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Abstract
It has been acknowledged that dominance-resistant solutions (DRSs) extensively exist in the feasible region of multi-objective
optimization problems. Recent studies show that DRSs can cause serious performance degradation of many multi-objective
evolutionary algorithms (MOEAs). Thereafter, various strategies (e.g., the ε-dominance and themodifiedobjective calculation)
to eliminate DRSs have been proposed. However, these strategies may in turn cause algorithm inefficiency in other aspects.
We argue that these coping strategies prevent the algorithm from obtaining some boundary solutions of an extremely convex
Pareto front (ECPF). That is, there is a dilemma between eliminating DRSs and preserving boundary solutions of the ECPF. To
illustrate such a dilemma, we propose a new multi-objective optimization test problem with the ECPF as well as DRSs. Using
this test problem, we investigate the performance of six representative MOEAs in terms of boundary solutions preservation
and DRS elimination. The results reveal that it is quite challenging to distinguish between DRSs and boundary solutions of
the ECPF.

Keywords Multi-objective optimization · Dominance resistant solution · Hardly dominated boundary · Extremely convex
Pareto front

Introduction

The multi-objective optimization problem (MOP) [1–3] can
be written as:

minimize f(x) = ( f1(x), . . . , fm(x))ᵀ,

s.t. x ∈ �, (1)

where � ⊂ Rn is an n-dimensional closed subset called the
decision space, x = (x1, . . . , xn)ᵀ is a decision vector, and
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f(x) = ( f1(x), . . . , fm(x))ᵀ is the corresponding objective
vector.

Given two solutions x1 and x2, x1 is said to Pareto-
dominate x2 if ∀i ∈ 1, . . . ,m : fi (x1) ≤ fi (x2) and
∃i ∈ 1, . . . ,m : fi (x1) < fi (x2). A solution x∗ is said
to be Pareto optimal, if there is no solution that Pareto dom-
inates it. The set of all Pareto optimal solutions is called the
Pareto set (PS). The mapping of the PS in the objective space
is called the Pareto front (PF). Multi-objective evolutionary
algorithms (MOEAs) aim at yielding a set of uniformly dis-
tributed solutions to approximate the PF.

Many MOEAs (e.g., NSGA-II [4], SPEA2 [5] and PAES
[6]) have been developed based on the Pareto-dominance
criterion. However, recent studies reveal that these Pareto-
dominance-based MOEAs may be hindered by dominance
resistant solutions (DRSs) [7–10]. DRSs are located on some
boundaries of the objective space, which can hardly be dom-
inated by other solutions but is far away from the PF. As
shown in Fig. 1, point B is a DRS located on the boundary
parallel to the f3 axis. It can see that B is significantly infe-
rior to the solutions on the PF. But it can only be dominated
by the solutions on the line AB (red line in Fig. 1). Note that
the probability of finding these solutions with evolutionary
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Fig. 1 Illustrations of a DRS
from three different views

algorithms is very small. As a result, DRSs are always treated
as non-dominated solutions and survive in the population. If
the size of these boundaries is much larger than that of the
PF (as in Fig. 1 where the area of each rectangular bound-
ary region is much larger than that of the triangular PF),
the most obtained solutions will be DRSs. In other words,
Pareto-dominance-based MOEAs will be misled to approx-
imate those boundaries instead of approximating the PF.

Since DRSs are often encountered in multi-objective opti-
mization, it is imperative to enable MOEAs to eliminate
DRSs from the current population [7]. Very recently, several
algorithms have been demonstrated to be effective in elimi-
nating DRSs. As a relaxed form of the Pareto-dominance cri-
terion, the ε-dominance criterion [11] is considered to be one
of the most useful coping strategies. The ε-dominance-based
MOEAs allow each solution to have a larger dominating
region, thereby a DRS has a larger probability of being dom-
inated by a solution on the PF. Besides, a modified NSGA-II
(denoted as mNSGA-II) has also demonstrated the ability
to eliminate DRSs [12]. In addition, [7,12] have indicated
that some decomposition-based MOEAs (e.g., MOEA/D-
PBI [13] and MOEA/D-Gen [14]) are capable of getting rid
of DRSs.

This paper argues that these MOEAs capable of eliminat-
ing DRSs may in turn suffer from missing some boundary
solutions of the PF. These algorithms can hardly distinguish
boundary solutions of an extremely convex PF (ECPF) from
DRSs. To demonstrate it, we propose a new multi-objective
optimization test problem with the ECPF and DRSs. Using
this test problem with 3, 5, 8, and 10 variables, we investi-
gate the performance of six representative MOEAs in terms
of boundary solutions preservation andDRSelimination.Our
experimental results indicate that there is a dilemma between
eliminating DRSs and preserving boundary solutions of the
ECPF.

The remainder of this paper is organized as follows:
“MOEAs for DRS elimination” introduce some MOEAs
capable of eliminating DRSs. In “Dilemma between DRS
elimination and boundary solutions preservation”, an exam-
ple is given to illustrate the dilemma between boundary
solutions preservation and DRS elimination. In “Scalable
MOP with the ECPF and DRSs”, we propose a scalable test

problem. “Experimental study” presents experimental results
of six representative MOEAs on the proposed test problem.
Finally, we conclude this paper in “Conclusion”.

MOEAs for DRS elimination

This section introduces and verifies the DRS eliminating
capabilities of five MOEAs from three different categories,
namely ε-MOEA [11] and mNSGA-II [12] (dominance-
based MOEAs), MOEA/D-PBI [13] and MOEA/D-Gen
[14] (decomposition-based MOEAs) and SMS-EMOA [15]
(indicator-based MOEA).

ε-MOEA: The ε-dominance criterion is used in ε-MOEA
and it can be written as follows. Let = (ε1, . . . , εm)ᵀ and
(εi > 0) for i = 1, . . . ,m, a solution x1 is said to ε-
dominate another solution x2, if fi (x1) − εi ≤ fi (x2) for
all i = 1, . . . ,m, and f j (x1) − ε j < f j (x2) for at least
one j ∈ {1, . . . ,m}. The ε-dominance criterion lets each
solution have a larger dominating area, thereby increasing
the probability of DRSs being dominated by Pareto optimal
solutions.

mNSGA-II: As reported in [16], the modification of the
objective values of each solution can decrease the negative
effect of DRSs. The modified objective value is defined as:

ui (x) = (1 − α) fi (x) + α

m

m∑

j=1

f j (x), i = 1, . . . ,m, (2)

where α is a non-negative real number (0 ≤ α ≤ 1). A prop-
erty of DRS is that it is near-optimal on some objectives but
very poor on other objectives.When evaluating one objective
value for a solution, mNSGA-II also takes the other objec-
tives values into account. Therefore, the fitness values of
DRSs are decreased significantly. However, the performance
of mNSGA-II is greatly affected by the value of α.

MOEA/D-PBI andMOEA/D-Gen: The decomposition-
based MOEA converts an MOP into a set of single-objective
sub-problems and optimizes them simultaneously. Differ-
ent aggregation functions are adopted in MOEA/D-PBI and
MOEA/D-Gen.The sub-problem inMOEA/D-PBI is defined
as:
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minimize gpbi(x|w, z∗) = d1 + θd2, (3)

where d1 = |(f(x)−z∗)ᵀw|
‖w‖2 and d2 = ‖f(x)− (z∗ +d1

w
‖w‖2 )‖2;

w = (w1, . . . , wm)ᵀ is a weight vector that satisfies wi ≥ 0
for all i = 1, . . . ,m and

∑m
i=1 wi = 1; z∗ = (z∗1, . . . , z∗m)ᵀ

is the ideal point, i.e., z∗i = min{ fi (x)|x ∈ �}; θ is a positive
parameter. The subproblem in MOEA/D-Gen is defined as:

minimize ggen(x|w, z∗)

= max
1≤i≤m

⎧
⎨

⎩wi
(| fi (x) − (z∗i − δ)| + ρ

m∑

j=1

| f j (x) − (z∗j − δ)|)
⎫
⎬

⎭ ,

(4)

where δ andρ are two small positive parameters;w is aweight
vector; z∗ is the ideal point. The sub-problem’s contour line
inMOEA/D-PBI andMOEA/D-Gen can be flexibly changed
by adjusting their corresponding parameters [17]. Thus, both
MOEA/D-PBI and MOEA/D-Gen can decrease the negative
effect of DRSs.

SMS-EMOA: SMS-EMOA is one of the most popular
indicator-based MOEAs. It compares each solution’s hyper-
volume contribution in environmental selection. The DRS
is located on the boundary of the objective space and often
has a very small hypervolume contribution. Therefore, the
solutions on the PF rather than DRSs tend to be preserved
in SMS-EMOA. However, the calculation of SMS-EMOA
is very time-consuming, especially for many-objective prob-
lems.

Experimental settings and performancemetrics

To illustrate the DRS eliminating capabilities of the five
MOEAs, we compare their performance with NSGA-II
on the three-objective mDTLZ1-4 [7]. The three-objective
mDTLZ problem’s objective space has three hardly domi-
nated boundaries (HDBs) where DRSs are located on. The
number of decision variables of each mDTLZ problem is set
to 10.

The population size of each algorithm is set to 190. Each
algorithm is terminated after 100,000 function evaluations
and conducted 30 independent runs. The simulated binary
crossover [18] and the polynomial mutation operators are
adopted for new solution generation. According to the rele-
vant references [7,12,13], θ in MOEA/D-PBI is set to 5, ρ in
MOEA/D-Gen is set to 0.01, ε in ε-MOEA is set to 0.06, and
α in mNSGA-II is set to 0.1. The reference point in SMS-
EMOA is set to fmax + σ , where fmax = ( f max

1 , . . . , f max
m ),

and f max
i for i ∈ {1, . . . ,m} is the maximum value of the

current population in terms of the i-th objective.
In this paper, the IGD [19,20] and HV [21] metrics are

used to evaluate theperformanceof theobtained solution sets.
Given that P∗ is a set of uniformly distributed solutions along

the PF and P is the set of obtained approximate objective
vectors, the IGD metric value is calculated as:

IGD(P∗, P) =
∑

v∈P∗ d(v, P)

|P∗| , (5)

where d(v, P) is the minimum Euclidean distance between
the objective vector v and the approximate set P .

For the approximate set S in the decision space, the HV
metric is defined as:

HV(S) = VOL
(

∪
x∈S[ f1(x), z

∗
1] × · · · × [ fm(x), z∗m]

)
, (6)

where z∗ = (z∗1, . . . , z∗m)ᵀ is a reference point, and VOL
is the Lebesgue measure. z∗ is set to (1.1, 1.1, 1.1)ᵀ in this
section.

Experimental results on the three-objective
mDTLZ1-4

The IGD and HV metric values obtained by the six MOEAs
are shown in Tables 1 and 2. Moreover, Fig. 2 plots the
objective vectors which have the median IGD metric val-
ues among each algorithm’s 30 runs on mDTLZ1. We can
see from Fig. 2 that NSGA-II is misled by DRSs and fails
to approximate the PF of mDTLZ1. In contrast, the objec-
tive vectors achieved by the other five algorithms are mostly
on the PF. The results in Tables 1 and 2 also indicate that
the five MOEAs can significantly outperform NSGA-II on
mDTLZ1-4. Among the five MOEAs, SMS-EMOA yields
the best performance. The objective vectors achieved by
SMS-EMOAhave a very gooddistribution. For ε-MOEAand
mNSGA-II, the obtained objective vectors are not as evenly
distributed as those yielded by SMS-EMOA. Although the
majority of the objective vectors achieved by MOEA/D-PBI
andMOEA/D-Gen are located on the PF, they still keep some
undesirable DRSs.

Overall, NSGA-II cannot deal with DRSs and its perfor-
mance severely degraded on the four MOPs. The other five
MOEAs are capable of eliminating DRSs and most of the
non-dominated objective vectors they gained are around the
PF.

Dilemma between DRS elimination and
boundary solutions preservation

In this paper, we argue that these MOEAs with DRS elimi-
nating strategies may in turn miss some boundary solutions
of the ECPF. The preservation of the ECPF’s boundary solu-
tions is very important in many real-world applications (e.g.,
the agile satellite mission planning [22] and the search-based
software engineering [23]). These boundary solutions could

123



1120 Complex & Intelligent Systems (2023) 9:1117–1126

Table 1 IGD values of the six algorithms on three-objective mDTLZ test problems

Problem IGD NSGA-II MOEA/D-PBI MOEA/D-Gen ε-MOEA mNSGA-II SMS-EMOA

mDTLZ1 Mean 1.03E+00 2.83E−02 2.96E−02 3.13E−02 2.15E−02 2.10E−02

Std 9.37E−01 1.73E−03 9.48E−04 1.31E−03 9.42E−04 2.21E−04

mDTLZ2 Mean 9.12E−02 5.44E−02 6.60E−02 9.64E−02 5.00E−02 4.09E−02

Std 5.21E−03 7.97E−04 3.08E−03 1.54E−02 1.70E−03 1.18E−04

mDTLZ3 Mean 3.44E+00 5.55E−02 6.82E−02 6.80E−02 4.85E−02 4.10E−02

Std 3.21E+00 1.13E−03 3.42E−03 4.61E−03 1.16E−03 1.71E−04

mDTLZ4 Mean 1.01E−01 1.52E−01 1.20E−01 6.60E−02 5.56E−02 4.10E−02

Std 6.38E−03 1.57E−01 1.15E−01 3.16E−03 6.72E−03 1.46E−04

Bold values indicate the best result obtained among all the comparison algorithms

Table 2 HV values of the six algorithms on three-objective mDTLZ test problems

Problem HV NSGA-II MOEA/D-PBI MOEA/D-Gen ε-MOEA mNSGA-II SMS-EMOA

mDTLZ1 Mean 5.45E−03 2.04E−01 2.05E−01 1.90E−01 2.21E−01 2.26E−01

Std 6.86E−03 4.13E−03 2.10E−03 3.08E−03 1.63E−03 3.43E−04

mDTLZ2 Mean 4.65E−01 5.41E−01 5.26E−01 5.22E−01 5.38E−01 5.54E−01

Std 9.03E−03 8.63E−04 1.66E−03 5.90E−03 2.15E−03 1.90E−04

mDTLZ3 Mean 3.79E−03 5.39E−01 5.32E−01 5.35E−01 5.44E−01 5.54E−01

Std 5.52E−03 2.09E−03 2.57E−03 2.61E−03 2.06E−03 1.57E−04

mDTLZ4 Mean 4.41E−01 3.92E−01 4.47E−01 5.33E−01 5.24E−01 5.53E−01

Std 1.20E−02 1.27E−01 1.13E−01 1.60E−03 1.66E−02 1.86E−04

Bold values indicate the best result obtained among all the comparison algorithms
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Fig. 2 Plots of the final solutions with the median IGD-metric values found by the six MOEAs on three-objectives mDTLZ1
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Fig. 3 Illustration of the boundary solutions of the ECPF

be the best candidates when the decision-maker is biased
towards one or multiple objectives. However, the MOEAs
with DRS eliminating strategies may fail to obtain these
boundary solutions. Figure 3 gives an example of a two-
objective MOP with the ECPF. Points A, B and C are three
solutions on the ECPF. B and C are two boundary solutions.
The areas Pareto-dominated and ε-dominated byB are shown
with the black dash line and the blue dot-dash line, respec-
tively. It can be seen that A cannot be Pareto-dominated by
B, but it is ε-dominated by B. It means that the boundary
solutions of the ECPF can easily be ε-dominated by the
other Pareto-optimal solutions so that they are unlikely to
be retained by ε-dominance based MOEAs.

To illustrate their poor performance in boundary solutions
preservation, we propose a new two-objective test problem
with the ECPF. The test problem is formulated as:

minimize

{
f1(x) = (0.5 − x1 + x2)4,
f2(x) = (0.5 + x1 − x2)4,

(7)

where x = (x1, x2)ᵀ ∈ [0, 0.5]2. The PF of this problem

is f
1
4
1 (x) + f

1
4
2 (x) = 1, where 0 ≤ fi (x) ≤ 1, i = 1, 2.

The six MOEAs (i.e., ε-MOEA, mNSGA-II, MOEA/D-PBI,
NSGA-II, MOEA/D-Gen and SMS-EMOA) are conducted
on this problem. The parameter settings of these algorithms
are kept the same as in “MOEAs for DRS elimination”.

Each algorithm is performed only once on the test prob-
lem, as very similar results appear in their multiple indepen-
dent runs. Figure 4 shows the objective vectors obtained by
each algorithm. It can be seen that ε-MOEA, mNSGA-II,
MOEA/D-PBI and MOEA/D-Gen can only yield the objec-
tive vectors around the center of the ECPF. None of the
obtained objective vectors is located on the boundaries of the
ECPF. SMS-EMOA can obtain the boundary solutions of the

ECPF. However, the number of solutions obtained by SMS-
EMOA around the two boundary solutions is tremendously
different from that achievedbyNSGA-II. These results reveal
that the boundary solutions of the ECPF are easily missed
by these MOEAs with DRS eliminating strategies. In other
words, there is a dilemma between DRS elimination and
boundary solutions preservation.

Scalable MOPwith the ECPF and DRSs

To demonstrate the dilemma between DRS elimination and
boundary solutions preservation, we propose a new scalable
MOP with the ECPF and HDBs (denoted as MOP-CH). In
MOP-CH, the decision vector x = (x1, . . . , xn)ᵀ ∈ [0, 1]n
is divided into two independent parts: xI = (x1, . . . , xm−1)

ᵀ

and xII = (xm, . . . , xn)ᵀ, where xI are position variables
and xII are distance variables. Then the m-objective MOP-
CH can be written as:

minimize fk(x)

= (1 − h p
k (xI))(1 + gk(xII)), for k = 1, . . . ,m,

(8)

where p (0 < p < 1) is a parameter that determines the
curvature of the convex PF. The smaller p is, themore convex
of the PF. In this paper, p is set to 0.25.

The position functions in MOP-CH are defined as:

hk(xI) =
⎧
⎨

⎩

1 − x1, k = 1,
(1 − xk)

∏k−1
i=1 xi , k = 2, . . . ,m − 1,∏m−1

i=1 xi , k = m.

(9)

The distance functions in MOP-CH are given as:

gk(xII) = 100

⎛

⎝|φk | +
∑

i∈φk

((xi − 0.5)2) − cos
(
20π(xi − 0.5))

⎞

⎠ ,

(10)

where φk = {m−1+k, 2m−1+k, . . . , � n+1−k
m �m−1+k}

for k = 1, . . . ,m.
Let y∗ = (y∗

1 , . . . , y
∗
m) be a Pareto optimal solution in the

objective space. Then the PF of MOP-CH can be written as:

m∑

i=1

(y∗
i − 1)4 = 1, (11)

where 0 ≤ y∗
i ≤ 1 for i = 1, . . . ,m. The PF and HDBs of

the three-objective MOP-CH are shown in Fig. 5.
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Fig. 4 Plots of the solutions obtained by the six MOEAs on an example MOP with the ECPF

Fig. 5 Illustrations of the PF
and the HDBs of the
three-objective MOP-CH from
different views

Experimental study

Experience Results onMOP-CH

UsingMOP-CHwith various numbers of objective functions,
we investigate the performance of the sixMOEAs in terms of
boundary solutions preservation and DRS elimination. The
parameter settings are the same as in “MOEAs for DRS elim-
ination”.

Experimental results are shown in Table 3, where the best
results are highlighted in bold. On the three-objective MOP-
CH, it can be seen that NSGA-II performs worst since it
has the lowest HV mean value among the six algorithms.
The decomposition-based MOEAs (i.e., MOEA/D-PBI and
MOEA/D-Gen) and the dominance-based MOEAs (i.e.,
ε-MOEA and mNSGA-II) perform better than NSGA-II.
However, none of them performs as well as SMS-EMOA.
On the many-objective problems, NSGA-II is still the worst
one as it cannot cope with DRSs. The decomposition-based
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Table 3 HV values obtained by the six MOEAs on MOP-CH

m HV NSGA-II MOEA/D-PBI MOEA/D-Gen ε-MOEA mNSGA-II SMS-EMOA

3 Mean 6.47E−03 1.09E+00 1.08E+00 1.05E+00 1.10E+00 1.12E+00

Std 1.19E−02 1.93E−03 3.51E−03 6.07E−03 1.37E−03 1.15E−04

5 Mean 0.00E+00 6.48E−01 5.59E−01 1.90E−01 1.59E−01 N/A

Std 0.00E+00 1.69E−03 1.62E−02 1.11E−01 3.54E−02 N/A

8 Mean 0.00E+00 1.11E−01 1.08E−01 0.00E+00 4.93E−03 N/A

Std 0.00E+00 1.61E−03 1.49E−02 0.00E+00 6.70E−03 N/A

10 Mean 0.00E+00 1.03E−02 4.93E−03 0.00E+00 4.07E−04 N/A

Std 0.00E+00 2.17E−04 1.79E−03 0.00E+00 1.19E−03 N/A

Bold values indicate the best result obtained among all the comparison algorithms

Fig. 6 Obtained solution set with the median HV value in the 30 runs of each algorithm on the three-objective MOP-CH

MOEAs (i.e.,MOEA/D-PBI andMOEA/D-Gen) outperform
the dominance-based MOEAs (i.e., ε-MOEA and mNSGA-
II). MOEA/D-PBI achieves the best performance on the
MOP-CH with 5, 8, 10 objective functions. SMS-EMOA
is not performed on the many-objective problems. The time
required for its hypervolume contribution calculation is unaf-
fordable.

Figure 6 presents the obtained solution setwith themedian
HV value in the 30 runs of each algorithm on the three-
objectiveMOP-CH. It can be seen fromFig. 6a that NSGA-II
suffers from DRSs and fail to approximate the PF. Figure 6b
shows that MOEA/D-PBI gains many solutions around the
center of the PF. However, it misses many solutions around
the three corners of the PF. Figure 6c indicates that the solu-

tion set yielded byMOEA/D-Gen approximates the PF well,
whereas several DRSs also exist in the set. In Fig. 6d, we
can find that ε-MOEA keeps quite a number of DRSs. As
shown in Fig. 6e, no DRS is in the solution set obtained
by mNSGA-II. However, almost all solutions are around the
center of the PF. Figure 6f reveals that the best approximation
set is obtained by SMS-EMOA.However, many solutions are
not obtained around the boundary of the PF. All in all, we
can see that all the examined six MOEAs miss the bound-
ary solution while some MOEAs cannot eliminate the DRS
perfectly.
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Fig. 7 Solution sets obtained by MOEA/D-PBI with different θ on the three-objective MOP-CH

Fig. 8 Solution sets obtained by MOEA/D-Gen with different ρ on the three-objective MOP-CH

Fig. 9 Solution sets obtained by ε-MOEA with different ε on the three-objective MOP-CH

Fig. 10 Solution sets obtained by mNSGA-II with different α on the three-objective MOP-CH
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Fig. 11 Solution sets obtained by SMS-EMOA with different σ on the three-objective MOP-CH

Parameter analysis

According to [12,24], the performance of theMOEAsmay be
affected by the parameters. Therefore, the parameter analysis
is conducted on MOEA/D-PBI, MOEA/D-Gen, ε-MOEA,
mNSGA-II and SMS-EMOA. Figures 7, 8, 9, 10 and 11 show
the solutions obtained by these algorithms, respectively.

Figure 7 shows the solution sets obtained by MOEA/D-
PBI with θ = 2, 10 and 15 on the three-objective MOP-CH.
With the increase of θ , the distribution of the obtained
solutions becomes wider, and more boundary solutions are
preserved. Nevertheless, the number of DRSs increases at
the same time. In Fig. 7b, c, we can see that more DRSs are
retainedwhile gainingmore boundary solutions of the ECPF.
This indicates thatMOEA/D-PBI with a large value of θ may
misjudge the merits of the DRS and the boundary solution of
the ECPF, and preserve DRSs instead of boundary solutions.

This figure presents the solution sets obtainedbymNSGA-
II with α = 0.001, 0.01 and 0.2 on the three-objective
MOP-CH. Similar to ε-MOEA when α is very small, the
convergence of mNSGA-II is severely deteriorated by DRSs.
With the increase of α, DRSs in the obtained solution sets
become less, and more solutions are located over the PF.
However, when the value of α is too large, all solutions are
around the center of the PF. mNSGA-II also suffers from
the dilemma between the DRS elimination and the boundary
solutions preservation.

Figure 8 presents the solution sets obtained by MOEA/D-
Gen with ρ = 0.05, 0.005 and 0.0001 on the three-objective
MOP-CH. By decreasing the value of ρ, MOEA/D-Gen can
get more widely distributed solutions over the PF. However,
the PF is not approximatedwell evenwhen a very small value
is used inMOEA/D-Gen. Besides, it is noteworthy that DRSs
are not eliminated completely by MOEA/D-Gen with any of
the three ρ settings. This indicates that MOEA/D-Gen is also
caught in the dilemma between the DRS elimination and the
boundary solution preservation.

Figure 9 shows the solution sets obtained by ε-MOEA
with ε = 0.01, 0.05 and 0.1 on the three-objective MOP-CH.
The number of the obtained solutions by ε-MOEA is related

to the value of ε. The larger the value of ε, the less the number
of the obtained solutions. It can be seen that the DRSs can be
eliminated from the solution set by increasing the value of ε,
which leads to the severe decrease in the number of obtained
solutions as shown in Fig. 9c. Moreover, almost all of these
solutions are located around the center of the PF. Boundary
solutions of the PF are missing.

As shown in Fig. 6f, when σ = 1, most of the obtained
solutions are located around the center of the PF. Here we
test SMS-EMOAwith σ = 3, 5 and 10 on the three-objective
MOP-CH. Figure 11 presents the obtained solutions in the
objective space with each parameter setting. When σ = 10,
many obtained solutions are located on the boundaries of the
PF. In the case of σ = 3, SMS-EMOA cannot find some
boundary solutions of the PF. SMS-EMOA with σ = 5
achieves the best performance on the three-objective MOP-
CH. From these result, we can conclude that the value of
σ can affect the distribution of the obtained solutions. A
largeσ benefits SMS-EMOA to achievemore boundary solu-
tions, while a small σ promotes SMS-EMOA to obtain more
solutions around the centre of the PF. Only by setting σ

very carefully can SMS-EMOA obtain approximate solu-
tions with the perfect distribution.

Based on the abovementioned results, it can be concluded
that the performanceof theseMOEAs is very sensitive to their
parameters. All the algorithms except for SMS-EMOA are
trapped in the dilemma between the DRS elimination and the
boundary solution preservation. SMS-EMOA has a different
type of dilemma in terms of the population uniformity.More-
over, SMS-EMOA is hindered by its huge calculation time
on the many-objective MOPs. The experimental results also
reveal that it is hard for the MOEA to distinguish between
DRSs and boundary solutions of the ECPF.

Conclusion

In this paper, we have explained how DRSs degrade the per-
formance of MOEAs and how five MOEAs can eliminate
DRSs. Then, we have discussed the dilemma between the
DRS elimination and the boundary solution preservation.We
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have used a two-objective MOP as an example to illustrate
such a dilemma. In addition, we have proposed a new MOP
(named asMOP-CH)with theECPF andDRSs. Six represen-
tative MOEAs have been applied to the proposed problem to
examine their performance in terms of eliminating DRSs and
preserving boundary solutions of the ECPF. Our experimen-
tal results have shown that NSGA-II suffers from DRSs and
fails to approximate the PF. The MOEAs with DRS elim-
inating strategies are caught in the dilemma between the
DRSelimination and the boundary solution preservation. The
results have also shown that the hypervolume-based MOEA
is most promising in getting rid of such a dilemma. However,
its calculation timewill be a heavy burdenwhen theMOPhas
many objective functions. Furthermore, when the PF shape is
irregular, it is challenging for SMS-EMOA to get uniformly
distributed solutions (including boundary solutions).

In the future, we will study how to distinguish between
DRSs and boundary solutions of the ECPF and how to bal-
ance between theDRS elimination and the boundary solution
preservation. More test problems with DRSs and various
types of ECPFs will be developed as well.
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