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Abstract
Despite the wide range of research on pedestrian safety, previous studies have failed to analyse the real-time data of pedestrian
walking misbehaviour on the basis of either pedestrian behaviour distraction or movements during specific activities to
realise pedestrian safety for positive (normal) or aggressive pedestrians. Practically, pedestrian walking behaviour should be
recognised, and aggressive pedestrians should be differentiated from normal pedestrians. This type of pedestrian behaviour
recognition can be converted into a classification problem, which is the main challenge for pedestrian safety systems. In
addressing the classification challenge, three issues should be considered: identification of factors, collection of data and
exchange of data in the contexts of wireless communication and network failure. Thus, this work proposes a novel approach
to pedestrian walking behaviour classification in the aforementioned contexts. Three useful phases are proposed for the
methodology of this study. In the first phase involving factor identification, several factors of the irregular walking behaviour
of mobile phone users are established by constructing a questionnaire that can determine users’ options (attitudes/opinions)
about mobile usage whilst walking on the street. In the second phase involving data collection, four different testing scenarios
are developed to acquire the real-time data of pedestrian walking behaviour by using gyroscope sensors. In the third phase
involving data exchange, the proposed approach is presented on the basis of two modules. The first module for pedestrian
behaviour classification uses random forest and decision tree classifiers part of machine learning techniques via wireless
communication when a server becomes available. The developed module is then trained and evaluated using five category
sets to obtain the best classification of pedestrian walking behaviour. The second module is based on four standard vectors
for classifying pedestrian walking behaviour when a server is unavailable. Fault-tolerant pedestrian walking behaviour is
identified and is initiated when failures occur in a network. Two sets of real-time data are presented in this work. The first
dataset is related to the questionnaire data from 262 sampled respondents, and the second dataset comprises data on 263
sampled participants with pedestrian walking signals. Experimental results confirm the efficacy of the proposed approach
relative to previous ones.
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Introduction

Much effort and attention have been directed towards the
investigation of vehicle-to-pedestrian (V2P) communication
systems [1, 2]. Pedestrians refer to people walking on a
street. V2P systems serve different purposes, such as safety
or convenience for pedestrians [3]. In view of providing a
clear view of pedestrian safety systems, this study presents
six questions.

The first question is “Why are pedestrian safety and
pedestrian behaviour important, and is pedestrian safety
in V2P systems considered a concern at the current
state?”.

V2P systems employ different communication technolo-
gies and various mechanisms to facilitate the interaction and
information exchange between pedestrians and vehicles [4].
Statistics show thatmore than3000people die daily [5].Acci-
dents are unexpected events, and the increasing number of
road accidents has led to an increasing number of pedestrian
fatalities [6–13]. The common causes of such accidents are
dangerous driving, inattentiveness, misbehaviour, and error
by pedestrians and vehicles. These factors negatively impact
human safety. Pedestrian fatality has become the main safety
concern all over the world, and it primarily explains the need
to take safety seriously. Pedestrian misbehaviour and inat-
tention whilst walking have also been considered as causes
of accidents [5, 14]. Walking is the most essential but the
least protected mode of road transport. Several people favour
the usage of smartphones when walking, especially with the
fast development of smartphone-based applications, such as
social media applications, such as music and video players,
game machines and book and magazine readers, all of which
have extensively dominated the usage of smartphones. Such
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usage tends to distract pedestrians [15]. Distraction levels
(e.g. ‘texting, watching a video or talking on the phone’)
were elaborated in Ref. [16]. Moreover, smartphone usage
has been identified as one of the reasons for pedestrians’
inattention as pedestrians tend to stare at their smartphones
whilst walking on the street; such smartphone users are gen-
erally more dangerous than other pedestrians who do not
stare at their smartphones [17]. In addition, some pedestrian
movements during specific actions/activities (e.g. ‘stopping,
walking, waiting, running or crossing a curb’) are consid-
ered risky behaviours [18, 19]. Therefore, pedestrians who
use smartphoneswhilst walking are referred to as pedestrians
with aggressive behaviour, which is based on either pedes-
trian behaviour distraction or movements during specific
activities. Given this context, the second question is “What
is the current research scenario for pedestrian behaviour
to realise pedestrian safety and address research gaps?”

In recent years, relatively new studies have focused on
pedestrian behaviour to realise pedestrian safety. The pro-
posed model in Ref. [20] enjoins spatial formation to ensure
effective navigation performance and connects the impacts of
nearby environments to walking trails by using fuzzy logic.
The work aimed to predict a pedestrian’s walking path by
modelling a built environment for the pedestrian’s steering
behaviour.Aparticular problemassociatedwithwalking path
prediction, namely, ‘how a pedestrian chooses his/her next
step position and speed when he/she is exposed to environ-
mental stimuli during a normal and non-panic situation’, was
solved in Ref. [21]. The work attempted to analyse pedestri-
ans’ behaviour in terms of selecting crossing facilities when
faced with signalised crosswalks and footbridges at intersec-
tions. Field video data were used to observe the pedestrians’
crossing behaviour. Despite the incessant measures taken
in large cities to advance road safety, pedestrian run-overs
(risky pedestrians) remain a major problem. A skilled fuzzy
system, as presented in Ref. [22], records a decrease in the
number of run-overs on pedestrian crossings with the grow-
ing use of reinforcement systems. The study analysed the
travel speed of incoming vehicles and the space between
vehicles and pedestrians. In Ref. [23], a method was used
to model the diverse and subjective nature of environmental
perception by analysing the movements of various pedestri-
ans (i.e. their movement in indoor areas). The pedestrians’
behavioural features, such as signal violation behaviour, run-
ning behaviour, lane changing features, waiting time before
crossing and risk perception, were reported to play mean-
ingful but varying roles in ‘unsafe’ and ‘safe’ intersection
clusters. In Ref. [24], a GIS-based methodology was pro-
posed, and suitable indicators were developed and tested to
collect and process the data required for the analysis of pedes-
trian crossing behaviour during urban trips. Specific patterns
represented ‘the tendency to cross at the beginning of the
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trip and the tendency to cross at midblock locations when
signalised junctions are not available’.

As highlighted in the previous discussion, no study has
focused on pedestrian walking misbehaviour on the basis of
pedestrian behaviour distraction or movements during spe-
cific activities. Such inadequacy is considered a research gap.
Pedestrian fatalities in the urban areas of evolving countries,
such as India, range between 40 and 60% of total road traf-
fic fatalities [2, 21]. In Russia, approximately 170,000 road
traffic accidents were recorded according to the ‘Statistics of
Road Traffic Accidents in 2017’ [25]. This number is three
to four times that recorded in Europe. Annually, pedestrians
contribute to 53,000 road traffic accidents, of which 20,000
cases are related to misbehaviour. One in three pedestrians
are injured, and one in six deaths is caused by pedestrians
being hit by a car on pedestrian crossings [25]. Thus, the third
question is “What are the challenges and issues in pedes-
trian safety which are associated with pedestrian walking
misbehaviour based on pedestrian behaviour distraction
or movements during specific activities?”

Numerous studies [2, 20–24] have comprehensively
explored pedestrian safety, but no work has yet to analyse
the real-time data of pedestrian walking misbehaviour on
the basis of either pedestrian behaviour distraction or move-
ments during specific activities to realise pedestrian safety
for positive (normal) or aggressive pedestrians. Practically,
pedestrian walking behaviour should be recognised, and
aggressive pedestrians should be differentiated from normal
pedestrians. This type of pedestrian behaviour recognition
can be converted into a classification problem, which is the
main challenge for pedestrian safety systems. In overcoming
the challenge of classification, three issues should be consid-
ered.

First, the factors associated with pedestrian behaviour dis-
tractions or movements during specific activities that exert a
strong effect on pedestrian safety should be identified (i.e.
factor identification) by extracting the important features
of walking pedestrians whilst recognising their positive and
aggressive behaviours [15–19].

Secondly, real-time data on pedestrian walking behaviour
should be collected (i.e. data collection) by sensor-based
systems, such as accelerometers and computer vision-based
systems. The first system type is not always reliable because
of the unfixed sensor positioning whilst the second type is
limited by poor visibility conditions (e.g. effects of night-
time and bad weather conditions), the far locations of
pedestrians (e.g. within tens of meters) or the non-line-of-
sight positions with respect to sensors [26]. Accordingly,
smartphone-based sensors have become popular as they
can provide the balance between accuracy and usability of
obtained data.

Thirdly, in terms of exchange data, recent V2P safety
applications have started to use wireless communication

instead of sensors for exchanging data [5, 27–29]. Wireless
communication can provide 360-degree awareness via infor-
mation exchange between two entities [30, 31]. Some clas-
sification matters dependent on client–server architectures
perform classification tasks particularly used for scalability
and reliability. Since its development, wireless commu-
nication has suffered from two issues, namely, network
congestion and server failure. Congestion is considered one
of the most severe phenomena affecting the reliability of data
transmission in networks, and it causes server failure [32].
Network congestion causes either network failure or server
failure. The research on server failure has shown that some
V2P applications dependent on client–server architectures
encounter disruptions in their V2P communication networks
and that the server side can cause link outage, which poten-
tially leads to severe consequences [31]. Thus, pedestrian
walking behaviour recognition is a pressing issue, especially
in the event of network failure. The present study raises the
following fourth question andprovides an analytical response
to address the above issues: “What are the criticisms and
technical gaps in the academic literature on pedestrian
safety systems based on pedestrian walking behaviour
classification?”

Three aspects must be considered in proposing pedestrian
safety systems on the basis of pedestrian walking behaviour
classification: identification of factors, collection of data, and
exchange of data in the contexts of wireless communication
and network failure [5, 27–33]. Accordingly, three studies
about pedestrian safety systems based on pedestrian walking
behaviour classification are presented [26, 34, 35].

In the context of factor identification, the articles [26, 34,
35] that dealt with the issue of pedestrian behaviour clas-
sification did not consider the importance of identifying the
reasons behind pedestrian distractions, such as mobile phone
usage or aggressive activities (e.g. running in the street).
These factors are important and considered as the main cri-
teria on which the data collection process depends.

With regard to data collection, various activity recogni-
tion approaches have been proposed in several studies. Such
studies can be divided into two categories on the basis of
the methods of data collection. The pattern classification
of images is the most traditional method used for pedes-
trian data collection. An existing dataset comprises 4000
pedestrian patterns and 5000 nonpedestrian patterns which
measure 18×36 pixels in size and are cropped from video
sequences [35]. The study can be largely classified as image
processing research. However, using images as a way to
identify different activities has a major drawback; that is,
it violates the privacy of users. Many applications involve
such a problem. The work in Ref. [34] used sensory data for
activity recognition using a publicly available dataset, which
is not reliable. In Ref. [26], gyroscope and accelerometer
sensors were used to collect data despite previous studies

123



912 Complex & Intelligent Systems (2022) 8:909–931

reporting the many disadvantages of using multiple sensors
in identifying human activities, including the need for a large
amount of sensor data for preprocessing (signal segmenta-
tion, feature selection, extraction and feature reduction); such
requirement is time-consuming and thus influences classifi-
cation accuracy, leading to an imbalance between accuracy
and usability of obtained data. Therefore, gyroscopes are
the most widely used sensors for activity identification, and
they are generally incorporated in wearable devices (e.g.
smartphones). However, no study has reported that using
gyroscopes alone provides a balance between accuracy and
usability of obtained data.

With regard to data exchange in wireless communication
and network failure contexts, previous works on pedestrian
classification indicated that machine learning (ML) requires
a ‘very large number of data, especially when the dimension
of the data increases significantly, and the data required for
accurate analysis increases dramatically’. As the amount of
data increases, the computational cost also increases expo-
nentially. This phenomenon is the reason behind the need
to use feature selection and feature extraction. The works
in Refs. [26, 34, 35] did not cover all these requirements.
In Ref. [34], ML and principal component analysis were
used to recognise daily human activities. In Ref. [35], a
simple threshold technique involving the pattern classifica-
tion of images was utilised; this technique can be adopted
using first- and second-order statistics to determine whether
a test pattern belongs to the pedestrian class or nonpedes-
trian class. A linear support vector machine (SVM) then
validates the hypotheses that are most likely to contain a
person. The author in Ref. [26] proposed an approach that
works efficiently with limited hardware resources and pro-
vides satisfactory activity identification by using smartwatch
sensor data based on hybrid feature selection models. Most
existing studies developed modules for pedestrian behaviour
classification by usingML techniques when a server is avail-
able (wireless communication); meanwhile, no study has
developed any pedestrian behaviour classificationmodule for
cases wherein no server is available (network failure).

According to the above discussion, the prominent issues
related to pedestrian walking behaviour classification should
be addressed. Therefore, a new pedestrianwalking behaviour
classification based on pedestrian behaviour distraction or
movements during specific activities should be established
and motivated to realise pedestrian safety. Thus, this study
asks the fifth question: “What is the recommended solu-
tion?”

A novel approach to pedestrian walking behaviour clas-
sification in wireless communication and network failure
contexts is proposed herein. To address the first question, this
work identifies several factors that drive irregular walking
behaviour of mobile phone users by constructing a question-
naire that can determine users’ options (attitudes/opinions)

about mobile usage whilst on the street. For the second
question, four different testing scenarios are developed to
acquire the real-time data of pedestrianwalking behaviour by
using gyroscope sensors. The proposed intelligent approach
was based on one of two modules. The first module was
developed for pedestrian behaviour classification using ML
techniques via wireless communication in cases in which
servers are available. The second module was developed on
the basis of four standard vectors to classify pedestrian walk-
ing behaviour in cases wherein no server is available; such
fault-tolerant pedestrian walking behaviour classification is
initiated when failures occur in a network. The sixth and last
question is “What are the novelty and contributions of the
present study?”

The presented study can support pedestrian safety systems
through its novel approach to pedestrian walking behaviour
classification in the contexts of wireless communication and
network failure. The contributions of this work can be sum-
marised in the following points:

1. This study fills the gap in the identification of sev-
eral factors driving the irregular walking behaviour of
mobile phone users by constructing a questionnaire that
can determine users’ options (attitudes/opinions) about
mobile usage whilst on the street.

2. This studydevelops four different scenarios for collecting
real-time pedestrianwalking data to extract the important
features of pedestrian walking behaviour.

3. This study develops a module for pedestrian behaviour
classification using ML techniques for cases in which
servers are available.

4. This study develops a module on the basis of four stan-
dard vectors to classify pedestrian walking behaviour
when servers are unavailable.

Methodology

The proposed methodology is composed of three major
phases (Fig. 1). First, the factor identification phase includes
the design and distribution of the questionnaire about mobile
phone usage, analysis of questionnaire data and identification
of aggressive behaviour. Second, the data collection phase
involves the identification of all requirements and scenarios
for pedestrian data gathering. Third, the data exchange phase
includes preprocessing, pedestrian behaviour classification
(two types of classification: using either ML with a server or
performing statistical calculations when no server is avail-
able) and the validation and evaluation of results. Figure 2
presents the sequence of the proposed approach.
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Fig. 2 Sequence of proposed
approach

Sequence of proposed approach 

1- Input : sensors raw data  

2- Output: classification pedestrian behaviour  (9) or (14)  //   four classes (normal walking, calling, 

chatting, running)  

3- Identified four Scenarios                                                 // represented the collecting data  

4- Analyse pedestrian walking signal                                  // Pre-Processing   

5- Feature extraction                                                            // Pre-Processing  

6- If server online                                                                //  within wireless communication  

7-          Preparation data for classification in machine learning        //Data Label  and Five categorize sets 

8-          Train and validation pedestrian behaviour using ML techniques   

9- Else                        //   

10-          Preparation data for classification using Euclidean algorithm    

11-          Collect ten new samples for each of these four scenarios 

12-          Develop four standard vectors 

13-          Test and evaluate pedestrian behaviour using Euclidean algorithm     // network failure contexts 

14- Identify pedestrian behaviour   

Phase I: factor identification

The literature review shows that one of the scenarios that
distract pedestrians whilst on the street is the use of mobile
phones. In this scenario, pedestrians can be classified as
aggressive, and they represent a type of risk on the street.
Therefore, to design and distribute the questionnaire about
mobile phone usage, we determine the number of mobile
phone users and their purpose for using their phones whilst
walking on the street by adopting an electronic question-
naire (Google Form), in which the items are based on mobile
phone users’ attitudes/opinions (i.e. questionnaires are an
active and low-cost research tool for gathering data from
respondents [36]). The questionnaire consists of 12 questions
about mobile usage whilst walking. The survey questions are
formulated with the assistance of experts. The questionnaire
involves two parts. The first five questions cover personal
information, which the respondents may opt to skip. The
second part consists of questions related to the several uses
of mobile phones, such as talking, sending messages and
using GPS. The answers to these questions are analysed to
identify the factors driving the irregular walking behaviour
of pedestrians.

Phase II: data collection

Two stages comprise this phase. The first stage ("Identi-
fied data collection requirements") involves the collection of
data on pedestrian walking behaviour whilst the second stage
("Identified scenarios for collecting data") is concerned about
the proposed scenarios for collecting the data.

Identified data collection requirements

UPM University in Malaysia is selected as the site for the
experiment as this university has a large number of students
with mixed genders and ages. The work team consists of
four persons, and they have been trained to learn exactly
how the experiment is implemented and how the study can

be explained to the participants in terms of collecting their
walking data. As for the tools used in the experiment to gather
data, a gyroscope sensor is utilised to record the signals of
pedestrian walking behaviour. Each of four Samsung mobile
phones is used to gather data for a particular scenario.A gyro-
scope is ‘a device used with respect to the Earth’s gravity to
help determine orientation. Its design consists of a freely
rotating disk called a rotor, mounted onto a spinning axis
in the centre of a larger and more stable wheel. As the axis
turns, the rotor remains stationary to indicate the central grav-
itational pull, and thus, which way is down’. Additionally, a
gyroscope maintains its level of effectiveness by measuring
the rate of rotation around a particular axis. By using the
key principles of angular momentum, gyroscopes can help
indicate orientation.

Identified scenarios for collecting data

Four different scenarios are identified for the collection of
the required data. All the datasets are related to pedestrians
carryingmobile phones whilst walking on the street. The aim
of using different datasets is to identify pedestrians’ walking
behaviours in real time and thereby classify them as either
aggressive or normal pedestrians. The four datasets used in
this study are listed below.

• First scenario: normal walking. This scenario is related to
the normalwalking of pedestrians, inwhichmobile phones
are kept in users’ pockets.

• Second scenario: calling. This scenario involves pedestri-
ans talking on the phone.

• Third scenario: chatting. This scenario involves pedestri-
ans conversing with other people.

• Fourth scenario: running: This scenario involves pedes-
trians running on the street (this movement on the road is
the most dangerous type).

Some cases of mobile phone usage whilst walking, such
as listening to music, are excluded because they do not pose
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a danger and are not distracting for pedestrians. The first
dataset is about normal running whilst the others are about
aggressive walking, which can be described by calling, chat-
ting or running. The four datasets are implemented on a
number of participants whilst walking on the street for a few
seconds as they carry their mobile phones in different situ-
ations. The data in the first test are recorded as soon as the
participants walk normally whilst carrying a mobile phone
in their pockets. In the second dataset, the gyroscope is used
to record the data of walking participants as they use their
mobile phones for chatting or sending messages. In the third
dataset, the data of the participants talking on their mobile
phones whilst walking are recorded. The same procedure
is applied to the last dataset, in which the participants are
instructed to carry their mobile phones and run on the street.
Each of the four scenarios is implemented on a specific num-
ber of persons (males and females with different ages).

Phase III: data exchange

This section presents the preprocessing which involves data
analysis and feature extraction ("Preprocessing") and classi-
fication using ML and Euclidian techniques ("Classification
usingmachine learning techniques" and "Classification using
Euclidean technique", respectively).

Preprocessing

Data processing is one of the most important steps in clas-
sification [34]. Its process consists of signal segmentation,
feature selection, extraction and feature reduction. From a
high-level perspective, statistics is a mathematical approach
to achieving a technical analysis of a set of information.
Statistics is ‘a robust instrument that can operate on data and
producemeaningful information’. In otherwords, data analy-
sis fromahigh-level viewpoint ismadepossible byproducing
technical data. Furthermore, statistics can produce visualisa-
tion graphs and in-depth statistical data, both of which are
more information-driven and targeted towards reaching con-
crete conclusions, particularly for our data, in comparison
with a simple projection. Subsequently, statistics can create
relatively deep and fine-grained insights to depict exactly
the approach to data structuring. The optimal and simultane-
ous utilisation of different data science techniques can help
produce meaningful and in-depth information. The data col-
lection process is completed using gyroscope sensors, which
can record the walking signal data as time (t) and x, y and z.
Then, the collected data are analysed to extract the required
features in the time domain for the walking signals of the
pedestrians by using the four steps shown in Fig. 3. The four
scenarios are applied to all samples. The moving average

Statistical calculations (Min., Max., Mean, Median. Standard deviation) 

2-window sub. 

Positive               negative 

(X, Y, Z)             (X, Y, Z) 

3-window sub. 

Positive               negative 

(X, Y, Z)            (X, Y, Z) 

 Original data    

Original data 
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+X -X +Y –Y +Z- Z 

Fig. 3 Pre-processing steps
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method is used in this analysis to smoothen the pedestrian
walking behaviour signals; here, each set of two or three adja-
cent cells over some period is averaged. The moving average
is a technique used often in technical analysis.

• First step: The segmentation technique is used to divide
the sensor signals into small time window segments. In
this manner, the feature can be easily extracted in each
segment. The average of each two adjacent cells relative
to t and x, y and z is determined by a sliding window (2 s
timewindow). The same step is repeated for each set of the
three cells, as represented by a 3-s time window. Thus, the
outcomes are two- and three-window averages, as shown
in Fig. 3.

• Second step: Each two adjacent cells are subtracted from
one another for each of the original data (2- and 3-window
averages). In this step, the value and direction of the pedes-
trianmovement axismeasured by the gyroscope sensor are
identified.

• Third step: The positive and negative values are obtained
after the subtraction step. In this step, these values should
be separated from one another to obtain the positive and
negative values for each of t and x, y and z, which refer to
the direction of axis movement.

• Fourth step: In the feature selection process, several sig-
nal characteristics are extracted from the raw sensory data.
Time-domain features are widely used in feature calcu-
lation. Five traditional statistical calculations (min, max,
mean, median, and standard deviation) are calculated for
each sample from the four scenarios to extract their fea-
tures.

A feature is ‘a statistical function that works brilliantly
to extract meaningful information of data in a natural way’.
From the outlook of pedestrian behaviour recognition, a spe-
cific pattern is created from a specific physical movement
of users. For example, the behaviour of a ‘running’ pedes-
trian has a specific pattern as the action includes superior
physical effort from a pedestrian. It somewhat differs from
the behaviour of a ‘walking’ pedestrian. Some inertial sen-
sors, such as gyroscope sensors, can measure the intensity
of each physical effort and produce different pattern distri-
butions. Hence, the median, standard deviation or any other
statistical feature is determined to underline the difference
between the abovementioned two behaviours. In the feature
extraction step ‘d’, a statistical feature from the three sets of
axial data (x, y and z) of the gyroscope is extracted. In obtain-
ing the maximum information, we extract five base features
from the collects d data: MIN,MAX,MEAN,MEDIAN and
STANDARD DEVIATION.

Classification using machine learning techniques

In this case study, the classification using ML techniques
is implemented in the server when the connection with the
server is available. ML methods can identify a new sam-
ple class by learning classified examples. A classification
algorithm is provided with a training sample and its cor-
responding outcome; that is, each outcome represents a
class of that sample, and each sample contains multiple
attributes that carry information. Random forest and deci-
sion tree algorithms are themost popular classifiers. Random
forest is appropriate for high-dimensional data modelling
because it can handle missing values and continuous, cat-
egorical and binary data [37]. Bootstrapping and ensemble
schemes make random forest sufficiently strong to over-
come the problems of overfitting, and pruning trees is thus
unnecessary. Moreover, in terms of high prediction accuracy,
random forest is efficient, interpretable and non-parametric
for various types of dataset [38]. The model interpretabil-
ity and prediction accuracy provided by random forest is
remarkably unique amongst popular ML methods. Accurate
predictions and better generalisations are achieved with the
use of ensemble strategies and random sampling [39]. Con-
versely, the strongest point of decision tree is made from the
pre-classified data. The division into classes is decided upon
the features that best divides the data. The data items are
split according to the values of these features. This process
is applied to each split subset of the data items recursively.
The process terminates when all the data items in the current
subset belong to the same class [38, 40].

Prepared data for classification in server The proposed
model in this research is trained using a supervised learn-
ing procedure. Thus, the category sets need to be labelled
before training. These samples are labelled with a specific
letter. A set of labelled data is used to learn and classify the
features into their classes. The proposed approach is trained
and evaluated using five category sets (Table 1) to obtain the
best classification of pedestrian walking behaviour. The first
category set consists of four classes, namely, normalwalking,
chatting, calling and running. The second one comprises two
classes, namely normal walking and aggressive; the classes
chatting, calling and running are labelled as aggressive. In
the third category set, the ‘calling’ class is ignored, and only
three classes are considered. The fourth category set entails
normal and aggressive classes without ‘calling’. The fifth
category set involves only the normal walking and running
classes.

Training andvalidationof classification in server In terms of
pedestrian behaviour classification in the server, three exper-
iments are conducted. In the first experiment, five datasets
are trained using a well-known ML classifier, namely ran-
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Table 1 Five categories sets used for training and validation

Dataset Description

Category set I All classes (normal walking, chatting, calling and
running)

Category set II Normal and aggressive classes (normal walking
and aggressive walking)

Category set III Three classes (normal walking, chatting and
running)

Category set IV Normal and aggressive classes without calling
(normal walking and aggressive walking)

Category set V Normal and running class (normal walking and
running)

dom forest. In the second experiment, attribute selection
methods are used to identify the valuable features with ran-
dom forest classifier. In the third experiment, optimisation
techniques based on decision tree algorithm are used to
improve the classification accuracy. Moreover, Experiments
1 and 2 are implemented in WEKA 3.8.3 software running
on a Windows-based computer system with 2.50 GHz dual
Intel(R) Core (TM) i7 and 8 GB RAM. The test options are
set to tenfold cross-validation. The random forest parame-
ter is fine-tuned using two parameters, namely sample split
and number of trees. Then, the maximum results of the tun-
ing is considered for training from fold 1 to fold 10 on the
five selected category sets (Table 1). Experiment 3 is imple-
mented in RapidMiner software 9.0.

A. Experiment I: classification using random forest tech-
nique with whole features

In this experiment, five identified datasets mentioned in
"Prepared data for classification in server" are tested using
random forest classifier with whole features. In random for-
est, the features are randomly selected in each decision split.
The correlation between trees is reduced by randomly select-
ing the features, which improves the prediction power and
results in higher efficiency. A confusion matrix in the ML
field has a specific table layout that is easy to determine
if the system has two confusing classes. In this work, the
matrix consists of a number of rows and columns. Each row
of the matrix represents the instances of a predicted walk-
ing behavioural class, whereas each column represents the
instances of an actual class (or vice versa). The diagonal
in the matrix denotes a correctly classified instance. Practi-
cally, Rows 1–4 of the confusion matrix are labelled normal
walking state, running state, calling state and chatting state,
respectively. The confusion matrix indicates the number of
classes that are correctly classified.

B. Experiment II: attribute selection based on random forest
technique

Table 2 Types of attribute evaluators and the search methods

No. Attribute evaluator Search method

1 CfsSubsetEval BestFirst

2 ClassifierAttributeEval Ranker

3 CorrelationAttributeEval GreedyStepwise

4 GainRatioAttributeEval Ranker

5 InfoGainAttributeEval Ranker

6 OneRAttributeEval Ranker

7 PrincipalComponents Ranker

8 ReliefFAttributeEval Ranker

9 SymmetricalUncertAttributeEval Ranker

10 WrapperSubsetEval GreedyStepwise

The feature selection process can be applied to reduce
the number of features in the raw data [26]. This process
is often expected to satisfy numerous requirements, such
as short training time, high accuracy and real-time data
generalisation. The process can also reduce confusion and
misclassification. Then, all scenarios are tested again accord-
ing to the feature selection method inMLwith random forest
classifier. Feature subset selection becomes quite important
and predominant in the case of datasets containing a higher
number of variables. Random forest has emerged as a rela-
tively efficient and robust algorithm that can handle feature
selection problem even with a higher number of variables. It
is also considerably efficient in handling missing data impu-
tation, classification and regression problems. In this study,
we apply the concept of random forest algorithm on feature
selection and classification [39]. The attribute evaluator is
selected as an interface for the classes in view of evaluating
the attributes individually. In this method, the evaluator iden-
tifies and deletes similar features to eliminate confusion and
maintain the features that may affect the classification. Table
2 shows all the attribute evaluator types and the correspond-
ing search methods.

C. Experiment III: decision tree techniques based on grid
optimisation

Hyperparameters play an important role inML techniques
because they closely influence the behaviour of the training
techniques and they exert a direct impact on model perfor-
mance. Therefore, hyperparameter optimisation is a critical
task. The best performance in the classification test can still
be determined. The design shown in Fig. 4 is adopted to
enhance the classification. The optimise operator finds the
optimal values of the selected parameters for the operators
in the subprocess. The optimise parameter (grid) operator
is a nested operator. It executes the subprocess for all com-
binations of the selected values of the parameters and then
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Fig. 4 Optimiser design

delivers the optimal parameter values through the parameter
set port. The performance vector for the optimal values of
parameters is delivered through the performance port whilst
the associated model (if any) is delivered through the model
port. Additional results of the best run are delivered through
the output ports. The identification of the optimal parame-
ters is based on the performance value delivered to the inner
performance port. The inner performance port can be used to
log the performance of the inner subprocess. A log is created
automatically to capture the number of runs, the parametric
settings and the main criterion or all criteria of the deliv-
ered performance vector depending on the parameter log of
all the criteria. This setup can be disabled by deselecting
log performance. The inner performance port is also used to
determine the best model upon comparing the fitness of the
performances of the different iterations. The decision tree
technique is used with this optimiser to enhance the classi-
fication accuracy. A decision tree is a tree-like collection of
nodes intended to create a decision on value affiliation to a
class or an estimate of a numerical target value. Each node
represents a splitting rule for one specific attribute [38]. For
classification, this rule separates values belonging to different
classes. The building of new nodes is repeated until the stop-
ping criteria are met. A prediction for the class label attribute
is determined depending on the majority of the dataset which
reaches this leaf during generation whilst an estimation for
a numerical value is obtained by averaging the values in a
leaf. The dataset upon which the model is applied should
be compatible with the attributes of the model. That is, the
dataset should have the same number, order, type and role of
attributes as the dataset used to generate the model.

The split data operator utilises a dataset as its input and
delivers the subsets of that dataset through its output ports.
The number of subsets (or partitions) and the relative size
of each partition are specified through the partition param-
eter. The sum of the ratio of all partitions should be 1. The
sampling type parameter decides how the dataset should be
shuffled in the resultant partitions. This operator differs from

other sampling and filtering operators in the sense that it can
deliver multiple partitions of a given dataset. An approach
is first trained on a dataset by another operator, which is
often a learning technique. Subsequently, the approach can
be applied to another dataset. Generally, the goal is to derive
a prediction on unseen data or transform the data by apply-
ing a preprocessing model. The dataset to which the model is
applied should be compatiblewith the attributes of themodel;
that is, the dataset should have the same number, order, type
and role of attributes as the dataset used to generate themodel.

Classification is a technique used to predict group mem-
bership for data instances. In evaluating the statistical per-
formance of a classification model, the dataset should be
labelled, i.e. it should have an attribute with a label role and
an attribute with a prediction role. The label attribute stores
the actual observed values, whereas the prediction attribute
stores the values of the label predicted by the classification
model under discussion. The performance (classification)
operator is used with classification tasks only, but it can auto-
matically determine the learning task type and calculate the
most common criteria for that type.

Classification using Euclidean technique

In this case study, the classification using the Euclidean tech-
nique is implemented in the pedestrian smartphone when the
connection with the server is not available.

Prepared data for classification without server A fixed cri-
terion is established to build four standard vectors represent-
ing each of the dataset mentioned above. After completing
the analytical steps and extracting all possible features, the
AVERAGE is calculated for all features in each scenario. Five
AVERAGES should be arranged vertically to create standard
vectors, as shown in the succeeding equations. In Eq. (1),
vector-1 represents the normal walking scenario. In Eq. (2),
vector-2 represents the calling scenario. Vector-3 and vector-
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4 represent the chatting and running scenarios in Eqs. (3) and
(4), respectively.

X, Y and Z are variables, where ∀ x ∈
{x1, x2, . . . , xi , . . . xn}.

x2ωx3w represent the average values for the two- and
three-window moving average, respectively [41].

x2ω � xi + xi+1
2

(1)

x3w � 1

3

i+2∑

i�n

xn (2)

Sx , Sx2ω , Sx3ω represent the subtraction values of the origi-
nal data, two-windowmoving average and 3-windowmoving
average, respectively.

Sx � xi+1 − xi (3)

Sx2ω � xi+1 − xi (4)

Sx3ω � xi+1 − xi (5)

F(s) �
{

Xi i f S ≥ 0
X j i f S < 0,

(6)

where Xi represents the positive value for x and X j represents
the negative value for x [101].

(7)

Qxi � {mini (Xi )|i ∈ I max(Xi )|i ∈ I mean(Xi )|i ∈ I meadian(Xi );

|i ∈ I stdv(Xi )|i ∈ I },

where I , J � 200 represents the recorded data of the X-
coordinate.

Qx j � {
min j (X j )| j ∈ Jmax(X j )| j ∈ Jmean(X j )| j ∈ Jmedian(X j )|

j ∈ J stdv(X j )| j ∈ J
}

(8)

The same procedure is applied to the Y and Z variables.

(9)

QYi � {mini (Yi )|i ∈ I max(Yi )|i ∈ I mean(Yi )|
i ∈ I meadian(Yi )|i ∈ I stdv(Yi )|i ∈ I } ,

where I , J � 200 represents the recorded data of the Y -
coordinate.

(10)

QY j � {
min j (Y j )| j ∈ Jmax(Y j )| j ∈ Jmean(Y j )|

j ∈ Jmeadian(Y j )| j ∈ J stdv(Y j )| j ∈ J
}

(11)

QZi � {mini (Zi )|i ∈ Imax(Zi )|i ∈ Imean(Zi )|i ∈ Imeadian(Zi )|
i ∈ I stdv(Zi )|i ∈ I } ,

where I , J � 200 represents the recorded data of the Y -
coordinate.

QZ j �
{
min j (Zi )| j ∈ Jmax(Zi )| j ∈ Jmean(Zi )| j ∈ Jmeadian(Zi )| j ∈ J stdv(Zi )| j ∈ J }.

(12)

Suppose that R represents the raw of the five extracted
features (min, max, mean, median, standard deviation) from
the variables X, Y and Z .

R � Qxi Qx j QYi QY j QZi QZ j (13)

Suppose thatVn,VC ,VCH ,VR represent the normal walk-
ing, calling, chatting and running vectors, respectively [13].

Vn � 1

N

j�N∑

j�1

minR j
1

N

j�N∑

j�1

maxR j
1

N

j�N∑

j�1

meanR j
1

N

j�N∑

j�1

meadianR j
1

N

j�N∑

j�1

stdvR j

(14)

VC � 1

N

j�N∑

j�1

minR j
1

N

j�N∑

j�1

maxR j
1

N

j�N∑

j�1

meanR j
1

N

j�N∑

j�1

meadianR j
1

N

j�N∑

j�1

stdvR j

(15)

VCH � 1

N

j�N∑

j�1

minHj
1

N

j�N∑

j�1

maxHj
1

N

j�N∑

j�1

meanHj
1

N

j�N∑

j�1

meadianR j
1

N

j�N∑

j�1

stdvR j

(16)

VR � 1

N

j�N∑

j�1

minR j
1

N

j�N∑

j�1

maxR j
1

N

j�N∑

j�1

meanR j
1

N

j�N∑

j�1

meadianR j
1

N

j�N∑

j�1

stdvR j

(17)

In the first equation, the average of all theminimumvalues
of all the samples in the normal walking scenario extracted
previously is obtained. The same step is performed for the
max, median, mean and standard deviation values, and the
same method is applied to the remaining three scenarios.
The obtained vectors are tested, and their performance is
evaluated to recognise aggressive pedestrian behaviour. Ten
new samples for each of the four scenarios (normal walking,
chatting, calling and running) are collected and analysed fol-
lowing the same procedure of analysis and feature extraction
in "Preprocessing". The obtained features can be reduced by
comparing all of the features for each scenario and deter-
mining which feature has a better effect than the rest of the
features.

Performance evaluation for the classification with-
out a server Each of the new samples is compared with the
four vectors by using the Euclidean technique. Equation (5)
shows the square root of the sum of squares of the differ-
ence between each value in the sample and its corresponding
vector; the value is then divided by the number of all the
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extracted features. This formula calculates the distance dif-
ference. The comparative results represent the lowest value
referring to the closest scenario and the category to which it
belongs.

dxd xv �
√∑N

n�1 (xd − xv)2,

N
(18)

where dxd xv � distance between two points, N � dimen-
sional features, xd � the value of the sample data and xv �
the value of the vector data.

Equations (6) and (7), respectively, present accuracy and
precision, which are applied to the result of each test to obtain
the number of samples classified correctly and the samples
classified incorrectly.

accuracy � TP + TN

TP + TN + FP + FN
(19)

precision � TP

TP + FP
, (20)

where positive (p): class 1 is positive; negative (N): observa-
tion is not positive; true positive (TP): observation is positive
and is predicted to be positive; False negative (FN): observa-
tion is positive but is predicted to be negative; True negative
(TN): observation is negative and is predicted to be negative;
False positive (FP): observation is negative but is predicted
to be positive.

To the best of our knowledge, the precision of the classifi-
cation to be obtained from the evaluation process should be
acceptable; otherwise, the standard vectors are modified as
a means of recognising pedestrian behaviours, particularly
by performing feature reduction, to enhance the accuracy,
correctly classify instances of the classification and subse-
quently prevent confusion.

Discussion of results

The results of the proposed approach for pedestrian walk-
ing behaviour recognition are presented in two sections.
The first section provides the results of factor identifica-
tion and data collection (“Results of factor identification and
data collection”) whilst the other one details the results and
discusses data exchange in wireless communication and net-
work failure contexts (“Results of data exchange in wireless
communication and network failure contexts”).

Results of factor identification and data collection

"Questionnaire data analysis" presents the results of the
enquiry about mobile phone users. The results of the pedes-

trian walking data collection are presented in "Pedestrian
walking data analysis".

Questionnaire data analysis

A number of challenges were encountered during the ques-
tionnaire data gathering. One of the challenges was the
collection of data on age and gender. The participants hesi-
tated to fill up the questionnaire because of privacy concerns.
The other challenge was the lack of a correct understanding
of some of the questions; this issue rendered the question-
naire inadequate, and it thus needed to be answered again.
To overcome the challenges, we obtained an approval and
authentication letter from the university and showed it to
each participant whowanted to know the reason for the ques-
tionnaire or data collection. We also aimed to highlight that
the data collection was meant for research purposes. Sam-
ples across different ages and gender were contacted (i.e.
students and lecturers), and an electronic link was shared to
three research groups by means of WhatsApp. Some of the
data were collected in malls and Starbucks. The questions
and their respective answers were then analysed to deter-
mine the impact of mobile usage on pedestrian behaviour,
which can subsequently affect pedestrian safety. The basic
data are illustrated in Fig. 5a. The number of questionnaire
respondents was 262, and their age range was 18–55 years.
Nearly two-thirds (63.6%) of the respondents weremale, and
36.4% were females, as shown in Fig. 5b.

As shown in Fig. 6a, 68.3% of the 262 respondents use
theirmobile phoneswhilst crossing the street; this percentage
is large and should be considered. Figure 6b lists the seven
possibilities why mobile phones are used whilst walking on
the street. According to most of the respondents, they use
their mobile phones mainly for calling (66.8%), followed by
chatting (48.1%). As shown in Fig. 6c, which is related to
how many messages are sent during a walking trip, most of
the respondents select the first choice. Moreover, the respon-
dents usually send less than 10 messages, which comprise
the highest percentage (68.6%) (Fig. 6d).

Figure 6e shows the five choices for drivers’mobile usage.
The result shows that most of the drivers never use their
mobile phones whilst driving; some do use their phones to
accessGPSor answer a call. This finding indicates that pedes-
trians use mobile phones more than drivers and thus further
proves that pedestrians have riskier behaviours on the road.
The question shown in Fig. 6f is related to the place where
mobile phones are kept whilst walking. Majority (79.7%) of
the respondents selected the first choice, which is to put their
mobile phones in their pants’ pockets. As for the last question
(Fig. 7), 137 respondents use Internet browsing/applications
or the camera within 15 min of walking on the street; this
large number should be urgently considered in the future.
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Fig. 5 Number of participants; a ages of participants, b gender of participants

In conclusion, the main goal of the questionnaire is to
present a comprehensive view of the walking behaviours of
mobile phone users. The results indicate that many respon-
dents use mobile phones whilst walking on the street for
multiple purposes. Specifically, the walking behaviours of
mobile phone users whilst on the street present a threat and
should be considered urgently.

Pedestrian walking data analysis

The real-time pedestrian walking data were gathered using
four scenarios that were independent of the results of the
questionnaire data. Many difficulties were encountered dur-
ing the experiment in terms of data collection. One of these
challenges was choosing the right place to implement the
experiments that required an appropriate street which was
long enough to implement the experiment, particularly the
walking or running scenario. Another challenge was the dif-
ficulty in persuading people to participate in the experiment
because of their apprehension. The target respondents had
difficulty understanding the idea of the experiment, and the
researcher had to spendmuch time explaining the experiment
and answering all questions. An additional challenge was
the required number of respondents to do the test and repeat
the same actions each time. The collection of data from the
respondents of various ages also proved difficult. The gen-
der aspect was another issue as more females refused to take
part in the experiment, especially in the running scenario.
The implementation of the aforementioned multiple scenar-
ios was equally problematic as it took too much time and
some individuals ultimately refused to participate because
of the changing weather conditions. Other individuals mis-
understood the experiment objectives, leading to repetitive
experiments and recording.

Overall, we were able to overcome the challenges. A total
of 263 samples were collected frommale and female respon-
dents with ages between 20 and 59 years (Table 1). For all
scenarios, the respondents eventually took part in the exper-

iments after they were shown the approval letter from the
university. All participants were instructed to walk for a
few seconds in various test locations for each scenario, and
the readings of the gyroscope sensor were recorded. Data
were lacking in two categories (40–49 and 50–59 years old)
because of the difficulty of collecting data from older people.
The lack of data in the last scenario was due to the refusal of
some females to run on the street for the experiment.

Results of data exchange in wireless communication
and network failure contexts

The results of the preprocessing and feature extraction are
elaborated in "Preprocessing and feature extraction analysis".
The results of the classification with and without a server are
presented in "Results of classification in server" and "Result
of classification without server, respectively.

Preprocessing and feature extraction analysis

The collected data were analysed, and the walking signal
features were extracted to establish four standard vectors,
each one of which represented a specific pedestrian move-
ment. The gyroscope sensors recorded the walking signal
data in time (t) and x, y and z. Figure 3 shows the proposed
design to implement the analytical steps mentioned in "Pre-
processing"; the designwas also adopted for the 263 samples.
Each sample comprised five features (MIN, MAX, MEAN,
MEDIAN and STANDARD DEVIATION), and each fea-
ture consisted of three parts (original data, two-window
subtraction and three-window subtraction), with each part
containing positive and negative values for each of (time t)
and x, y and z. Consequently, time (t) was removed from
the analytical data because it did not provide the impres-
sion of actual movement of pedestrians unlike the rest of the
coordinates of X, Y and Z that relied on the extraction of
pedestrian walking features. In the test, 90 original features
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(a) (b)

        (c) (d)

(e) (f)

2
174

64
126

29
98

81

0.00% 20.00% 40.00% 60.00% 80.00%

None of the above
Call

SMS
Cha�ng using Mobile…

Games
Listening music

Internet…

range
Number

68.3%

31.7%

yesyes no

40.20%

25.30%

19.90%

14.60%

a) Zero (mint)

b) Less than 10 (mint)

c) 10-20(mint

d) More than 20 mint and less than 1 hour

68.60%
19.90%

6.90% 1.50% 3.10%

a) 0-10 b) 10-50

c) 50-100 d) More than 100

nnone of the above

30.70%

9.20%

35.60%

31.40%

21.80%

0.00%10.00%20.00%30.00%40.00%

a)Never

b)just whenSMS
comes

c)only when answer
call

d)only when using gps

e)all three
answer(b,c,d)

79.70%

16.90%

23.80%

15.30%

0.00%20.00%40.00%60.00%80.00%100.00%

a)      Trousers/pants
pocket

b)      Jacket/shirt pocket

c)     Handbag

d)     Shoulder bag

Fig. 6 Results of questions: a main reason for use of mobile phone
whilst walking; b ‘Do you use your mobile phone when you are cross-
ing the street?’ c ‘Howmuch time do you spend listening tomusicwhilst

walking?’ d ‘How many messages do you send whilst walking?’ e ‘Do
you use your mobile phone whilst driving?’ f ‘Where do you normally
keep your mobile phone when you are walking?

were obtained for each sample. Five features and three-axial
gyroscope data were also derived.

Results of classification in server

The training and validation for classification in server results
of the five identified datasets are presented in three experi-
ments. Results of Experiments I–III show the classification
using random forest technique with whole features, attribute
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Fig. 7 Time spent on using
mobile phone features whilst
walking on the street
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Table 3 Results of the parameters tuning

Number of trees Samples split

5 (%) 6 (%) 7 (%) 8 (%) 9 (%) 10 (%)

100 70.90 70.40 70.10 69.43 69.40 70.99

150 71.09 69.80 69.82 70.89 71.60 71.20

200 69.00 68.90 71.90 72.45 72.62 73.30

250 70.90 70.68 70.94 68.98 69.40 70.40

selection based on random forest technique and classification
using decision tree with optimisation, respectively, which
will be discussed as follows.

Experiment I result: classification using random forest
technique with whole features The random forest hyper-
parameters were fine-tuned to obtain the best outcomes. The
hyperparameters, number of trees and sample split, had sig-
nificant effects on the performance of random forest. The
results of parameter tuning are shown in Table 3, where the
parameter ‘number of trees’ was set to 100, 150, 200 and 250
and the ‘sample split’ was set to 5, 6, 7, 8, 9 and 10.

As shown in Table 3, the classification percentage using
100 trees ranged between 69.40% and 70.99%. The perfor-
mance of the classifier was improved with 150 trees, and the
best value obtained with nine sample split was 71.60%.With
200 trees and 10-sample split, the random forest classifier
yielded the highest classification percentage up to 73.30%.
Finally, by utilising 250 trees, the classification percentage
varied from 69.40% to 70.68%, which was lower than when
using 200 trees. Table 4 illustrates the findings of the clas-
sifiers with tenfold training for each category set, which
presented the best evaluation measurement with the five cat-
egories.

As shown in Table 4, the random forest classifier with Cat-
egory set V yielded the highest percentage of up to 87.05%,
followed by 77.68% and 79.11%, which were achieved by
random forest and random committee with Category sets
III and IV, respectively. With Category set II, the random
forest classifier obtained the lowest percentage of 70.98%.
Figure 8 depicts the confusion matrix of the classifiers that
performed the best across the five category sets. For category
set I (Fig. 8), which consisted of four classes, the random
forest classifier correctly recognised 15 out of 33 normal
walking behaviours. Meanwhile, the random classifier mis-
classified the other 18 samples, which included 2, 4, and 12
samples classified as running, calling and chatting, respec-
tively. For the running class, 26/32 were correctly classified
whilst 5/32 and 1/32 were classified as normal walking and
calling, respectively; 1 item was classified as chatting. With
the calling class, the highest number (30/36) was sorted as
calling. Only 1/30 for normal walking and running and 4/30
for chatting were classified. Finally, 25/33 were correctly
classified as chatting; the rest of the items were classified as
normal walking (5/33) and running (3/33). The same expla-
nation applies to the rest of the matrices. For category set
II, random forest correctly classified 16, 27, and 26 of the
33 samples as normal walking, running and chatting, respec-
tively. The confusionmatrix (Fig. 8c) showed that the random
forest classifier identified 14 and 58 samples in category set
III as normal walking and aggressive, respectively. With cat-
egory set IV, 31 out of 33 samples were properly categorised
as normal, with just 2 samples misclassified as running. In
the case of the running class, 6 sampleswere incorrectly cate-
gorised as normal whilst 26 samples were correctly classified
as running. The random forest with category set V correctly
categorised 31 out of the 33 samples as normal, with just 2
samples misclassified as running. Five samples were incor-
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Table 4 Results of the first
experiment Category sets Categorize

sets I
Categorize
sets II

Categorize
sets III

Categorize
sets IV

Categorize
sets V

Classifier Random forest
(%)

Random forest
(%)

Random forest
(%)

Random forest
(%)

Random forest
(%)

Fold number

Fold 1 73.33 71.14 77.97 79.77 89.20

Fold 2 74.01 71.10 76.01 80.05 87.63

Fold 3 73.91 69.95 78.41 79.58 87.92

Fold 4 73.68 71.50 77.12 80.06 88.31

Fold 5 72.48 70.40 77.76 79.10 87.70

Fold 6 73.67 71.41 76.46 79.00 87.66

Fold 7 74.37 71.09 78.33 77.99 86.97

Fold 8 73.02 72.02 79.00 77.90 80.00

Fold 9 72.99 70.82 78.84 78.67 88.92

Fold 10 73.89 70.40 76.90 78.99 86.20

Overall
classification
percentage

73.54 70.98 77.68 79.11 87.05

rectly categorised as normal in the running class whilst 27
samples were accurately classified as running.

Experiment II result: attribute selection based on random
forest technique To execute our analysis with a small yet
meaningful feature set, we examined the extracted features
and performed a feature selection phase. This stage is par-
ticularly important because the resource consumption of the
target devices must be optimised, such that our approach
can run on those devices, which typically have restricted
resources. Table 5 shows the classification results of the five
category sets based on the feature selection method in ML
and the classifier that obtained high percentage classifica-
tions from the first method. Moreover, the same criteria were
applied from the first method, considering the number of
attributes (features) selected from the original 90 to ensure a
fast and easy classification process.

As demonstrated in Table 5, the performance of the clas-
sifiers evaluated with the five datasets varied slightly. For
Category set I, 69 features were selected and the good
percentage achieved was 74.22%. Category set II with 71
features achieved 71.61%. Category set III achieved a classi-
fication percentage 78.68%. In Category set IV, the random
forest classifier achieved up to 79.68% accuracy with 71 fea-
tures selected. The performance of random forest classifier
using Category set V with 75 features produced the highest
classification percentage of 90.26%. In conclusion, the accu-
racy for each category set differed from the first and second
method depending on the number of features selected.

Experiment III result: decision tree techniques based on grid
optimisation This section describes the results of the opti-

misationmethod. The optimumparameter set for the decision
tree technique obtained in this experiment is shown in Table
6.

The ‘weighting’ dataset was loaded using the retrieve
operator, and then the optimise parameter (grid) operator was
applied. The C and gamma parameters of the SVM opera-
tor of the optimise parameter (grid) operator were selected.
The range of the C parameter (SVM.C) was set from 0.001
to 100,000. Eleven values were selected logarithmically in
ten steps. Moreover, the range of the gamma parameter
(SVM.gamma)was set from 0.001 to 1.5. Eleven values were
selected logarithmically in ten steps. The possible values of
the two parameters could reach 11; thus, 121 (i.e. 11×11)
combinations were expected. The subprocess was executed
for all combinations of these values, and it was iterated 121
times. In each iteration, the values of the C and/or gamma
parameters of the SVM (LibSVM) operator were changed.
The value of the C parameter was 0.001 in the first itera-
tion. The value was increased logarithmically until it reached
100,000 in the last iteration. Similarly, the valueof the gamma
parameter was 0.001 in the first iteration. The value was
increased logarithmically until it reached 1.5 in the last iter-
ation. In the subprocess of the optimise parameter (grid)
operator, the data were initially split into two equal partitions
by using the split data operator. Then, the SVM (LibSVM)
operator was applied to one of the partitions. The resultant
classification model was applied using the apply model oper-
ator on the second partition. The statistical performance of
the SVM model in the testing partition was measured using
the performance (classification) operators. The nested oper-
ator was also used to log the performance and parameters for
each iteration. We found that the optimal parameter set had
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Fig. 8 Confusion matrix for
each dataset. A Category set I:
random forest; B category set II:
random forest; C category set
III: random forest; D category
set IV: random committee; E
category set V: random forest

NormalRunning Calling Chatting

Normal 15 2 4 12 

Running 5 26 1 0 

Calling 1 1 30 4 

Chatting 5 0 3 25 

(a) (b)

NormalRunningChatting

Normal 16 2 15

Running 4 27 1

Chatting 7 0 26

Normal Aggressive

Normal 14 19 

Aggressive 7 58 

(c) 

Normal Running

Normal 31 2 

Running 6 26 

                 (d) 

Normal Running

Normal 31 2 

Running 5 27 

(e)

the following values: SVM.C � 398.107 and SVM.gamma
� 0.001. The values logged by the optimise parameter (grid)
operatorwas considered to verify these values. Theminimum
testing error was 0.02 in the eighth iteration. The values of
the C and gamma parameters for this iteration were the same
as those in the optimal parameter set.

Figure 9 shows a visualisation of the decision tree for
identifying the four classes in the tree shape and the percent-
age ratio of the classification test, which had 100% precision
and recall of correct classification for all classes represented
by normal walking, chatting, calling and running. In this
method,we enhanced the classification process and increased
the percentage of the correct classifications to 100% for each
scenario.

Result of classification without server

In this section, the results of the proposed model for pedes-
trian safety in the event of server failure are presented. Two
subsections are discussed according to the number of features
representing the vectors. "Results of the standard vector"
presents the results of the standard vector evaluation before
feature selection. "Standard vector evaluation after feature
selection" discusses the results of the standard vector eval-
uation after feature selection. Each evaluation process is
conducted for the 10 new samples of the normal walking,
calling, chatting and running scenarios together with the four
vectors.

Results of the standard vector Four steps were carried out
in the evaluation of the standard vectors. Each shaded cell
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Table 5 Results of second
method Category set Categorize

sets I
Categorize
sets II

Categorize
sets III

Categorize
sets IV

Categorize
sets V

Selected
feature

69 (%) 71 (%) 69 (%) 71 (%) 75 (%)

Fold number

Fold 1 74.83 72.40 78.90 79.77 90.94

Fold 2 72.91 71.94 79.10 80.60 90.80

Fold 3 74.80 72.05 78.41 78.58 89.92

Fold 4 73.99 71.80 78.92 80.06 90.31

Fold 5 73.98 71.40 79.87 78.04 88.70

Fold 6 73.67 71.41 78.99 79.00 90.80

Fold 7 74.00 71.05 78.13 80.99 90.97

Fold 8 74.02 71.02 79.00 79.90 90.00

Fold 9 74.99 71.06 78.53 80.00 90.99

Fold 10 75.00 72.00 76.90 79.89 89.20

Overall
classification
percentage

74.22 71.61 78.68 79.68 90.26

Table 6 Parameter set

Parameter Setting

Decision tree.criterion Information_gain

Decision tree.maximal_depth − 1

Decision tree.confidence 1.0e−7

Performance.correlation True

 True 1 True 2 True 3 True 4 Class precession 

Pred. 1 10 0 0 0 100% 

Pred. 2 0 10 0 0 100% 

Pred. 3 0 0 0 0 100% 

Pred. 4 0 0 11 0 100% 

Class recall 0 0 0 10 100% 

Fig. 9 Result of optimiser model

with a red colour in the tables represent incorrectly classified
samples.

As shown in Table 7, the test was conducted for the four
vectors and the 10 new samples of normal walking. Equa-
tion (5) was calculated in this step. The comparative results
shown in Table 7a implied that the precision of the classi-
fication according to Eq. (7) was 0%. The finding further
suggested that none of the samples were correctly classi-
fied as normal walking. The 10 samples were incorrectly
classified as chatting (7 samples) and running (3 samples),
as represented by the red shaded cells in the table. More-
over, Table 7b shows that none of the samples were correctly
classified as calling (0%). The samples were incorrectly clas-
sified as running (five samples) and chatting (five samples).
As for the chatting samples, the comparative results (Table
7c) showed that all samples were correctly classified at a

precision of 100% for the chatting scenario. For the run-
ning samples, the comparative results (Table 7d) showed that
80% of the samples were correctly classified for the running
scenario. Only two samples were classified incorrectly as
chatting. According to the results, the precisions for the first
and second tests were zero, and the classification process
was unsuccessful, unlike that for the third and fourth tests,
in which the precisions were acceptable.

Standard vector evaluation after feature selection On the
basis of the observed results, the standard vectors were mod-
ified according to the feature selection, which was manually
conducted. The five features of MIN, MAX, AVERAGE,
MEDIAN and STANDARDDEVIATIONwere reduced into
two features (MIN and MAX) for all the vectors, as shown
in Eqs. (8)–(11) [13].

The feature selection was conducted to obtain the most
adopted feature effort. Figure 10 shows the mean val-
ues (MIN, MAX, AVERAGE, MEDIAN and STANDARD
DEVIATION) for each feature in all datasets for each
scenario. The comparative results indicated that only two fea-
tures (MIN and MAX) exerted the most effect on all signals.
The value of the first feature (MIN) for the normal walk-
ing signal, as depicted by the upper and lower values of the
signal, ranged between 0 and − 3. By contrast, the value of
the MIN feature of the calling signal ranged between 0 and
− 3.8. The same trend was observed for the running signal,
whose value ranged between 0 and − 4.6. The value of chat-
ting ranged between 0 and − 2.2. Therefore, on the basis of
the comparison, the five features (MIN, MAX, AVERAGE,
MEDIAN and STANDARDDEVIATION) could be reduced
into two original features (MIN and MAX).
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Table 7 Comparative study before feature selection of (a) normal walk-
ing samples, (b) calling samples, (c) chatting samples, (d) running
samples

(a) No. Normal walking Calling Chatting Running

1 0.480773 0.445892 0.194276 0.140085

2 0.486324 0.446483 0.193841 0.194922

3 0.48018 0.451771 0.093746 0.202426

4 0.491389 0.427664 0.187309 0.111571

5 0.512557 0.495743 0.125062 0.305588

6 0.512513 0.495659 0.125062 0.305588

7 0.498264 0.472722 0.096572 0.254777

8 0.488545 0.467158 0.099723 0.239705

9 0.48018 0.44802 0.112008 0.176959

10 0.480297 0.431206 0.15734 0.117571

(b)

1 0.481898 0.461808 0.570712 0.375802

2 0.496424 0.457928 0.181288 0.165205

3 0.485163 0.4413 0.111361 0.163289

4 0.489834 0.461825 0.089795 0.220507

5 0.48505 0.451196 0.101538 0.18866

6 0.520112 0.508663 0.308194 0.272555

7 0.549367 0.473135 0.356275 0.232382

8 0.62044 0.46666 0.477202 0.164286

9 0.672524 0.418269 0.101451 0.205636

10 0.483882 0.445764 0.181288 0.183515

(c)

1 0.496659 0.461808 0.102548 0.243587

2 0.496659 0.443854 0.101438 0.191055

3 0.488938 0.461808 0.102548 0.243587

4 0.492326 0.455968 0.089677 0.220419

5 0.485738 0.449229 0.09576 0.190568

6 0.498267 0.476449 0.097588 0.25989

7 0.500685 0.475092 0.099092 0.265576

8 0.512013 0.495133 0.121058 0.301755

9 0.502044 0.477771 0.09981 0.271095

10 0.494738 0.466198 0.093068 0.237631

(d)

1 0.486048 0.426924 0.172819 0.092923

2 0.584482 0.504018 0.438852 0.191055

3 0.495007 0.460073 0.094492 0.23785

4 0.495007 0.460073 0.094492 0.23785

5 0.564348 0.471238 0.394253 0.185614

6 0.590824 0.500107 0.437459 0.247814

7 0.477954 0.436042 0.141201 0.123124

8 0.628319 0.557911 0.506907 0.298636

9 0.59085 0.536399 0.457336 0.253467

10 0.526843 0.446725 0.333549 0.131438

Vn � 1

N

j�N∑

j�1

minR j
1

N

j�N∑

j�1

maxR j (21)

VC � 1

N

j�N∑

j�1

minR j
1

N

j�N∑

j�1

maxR j (22)

VCH � 1

N

j�N∑

j�1

minH j
1

N

j�N∑

j�1

maxH j (23)

VR � 1

N

j�N∑

j�1

minR j
1

N

j�N∑

j�1

maxR j (24)

Subsequently, the same four steps for the evaluation of the
standard vectors mentioned previously were repeated after
feature selection.

Table 8a indicates that 70% of the samples were correctly
classified as normal walking, and only three samples were
incorrectly classified as calling (1 sample) and chatting (2
samples). For the calling samples, 70% of the samples were
correctly classified as calling (Table 8b). Only one sample
was incorrectly classified as normal walking whilst two sam-
ples were incorrectly classified as running. Meanwhile, all
chatting samples were correctly classified as chatting, and
the precision was 100%, as shown in Table 8c. As for the
running samples in Table 8d, 80% of them were correctly
classified; only one sample each for calling and chatting was
incorrectly classified.

Overall, the results indicated a clear improvement to the
method of proper classification. The classification precisions
of the first and second steps related to the normal walking
and calling samples were 0% before feature selection and
70% after feature selection. The results did not change for
the third and fourth evaluations. These findings indicated that
apart from the percentage of correctly classified samples, the
class of samples incorrectly classified should also be consid-
ered. Each sample belonged to three classes (running, calling
and chatting), which may be considered aggressive. There-
fore, any incorrectly classified samples in the three classes
will not likely be considered a risk to road safety because in
all cases, an aggressive state (i.e. running, calling or chat-
ting) will be alerted. In sum, attention should be paid to not
only the percentage of correctly classified samples but also
the classes with samples that were wrongly classified. As any
sample belonging to the three classes (running, calling and
chatting) was considered as aggressive, any incorrectly clas-
sified sample would not threaten road safety because in all
cases, an aggressive state (i.e. running, calling or chatting)
will be alerted. In fact, only one situation presented a threat
to pedestrian and driver safety, that is, when the aggressive
samples were incorrectly classified as normal walking. In
such a case, the driver will be alerted about the presence of
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Fig. 10 Comparison of means of walking behaviour signals

a normal walking pedestrian, and this scenario leads to lack
of attention, which then results in an accident.

Two limitations in this researchmay be addressed in future
work. The first limitation relates to the data collection for the
questionnaire, which involved only 262 respondents. The
second limitation is the collection of pedestrian walking
behaviour data that was limited by the specific categories
of pedestrians, such as age (20–59 years old) and number
(263 participants).

Comparative analysis with academic
literature

For pedestrian behaviour classification, three articles focused
on solving the problem of pedestrian behaviour classifica-
tion. Table 9 summarises the main issues of relevant studies,
including the current work. The comparison is based on three
concepts. The first aspect relates to the factors for identify-
ing irregular walking behaviour. The second consideration is

about the data collected, including the primary dataset refer-
ring to the real-time collected data and the secondary data on
the use of public data, dataset type, capture devices and num-
ber of participants. The third consideration is data exchange,
which refers to the number of features, classification with
and without a server and overall accuracy.

Table 9 presents the comparison based on three aspects,
namely, factor identification, data collection and data
exchange in wireless communication and network failure
contexts.

In identifying the factors associated with pedestrian
behaviour distractions, we build a questionnaire, analyse
the questionnaire data and identify the aggressive behaviour
characterised by the use of mobile phones or movements
during specific activities. No previous study covered these
factors (Table 9), whereas ourwork involved identifying such
factors by using the developed questionnaire, which secured
262 opinions from the participants. Then, we identified the
irregular walking behaviour of pedestrians.
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Table 8 Comparative study after feature selection of (a) normalwalking
samples, (b) calling samples, (c) chatting samples, (d) running samples

No. Normal walking Calling Chatting Running

(a)

1 0.103852 0.133164 0.069544 0.189262

2 0.048564 0.086238 0.155073 0.090627

3 0.058595 0.226274 0.12392 0.291003

4 0.091155 0.226274 0.175635 0.24254

5 0.15341 0.182116 0.27526 0.24254

6 0.087146 0.084102 0.152146 0.090845

7 0.108525 0.182116 0.074748 0.24254

8 0.096864 0.169517 0.07712 0.229531

9 0.055014 0.111666 0.091886 0.159283

10 0.076754 0.109889 0.144059 0.159283

(b)

1 0.490793 0.159813 0.561684 0.374267

2 0.073879 0.0126 0.093524 0.147642

3 0.064517 0.01133 0.082287 0.16766

4 0.226064 0.212228 0.300053 0.140884

5 0.280444 0.227183 0.345018 0.160719

6 0.159613 0.114671 0.080695 0.169781

7 0.130977 0.076411 0.160011 0.16266

8 0.285141 0.146014 0.191533 0.16266

9 0.090337 0.150488 0.204086 0.0672

10 0.385925 0.331235 0.359375 0.445557

(c)

1 0.114709 0.159813 0.083588 0.22823

2 0.086997 0.121207 0.079918 0.178152

3 0.096862 0.144306 0.065667 0.207268

4 0.097876 0.150119 0.078701 0.214977

5 0.124531 0.124531 0.074006 0.177951

6 0.124279 0.186104 0.076362 0.246631

7 0.127874 0.184425 0.079158 0.249887

8 0.164483 0.223944 0.104792 0.28708

9 0.136012 0.193752 0.080632 0.256809

10 0.111748 0.165382 0.070794 0.224044

(d)

1 0.100125 0.080522 0.1533 0.085522

2 0.325889 0.287557 0.393978 0.206013

3 0.110967 0.159419 0.072741 0.225655

4 0.355563 0.320735 0.421557 0.236278

5 0.299308 0.240626 0.369211 0.179779

6 0.356696 0.300609 0.42645 0.245469

7 0.065467 0.092012 0.120415 0.115403

8 0.394657 0.347389 0.459767 0.165916

9 0.59085 0.536399 0.457336 0.253467

10 0.526843 0.446725 0.333549 0.131438

For data collection, human activity identification was con-
ducted in Ref. [35] by collecting the video data of an activity.
However, a limitation emerged when the edge of the image
showed a candidate pedestrian. This work used a secondary
dataset that was dependent on a video recorded from a cam-
era. The work in Ref. [34] used secondary data or a public
dataset. Thework in Ref. [26] collected data using gyroscope
and accelerometer sensors, it had a limited number of partic-
ipants (30 participants). In our proposed approach, data were
collected from 263 participants with different scenarios.

In data exchange in wireless communication and network
failure contexts, extracting the important features of walk-
ing pedestrians have a strong effect on pedestrian safety in
view of recognising their positive and aggressive behaviours.
Our proposed approach is obviously superior in terms of
the number of features and the overall accuracy. As for the
classification when a server is not available, it had not been
explored in previous studies despite the server failure issue
exerting a significant effect on communication systems and
leading to link outage and even severe consequences for
pedestrian life. Our approach involves a module that was
proposed for recognising pedestrianwalking behaviourwhen
servers are unavailable. Experimental results confirmed the
efficacy of the proposed approach related to previous meth-
ods.

Conclusion

This study proposed a novel approach for the classification
of pedestrian walking behaviours in wireless communication
and network failure contexts. A methodology for estab-
lishing the proposed approach for pedestrian safety was
presented in five phases. The key steps of this methodology
included the requirement preparation phase, identification
phase, phase for the identification of all requirements for
data gathering, the pre-processing phase, the classification
and development phase and the validation and evaluation
phase. The irregular walking behaviours of mobile phone
users whilst walking on the street were explored using a
questionnaire about mobile usage. The pedestrian walking
behaviours were classified using three experiments in ML
based on two classifiers, namely, random forest and decision
treewithmultiple features, and the performance of the classi-
ficationwas then validated. Four standard vectors forwalking
behaviour recognition were developed, and the performance
of this development was evaluated using multiple scenarios
and features. The development approach was used to differ-
entiate positive or normalwalking fromaggressive pedestrian
behaviours (i.e. running, chatting or texting and talking on
mobile phone whilst walking on the street). The three phases
of themethodology yielded practical results. (1)Amongst the
262 sampled respondents, 66.80% and 48.10% used mobile
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Table 9 Comparison with previous works

References Identify
factor

Data collection Data exchange

Dataset No. of
participant

Capture
device

No. of
features

Classification
(in\out
server)

Overall
accuracy
(%)Primary/secondary Dataset type

[26] NNO Primary Sensory data 30 Gyroscope
and
accelerome-
ter

23 No 96.81

[34] NNO Secondary
(public
data)

Sensory data – Accelerometer 60 No 96.11

[35] NNO Secondary Image 4000
pedestrian
patterns

Camera – No 99.89

Proposed
System

YYES Primary Sensory data 263 Gyroscope 90 Yes 100

phones for calling and chatting, respectively. These high per-
centages should be considered. (2) The analysed behaviours
of the 263 sampled participants could be adopted to repre-
sent the possible features of pedestrian walking signals. (3)
The precision of each class was 100% in the classification
process based on decision tree classifier in ML. (4) The four
standard vectors used in this work could recognise pedestrian
walking regardless of type (i.e. aggressive walking or normal
walking). The percentages of the classification precision for
normal walking and calling were 70%, whereas those for
chatting and running were 100% and 80%, respectively.

In future research, an alerting application can be installed
on smartphones to warn drivers of pedestrian behaviour
(i.e., aggressive or normal behaviour) even when a server is
unavailable. Furthermore, additional features on pedestrian
behaviour recognition can be investigated in future research.
Future work may also explore the following:

✓ The proposed scenarios can be applied to different data
types of pedestrians, such as pregnant women, sickly and
disoriented people and children below 20 years old.

✓ Additional data can be collected to increase the reliability
and efficiency of the proposed approach.

✓ Mobile applications for pedestrian safety can be pro-
grammed on the basis of the proposed approach for data
exchange in wireless communication and network fail-
ure contexts between vehicles and pedestrians in future
research.

✓ Other scenarios for the collection of pedestrian
behaviour, such as pedestrian walking behaviour, whilst
video calling, can be added.
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