

Model name PSNR SSIM MS-SSIM

×2

SRDensNet 34.02 0.96 0.97

SRGAN 30.56 0.90 0.93

IDAN 33.40 0.95 0.96

EBGRN 32.71 0.90 0.96

GUV-Net (ours) 35.79 0.97 0.98

×4

SRDensNet 34.02 0.94 0.98

SRGAN 30.56 0.82 0.94

IDAN 33.40 0.89 0.98

EBGRN 32.71 0.84 0.98

GUV-Net (ours) 35.79 0.96 0.99

The statistical results of the table is divided into two sections, cor-
responding to upsampling ×2 and ×4. The quantitative (i.e., PSNR,
SSIM, MS-SSIM) values for the the SOTA models including with our
proposedone are shownboth for upsampling×2 and×4.The significant
results are shown in bold in terms of high fidelity shoeprint generation

modified version ofGUV-Net performs satisfactory result for
the scaling factor ×2 in terms of PSNR and SSIM; however,
it shows poor result at high scaling factors (i.e.,×4,×8). The
model convergence was negatively affected after the training
reached to 10 epochs and produced blurry results.

Refining association with skip-connections

Similarly, we remove the skip-connections between the
decoding part and the refinement unit to better observed
the contribution of passing information from various spatial
levels. The model performance retains normal in terms of
perception quality and SSIM but shows low PSNR value for
the scaling factor ×4 and above. Thus, the skip-connections
not only pass the low level features from distinct levels but
also take part in refining the high dimensional space. The
existing of these connections show more importance where
the original and low quality images are often found in dis-
torted forms.

Conclusion and future directions

In this study, we proposed GUV-Net for SISR special-
ized in shoeprint generation. GUV-Net possesses features
of the three popular network structures: GAN, VAE, and
U-Net, which effectively addresses the crucial challenges
in shoeprint generation. The main challenges addressed by
GUV-Net is the unavailability of ground truths and the gener-
ation of SR shoeprints from their naturally distorted versions.
The model is trained and tuned following multiple loss terms

in an efficient way. To the best of our knowledge, this is
the first model to attempt super-resolution image genera-
tion, which is of great importance in forensic investigation
by maintaining the key patterns and textures of LR images.
Moreover, the model efficiently retains the salient features
and patterns from the LR (XLR) to HR (XHR) version. GUV-
Net outperforms the SOTA models in terms of subjective
(Figs. 3, 4) and objective (Table 1) evaluations.

The unavailability of HR shoeprints arises multiple ques-
tions regarding training and evaluation of GUV-Net. The
SR image quality with upscaling factors (UF) ×2, ×4,
and ×8 generated by GUV-Net sustains to an accept-
able level; however, GUV-Net including SOTA show poor
result for higher upscaling factor (i.e., UF×8 >). In the
future, GUV-Net can be extended to higher upscaling fac-
tors (i.e., ×16,×32,×64). For this purpose, the depth of the
encoder–decoder structure can be deepen together with skip-
connections between the decoder and refinement modules to
get an improved version.

Similarly, in our future work, the modified version of
GUV-Net should focus more on noise and blur control in
SR generation. For the improved version of GUV-Net, the
training and convergence rates can also be considered which
has been given less emphasize due to the challenge in SR
shoeprint generation with no ground truths. Moreover, SR
shoeprint generation needs special attention to study network
models for no-reference HR images. The SISR of shoeprint
image generation through GUV-Net using a fusion strategy
can be extended to other vision tasks.
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