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Abstract
Sparse large-scale multi-objective optimization problems (LSMOPs) widely exist in real-world applications, which have the
properties of involving a large number of decision variables and sparse Pareto optimal solutions, i.e., most decision variables of
these solutions are zero. In recent years, sparse LSMOPs have attracted increasing attentions in the evolutionary computation
community. However, all the recently tailored algorithms for sparse LSMOPs put the sparsity detection andmaintenance in the
first place, where the nonzero variables can hardly be optimized sufficiently within a limited budget of function evaluations.
To address this issue, this paper proposes to enhance the connection between real variables and binary variables within the
two-layer encoding scheme with the assistance of variable grouping techniques. In this way, more efforts can be devoted to
the real part of nonzero variables, achieving the balance between sparsity maintenance and variable optimization. According
to the experimental results on eight benchmark problems and three real-world applications, the proposed algorithm is superior
over existing state-of-the-art evolutionary algorithms for sparse LSMOPs.

Keywords Large-scale multi-objective optimization · Sparse pareto optimal solutions · Evolutionary algorithm · Real-world
applications

Introduction

Large-scale multi-objective optimization problems, which
widely exist in scientific and engineering areas, refer to the
problems involving a large number of decision variables and
multiple conflicting objectives. For example, the optimiza-
tion of a vehicle routing problem (VRP) usually consists
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of hundreds of customers [1], and the number of decision
variables in the ratio error estimation of voltage transform-
ers (TREE) can vary from hundreds to even millions [2].
Evolutionary algorithms (EAs), as a population-based opti-
mization method, are capable of obtaining a set of trade-off
solutions in a single run and less vulnerable to trap into
local optimums. A variety of EAs showing promising per-
formance on different kinds of multi-objective optimization
problems (MOPs) have been proposed during the past two
decades [3–5], however, their performance usually degener-
ate when they are adopted to tackle LSMOPs. One reason is
that the search space expands exponentially with the increas-
ing of the number of decision variables, which is known
as the curse of dimensionality [6]. To solve this dilemma,
various approaches have been tailored for solving LSMOPs
during the past ten years [7], which can be roughly catego-
rized into four types. They are decision variable grouping
[8], decision variable analysis [9,10], problem reformulation
[11,12], and special offspring generation strategy based EAs
[13,14,16,17].

In the field of LSMOPs, there exists a special kind of
optimization problem becoming increasingly important in
real-world applications and scientific researches, which is
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known as sparse LSMOPs. The Pareto optimal solutions of
such kind of problem are sparse, i.e., most decision variables
of the solutions are zero. For example, the portfolio opti-
mization problem is to maximize the expected return and
minimize the potential risks, the invested products usually
account for only a small portion of all candidate products
[19]. In the neural network training problem, to minimize
the complexity and error of a network model, many weights
should be set to zero [18]. When existing approaches cus-
tomized for general LSMOPs are employed to solve sparse
LSMOPs, few of them can obtain a satisfactory solution set
within a limited budget of function evaluations, since they
do not consider the sparse nature of Pareto optimal solutions
when evolving the population, thus converging slowly on
sparse LSMOPs [20].

To fill the gap mentioned above, several multi-objective
optimization evolutionary algorithms (MOEAs) have been
tailored for sparse LSMOPs in recent years. In SparseEA
[21], aiming to maintain the sparsity of generated solu-
tions, a novel population initialization strategy and genetic
operators have been proposed. In MOEA/PSL [22], two
unsupervised neural networks are used to learn a sparse
distribution and a compact representation of the decision
variables, thus achieving the approximation of Pareto opti-
mal subspace. In PM-MOEA [25], patternmining techniques
are utilized to mine the sparse distribution of Pareto optimal
solutions and thus considerably reduce the search space. In
MDR-SAEA [26], the authors propose to use feature selec-
tion approach to achieve dimensionality reduction, and apply
Kriging-assisted evolutionary algorithms to solve the expen-
sive sparseLSMOPs. InMP-MMEA[27], amulti-population
MOEA guiding the search behavior of populations via
adaptively updated vectors is proposed to deal with sparse
large-scale multi-modal MOPs, where the guiding vectors
can not only accelerate convergence in the huge search space,
but also differentiate the search direction of each population.

It is necessary to note that all the algorithms enumerated
above adopt a two-layer encoding scheme, i.e., each deci-
sion variable xi is represented by xi = maski ×deci , where i
ranges from1 to D, and D is the number of decision variables.
One main purpose of adopting such encoding strategy is to
facilitate the detection of the positions of nonzero variables.
It can be found that the algorithms in [22,25,26] attempt to
find the sparse distribution of decision variables firstly via
different dimensionality reduction techniques, and put the
optimization of nonzero real variables in the second place.
However, paying too much attention to sparsity detection
may hinder the optimization of nonzero variables. Figure 1
shows the parallel coordinates plot of the decision variables
of solutions obtained by SparseEA, MOEA/PSL, and PM-
MOEAonSMOP1andSMOP3with1000decisionvariables,
where the sparsity of these two problems is set to 0.1, i.e.,
the last 900 decision variables in the Pareto optimal solu-

tions are zero. It can be found that, for SMOP1, even though
PM-MOEA detects the positions of nonzero variables more
precisely than the other two algorithms, it does not obtain the
best IGDvalue among the three algorithms as expected, since
MOEA/PSL optimizes the nonzero real variables better. For
SMOP3, when all the three algorithms detect the positions
of nonzero variables precisely, PM-MOEA obtains the best
IGD value as it optimizes the key variables which affect the
function fitness more sufficiently.

Based on the above observations, it can be found that
the optimization of nonzero variables is as important as the
detection of sparsity. In this paper, we propose to enhance
the connection between mask and dec with the assistance of
variable grouping techniques. We do not put sparsity mainte-
nance in the first place anymore, on the contrary, we hope to
optimize key variables more sufficiently without sacrificing
the effect of sparsity maintenance. In this way, the balance
between sparsitymaintenance and variables optimization can
be better achieved. The main contributions of this paper are
summarized as follows:

• Anew algorithm equipping customized genetic operators
for sparse LSMOPs is proposed in this paper, in which
the connection between real variables and binary vari-
ables is enhancedwith the assistance of variable grouping
techniques. Thus, the real variables are ensured to be
optimized as long as the corresponding binary variables
are flipped, improving the efficiency of producing sparse
Pareto optimal solutions.

• Based on the performance evaluation and empirical study
results of the conference version of this paper [20], a
more comprehensive comparison study is conducted to
reveal the merits and drawbacks of the existing state-
of-the-art MOEAs and the newly proposed algorithm on
benchmark and real-world LSMOPs with sparse Pareto
optimal solutions.

The remainder of this paper is organized as follows. We
first introduce the existing MOEAs for general LSMOPs
and sparse LSMOPs, and then elaborate on our proposed
MOEA for sparse LSMOPs. Next, we present the experimen-
tal studies on eight benchmark problems and three real-world
applications. Finally, we draw the conclusions and outline
some future research directions.

Related work

As mentioned in the last section, existing MOEAs for
general LSMOPs can be roughly categorized into four dif-
ferent groups. They are based on decision variable grouping
[8], decision variable analysis [9,10], problem reformu-
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Fig. 1 Parallel coordinates plot
of the decision variables of
solutions obtained by SparseEA,
MOEA/PSL, and PM-MOEA on
SMOP1 and SMOP3 with 1000
variables, the sparsity is set to
0.1. The value in the top right
corner of each sub-figure
represents the median IGD
indicator obtained by the
corresponding algorithm over 30
runs

lation [11,12], and special offspring generation strategies
[13,14,16,17].

Themain idea of the algorithms based on decision variable
grouping is to divide decision variables into different groups
that can be optimized via independent sub-populations in
a divide-and-conquer manner. However, their performance
can be greatly affected by the adopted variable grouping
techniques. For example, random grouping [28] is employed
in the third-generation cooperative co-evolutionary differ-
ential evolution algorithm (CCGDE3) [8] considering that
dividing variables into random groups provides better results
than applying a deterministic division scheme when dealing
with nonseparable functions. Besides, other variable group-
ing techniques (e.g., ordered grouping [29], linear grouping
[30] and differential grouping [31]) have also shown effec-
tiveness in solving specific LSMOPs.

MOEA/DVA [9] and LMEA [10] are two well-known
algorithms belonging to the category based on decision vari-
able analysis. The key component of MOEA/DVA consists
of control property analysis and variable linkage analysis,
in which the former divides the decision variables into posi-
tion related variables, distance related variables, and mixed
variables, while the latter further divides distance-related
variables into smaller subgroups of interacting variables.

Afterwards, variables in each subgroup are optimized inde-
pendently through a differential evolution based optimizer. In
contrast toMOEA/DVAtreatingmixedvariables as diversity-
related variables, LMEA clusters a decision variable as either
convergence-related variable or diversity-related variable
precisely. Subsequently, convergence optimization strategy
and diversity optimization strategy are employed to optimize
the corresponding variables alternately.

For the methods based on problem reformulation, two
representative algorithms are WOF [11] and LSMOF [12].
WOF divides decision variables into different groups and
assigns a weight variable to each group, thus the dimension-
ality of problems can be greatly reduced by altering variables
in the same group at the same time. On the other hand,
LSMOF defines a set of reference directions in the deci-
sion space and associates them with a number of weight
variables to reformulate the original problem into a low-
dimensional single-objective optimization problem. After
obtaining enoughquash-optimal solutions near thePareto set,
LSMOF spreads such solutions over the approximated Pareto
set evenly via an embedded differential evolution algorithm.

The last category employs special offspring generation
strategies. To improve the search efficiency, LMOCSO [14]
suggests a new reproduction operator based on the com-
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petitive swarm optimizer [15], and an acceleration term is
added to the position update mechanism to accelerate the
convergence speed. Instead of optimizing decision variables
directly, LCSA [16] evolves a population of coefficient vec-
tors, by taking advantage of the inherent knowledge of the
population, offsprings can thus be obtained by a linear com-
bination of existing individuals. GLMO[17] embeds variable
grouping into mutation operators to improve the quality of
generated offsprings, and three new mutation operators are
presented, they are Linked Polynomial Mutation, Grouped
Polynomial Mutation and Grouped and Linked Polynomial
Mutation.DGEA [13] generates promising solutions via con-
structing direction vectors in the decision space. Specifically,
in each iteration, two kinds of direction vectors related to
convergence and diversity are constructed adaptively, and
offsprings are then produced along each direction vector
through sampling the built Gaussian distribution.

Despite that, the above delicate approaches work well
on general LSMOPs, their performance usually degener-
ates when they are applied to solve sparse LSMOPs. One
main reason is that few of them consider the sparse nature
of Pareto optimal solutions when evolving the population,
thus converging slowly on sparse LSMOPs. To fit this gap,
several MOEAs customized for sparse LSMOPs have been
proposed, which make fully use of the sparsity of problems
to speed up the convergence to Pareto optimal sets. In this
paper, we divide them into two different categories according
to whether the dimensionality reduction techniques are used.

As for the sparse MOEAs without dimensionality reduc-
tion techniques, SparseEA [21] has a similar framework to
NSGA-II, while the novelties lie in its population initializa-
tion strategy and genetic operators, which ensure the sparsity
of generated individuals. Specifically, in the population ini-
tialization strategy, SparseEA first calculates the fitness
scores for each decision variable based on non-dominated
sorting [3], and then generates the initial population based on
the obtained scores. As for the genetic operators, SparseEA
flips zero or nonzero binary variables with the same probabil-
ity on the basis of fitness scores, however, for the real part of
decision variables, SparseEA simply executes conventional
genetic operators. Recently, Amulti-population evolutionary
algorithm, termed MP-MMEA, has been proposed for solv-
ing sparse large-scale multi-modal multi-objective optimiza-
tion problems (MMOPs), MP-MMEA adopts adaptively
adjusted guiding vectors to improve both the convergence
and diversity of each population, in which the guiding vec-
tors can not only lead the sub-populations to evolve towards
sparse Pareto sets efficiently, but also diversify the search
direction of each subpopulation in the decision space.

As for the sparse MOEAs based on dimensionality
reduction techniques, MOEA/PSL [22] adopts the restricted
Boltzmann machine (RBM) [23] and denoising autoencoder
(DAE) [24] to learn the sparse distribution and compact

representation of decision variables, and regards the com-
bination of the learnt sparse distribution and compact repre-
sentation as an approximation of thePareto optimal subspace.
Subsequently, genetic operators are conducted in the reduced
subspace instead of the original search space, in this way, the
huge search space is highly reduced. Similarly, PM-MOEA
[25] utilizes data mining techniques to mine the maximum
and minimum candidate sets of the nonzero variables in
Pareto optimal solutions, and then executes genetic operators
on the dimensions determined by the maximum and mini-
mumcandidate sets, therefore, the high-dimensional decision
space can also be greatly reduced. To address the curse of
dimensionality encountered in sparse LSMOPs with expen-
sive functions, MDR-SAEA [26] executes non-dominated
sorting based feature selection and mask evolving based fea-
ture selection within a multi-stage framework to reduce the
search space, and then performs surrogate-assisted optimiza-
tion for the dimension-reduced problems.

ProposedMOEA for sparse LSMOPs

Up to now, existing MOEAs tailored for sparse LSMOPs put
sparsity maintenance in the first place, where the real part of
nonzero variables can hardly be optimized sufficientlywithin
a limited budget of function evaluations. Therefore, in this
paper, an improved version of SparseEA, termed SparseEA2,
is proposed, in which the connection between real variables
and binary variables is enhanced with the assistance of vari-
able grouping techniques. Thus ensuring that the real part
of nonzero variables can attract more attentions to be opti-
mized more sufficiently, without sacrificing the effect of
sparsity maintenance. In this section, we will first introduce
SparseEA, and then elaborate on our proposed SparseEA2
specifically.

SparseEA

Figure 2 shows the procedure of SparseEA, which is very
similar to NSGA-II [3]. The mating pool selection and
environmental selection of SparseEA are the same as the
counterparts of NSGA-II, while the novelties lie in its popu-
lation initialization strategy and genetic operators.

Algorithm 1 presents the population initialization strategy
of SparseEA, which consists of two steps, i.e., calculating
the fitness of decision variables and generating the initial
population. In the first step, the real vector Dec is set to a
uniformly randomly generated D × D matrix or a D × D
matrix of ones according to the types of decision variables,
and the binary vector Mask is set to a D×D identity matrix.
Here, we note that Dec denotes the decision variables and
Mask denotes the mask. Thereafter, a population Q with D
solutions is generated by multiplying Dec by Mask. Then,
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Fig. 2 Procedure of SparseEA

non-dominated sorting is executed on Q and the front number
of the i-th individual is regarded as the fitness of the i-th
decision variable. The fitness of each decision variable can
be used to measure its contribution to the objective value,
i.e., a smaller fitness of a decision variable indicates a lower
probability that the decision variable should be set to zero.
In the second step, Dec is first set to a N × D matrix in
the same way in the first step, and Mask is set to a N × D
matrix of zeros. Then, for each solution, a random number
of decision variables are set to 1 according to their fitness.
Finally, the initial population P with N solutions is generated
via multiplying Dec by Mask.

The other key component of SparseEA, i.e., genetic oper-
ator, is presented in Algorithm 2, which is composed of
generating the mask of offsprings and generating the dec
of offsprings. To be specific, two parents p and q are ran-
domly selected from P ′ to generate an offspring o in each
turn. Aiming to generate the binary vector mask of o, a
uniformly distributed random number in [0, 1] is firstly gen-
erated, if rand() is smaller than 0.5, two decision variables
from the nonzero elements in p.mask ∩ q.mask are ran-
domly selected, and the element with bigger fitness is set to
0. Otherwise, two decision variables from the nonzero ele-
ments in p.mask ∩ q.mask are randomly selected, and the
element with smaller fitness is set to 1. Afterwards, o.mask
is mutated by either the following two operations with the

Algorithm 1: Initialization strategy of SparseEA
Input: N (population size)
Output: P (initial population), Fit (fitness scores of decision

variables)
1 //Calculating the fitness of decision

variables
2 D ← Number of decision variables;
3 if the decision variables are real numbers then
4 Dec ← Uniformly randomly generate the decision

variables of D solutions;

5 else if the decision variables are binary numbers then
6 Dec ← D × D matrix of ones;

7 Mask ← D × D identity matrix;
8 Q ← Generate a population by Dec and Mask;
9 [F1, F2, ...] ← Perform non-dominated sorting on Q;

10 for i = 1 to D do
11 Fiti ← Assign the non-dominated front number of the i-th

solution in Q to the fitness of the i-th decision variable;

12 //Generating the initial population
13 if the decision variables are real numbers then
14 Dec ← Uniformly randomly generate the decision

variables of N solutions;

15 else if the decision variables are binary numbers then
16 Dec ← N × D matrix of ones;

17 Mask ← N × D matrix of zeros;
18 for i = 1 to N do
19 for j = 1 to rand() × D do
20 [m, n]← Randomly select two decision variables;
21 if Fitm ≤ Fitn then
22 Set the m-th element in the i-th binary vector in

Mask to 1;

23 else
24 Set the n-th element in the i-th binary vector in

Mask to 1;

25 P ← Generate a population by Dec and Mask;
26 return P and Fit ;

same probability: selecting two elements from the nonzero
elements in o.mask, and setting the one with bigger fitness
to 0; or selecting two elements from the nonzero elements
in o.mask, and setting the one with a smaller fitness to 1. In
short, SparseEA flips one zero element or nonzero element in
the binary vector with the same probability, and the element
to be flipped is decided based on the fitness of each deci-
sion variable. Subsequently, simulated binary crossover [32]
and polynomial mutation [33] are performed to generate the
real vector dec of offspring o, and if the decision variables
are binary numbers, dec is simply set to a vector of ones.
For more details about SparseEA, the readers are referred to
[21].

SparseEA2

We see that in the genetic operators of SparseEA, most of the
efforts are put forward to the generation of mask, while few
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Algorithm 2: Genetic operator of SparseEA
Input: P ′ (parent individuals), Fit (fitness of decision

variables)
Output: O (offspring individuals)

1 O ← Null;
2 while P ′ is not empty do
3 [p, q] ← Randomly select two parents from P ′ and

remove them from P ′;
4 //Generating the mask of offspring o
5 o.mask ← p.mask;
6 //Crossover of mask
7 if rand() < 0.5 then
8 Randomly select two decision variables from the

nonzero elements in p.mask ∩ q.mask;
9 Set the element with bigger fitness in o.mask to 0;

10 else
11 Randomly select two decision variables from the

nonzero elements in p.mask ∩ q.mask;
12 Set the element with smaller fitness in o.mask to 1;

13 //Mutation of mask
14 if rand() < 0.5 then
15 Randomly select two decision variables from the

nonzero elements in o.mask;
16 Set the element with bigger fitness in o.mask to 0;

17 else
18 Randomly select two decision variables from the

nonzero elements in o.mask;
19 Set the element with smaller fitness in o.mask to 1;

20 //Generating the dec of offspring o
21 if the decision variables are real numbers then
22 o.dec ← Perform simulated binary crossover and

polynomial mutation based on p.dec and q.dec;

23 else
24 o.dec ← Vector of ones;

25 O ← O ∩ {o};
26 return O;

attentions have been paid to the generation of dec, i.e., sim-
ply performing simulated binary crossover and polynomial
mutation based on p.dec and q.dec. Out of this considera-
tion, we have the following two concerns:

1 On the one hand, when the position of the flipped binary
variable and the positions where crossover and mutation
take place in the real vector are not consistent, the real
part of the key nonzero variables may not be optimized at
all, thus the population can hardly converge to the sparse
Pareto optimal set within a limit budget of function eval-
uations.

2 On the other hand, since only one binary variable is
flipped each time, and the key nonzero variables only
account for a small proportion in all decision variables.
Executing genetic operators on each real variable with
the same probability may be a kind of waste.

Fig. 3 An example of themutation process of SparseEA, inwhich x and
x. are the parent individual and offspring individual, mask, dec, mask.,
and dec. are the binary vectors and real vectors of x and x., respectively.
The light gray numbers above the table represent the fitness of each
decision variable, and the highlighted cells denote the positions where
mutation takes place

To explain our concerns clearly, Fig. 3 presents the
mutation process of SparseEA. We know that when the uni-
formly distributed random number is not smaller than 0.5,
SpareseEA randomly select two decision variables from the
nonzero elements in o.mask and set the one with smaller fit-
ness to 1. Supposing that the randomly selected two decision
variables are the first one and the third one, according to the
fitness scores of decision variables which keep unchanged
during the whole optimization process, the third element
which is marked by a star will be flipped to 1, and thus we
obtain the binary vector mask. of offspring individual x.. As
for the real vector dec, each variable has a equal probability
of 1/D to be mutated, and in this example, we present the
mutated real variables in the highlighted cells.

It can be observed that since the positions of elements to
be mutated in binary vector mask and real vector dec are not
consistent with each other, even though the binary variable
with smaller fitness (higher probability that the decision vari-
able should be nonzero in the Pareto optimal solutions) can
be selected and flipped, its corresponding real variable keeps
unchanged during current reproduction process. That is, for
solution x, its key nonzero real variable is not optimized at
all in current iteration, even if the position of nonzero vari-
able has been found precisely. Besides, despite of that many
real variables in dec have been mutated, for the variables
that are not related to the nonzero elements in Pareto optimal
solutions, the efforts made for them will be in fact a kind of
waste.

To address this dilemma, variable grouping techniques are
utilized to enhance the connection between mask and dec,
thus ensuring when a binary variable is flipped, its corre-
sponding real variable should be optimized at the same time.
Specifically, instead of performing crossover and mutation
operators on binary vector first, simulated binary crossover
is executed on real variables, thenwedivide the obtained vari-
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Fig. 4 An example of the mutation process of SparseEA2, in which
x and x. are the parent individual and offspring individual, mask, dec,
mask., and dec. are the binary vectors and real vectors of x and x.,
respectively. The light gray numbers above the table represent the fitness
of each decision variable, and the number with smaller font size in each
cell denotes the grouping index

ables into different groups and randomly select one group to
perform mutation operation on the basis of variable group-
ing techniques in [17]. Figure 4 shows the mutation process
of the proposed SparseEA2, we first divide real variables
after simulated binary crossover into different groups (two
groups in this example) via ordered grouping [29], then one
group of variables is randomly selected. Supposing that the
second group of variables is selected, after those variables
are changed with the same mutation amount, the binary vari-
ables having the same positions to the mutated real variables
are picked out, and we call the set of those binary variables
as PreMask. Afterwards, a uniformly distributed random
number in [0, 1] is generated, and if the random number is
smaller than 0.5, two variables from the nonzero elements
in PreMask are randomly selected, and the one with bigger
fitness is set to 0. Otherwise, two variables from the nonzero
elements in PreMask are randomly selected, and the one
with smaller fitness is set to 1. Supposing that the variables
whose fitness are 5 and 12 are selected, the former one which
is marked by a star will be flipped from 0 to 1, as its fitness
is smaller.

It can be observed that the connections between mask
and dec can indeed be enhanced through the operations
elaborated above. As a result, without sacrificing the effect
of sparsity maintenance, as long as one binary variable is
flipped, its corresponding real variable should be optimized
at the same time. Besides, since the attention is only paid to
one group of variables each time, the efforts devoted to the
mutation process can also be saved, which is verymeaningful
when only one binary variable inmask is flipped in each iter-
ation. The genetic operators of SparseEA are replaced with
the ones elaborated above, and we call the new algorithm as
SparseEA2. To validate the effectiveness of SparseEA2, we
run SparseEA2 on SMOP1 and SMOP3 with 1000 decision
variables. Figure 5 shows the parallel coordinates plot of the

decision variables of solutions obtained by SparseEA2, com-
pared to the results as shown in Fig. 1, we see that the first 100
key variables that should be set to nonzero in the Pareto opti-
mal solutions are optimized more sufficiently, and the IGD
values attached in the top right corner of each sub-figure
are also much smaller than the ones obtained by SparseEA,
MOEA/PSL, and PM-MOEA.

Experimental studies on benchmark prob-
lems

Four different types ofMOEAs tailored for general LSMOPs
and three MOEAs customized for sparse LSMOPs are com-
pared with SparseEA2, including CCGDE3 [8], LMEA
[10], WOF-SMPSO [11], GLMO [17], SparseEA [21],
MOEA/PSL [22], and PM-MOEA [25]. In this section, we
investigate the performances of these eight algorithms on
eight benchmarkproblems, i.e., SMOP1-SMOP8 [21],which
have various landscape functions, and are very suitable for
assessing the performance of existing MOEAs in obtaining
sparse Pareto optimal solutions.

Experimental settings for benchmark problems

Algorithms: For CCGDE3, the number of species is set to
2, and random grouping is adopted. For LMEA, the num-
ber of selected solutions for decision variables clustering is
set to 2, the number of perturbations on each solution is set
to 4, and the number of selected solutions for decision vari-
able interaction analysis is set to 5. For WOF-SMPSO, the
number of function evaluations for each optimization of the
original problem is set to 1000, while the number of evalua-
tions for each optimization of the transformed problem is set
to 500, the number of chosen solutions is set to 3, the num-
ber of groups is set to 4, and ordered grouping is adopted.
For GLMO, the number of groups is set to 4, NSGA-II is
adopted as the underlying optimizer and ordered grouping
is employed. For PM-MOEA, the population size and the
number of generations of its evolutionary pattern mining
approach are set to 20 and 10, respectively. For SparseEA2,
the number of groups is set to 4, and ordered grouping is used.
InLMEA,GLMO,SparseEA,MOEA/PSL, PM-MOEA, and
SparseEA2, the simulated binary crossover and polynomial
mutation are employed to produce offsprings, the probability
of crossover and mutation are set to 1 and 1/D, where D is
the number of decision variables, and the distribution index
of both crossover and mutation is set to 20. In CCGDE3, the
DE operator and polynomial mutation are used for offspring
generation, where the control parameters are set to CR = 1,
F = 0.5, pm = 1/D, and η = 20. In WOF-SMPSO, the PSO
operator and polynomial mutation are employed.
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Fig. 5 Parallel coordinates plot
of the decision variables of
solutions obtained by
SparseEA2 on SMOP1 and
SMOP3 with 1000 variables, the
sparsity is set to 0.1. The value
in the top right corner of each
sub-figure represents the median
IGD obtained by SparseEA2
over 30 runs

Problems: For SMOP1 - SMOP8, the number of objectives
is set to 2, the number of decision variables is set to 1000,
2000, and 5000, and the sparsity of Pareto optimal solutions
is set to 0.1, which denotes the ratio of nonzero elements in
the decision variables.

Stopping criteria andpopulation size:Themaximumnum-
ber of function evaluations is adopted as the stopping criteria,
which is set to 100×D for eachMOEA. The population size
is set to 100.

Performance metrics: The inverted generational distance
(IGD) [36] is adopted to measure each obtained solution set,
and roughly 10000 reference points on each Pareto front are
sampled to calculate the IGD value. We perform 30 indepen-
dent runs for eachMOEAon each problem, and theWilcoxon
rank-sum test with a significance level of 0.05 is adopted to
perform statistical analysis. Here, we note that all the exper-
imental studies in this paper are conducted on the PlatEMO
1 [34]

Experimental results on benchmark problems

Table 1 shows the IGD values obtained by CCGDE3,
LMEA, WOF-SMPSO, GLMO, SparseEA, MOEA/PSL,
PM-MOEA and the proposed SparseEA2 on SMOP1-
SMOP8 with 1000, 2000, and 5000 decision variables over
30 runs. For the 24 benchmark problems, while MOEA/PSL
obtains the best results on 4 problems, PM-MOEA and
SparseEA2 perform the best on 10 problems, respectively.
Based on the Wilcoxon rank-sum test with a significance
level of 0.05, compared to SparseEA2, the statistical analy-
sis results of the other seven algorithms are 0/24//0, 0/24/0,
0/23/1, 0/24/0, 1/21/2, 4/17/3, and 9/14/1. Thus, it can be con-
cluded that SparseEA2 exhibits the best performance over the
other 7 algorithms on the eight sparse benchmark LSMOPs.

Besides, It is evident that the four MOEAs customized for
sparse LSMOPs perform obviously better than the other four
MOEAs tailored for general LSMOPs on these 24 bench-
mark problems. One may doubt that sparse optimization is

1 The source codes of algorithms and problems used in this paper can
be found from https://github.com/BIMK/PlatEMO.

a special optimization problem, and the algorithms that can
solve general LSMOPs should also be able to solve sparse
LSMOPs. In fact, this question can be answered from the fol-
lowing three viewpoints. Firstly, existingMOEAs for general
LSMOPs mostly generate the initial population in a random
manner within the large search space, and the generated ini-
tial population is usually far from the sparse optimal Pareto
sets. Secondly, without customizing special genetic opera-
tors, for each decision variable, existing MOEAs for general
LSMOPs usually traverse each legal value with the same
probability, which is very inefficient. Thirdly, the compu-
tational budget is usually limited, e.g., 100 × D function
evaluations for benchmark problems in this paper. Under
the above three conditions, existing MOEAs for general
LSMOPs can hardly converge to the sparse optimal Pareto
fronts within the limited computational budget.

Figure 6 shows the Pareto optimal fronts withmedian IGD
values obtained by the eight compared algorithms onSMOP5
and SMOP8 with 5000 decision variables over 30 runs. For
SMOP5, we see that SparseEA, MOEA/PSL, PM-MOEA,
and SparseEA2 exhibit the best results that have no obvi-
ous differences, WOF-SMPSO and GLMO obtain similar
results that are worse than the four sparse MOEAs, while
LMEA performs worst. For SMOP8, firstly, WOF-SMPSO,
GLMO,CCGDE3 andLMEAare significantly outperformed
by the other four MOEAs customized for sparse LSMOPs.
Secondly, for the four sparse MOEAs, MOEA/PSL and
SparseEA2 obtain similar results that are better than the other
two algorithms, while SparseEA performs worst within the
four sparse MOEAs.

Figure 7 shows the Pareto optimal sets with median IGD
values obtained by the eight compared algorithms onSMOP8
with 2000 decision variables over 30 runs. Firstly, we see that
the decision variables of solutions obtained by CCGDE3
and LMEA cover the whole search space, which explains
why these two algorithms obtain the worst results. Secondly,
for WOF-SMPSO and GLMO which exhibit slightly worse
results than the remaining four sparse MOEAs, even though
the decision variables of solutions obtained by them are
very close to zero, there still exist huge differences with the
sparse Pareto optimal solution set. Thirdly, for the four sparse
MOEAs which perform obviously better than the other four
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Fig. 6 Pareto optimal fronts
with median IGD values
obtained by WOF-SMPSO,
LMEA, CCGDE3, GLMO,
SparseEA, MOEA/PSL,
PM-MOEA, and SparseEA2 on
SMOP5 and SMOP8 with 5000
decision variables over 30 runs

f
1

f
1

f 2f 2

Fig. 7 Pareto optimal sets with
median IGD values obtained by
CCGDE3, LMEA,
WOF-SMPSO, GLMO,
SparseEA, MOEA/PSL,
PM-MOEA, and SparseEA2 on
SMOP8 with 2000 decision
variables over 30 runs
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algorithms, most of the decision variables obtained by them
are very sparse. Most importantly, the key nonzero variables
which affect the function fitness obtained by SparseEA2
are optimized more sufficiently than the other three sparse
MOEAs without sacrificing the effect of sparsity mainte-
nance, which can properly explains why SparseEA2 obtains
better results than SparseEA, MOEA/PSL, and PM-MOEA
on SMOP8.

Here, it is necessary to analyze why the decision vari-
ables of solutions obtained by CCGDE3 and LMEA cover
the whole search space. On the one hand, the performance
of CCGDE3 and LMEA depend heavily on the precision
of decision variables grouping or classification, and they
work well on problems with separable variables. However,
the landscape functions of SMOPs are complicated, a solu-
tion can be Pareto optimal when the first fixed number of
decision variables are nonzero and the remaining variables
are all zero, besides, there exist strong interactions between
these variables. On the other hand, CCGDE3 is nontrivial to
select the proper cooperators for executing function evalua-
tions and LMEA consumes too many function evaluations to
conduct the decision variable analysis. Under the three con-
ditions previously analyzed, the decision variables obtained
by these two algorithms are reasonably far from the sparse
optimal sets.

Experimental studies on real-world applica-
tions

To further validate the superiority of SparseEA2 over the
comparedMOEAs in solving sparseLSMOPs, in this section,
three real-world applications, namely, the neural network
training problem [18], the portfolio optimization problem
[19], and the sparse signal reconstruction problem [35] are
selected to conduct a deeper experimental study.

Experimental settings for real-world problems

Algorithms: The compared algorithms and the correspond-
ing parameter settings of each algorithm are kept the same
as the last section.
Problems: For each real-world applications, three datasets
are used, thus, there are in total nine problems empirically
tested in this section. Table 2 presents the details of each
problem, where NN, PO, and SR denote the neural network
training problem, the portfolio optimization problem, and the
sparse signal reconstruction problem, respectively.
Stopping criteria andpopulation size:Themaximumnum-
ber of function evaluations is adopted as the stopping criteria,
which is set to 2.0 × 104, 4.0× 104 and 1.0 × 105 for
problems with approximately 1000, 2000 and 5000 decision
variables. The population size is set to 50. Ta
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Performance metrics: The HV [37] indicator with a ref-
erence point (1,1) is employed to measure the results on
real-world applications, and theWilcoxon rank-sum test with
a significance level of 0.05 is also adopted to perform the sta-
tistical analysis.

Experimental results on real-world problems

Table 3 shows the HV values obtained by CCGDE3,
LMEA, WOF-SMPSO, GLMO, SparseEA, MOEA/PSL,
PM-MOEA, and the proposed SparseEA2 on the three real-
world applications. We see that SparseEA2 exhibits the best
results on the nine test instances. Compared to SparseEA2,
the statistical analysis results of the other seven algorithms
are 0/9/0, 0/9/0, 0/9/0, 0/9/0, 0/8/1, 0/7/2, and 0/8/1. Besides,
it can be found that the orders of magnitude of HV values
obtained by the sparse MOEAs are mostly e-1, while it is e-2
for the MOEAs tailored for general LSMOPs, which indi-
cates that there exist big differences between generalMOEAs
and sparse MOEAs in solving real-world applications with
sparse optimal solutions. Since the reasons why the algo-
rithms performing well on general LSMOPs are not able to
solve sparse LSMOPs have be analyzed in the former section,
we do not repeat it anymore.

Figure 8 shows the Pareto optimal fronts with median
HV values obtained by the eight compared algorithms on
the neural network training problem and the sparse signal
reconstruction problem with approximately 5000 decision
variables over 30 runs. For the neural network training prob-
lem, the four sparse MOEAs, i.e., SparseEA, MOEA/PSL,
PM-MOEA, and SparseEA2 exhibit obviously better results
than the other four algorithms tailored for general LSMOPs.
Within the four sparse MOEAs, SparseEA2 obtains the best
result. For the sparse signal reconstruction problem, the
results obtained by CCGDE3, GLMO, MOEA/PSL, LMEA,
and WOF-SMPSO are outperformed by these obtained by
the remaining three algorithms. While within the remaining
three sparse MOEAs, SparseEA2 obtains the best result, i.e.,
finding the most sparse signal for the lowest loss.

Figure 9 shows the Pareto optimal sets with median HV
values obtained by the eight compared algorithms on the
portfolio optimization problem with 5000 decision variables
over 30 runs. Firstly, for the fourMOEAs tailored for general
LSMOPs, the Pareto optimal sets obtained by them are not
sparse at all. Secondly, within the four MOEAs customized
for sparse LSMOPs, the sparsity of the Pareto optimal set
obtained by PM-MOEA is much bigger than that of the other
three sparse MOEAs, while SparseEA2 obtains the most
sparse Pareto optimal set. Ta
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Fig. 8 Pareto optimal fronts
with median HV values obtained
by WOF-SMPSO, LMEA,
CCGDE3, GLMO, SparseEA,
MOEA/PSL, PM-MOEA, and
SparseEA2 on NN3 and SR3
with approximately 5000
decision variables over 30 runs

Fig. 9 Pareto optimal sets with
median HV values obtained by
CCGDE3, LMEA,
WOF-SMPSO, GLMO,
SparseEA, MOEA/PSL,
PM-MOEA, and SparseEA2 on
the portfolio optimization
problem with 5000 decision
variables over 30 runs
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Computational efficiency of SparseEA2

Lastly, the computational efficiency of SparseEA2 is com-
pared to the other seven MOEAs. Table 4 lists the runtime
(in second) of the eight MOEAs on the benchmark SMOPs
and real-world applications. It can be observed that the effi-
ciency of SparseEA2 is worse than the compared algorithms
on the neural network training problems and the portfolio
optimization problems, competitive to the compared algo-
rithms on benchmark problems with 2000 decision variables
and the sparse signal reconstruction problems. Since the
initialization strategy of SparseEA2 has a time complex-
ity of O(MD2), where M and D denotes the number of
objectives and decision variables, respectively, the aver-
age rank of SparseEA2 is reasonably bigger than that of
CCGDE3,WOF-SMPSO, and GLMO.Moreover, compared
to SparseEA, the ordered grouping with a time complexity
of O(D2) is additionally performed in each generation, the
runtime of SparsEA2 is thus longer than SparseEA on most
test problems. While for some problems such as the sparse
signal reconstruction problems, SparseEA2 becomes more
efficient since its genetic operators generate sparse solutions
more efficient, and a sparse solution usually corresponds to
cheap objective evaluations. Even though, the average rank
of SparsEA2 is still similar toMOEA/PSL, smaller than PM-
MOEA and LMEA. In short, the computational efficiency of
SparseEA2 is affordable.

Conclusions and future work

In this paper, we have proposed an improved version of
SparseEA for solving sparse LSMOPs. The core idea of the
proposed algorithm is to enhance the connection between
mask and dec with the assistance of variable grouping tech-
niques, thus ensuring that the real part of a decision variable
should be optimized at the same time when its binary part
is flipped. Besides, since only one binary variable in mask
is flipped each time, there is no need to perform mutation
operations on each real variablewith the samemutation prob-
ability. Through enhancing the connection between mask
and dec, SparseEA2 can also avoid wasting efforts on the
variables that may not be related to the nonzero elements in
the Pareto optimal solutions.

In the experimental studies, the proposed algorithm has
been compared with four MOEAs tailored for general
LSMOPs and three MOEAs customized for sparse LSMOPs
on eight benchmark problems as well as three real-world
applications with sparse Pareto optimal solutions. The sta-
tistical results on those in total 33 test instances have
demonstrated the superiority of the proposed algorithm over
other MOEAs in solving sparse LSMOPs.
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To the best of our knowledge, there are only five MOEAs
are specially designed for sparse LSMOPs up to now, where
the study on large-scale sparse MOEAs is still in its infancy.
Therefore, it deserves more attention in the community of
evolutionary computation. For example, we can customize
MOEAs for sparse LSMOPs without using the two-layer
encoding scheme. Besides, we can adopt more effective
environmental selection strategies in SparseEA2 for sparse
LSMOPs with many objectives (i.e., many-objective knap-
sack problems [38]), and we can also combine the proposed
algorithm with effective constraint handling techniques for
solving sparse constrained LSMOPs (i.e., optimal software
product selection problems [39]).
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