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Abstract
The complex q-rung orthopair fuzzy set (Cq-ROFS) is the extension of complex Pythagorean fuzzy set (CPFS) in which the
sum of the q-power of the real part (imaginary part) of the support for and the q-power of the real part (imaginary part) of
the support against is limited by one; however, it is difficult to express the hesitant information. In this study, the conception
of complex q-rung orthopair hesitant fuzzy set (Cq-ROHFS) by combining the Cq-ROFS and hesitant fuzzy set (HFS) is
proposed, and its properties are discussed, obviously, Cq-ROHFS can reflect the uncertainties in structure and in detailed
evaluations. Further, some distance measures (DMs) and cross-entropy measures (CEMs) are developed based on complex
multiple fuzzy sets. Moreover, these proposed measures are utilized to solve a multi-criteria decision-making problem based
on TOPSIS (technique for order preference by similarity to ideal solution) method. Then, the advantages and superiority of
the proposed measures are explained by the experimental results and comparisons with some existing methods.

Keywords Complex q-rung orthopair fuzzy sets ·Complex q-rung orthopair hesitant fuzzy sets · Improved distancemeasures ·
Cross-entropy measures · TOPSIS method

Introduction

Multi-criteria decision-making (MCDM), as an essential
framework for comparison, has always been used to select the
most desirable one from a set of alternatives, which are eval-
uated by some finite and predefined attributes. Universally,
because of complexity and uncertainty of decision-making
environment, the decision information cannot always be
expressed by crisp numbers. To overcome this drawback,
Zadeh [1] presented the theory of fuzzy set (FS), which is
an essential tool to deal with fuzzy information. Since it was
proposed, FS has receivedmore andmore attention andmany
scholars have utilized it in the different field [2]. However,
because there is onlymembershipgrade, theFS failed to solve
some complex uncertain real-life problems. In this situation,
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Atanassov [3] presented intuitionistic FS (IFS) which can
be successfully applied in different awkward fields because
it is characterized by the values of positive grade and neg-
ative grade and their sum must be restricted to [0,1]. Then,
IFS becomes an essential tool to cope with awkward and dif-
ficult fuzzy information, and since it was established, it has
received the attention of many researchers and it is utilized in
the environments of different fields [4, 5]. However, there are
some practical cases, if the decision-maker gives 0.9 for pos-
itive grade and o.3 for negative, and now their sum is greater
than 1, IFS cannot deal with it. Therefore, Yager [6] proposed
Pythagorean FS (PFS) in which the sum of the square of pos-
itive grade and square of negative grade is restricted to [0,1],
then PFSbecomes an essential tool to copewith awkward and
difficult fuzzy information, and many researchers utilized it
to solve the decision-making problems [7, 8]. However, there
are also some practical cases, when the decision-maker gives
0.9 for positive grade and o.8 for negative, and their sum of
squares is greater than 1, PFS cannot express it. Then Yager
[9] presented q-rung orthopair FS (q-ROFS) in which the
sum of the q-power of positive grade and the q-power of
negative grade is restricted to [0,1], where q is greater than
1. Since it was established, it has received the attention of

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-021-00551-2&domain=pdf
http://orcid.org/0000-0001-5048-8145


1168 Complex & Intelligent Systems (2022) 8:1167–1186

many researchers and it is utilized in the environments of
aggregation operators, similarity measures, hybrid aggrega-
tion operators and so on. The various existing works based
on QROFS are elaborated as follow as:

1. General operators Many scholars have successfully
developed some aggregation operators in the environ-
ment of QROFS. For instance, Liu and Wang [10] devel-
oped some aggregation operators using the QROFSs.
Garg and Chen [11] explored the neutrality aggregation
operators for QROFSs. Using the new score function,
Peng et al. [12] presented the exponential operations and
aggregation operators based on QROFSs. Xing et al. [13]
established point weighted aggregation operators based
on QROFSs.

2. Similaritymeasures (SMs)SM is a proficient technique to
accurately examine the degree between any two objects.
Many scholars have developed some SMs in differ-
ent notions. For example, Wang et al. [14] used the
cosine function to explore the SMs for QROFSs. Du [15]
established makowski-type distance measures based on
generalized QROFSs. Liu et al. [16] presented the cosine
SMs for QROFSs. Peng and Liu [17] explored informa-
tion measures for QROFSs.

3. Hybrid operators To find the interrelationships between
two objects, the hybrid aggregation operators play an
essential role in the environment of realistic decision-
making. Many scholars explored different hybrid
aggregation operators using the QROFSs, such as
Archimedean Bonferroni mean (BM) operators [18],
Maclaurin symmetricmean (MSM)operators [19],Muir-
head mean operators [20], and the others [21, 22].

The improvement of the above different FSs is not
restricted to the real numbers but generalized to the com-
plex numbers. Ramot et al. [23] presented complex FS (CFS)
which is characterized by a complex positive grade, which
is not limited to [0,1], but generalized to the unit circle in
the complex plane. The CFS gives a mathematical frame-
work for describing positive grades in a set in terms of a
complex number. Now the CFS has received more atten-
tion andmany researchers have applied it to decision-making
problems [24]. Further, Alkouri and Salleh [25] established
the complex IFS (CIFS), which characterized the objec-
tive world more comprehensively from three perspectives,
such as positive, negative, and neutral degrees. In CIFS,
the positive, negative, and neutral degrees are the form of
complex-valued with conditions: the sum of the real part
(similarly for imaginary part) of the positive degree and real
part (similarly for imaginary part) of the negative degree is
limited to [0,1]. Since it was established, it has been used to
solve the decision-making problem [26, 27].Moreover,Ullah
et al. [28] established the complex PFS (CPFS) in which the

positive, negative, and neutral degrees are the form of polar
coordinates with conditions: sum of the square of the real
part (similarly for imaginary part) of the positive degree and
the square of the real part (similarly for imaginary part) of the
negative degree is limited to [0,1]. Since it was established,
it has received more attention from scholars and is used in
different areas [29]. But there was still a problem when a
decision-maker gives 0.9e𝕚2π(0.8) for complex-valued posi-
tive grade and 0.8e𝕚2π(0.7) for complex-valued negative, and
their sum of squares is greater than 1, i.e., 0.92 + 0.82 > 1,
0.82+0.72 > 1, theCPFS canoe describes it. In that situation,
Liu et al. [30, 31] proposed complex q-ROFS (Cq-ROFS)
in which the positive, negative, and neutral degrees are the
form of polar coordinates with conditions: sum of the q-
power of the real part (similarly for imaginary part) of the
positive degree and the q-power of the real part (similarly
for imaginary part) of the negative degree is limited to [0,1].
The innovative concept of Cq-ROFS is an effective tool to
solve the above problem i.e., 0.96 + 0.86 � 0.7936 ≤ 1,
0.86 + 0.76 � 0.3798 ≤ 1.

There are some practical cases, the fuzzy set theory
has been neglected. For instance, when an individual pro-
vides information by a group for a truth grade, such as
{0.4, 0.3, 0.1}, then the theory of FS has failed to solve the
above issues. Therefore, to tackle this situation, the hesitant
fuzzy set (HFS) was established by Torra [32], which can
express the hesitation by a few different values. Thus, com-
pared to the FS and itsmany classical extensions, theHFS can
more accurately reflect the people’s hesitancy in stating their
preferences over objects. Because HFS is a modification of
FS which contains the number of values in [0,1], since it was
established, it has received the attention of many researchers.
Zhang et al. [33] explored a novel model based on HFS and
sentiment word framework. Kumar et al. [34] presented the
intuitionistic fuzzy time series for dual HFS. Ren et al. [35]
established the minority opinions for social networks based
on hesitant fuzzy linguistic sets. Ma et al. [36] explored the
three-ways group decisions based on hesitant fuzzy linguistic
information. Beg and Rashid [37] explored the intuitionistic
HFS (IHFS).

Entropymeasure (EM) is one of the most useful and profi-
cient techniques to describe the relation between two objects.
Zadeh [38] presented the EM based on FS. Maassen and
Uffink [39] improved the EM and proposed the cross EM
(CEM). Shang and Jiang [40] explored the notion of fuzzy
ECM,which is themixture ofCEMand fuzzy set to copewith
unreliable and awkward information in realistic decision-
making. Further, Vlachos and Sergiadis [41] improved the
fuzzy CEM to explore the intuitionistic fuzzy CEM using the
De Luca-Termini non-probabilistic entropy. Zhang and Jiang
[42] developed the CEM for vague sets. Ye [43] explored the
intuitionistic fuzzy CEM. Currently, Liu et al. [44] estab-
lished the entropy-based GODs methods using QROFS.
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Distance and similarity are important concepts in human
cognition and decision-making. Similarity plays an essen-
tial role in taxonomy, recognition, case-based reasoning, and
many other fields [45]. Chen et al. [46] explored the sim-
ilarity and distance measures based on IHFS. Peng et al.
[47] established the cross-entropy measure based on IHFS.
Liu et al. [48] explored some distance measures based on
q-rung orthopair HFS (QROHFS) and their application in
the MADM problem. In classical MADM problems, TOP-
SIS (technique for order preference by similarity to ideal
solution) method is an effective technique to cope with
inconsistent and awkward information, which is proposed
by Hwang and Yoon [45]. Due to the complexity of realistic
decision problems, many scholars [48] explored the TOP-
SIS method based on PFSs. When decision-makers face two
kinds of opinions like yes and no, some new extended TOP-
SIS methods are developed to be suitable for these decision
environments, for example, many researchers established
someextensions of theTOPSISmethodbasedon IFS [3], PFS
[6], and QROFS [9]. The IHFS [37], PHFS [49], and QRO-
HFS [50] are the mixtures of HFS and IFS, PFS, QROFS,
and QROHFS is the most generalized form with a condition
that the sum of the q-power of the maximum of the support
and support against grades is not exceeded form unit inter-
val. Obviously, The FS [1], IFS [3], HFS [32], IHFS [37],
and PHFS [49] are the special cases of QROHFS [50].

To easily explain themeaning of theCQROHFS,we delin-
eate it with a real example. Assume an organization X needs
to buy vehicles from a carmaker Y who gives the organiza-
tion X data in regard to (1) models of vehicles, (2) production
dates of vehicles. Since the carmakers consistently produce
similarmodels of vehicleswith slight upgrades and contrasts,
the creation date of a vehicle is a central point to be con-
sidered while buying it. Thus, the issue considered here is
two-dimensional, to be specific, themodel of vehicles and the
creation date of vehicles. This issue cannot be demonstrated
precisely utilizing the conventional QROHFS, as it cannot
handle both the measurements all the while. In general, they
can be expressed by two QROHFSs, However, this process is
complex, and the best choice is to use a single set. Obviously,
we can express all data given by the carmaker by CQROHFS.
The sufficiency terms in CQROHFSmight be utilized to give
the organization’s choice in regard to the model of vehicles
and the creation date of vehicles. For instance, when an intel-
lectual provides

{
0.7e𝕚2π(0.4), 0.6e𝕚2π(0.5), 0.5e𝕚2π(0.2)

}
for

truth grade and
{
0.4e𝕚2π(0.3), 0.1e𝕚2π(0.4), 0.1e𝕚2π(0.1)

}
for

falsity grade, then the IFSs, PFSs, QROFSs, CIFSs, CPFSs,
CQROFSs, QROHFSs are not express them, and are only
described by CQROHFS, so we develop the concept of
CQROHFSs and their algebraic laws. Their advantages are
discussed below:

1. When we choose the value of truth and falsity grades
in the shape of a singleton set, then the CQROHFS is
converted into complex q-rung orthopair fuzzy set.

2. When we choose the value of q � 1, then the CQROHFS
is converted into complex intuitionistic hesitant fuzzy set.

3. When we choose the value of q � 2, then the CQROHFS
is converted into t complex Pythagorean hesitant fuzzy
set.

4. When we choose the value of truth and falsity grades in
the shape of a singleton set forq � 1, then theCQROHFS
is converted into a complex intuitionistic fuzzy set.

5. When we choose the value of truth and falsity grades in
the shape of a singleton set forq � 2, then theCQROHFS
is converted into complex Pythagorean fuzzy set.

6. When we choose the imaginary parts of the truth and
falsity grades are equal to zero, then the CQROHFS is
converted into q-rung orthopair hesitant fuzzy set.

7. When we choose the imaginary parts of the truth and
falsity grades are equal to zero forq � 1, then theCQRO-
HFS is converted into intuitionistic hesitant fuzzy set.

8. When we choose the imaginary parts of the truth and
falsity grades are equal to zero forq � 2, then theCQRO-
HFS is converted into Pythagorean hesitant fuzzy set.

In a word, the CQROHFS is a generalization of some
existing fuzzy sets. For keeping the advantages of theCQRO-
HFS, motivated by these approaches, first, we establish the
concept of a complex q-rung orthopair hesitant fuzzy set (Cq-
ROHFS) and discuss its properties. Then we also establish
the cross-entropy and distance measures using Cq-ROHFS,
the contributions of the article are explained as follows:

1. The conception of Cq-ROHFS and their properties are
pioneered to resolve multiple complications in the envi-
ronment of fuzzy set, which combines the Cq-ROFS and
HFS, and reflects both uncertainty in structure and the
uncertainty in detailed evaluations.

2. Further, some distance measures (DMs) and cross-
entropy measures (CEMs) are initiated based on Cq-
ROHFS, and their properties are also discussed.

3. Moreover, these initiated measures are utilized to solve
the multi-criteria decision-making (MCDM) problem.
Then, the advantages and superiority of the proposed
measures are explained by the experimental results and
comparisons with some existing methods.

The structure of this article is developed as follows:
section “Preliminaries” reviews some basic notions such
as q-ROFSs, Cq-ROFSs, HFSs, and their properties. In
section “Complex q-rung orthopair hesitant fuzzy sets”, Cq-
ROHFS and its properties are proposed. In section “Distance
measures and improved distance measures between Cq-RO-
HFNs”, some distance measures (DMs) and cross-entropy
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measures (CEMs) are initiated based on a complex multiple
fuzzy set (CMFS). In section “Multi-criteria decision-mak-
ing with distance measures based on TOPSIS method”,
the initiated measures are utilized to solve multi-criteria
decision-making (MCDM) problems. In section “Conclu-
sion”, we concluded.

Preliminaries

In this study, some basic notions related to established works
are discussed such as Cq-ROFSs, HFSs, and their basic prop-
erties.

Definition 1 [30, 31] A Cq-ROFS is represented as

H � {(x ,Q(x),R(x))/x ∈ X}, q ≥ 1. (1)

The symbols Q(x) � f(x)e𝕚2π�f(x) and R(x) � g

(x)e𝕚2π�g(x) represent the values of complex-valued pos-
itive degree and complex-valued negative degree and
they hold the following conditions: 0 ≤ (f(x))q +
(g(x))q ≤ 1, 0 ≤ (

�f(x)
)q +

(
�g(x)

)q ≤ 1. The
refusal or neutral grade of q-ROFS is represented as S

(x) � (
1 − fq(x) − gq(x)

) 1
q e𝕚2π(1−(�f(x))

q−(�g(x))
q
)
1
q
.

The pair
(
f(x)e𝕚2π�f(x), g(x)e𝕚2π�g(x)

)
expresses the com-

plex q-rung orthopair fuzzy number (q-ROFN).

Definition 2 [30, 31] For any three Cq-ROFNs
H � (

f(x)e𝕚2π�f(x), g(x)e𝕚2π�g(x)
)
, H1 �(

f1(x)e
𝕚2π�f1 (x), g1(x)e

𝕚2π�g1 (x)
)

and H2 �
(
f2(x)e

𝕚2π�f2 (x), g2(x)e
𝕚2π�g2 (x)

)
with � > 0, q ≥ 1,

the operational laws are established as follows:

1. H1 ⊕ H2 �

⎛

⎜⎜⎜
⎝

(
f
q
1(x) + f

q
2(x)−

f
q
1(x)f

q
2(x)

) 1
q

e
𝕚2π

(
�

q
f1

(x) + �
q
f2

(x)−
�

q
f1

(x)�q
f2

(x)

) 1
q

,
(
g1(x).g2(x)

)
e𝕚2π

(
�g1 (x).�g2 (x)

)

⎞

⎟⎟⎟
⎠
;

2. H1 ⊗ H2 �

⎛

⎜⎜⎜⎜
⎝

(
f1(x).f2(x)

)
e𝕚2π

(
�f1 (x).�f2 (x)

)
,

(
g
q
1(x) + g

q
2(x)−

g
q
1(x)g

q
2(x)

) 1
q

e
𝕚2π

⎛

⎝
�q

g1
(x) + �q

g2
(x)−

�q
g1

(x)�q
g2

(x)

⎞

⎠

1
q
⎞

⎟⎟⎟⎟
⎠
;

3. H1 ⊗ H2 �

⎛

⎜⎜⎜⎜
⎝

(
f1(x).f2(x)

)
e𝕚2π

(
�f1 (x).�f2 (x)

)
,

(
g
q
1(x) + g

q
2(x)−

g
q
1(x)g

q
2(x)

) 1
q

e
𝕚2π

⎛

⎝
�q

g1
(x) + �q

g2
(x)−

�q
g1

(x)�q
g2

(x)

⎞

⎠

1
q
⎞

⎟⎟⎟⎟
⎠
;

4. H� �
(
(
f�(x)

)
e
𝕚2π

(
��

f(x)
)

,
(
1 − (

1 − gq(x)
)�)

1
q
e
𝕚2π

(
1−(1−�

q
g(x)

)�) 1
q
)

;

5. HC �
(
g(x)e𝕚2π�g(x), f(x)e𝕚2π�f(x)

)
.

Definition 3 [32] A hesitant fuzzy set (HFS) on X is in terms
of a function that when applied to X returns a subset of [0,
1], which can be represented as

H � {(x ,f(x))/x ∈ X}, (2)

where f(x) is a set of values in [0, 1], denoting the possible
membership degrees of the element x ∈ X to the set H . For
convenience, we call f(x) a hesitant fuzzy element (HFE)
and H the set of all HFSs.

Complex q-rung orthopair hesitant fuzzy
sets

In this study, the innovative concept of Cq-ROHFS is estab-
lished, which is the mixture of Cq-ROFS and HFS. The
basic properties and their examples of Cq-ROHFS are also
described. In this article, the symbol X represents a finite
fixed set.

Definition 4 A Cq-ROHFS is represented as

H � {(x ,Q(x),R(x))/x ∈ X}, q ≥ 1. (3)
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The symbolsQ(x) �
{
fi (x)e

𝕚2π�fi (x), i � 1, 2, 3, . . . ,

n} and R(x) �
{
gi (x)e

𝕚2π�gi (x), i � 1, 2, 3, . . . , n
}
are

two sets that contain the finite families of complex-valued

positive degrees and complex-valued negative degrees and
they hold the following conditions:

0 ≤
(

max
i�1, 2, ..., n

(
fi (x)

))q

+

(
max

i�1, 2, ..., n

(
gi (x)

))q

≤ 1

and 0 ≤
(

max
i�1, 2, ..., n

(
�fi

(x)
))q

+

(
max

i�1, 2, ..., n

(
�gi

(x)
))q

≤
1, where fi (x)e

𝕚2π�fi (x) ∈ Q(x), gi (x)e
𝕚2π�gi (x) ∈ R(x).

The refusal or neutral grade of Cq-ROHFS is represented as

S(x) �
{

〈i (x)e𝕚2π�〈i (x) � (
1 − f

q
i (x) − g

q
i (x)

) 1
q e

𝕚2π
(
1−�

q
fi

(x)−�
q
gi (x)

) 1
q

, i � 1, 2, 3, . . . , n

}

.

The symbol (Q(x), R(x)) expresses the complex q-rung
orthopair hesitant fuzzy number (Cq-ROHFN).

Definition 5 For any three Cq-ROHFNs H �
(QH (x), RH (x)), H1 � (

QH1(x), RH1(x)
)
and H2 �(

QH2(x), RH2(x)
)
with � > 0, q ≥ 1, the operational laws

are established as follows:

1. H1 ⊕ H2 �
⋃

f1(x)e
𝕚2π�f1 (x) ∈ QH1 (x), g1(x)e

𝕚2π�g1 (x) ∈ RH1 (x),
f2(x)e

𝕚2π�f2 (x) ∈ QH2 (x), g2(x)e
𝕚2π�g2 (x) ∈ RH2 (x)

⎛

⎜⎜⎜
⎝

(
f
q
1(x) + f

q
2(x)−

f
q
1(x)f

q
2(x)

) 1
q

e
𝕚2π

(
�

q
f1

(x) + �
q
f2

(x)−
�

q
f1

(x)�q
f2

(x)

) 1
q

,
(
g1(x).g2(x)

)
e𝕚2π

(
�g1 (x).�g2 (x)

)

⎞

⎟⎟⎟
⎠
;

2. H1 ⊗ H2 �
⋃

f1(x)e
𝕚2π�f1 (x) ∈ QH1 (x), g1(x)e

𝕚2π�g1 (x) ∈ RH1 (x),
f2(x)e

𝕚2π�f2 (x) ∈ QH2 (x), g2(x)e
𝕚2π�g2 (x) ∈ RH2 (x)

⎛

⎜⎜⎜
⎝

(
f1(x).f2(x)

)
e𝕚2π

(
�f1 (x).�f2 (x)

)
,

(
g
q
1(x) + g

q
2(x)−

g
q
1(x)g

q
2(x)

) 1
q

e
𝕚2π

⎛

⎝
�q

g1
(x) + �q

g2
(x)−

�q
g1

(x)�q
g2

(x)

⎞

⎠

1
q

⎞

⎟⎟⎟
⎠
;

3. �H �
⋃

f (x)e𝕚2π�f(x) ∈ QH (x),
g(x)e𝕚2π�g(x) ∈ RH (x)

⎛

⎜⎜
⎝

(
1 − (

1 − fq(x)
)�)

1
q
e
𝕚2π

(
1−

(
1−�

q
f(x)

)�
) 1

q

,
(
g�(x)

)
e
𝕚2π

(
��

g(x)
)

⎞

⎟⎟
⎠;

4. H� �
⋃

f (x)e𝕚2π�f(x) ∈ QH (x),
g(x)e𝕚2π�g(x) ∈ RH (x)

⎛

⎜
⎝

(
f�(x)

)
e
𝕚2π

(
��

f(x)
)

,
(
1 − (1 − gq(x))�

) 1
q
e
𝕚2π

(
1−(1−�

q
g(x)

)�) 1
q

⎞

⎟
⎠;

5. HC �
⋃

f (x)e𝕚2π�f(x) ∈ QH (x),
g(x)e𝕚2π�g(x) ∈ RH (x)

(
g(x)e𝕚2π�g(x),
f (x)e𝕚2π�f(x)

)
.
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Theorem 1 For any three Cq-ROHFNs H �
(QH (x), RH (x)), H1 � (

QH1(x), RH1(x)
)
and H2 �(

QH2(x), RH2(x)
)
with � > 0, q ≥ 1, then.

1. H1 ⊕ H2 � H2 ⊕ H1;
2. H1 ⊗ H2 � H2 ⊗ H1;
3. �(H1 ⊕ H2) � �H1 ⊕ �H2;
4. (H1 ⊗ H2)

� � H�
1 ⊗ H�

2 .

Proof The proof of 3 is given as follows, and the others are
omitted.

H1 ⊕ H2 �
⋃

f1(x)e
𝕚2π�f1 (x) ∈ QH1 (x), g1(x)e

𝕚2π�g1 (x) ∈ RH1 (x),
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⎛

⎜⎜⎜
⎝

(
f
q
1 (x) + f

q
2 (x)−

f
q
1 (x)f

q
2 (x)

) 1
q

e
𝕚2π

(
�

q
f1

(x) + �
q
f2

(x)−
�

q
f1

(x)�q
f2

(x)

) 1
q

,
(
g1(x).g2(x)

)
e𝕚2π

(
�g1 (x).�g2 (x)

)

⎞

⎟⎟⎟
⎠

⎞

⎟⎟⎟
⎠

�

⎛

⎜⎜⎜
⎝

⋃

f1(x)e
𝕚2π�f1 (x) ∈ QH1 (x), g1(x)e
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f2(x)e
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𝕚2π�g2 (x) ∈ RH2 (x)

⎛
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(
1 − f

q
1 (x)

)�(
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q
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(
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(
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q
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(
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⎟⎟⎟
⎠

⎞

⎟⎟⎟
⎠

� �H1 ⊕ �H2

Definition 6 For any Cq-ROHFN H � (QH (x), RH (x)) �{(
fi (x)e

𝕚2π�fi (x), gi (x)e
𝕚2π�gi (x)

)
, i � 1, 2, 3, .., n

}
,

the score function (SF) S(H) and accuracy function (SF) A
(H) are established as follows:

S (H )� 1

2

(
1

n

n∑

i�1

fi (x)+
1

n

n∑

i�1

�fi
(x)− 1

n

n∑

i�1

gi (x)−
1

n

n∑

i�1

�gi
(x)

)

,

(4)

A (H ) � 1

2

(
1

n

n∑

i�1

fi (x) +
1

n

n∑

i�1

�fi
(x) +

1

n

n∑

i�1

gi (x) +
1

n

n∑

i�1

�gi
(x)

)

.

(5)

Taking the advantages of the SF and AF, we define the
relation for comparison between two Cq-ROHFNs.

Definition 7 An order relation between twoCq-ROHFNs H1

and H2 can be defined as
1. If S(H1) > S(H2) then H1 > H2,
2. If S(H1) � S(H2) and
1. If A(H1) > A(H2) then H1 > H2.
2. If A(H1) � A(H2) then H1 � H2.

Distancemeasures and improved distance
measures between Cq-ROHFNs

This section aims to explore some distance and similar-
ity measures for Cq-ROHFSs, and further to explore the
improved distance and similarity measures that are more
superior to existingmeasures [14–17]. Because the constraint
of Cq-ROHFS is that the sum of the q power of the maximum
of the real part (imaginary part) of the support for and the q
power of themaximumof the real part (imaginary part) of the
support against is limited by one, Cq-ROHFS is more power-
ful and more reliable than existing notions [25, 28], due to its
conditions. The established measures based on Cq-ROHFS
are shown as follows:

Definition 8 For any two Cq-ROHFSs H1 �(
QH1(xi ), RH1(xi )

)
and H2 � (

QH2(xi ), RH2(xi )
)
,

i � 1, 2, . . . , n and their weight vector
∑n

i�1 �i � 1,
�i ∈ [0, 1], the complex q-rung orthopair hesitant fuzzy
generalized distance measure is established as follows:

123



Complex & Intelligent Systems (2022) 8:1167–1186 1173

d̄Cq−ROHFGDM (H1, H2) �
⎡
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⎣
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�

⎞

⎟
⎠

⎞

⎟
⎠

⎤

⎥
⎦

1
�

,� > 0, q ≥ 1. (6)

Definition 9 For any two Cq-ROHFSs H1 �(
QH1(xi ), RH1(xi )

)
and H2 � (

QH2(xi ), RH2(xi )
)
,

i � 1, 2, . . . , n and their weight vector
∑n

i�1 �i � 1,
�i ∈ [0, 1], the complex q-rung orthopair hesitant fuzzy
weighted generalized distance measure is established as
follows:

d̄Cq−ROHFWGDM (H1, H2) �
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∣∣∣
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)q −
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∣∣∣
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)q −
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j
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)q ∣∣∣

�

⎞

⎟
⎠

⎞

⎟
⎠

⎤

⎥
⎦

1
�

,� > 0, q ≥ 1.

(7)

Remark 1 In Eq’s. (6, 7), if we choose the value of param-
eter � � 1, then the Eqs. (6, 7) is called hamming distance
measures. In Eq’s. (6, 7), if we choose the value of parame-
ter � � 2, then the Eqs. (6, 7) is called Euclidean distance
measures.

Theorem 2 For any two Cq-ROHFSs H1 �(
QH1(xi ), RH1(xi )

)
and H2 � (

QH2(xi ), RH2(xi )
)
,

i � 1, 2, . . . , n, the distance measures d̄Cq−ROHFGDM

(H1, H2) and d̄Cq−ROHFWGDM (H1, H2) hold the follow-
ing conditions:

1. 0 ≤ d̄Cq−ROHFGDM (H1, H2), d̄Cq−ROHFWGDM

(H1, H2) ≤ 1;
2. d̄Cq−ROHFGDM (H1, H2) � d̄Cq−ROHFGDM

(H2, H1), d̄Cq−ROHFWGDM (H1, H2) �
d̄Cq−ROHFWGDM (H2, H1);

3. d̄Cq−ROHFGDM (H1, H2), d̄Cq−ROHFWGDM

(H1, H2) � 0 iff H1 � H2 i.e. f j
H1

(xi ) � f
j
H2

(xi ),

g
j
H1

(xi ) � g
j
H2

(xi ), �f
j
H1

(xi ) � �f
j
H2

(xi ) and �g
j
H1

(xi ) � �g
j
H2

(xi ).

Proof: Straightforward

Definition 10 For any two Cq-ROHFSs H1 �(
QH1(xi ), RH1(xi )

)
and H2 � (

QH2(xi ), RH2(xi )
)
,

i � 1, 2, . . . , n and their weight vector
∑n

i�1 �i � 1,
�i ∈ [0, 1], the improved complex q-rung orthopair hesitant
fuzzy generalized distancemeasure is established as follows:

d̄ICq−ROHFGDM (H1, H2)
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1
�

, � > 0, q ≥ 1 (8)

Definition 11 For any two Cq-ROHFNs H1 �(
QH1(xi ), RH1(xi )

)
and H2 � (

QH2(xi ), RH2(xi )
)
,

i � 1, 2, . . . , n and their weight vector
∑n

i�1 �i � 1,
�i ∈ [0, 1], the improved complex q-rung orthopair hesitant
fuzzy weighted generalized distance measure is established
as follows:
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d̄ICq−ROHFWGDM (H1, H2) �
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Remark 2 In Eq’s. (8, 9), if we choose the value of parameter
� � 1, then the Eq’s. (8, 9) is called hamming distance
measures. In Eq’s. (8, 9), if we choose the value of parameter
� � 2, then the Eq’s. (8, 9) is called Euclidean distance
measures.

Theorem 3 For any two Cq-ROHFSs H1 �(
QH1(x), RH1(x)

)
and H2 � (

QH2(x), RH2(x)
)
,

the distance measures d̄ICq−ROHFGDM (H1, H2) and
d̄ICq−ROHFWGDM (H1, H2) hold the following conditions:

1. 0 ≤ d̄ICq−ROHFGDM (H1, H2), d̄ICq−ROHFWGDM

(H1, H2) ≤ 1;
2. d̄ICq−ROHFGDM (H1, H2) � d̄ICq−ROHFGDM

(H2, H1), d̄ICq−ROHFWGDM (H1, H2) �
d̄ICq−ROHFWGDM (H2, H1);

3. d̄ICq−ROHFGDM (H1, H2), d̄ICq−ROHFWGDM

(H1, H2) � 0 iff H1 � H2 i.e. f j
H1

(xi ) � f
j
H2

(xi ),

g
j
H1

(xi ) � g
j
H2

(xi ), �f
j
H1

(xi ) � �f
j
H2

(xi ) and �g
j
H1

(xi ) � �g
j
H2

(xi ).

Proof: Straightforward

The cross-entropymeasures of Cq-ROHFSs

Entropy measure (EM), as one of the most useful and
proficient techniques, is important to examine the relation
between two objects. Zadeh [38] presented the EM based on
FS. Maassen and Uffink [39] improved the EM to explore
the cross EM (CEM) as the starting point in the information
theory. Shang and Jiang [40] explored the notion of fuzzy
ECM, which is the mixture of CEM and FS to cope with
unreliable and awkward information in realistic decision-
making. Further, Vlachos and Sergiadis [41] improved the
fuzzy CEM to explore the intuitionistic fuzzy CEM using the
De Luca-Termini non-probabilistic entropy. Zhang and Jiang
[42] established the CEM for vague sets. Ye [43] explored
the intuitionistic fuzzy CEM. Currently, Liu et al. [44] estab-
lished the entropy-based GODs methods using QROFS. The
purpose of this sub-section is to examine the different kinds
of CEMs based on CQROHFSs. The special properties of the
explored work are also justified.

Definition 12 For any two Cq-ROHFSs H1 �(
QH1(xi ), RH1(xi )

)
and H2 � (

QH2(xi ), RH2(xi )
)
,

i � 1, 2, . . . , n and their weight vector
∑n

i�1 �i � 1,
�i ∈ [0, 1], the cross-entropy measure is established as
follows:

CE1(H1, H2) �
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, (10)

which holds the following conditions:
1. CE1(H1, H2) ≥ 0;
2. CE1(H1, H2) � 0 iff H1 � H2;
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3. CE1
(
HC
1 , HC

2

) � CE1(H1, H2), where HC
1 �(

RH1(x), QH1(x)
)
.

Definition 13 For any two Cq-ROHFSs H1 �(
QH1(xi ), RH1(xi )

)
and H2 � (

QH2(xi ), RH2(xi )
)
,

i � 1, 2, . . . , n and their weight vector
∑n

i�1 �i � 1,
�i ∈ [0, 1], the cross-entropy measure is established as
follows:
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, (11)

Which holds the following conditions:
1.CE2(H1, H2) ≥ 0;
2. CE2(H1, H2) � 0 iff H1 � H2;
3. CE3

(
HC
1 , HC

2

) � CE3(H1, H2), where HC
1 �(

RH1(x), QH1(x)
)
.

Definition 14 For any two Cq-ROHFSs H1 �(
QH1(xi ), RH1(xi )

)
and H2 � (

QH2(xi ), RH2(xi )
)
,

i � 1, 2, . . . , n and their weight vectors
∑n

i�1 �i � 1,
�i ∈ [0, 1], the cross-entropy measure is established as
follows:
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E3(H1, H2) �

⎛
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, (12)

which holds the following conditions:
1. CE3(H1, H2) ≥ 0;
2. CE3(H1, H2) � 0 iff H1 � H2;
3. CE3

(
HC
1 , HC

2

) � CE3(H1, H2), where HC
1 �(

RH1(x), QH1(x)
)
.

Definition 15 For any two Cq-ROHFSs H1 �(
QH1(xi ), RH1(xi )

)
and H2 � (

QH2(xi ), RH2(xi )
)
,

i � 1, 2, . . . , n and their weight vector
∑n

i�1 �i � 1,
�i ∈ [0, 1], the cross-entropy measure is established as
follows:
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, (13)

which holds the following conditions:
1. CE4(H1, H2) ≥ 0;
2. CE4(H1, H2) � 0 iff H1 � H2;
3. CE4

(
HC
1 , HC

2

) � CE4(H1, H2), where HC
1 �(

RH1(x), QH1(x)
)
.

Definition 16 For any two Cq-ROHFSs H1 �(
QH1(xi ), RH1(xi )

)
and H2 � (

QH2(xi ), RH2(xi )
)
,

i � 1, 2, . . . , n and their weight vector
∑n

i�1 �i � 1,
�i ∈ [0, 1], the cross-entropy measure is established as
follows:
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,

(14)

which holds the following conditions:
1. CE5(H1, H2) ≥ 0;
2. CE5(H1, H2) � 0 iff H1 � H2;
3. CE5

(
HC
1 , HC

2

) � CE5(H1, H2), where HC
1 �(

RH1(x), QH1(x)
)
.

Definition 17 For any two Cq-ROHFSs H1 �(
QH1(xi ), RH1(xi )

)
and H2 � (

QH2(xi ), RH2(xi )
)
,

i � 1, 2, . . . , n and their weight vector
∑n

i�1 �i � 1,
�i ∈ [0, 1], the cross-entropy measure is established as
follows:
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⎞

⎠

⎛

⎝
1 − f

q
H1

+gq
H1

⎞

⎠+

⎛

⎝
1 − f

q
H2

+gq
H2

⎞

⎠

⎞

⎟⎟⎟
⎠
+

(
1 − �f

q
H1

+�g
q
H1

)

log2

⎛

⎜⎜⎜
⎝

2

⎛

⎝
1 − �f

q
H1

+�g
q
H1

⎞

⎠

⎛

⎝
1 − �f

q
H1

+�g
q
H1

⎞

⎠+

⎛

⎝
1 − �f

q
H2

+�g
q
H2

⎞

⎠

⎞

⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

/2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

p⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
p

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

(15)

which holds the following conditions:
1. CE6(H1, H2) ≥ 0;
2. CE6(H1, H2) � 0 iff H1 � H2;
3. CE6

(
HC
1 , HC

2

) � CE6(H1, H2), where HC
1 �(

RH1(x), QH1(x)
)
.

Theorem 4 The proposed measures defined in Definition
(10) to Definition (15) are a picture hesitant fuzzy cross-
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entropy, and satisfy the three conditions given in all defini-
tions.

Proof: Straightforward

Remark 3 InEqs. (10)–(15), ifwe choose the value of param-
eter p � 1, then the Eqs. (10)–(15) are called hamming CE
measures, and if we choose the value of parameter p � 2,
then Eqs. (10)–(15) are called Euclidean CE measures.

Multi-criteria decision-making with distance
measures based on TOPSIS method

TOPSIS (technique for order preference by similarity to ideal
solution) method is one of the most powerful and effec-
tive methods in solving the multi-attribute decision-making
problem. Hwang and Yoon [45] firstly explored the TOPSIS
method.

The steps of theTOPSISmethod forCQROHFSare shown
as follows:

Step 1 Because there are benefits and cost types we must
normalize the decision matrix, and have

Hj � r jk �
{(

f
jk
i (x)e

𝕚2π�
jk
fi

(x)
,g jk

i (x)e𝕚2π�
jk
gi (x)

)
, i � 1, 2, 3, . . . , n, j � 1, 2, . . . ,m, k � 1, 2, . . . , t

}

�

⎧
⎪⎪⎨

⎪⎪⎩

(
f

jk
i (x)e

𝕚2π�
jk
fi

(x)
,g jk

i (x)e𝕚2π�
jk
gi (x)

)
for benefit types of attributes

(
g

jk
i (x)e𝕚2π�

jk
gi (x),f jk

i (x)e
𝕚2π�

jk
fi

(x)
)

for cost types of attributes
(16)

Step 2 Based on the following formula, we examine the
weight vector of the attributes

�k � 1 − Hk

n −∑t
i�1 Hk

(17)

where the Hk ∈ [0, 1], k � 1, 2, 3, . . . , t is defined as

Hk � 1

8m

m∑

j�1

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

sin

⎛

⎜
⎝

π×
(
2+
∑n

i�1

(
f jk
i

q−g jk
i

q
+�

jk
fi

q−�
jk
gi

q
))

8

⎞

⎟
⎠+

sin

⎛

⎜
⎝

π×
(
2−∑n

i�1

(
f jk
i

q−g jk
i

q
+�

jk
fi

q−�
jk
gi

q
))

8

⎞

⎟
⎠− 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(18)

or

Hk � 1

8m

m∑

j�1

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

cos

⎛

⎜
⎝

π×
(
2+
∑n

i�1

(
−f jk

i
q
+g jk

i
q−�

jk
fi

q
+�

jk
gi

q
))

8

⎞

⎟
⎠+

cos

⎛

⎜
⎝

π×
(
2−∑n

i�1

(
−f jk

i
q
+g jk

i
q−�

jk
fi

q
+�

jk
gi

q
))

8

⎞

⎟
⎠− 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

.

(19)

Step 3 Based on the following formulas, we get the PIS
and NIS.

R+ �
(
r+j1, r

+
j2, r

+
j3, . . . , r+j t

)
, r+jk

�
(
max

(
f

jk
i

)
e
i2πmax

(
�

jk
fi

)

, min
(
g

jk
i

)
e
i2πmin

(
�

jk
gi

))

(20)

R− �
(
r−
j1, r

−
j2, r

−
j3, . . . , r−

j t

)
, r−

jk

�
(
min

(
f

jk
i

)
e
i2πmin

(
�

jk
fi

)

, max
(
g

jk
i

)
e
i2πmax

(
�

jk
gi

))

(21)

Step 4 Using Eq. (43), we get the closeness of each alter-
native

P j � d̄ICq−ROHFWGDM
(
Hj , R+

)

d̄ICq−ROHFWGDM
(
Hj , R+

)
+ d̄ICq−ROHFWGDM

(
Hj , R−) .

(22)

Step 5 Ranking all alternatives and get the best optimal
one.

Step 6 The end.
The proposed method can easily solve the MADM prob-

lems with unknown attribute weight.

Example 1 The energy development strategy project is one
of the most common issues which are discussed in various
countries. To choose the best alternative from the fam-
ily of alternates, which are evaluated by some attributes,
suppose that H � {H1, H2, H3, H4, H5}, is the set of alter-
nates and H � {H1, H2, H3, H4} is the set of attributes
which are described as follows:H1: Economic Strategy;H2:
Technological Strategy; H3: Environmental Strategy; H4:
Sociopolitical Strategy.

For solving this issue, we construct the decision matrix in
the formed complexq-rungorthopair hesitant fuzzynumbers,
which is stated in the form of Table 1.

The steps of the proposed TOPSISmethod for CQROHFS
are shown as follow:

Step 1 This MADM problem contains only one kind of
information, i.e., benefits type. So, this step is omitted.
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Table 1 Decision matrix in the form of complex Pythagorean hesitant fuzzy numbers

Symbols H1 H2

H1

( {
0.3e𝕚2π(0.3), 0.4e𝕚2π(0.4), 0.5e𝕚2π(0.5)

}
,{

0.7e𝕚2π(0.7), 0.8e𝕚2π(0.8)
}

) ( {
0.1e𝕚2π(0.1), 0.7e𝕚2π(0.7), 0.8e𝕚2π(0.8), 0.9e𝕚2π(0.9)

}
,{

0.2e𝕚2π(0.2), 0.4e𝕚2π(0.4)
}

)

H2

( {
0.3e𝕚2π(0.3), 0.5e𝕚2π(0.5)

}
,{

0.6e𝕚2π(0.6), 0.7e𝕚2π(0.7), 0.8e𝕚2π(0.8)
}
) ( {

0.2e𝕚2π(0.2), 0.5e𝕚2π(0.5), 0.6e𝕚2π(0.6), 0.7e𝕚2π(0.7)
}
,{

0.6e𝕚2π(0.6), 0.7e𝕚2π(0.7)
}

)

H3

( {
0.6e𝕚2π(0.6), 0.7e𝕚2π(0.7)

}
,{

0.4e𝕚2π(0.4), 0.5e𝕚2π(0.5), 0.6e𝕚2π(0.6)
}
) ( {

0.6e𝕚2π(0.6), 0.9e𝕚2π(0.9)
}
,{

0.2e𝕚2π(0.2), 0.3e𝕚2π(0.3), 0.4e𝕚2π(0.4)
}
)

H4

⎛

⎝

{
0.3e𝕚2π(0.3), 0.4e𝕚2π(0.4),
0.6e𝕚2π(0.6), 0.7e𝕚2π(0.7)

}
,

{
0.5e𝕚2π(0.7), 0.7e𝕚2π(0.7)

}

⎞

⎠

( {
0.2e𝕚2π(0.2), 0.4e𝕚2π(0.4), 0.7e𝕚2π(0.7)

}
,{

0.4e𝕚2π(0.4), 0.5e𝕚2π(0.5), 0.6e𝕚2π(0.6)
}
)

H5

( {
0.1e𝕚2π(0.1), 0.3e𝕚2π(0.3), 0.6e𝕚2π(0.6)

}
,{

0.4e𝕚2π(0.4), 0.6e𝕚2π(0.6)
}

) ( {
0.4e𝕚2π(0.4), 0.6e𝕚2π(0.6), 0.7e𝕚2π(0.7), 0.8e𝕚2π(0.8)

}
,{

0.1e𝕚2π(0.1), 0.2e𝕚2π(0.2), 0.3e𝕚2π(0.3)
}

)

H3 H4

H1

( {
0.2e𝕚2π(0.2), 0.4e𝕚2π(0.4), 0.5e𝕚2π(0.5)

}
,{

0.2e𝕚2π(0.2), 0.6e𝕚2π(0.6), 0.8e𝕚2π(0.8)
}
) ( {

0.3e𝕚2π(0.3), 0.5e𝕚2π(0.5), 0.6e𝕚2π(0.6), 0.9e𝕚2π(0.9)
}
,{

0.2e𝕚2π(0.2), 0.3e𝕚2π(0.3), 0.4e𝕚2π(0.4)
}

)

H2

⎛

⎝

{
0.1e𝕚2π(0.1), 0.5e𝕚2π(0.5),
0.6e𝕚2π(0.6), 0.8e𝕚2π(0.8)

}
,

{
0.2e𝕚2π(0.2), 0.5e𝕚2π(0.5)

}

⎞

⎠

( {
0.3e𝕚2π(0.3), 0.4e𝕚2π(0.4), 0.7e𝕚2π(0.7)

}
,{

0.4e𝕚2π(0.4), 0.5e𝕚2π(0.5)
}

)

H3

( {
0.3e𝕚2π(0.3), 0.5e𝕚2π(0.5), 0.7e𝕚2π(0.7)

}
,{

0.4e𝕚2π(0.4), 0.5e𝕚2π(0.5), 0.6e𝕚2π(0.6)
}
) ( {

0.4e𝕚2π(0.4), 0.6e𝕚2π(0.6)
}
,{

0.3e𝕚2π(0.3), 0.4e𝕚2π(0.4), 0.5e𝕚2π(0.5)
}
)

H4

( {
0.1e𝕚2π(0.1), 0.8e𝕚2π(0.8)

}
,{

0.3e𝕚2π(0.3), 0.4e𝕚2π(0.4)
}
) ( {

0.6e𝕚2π(0.6), 0.8e𝕚2π(0.8), 0.9e𝕚2π(0.9)
}
,{

0.2e𝕚2π(0.2), 0.3e𝕚2π(0.3)
}

)

H5

( {
0.7e𝕚2π(0.7), 0.8e𝕚2π(0.8), 0.9e𝕚2π(0.9)

}
,{

0.1e𝕚2π(0.1), 0.2e𝕚2π(0.2), 0.3e𝕚2π(0.3)
}
) ( {

0.3e𝕚2π(0.3), 0.6e𝕚2π(0.6), 0.7e𝕚2π(0.7), 0.9e𝕚2π(0.9)
}
,{

0.3e𝕚2π(0.3), 0.4e𝕚2π(0.4)
}

)

Step 2 Based on the Eqs. (17)–(19), we get the weight
vector of the attributes shown as:

H1 � 0.1152, H2 � 0.5779, H3 � 0.3964, H4 � 0.6358.

�1 � 0.389, �2 � 0.1856, �3 � 0.2654, �4 � 0.6101.

Step 3 Based on Eq. (20) and Eq. (21), we get the PIS and
NIS as follows:

R+ �

⎛

⎜⎜
⎝

({
0.6e𝕚2π(0.6), 0.7e𝕚2π(0.7), 0.7e𝕚2π(0.7), 0.8e𝕚2π(0.8)

}
,{

0.4e𝕚2π(0.4), 0.5e𝕚2π(0.5), 0.6e𝕚2π(0.6)
}

)
,

( {
0.6e𝕚2π(0.6), 0.9e𝕚2π(0.9), 0.8e𝕚2π(0.8), 0.9e𝕚2π(0.9)

}
,{

0.1e𝕚2π(0.1), 0.2e𝕚2π(0.2), 0.3e𝕚2π(0.3)
}

)
,

( {
0.7e𝕚2π(0.7), 0.8e𝕚2π(0.8), 0.9e𝕚2π(0.9), 0.8e𝕚2π(0.8)

}
,{

0.1e𝕚2π(0.1), 0.2e𝕚2π(0.2), 0.3e𝕚2π(0.3)
}

)
,

( {
0.6e𝕚2π(0.6), 0.8e𝕚2π(0.8), 0.9e𝕚2π(0.9), 0.9e𝕚2π(0.9)

}
,{

0.2e𝕚2π(0.2), 0.3e𝕚2π(0.3), 0.4e𝕚2π(0.4)
}

)

⎞

⎟⎟
⎠

R− �

⎛

⎜⎜
⎝

({
0.1e𝕚2π(0.1), 0.3e𝕚2π(0.3), 0.6e𝕚2π(0.6), 0.7e𝕚2π(0.7)

}
,{

0.7e𝕚2π(0.7), 0.8e𝕚2π(0.8), 0.8e𝕚2π(0.8)
}

)
,

( {
0.1e𝕚2π(0.1), 0.4e𝕚2π(0.4), 0.6e𝕚2π(0.6), 0.7e𝕚2π(0.7)

}
,{

0.6e𝕚2π(0.6), 0.7e𝕚2π(0.7), 0.6e𝕚2π(0.6)
}

)
,

( {
0.1e𝕚2π(0.1), 0.4e𝕚2π(0.4), 0.5e𝕚2π(0.5), 0.8e𝕚2π(0.8)

}
,{

0.4e𝕚2π(0.4), 0.6e𝕚2π(0.6), 0.8e𝕚2π(0.8)
}

)
,

( {
0.3e𝕚2π(0.3), 0.4e𝕚2π(0.4), 0.6e𝕚2π(0.6), 0.9e𝕚2π(0.9)

}
,{

0.4e𝕚2π(0.4), 0.5e𝕚2π(0.5), 0.5e𝕚2π(0.5)
}

)

⎞

⎟⎟
⎠

Step 4 First, we can calculate the distances between PIS,
NIS, and each alternative, which are shown in Table 2. Then
using Eq. (43), we get the closeness of each alternative, we
have

P1 � 0.46996, P2 � 0.54257, P3

� 0.57607, P4 � 0.51596, P5 � 0.40169.

Step 5We rank all the alternatives and get the best optimal
one, such that

H3 > H2 > H4 > H1 > H5

i.e., the best alternative is H3.
Step 6 The end.
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Table 2 The distances between
PIS, NIS, and each alternative Formulas Values Formulas Values

d̄ICq−ROHFWGDM
(
H1, R+

)
0.6783 d̄ICq−ROHFWGDM

(
H1, R−) 0.765

d̄ICq−ROHFWGDM
(
H2, R+

)
0.5634 d̄ICq−ROHFWGDM

(
H2, R−) 0.475

d̄ICq−ROHFWGDM
(
H3, R+

)
0.7732 d̄ICq−ROHFWGDM

(
H3, R−) 0.569

d̄ICq−ROHFWGDM
(
H4, R+

)
0.931 d̄ICq−ROHFWGDM

(
H4, R−) 0.8734

d̄ICq−ROHFWGDM
(
H5, R+

)
0.5647 d̄ICq−ROHFWGDM

(
H5, R−) 0.8411

Table 3 Comparison with some existing methods

Methods Score values Ranking

Chen et al. [46] Cannot be Classified Cannot be Classified

Beg and Rashid [37] Cannot be Classified Cannot be Classified

Peng et al. [47] Cannot be Classified Cannot be Classified

Sajjad Ali Khan et al. [48] d̄SM
(
H1, R−) � 0.436, d̄SM

(
H2, R−) � 0.544, d̄SM

(
H3, R−)

� 0.551, d̄SM
(
H4, R−) � 0.543, d̄SM

(
H5, R−) � 0.436

H3 > H2 > H4 > H1 > H5

Khan et al. [51] d̄KM
(
H1, R−) � 0.430, d̄KM

(
H2, R−) � 0.539, d̄KM

(
H3, R−)

� 0.545, d̄KM
(
H4, R−) � 0.534, d̄KM

(
H5, R−) � 0.431

H3 > H2 > H4 > H1 > H5

Liu et al. [50] d̄LM
(
H1, R−) � 0.335, d̄LM

(
H2, R−) � 0.643, d̄LM

(
H3, R−)

� 0.649, d̄LM
(
H4, R−) � 0.541, d̄LM

(
H5, R−) � 0.242

H3 > H2 > H4 > H1 > H5

Proposed work for q � 1 Cannot be Classified Cannot be Classified

Proposed work for q � 2 d̄KM
(
H1, R−) � 0.430, d̄KM

(
H2, R−) � 0.539, d̄KM

(
H3, R−)

� 0.545, d̄KM
(
H4, R−) � 0.534, d̄KM

(
H5, R−) � 0.431

H3 > H2 > H4 > H1 > H5

Proposed work for q � 3 P1 � 0.46996, P2 � 0.54257, P3 � 0.57607, P4 � 0.51596, P5 � 0.40169 H3 > H2 > H4 > H1 > H5

Table 4 Decision matrix in the form of complex q-rung orthopair hesitant fuzzy numbers

Symbols H1 H2

H1

( {
0.3e𝕚2π(0.3), 0.4e𝕚2π(0.4), 0.8e𝕚2π(0.8)

}
,{

0.7e𝕚2π(0.7), 0.8e𝕚2π(0.8)
}

) ( {
0.9e𝕚2π(0.9), 0.7e𝕚2π(0.7), 0.8e𝕚2π(0.8), 0.9e𝕚2π(0.9)

}
,{

0.8e𝕚2π(0.8), 0.4e𝕚2π(0.4)
}

)

H2

( {
0.9e𝕚2π(0.9), 0.5e𝕚2π(0.5)

}
,{

0.6e𝕚2π(0.6), 0.7e𝕚2π(0.7), 0.8e𝕚2π(0.8)
}
) ( {

0.82e𝕚2π(0.82), 0.5e𝕚2π(0.5), 0.6e𝕚2π(0.6), 0.7e𝕚2π(0.7)
}
,{

0.76e𝕚2π(0.76), 0.7e𝕚2π(0.7)
}

)

H3

( {
0.96e𝕚2π(0.96), 0.7e𝕚2π(0.7)

}
,{

0.84e𝕚2π(0.84), 0.5e𝕚2π(0.5), 0.6e𝕚2π(0.6)
}
) ( {

0.6e𝕚2π(0.6), 0.9e𝕚2π(0.9)
}
,{

0.2e𝕚2π(0.2), 0.3e𝕚2π(0.3), 0.4e𝕚2π(0.4)
}
)

H4

⎛

⎝

{
0.9e𝕚2π(0.9), 0.4e𝕚2π(0.4),
0.6e𝕚2π(0.6), 0.7e𝕚2π(0.7)

}
,

{
0.5e𝕚2π(0.7), 0.7e𝕚2π(0.7)

}

⎞

⎠

( {
0.2e𝕚2π(0.2), 0.4e𝕚2π(0.4), 0.7e𝕚2π(0.7)

}
,{

0.4e𝕚2π(0.4), 0.5e𝕚2π(0.5), 0.6e𝕚2π(0.6)
}
)

H5

( {
0.81e𝕚2π(0.81), 0.3e𝕚2π(0.3), 0.6e𝕚2π(0.6)

}
,{

0.74e𝕚2π(0.74), 0.6e𝕚2π(0.6)
}

) ( {
0.4e𝕚2π(0.4), 0.6e𝕚2π(0.6), 0.7e𝕚2π(0.7), 0.8e𝕚2π(0.8)

}
,{

0.1e𝕚2π(0.1), 0.2e𝕚2π(0.2), 0.3e𝕚2π(0.3)
}

)

H3 H4

H1

( {
0.92e𝕚2π(0.92), 0.4e𝕚2π(0.4), 0.5e𝕚2π(0.5)

}
,{

0.82e𝕚2π(0.82), 0.6e𝕚2π(0.6), 0.8e𝕚2π(0.8)
}
) ( {

0.3e𝕚2π(0.3), 0.5e𝕚2π(0.5), 0.6e𝕚2π(0.6), 0.9e𝕚2π(0.9)
}
,{

0.2e𝕚2π(0.2), 0.3e𝕚2π(0.3), 0.4e𝕚2π(0.4)
}

)

H2

⎛

⎝

{
0.91e𝕚2π(0.91), 0.5e𝕚2π(0.5),
0.6e𝕚2π(0.6), 0.8e𝕚2π(0.8)

}
,

{
0.72e𝕚2π(0.72), 0.5e𝕚2π(0.5)

}

⎞

⎠

( {
0.3e𝕚2π(0.3), 0.4e𝕚2π(0.4), 0.7e𝕚2π(0.7)

}
,{

0.4e𝕚2π(0.4), 0.5e𝕚2π(0.5)
}

)

H3

( {
0.3e𝕚2π(0.3), 0.5e𝕚2π(0.5), 0.7e𝕚2π(0.7)

}
,{

0.4e𝕚2π(0.4), 0.5e𝕚2π(0.5), 0.6e𝕚2π(0.6)
}
) ( {

0.4e𝕚2π(0.4), 0.6e𝕚2π(0.6)
}
,{

0.3e𝕚2π(0.3), 0.4e𝕚2π(0.4), 0.5e𝕚2π(0.5)
}
)

H4

( {
0.1e𝕚2π(0.1), 0.8e𝕚2π(0.8)

}
,{

0.3e𝕚2π(0.3), 0.4e𝕚2π(0.4)
}
) ( {

0.6e𝕚2π(0.6), 0.8e𝕚2π(0.8), 0.9e𝕚2π(0.9)
}
,{

0.2e𝕚2π(0.2), 0.3e𝕚2π(0.3)
}

)

H5

( {
0.7e𝕚2π(0.7), 0.8e𝕚2π(0.8), 0.9e𝕚2π(0.9)

}
,{

0.1e𝕚2π(0.1), 0.2e𝕚2π(0.2), 0.3e𝕚2π(0.3)
}
) ( {

0.3e𝕚2π(0.3), 0.6e𝕚2π(0.6), 0.7e𝕚2π(0.7), 0.9e𝕚2π(0.9)
}
,{

0.3e𝕚2π(0.3), 0.4e𝕚2π(0.4)
}

)
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Table 5 Comparison of the proposed method with some existing methods

Methods Score values Ranking

Chen et al. [46] Cannot be Classified Cannot be Classified

Beg and Rashid [37] Cannot be Classified Cannot be Classified

Peng et al. [47] Cannot be Classified Cannot be Classified

Sajjad Ali Khan et al. [48] Cannot be Classified Cannot be Classified

Khan et al. [51] Cannot be Classified Cannot be Classified

Liu et al. [50] Cannot be Classified Cannot be Classified

Proposed work for q � 1 Cannot be Classified Cannot be Classified

Proposed work for q � 2 Cannot be Classified Cannot be Classified

Proposed work for q � 3 P1 � 0.7452, P2 � 0.7352, P3 � 0.57607, P4 � 0.586, P5 � 0.469 H1 > H2 > H4 > H3 > H5

Table 6 Decision matrix in the
form of intuitionistic hesitant
fuzzy numbers

Symbols H1 H2 H3 H4

H1 ({0.4, 0.6}, {0.2, 0.3}) ({0.6, 1}, {0.0}) ({0.3, 0.5}, {0.3, 0.4}) ({0.0, 0.3}, {0.5, 0.6})
H2 ({0.3, 0.6}, {0.2, 0.3}) ({0.1, 0.3}, {0.6, 0.7}) ({0.5, 0.9}, {0.0, 0.05}) ({0.3, 0.5}, {0.3, 0.4})
H3 ({0.1, 0.3}, {0.5, 0.6}) ({0.6, 0.9}, {0.0, 0.1}) ({0.3, 0.7}, {0.1, 0.2}) ({0.0, 0.1}, {0.7, 0.8})
H4 ({0.6, 0.9}, {0.0, 0.1}) ({0.5, 0.7}, {0.1, 0.2}) ({0.0, 0.2, 0.4}, {0.4, 0.5})({0.5, 0.6, 0.8}, {0.0})
H5 ({0.5, 0.6}, {0.3, 0.4}) ({0.1, 0.3}, {0.6, 0.7}) ({0.2, 0.4}, {0.4, 0.5}) ({1}, {0.0})

Table 7 Decision matrix in the
form of complex intuitionistic
hesitant fuzzy numbers

Symbols H1 H2

H1

( {
0.4e𝕚2π(0.4), 0.6e𝕚2π(0.6)

}
,{

0.2e𝕚2π(0.2), 0.3e𝕚2π(0.3)
}
) ( {

0.6e𝕚2π(0.6), 1e𝕚2π(1)
}
,{

0.0e𝕚2π(0.0)
}

)

H2

( {
0.3e𝕚2π(0.3), 0.6e𝕚2π(0.6)

}
,{

0.2e𝕚2π(0.2), 0.3e𝕚2π(0.3)
}
) ( {

0.1e𝕚2π(0.1), 0.3e𝕚2π(0.3)
}
,{

0.6e𝕚2π(0.6), 0.7e𝕚2π(0.7)
}
)

H3

( {
0.1e𝕚2π(0.1), 0.3e𝕚2π(0.3)

}
,{

0.5e𝕚2π(0.5), 0.6e𝕚2π(0.6)
}
) ( {

0.6e𝕚2π(0.6), 0.9e𝕚2π(0.9)
}
,{

0.0e𝕚2π(0.0), 0.1e𝕚2π(0.1)
}
)

H4

( {
0.6e𝕚2π(0.6), 0.9e𝕚2π(0.9)

}
,{

0.0e𝕚2π(0.0), 0.1e𝕚2π(0.1)
}
) ( {

0.5e𝕚2π(0.5), 0.7e𝕚2π(0.7)
}
,{

0.1e𝕚2π(0.1), 0.2e𝕚2π(0.2)
}
)

H5

( {
0.4e𝕚2π(0.4), 0.6e𝕚2π(0.6)

}
,{

0.2e𝕚2π(0.2), 0.3e𝕚2π(0.3)
}
) ( {

0.1e𝕚2π(0.1), 0.3e𝕚2π(0.3)
}
,{

0.6e𝕚2π(0.6), 0.7e𝕚2π(0.7)
}
)

H3 H4

H1

( {
0.3e𝕚2π(0.3), 0.5e𝕚2π(0.5)

}
,{

0.3e𝕚2π(0.3), 0.4e𝕚2π(0.4)
}
) ( {

0.0e𝕚2π(0.0), 0.3e𝕚2π(0.3)
}
,{

0.5e𝕚2π(0.5), 0.6e𝕚2π(0.6)
}
)

H2

( {
0.5e𝕚2π(0.5), 0.9e𝕚2π(0.9)

}
,{

0.0e𝕚2π(0.0), 0.05e𝕚2π(0.05)
}
) ( {

0.3e𝕚2π(0.3), 0.5e𝕚2π(0.5)
}
,{

0.3e𝕚2π(0.3), 0.4e𝕚2π(0.4)
}
)

H3

( {
0.3e𝕚2π(0.3), 0.7e𝕚2π(0.7)

}
,{

0.1e𝕚2π(0.1), 0.2e𝕚2π(0.2)
}
) ( {

0.0e𝕚2π(0.0), 0.1e𝕚2π(0.1)
}
,{

0.7e𝕚2π(0.7), 0.8e𝕚2π(0.8)
}
)

H4

( {
0.0e𝕚2π(0.0), 0.2e𝕚2π(0.2), 0.4e𝕚2π(0.4)

}
,{

0.4e𝕚2π(0.4), 0.5e𝕚2π(0.5)
}

) ( {
0.5e𝕚2π(0.5), 0.6e𝕚2π(0.6), 0.8e𝕚2π(0.8)

}
,{

0.0e𝕚2π(0.0)
}

)

H5

( {
0.2e𝕚2π(0.2), 0.4e𝕚2π(0.4)

}
,{

0.4e𝕚2π(0.4), 0.5e𝕚2π(0.5)
}
) ( {

1e𝕚2π(1)
}
,{

0.0e𝕚2π(0.0)
}
)
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Fig. 1 Graphical representations
for the information’s in Table 3

Fig. 2 Graphical representation
for the information’s in Table 5

Fig. 3 Geometrical
representation for the
information’s in Table 8

Next, we can compare the proposed method with some
existing methods based on example 1, and the results are
shown in Table 3.

From Table 1, we obtain that all methods get the same
ranking result, and the best alternative is H3. This has shown

the validity of the proposed method. The graphical interpre-
tation is shown in Fig. 1.

In Fig. 1, we discuss five different series, which denotes
the graphical interpretation of the alternatives H1 toH5. From
Fig. 1, it is clear that series 3 gives the biggest values com-
pared to other values in different series.
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Table 8 Comparison of the proposed method with some existing methods

Methods Score values Ranking

Chen et al. [46] d̄CM
(
H1, R−) � 0.335, d̄CM

(
H2, R−) � 0.333, d̄CM

(
H3, R−)

� 0.339, d̄CM
(
H4, R−) � 0.241, d̄CM

(
H5, R−) � 0.232

P3 ≥ P1 ≥ P2 ≥ P4 ≥ P5

Beg and Rashid [37] d̄BRM
(
H1, R−) � 0.339, d̄BRM

(
H2, R−) � 0.335, d̄BRM

(
H3, R−)

� 0.341, d̄BRM
(
H4, R−) � 0.245, d̄BRM

(
H5, R−) � 0.242

H3 > H1 > H2 > H4 > H5

Peng et al. [47] d̄PM
(
H1, R−) � 0.338, d̄PM

(
H2, R−) � 0.333, d̄PM

(
H3, R−)

� 0.341, d̄PM
(
H4, R−) � 0.241, d̄CM

(
H5, R−) � 0.236

H3 > H1 > H2 > H4 > H5

Sajjad Ali Khan et al. [48] d̄SM
(
H1, R−) � 0.436, d̄SM

(
H2, R−) � 0.434, d̄SM

(
H3, R−)

� 0.453, d̄SM
(
H4, R−) � 0.347, d̄SM

(
H5, R−) � 0.312

H3 > H1 > H2 > H4 > H5

Khan et al. [51] d̄KM
(
H1, R−) � 0.447, d̄KM

(
H2, R−) � 0.444, d̄KM

(
H3, R−)

� 0.545, d̄KM
(
H4, R−) � 0.434, d̄KM

(
H5, R−) � 0.431

H3 > H1 > H2 > H4 > H5

Liu et al. [50] d̄LM
(
H1, R−) � 0.515, d̄LM

(
H2, R−) � 0.514, d̄LM

(
H3, R−)

� 0.649, d̄LM
(
H4, R−) � 0.441, d̄LM

(
H5, R−) � 0.242

H3 > H1 > H2 > H4 > H5

Proposed work for q � 1 d̄PM
(
H1, R−) � 0.338, d̄PM

(
H2, R−) � 0.333, d̄PM

(
H3, R−)

� 0.341, d̄PM
(
H4, R−) � 0.241, d̄CM

(
H5, R−) � 0.236

H3 > H1 > H2 > H4 > H5

Proposed work for q � 2 d̄KM
(
H1, R−) � 0.447, d̄KM

(
H2, R−) � 0.444, d̄KM

(
H3, R−)

� 0.545, d̄KM
(
H4, R−) � 0.434, d̄KM

(
H5, R−) � 0.431

H3 > H1 > H2 > H4 > H5

Proposed work for q � 3 P1 � 0.514, P2 � 0.511, P3 � 0.671, P4 � 0.516, P5 � 0.469 H3 > H1 > H2 > H4 > H5

Advantages and comparative analysis
with graphical representations

The advantage of the CQROHFS is that it contains the truth
and falsity grades with the conditions that the sum of q-
power of the supremum of the real parts (also for imaginary
parts) of the truth grade and the q-power of the supremum of
the real parts (also for imaginary parts) falsity grade is not
exceeded from unit interval. Further, to explore the validities
of the established method based on the novel CQROHFS,
we choose some existing measures based on IHFSs [37,
46, 47], PHFSs [49], QROHFSs [50], complex intuitionistic
hesitant fuzzy sets (Special case of CQROHFSs), complex
Pythagorean hesitant fuzzy sets (Special case of CQRO-
HFSs), and CQROHFSs. Further, we choose the complex
Pythagorean hesitant fuzzy information shown in Table 4
and solve it using some existing measures [14–17].

The results are shown in Table 5.
Form Table 5, we obtain that the best alternative is H1,

and it also shows the advantage of CQROHFSs. In addition,
the graphical interpretation is shown in Fig. 2.

In Fig. 2, we discuss five different series, which denotes
the graphical interpretation of the alternatives H1 toH5. From
Fig. 2, it is clear that series 1 gives the biggest value compared
to other values in different series.

Example 2 We consider another example from Ref. [37] in
which the decision information is given in intuitionistic hes-
itant fuzzy information shown in Table 6.

We know that about the value of the exponential function
e𝕚2π(0.0) � e0 � 1, then we give a modified version of Table
6 shown in Table 7.

The results are shown in Table 8.
From Table 8, we obtain that the best alternative is H3.

The graphical interpretation is shown in Fig. 3.
In Fig. 3, we discuss five different series, which denotes

the graphical interpretation of the alternatives H1 toH5. From
Fig. 3, it is clear that series 3 gives the biggest value compared
to other values in different series.

From the above examples and comparisons with some
existingmethods, the proposedmethodbasedonCQROHFSs
is more general than the methods based on Ifs, IFSs, CIFS,
CPFS, CQROFS, and so on, at the same time, they can also
verify the validity of this method.

Conclusion

Some complex fuzzy sets have received massive attention
from different scholars. The notion of CQROFS is the exten-
sion of CPFS in which the sum of the q power of the real part
(imaginary part) of the support for and the q power of the
real part (imaginary part) of the support against is limited by
one. In this study, by combining the CQROFS and HFS, The
main purpose of this study is discussed below.

1. The conception of CQROHFS and their properties are
firstly proposed which could reflect both the uncertainty
in structure and the uncertainty in detailed evaluations.
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2. Some DMs and CEMs are developed based on CMFS,
and an MCDM approach is presented based on the TOP-
SIS method and CEMs.

3. These initiatedmeasures are utilized to examine the dom-
inance and effectiveness.

4. The experimental results are compared with some exist-
ing methods to show the advantages and superiority of
the proposed measures.

In the future, we will try to develop the complex spherical
hesitant fuzzy sets, complex T-spherical hesitant fuzzy sets,
complex linear Diophantine hesitant fuzzy sets, and com-
plex bipolar soft sets using the ideas of complex spherical
and complex T-spherical fuzzy sets [52], linear Diophantine
fuzzy sets [53–55], and bipolar soft sets [56]. We will also
use the proposed DMs and CEMs to develop some decision-
making methods, and then apply them to solve some real
decision-making problems.
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