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Abstract
Surrogate-assisted evolutionary algorithms have been paid more and more attention to solve computationally expensive
problems. However, model management still plays a significant importance in searching for the optimal solution. In this
paper, a new method is proposed to measure the approximation uncertainty, in which the differences between the solution and
its neighbour samples in the decision space, and the ruggedness of the objective space in its neighborhood are both considered.
The proposed approximation uncertainty will be utilized in the surrogate-assisted global search to find a solution for exact
objective evaluation to improve the exploration capability of the global search. On the other hand, the approximated fitness
value is adopted as the infill criterion for the surrogate-assisted local search, which is utilized to improve the exploitation
capability to find a solution close to the real optimal solution as much as possible. The surrogate-assisted global and local
searches are conducted in sequence at each generation to balance the exploration and exploitation capabilities of the method.
The performance of the proposed method is evaluated on seven benchmark problems with 10, 20, 30 and 50 dimensions, and
one real-world application with 30 and 50 dimensions. The experimental results show that the proposed method is efficient
for solving the low- and medium-dimensional expensive optimization problems by compared to the other six state-of-the-art
surrogate-assisted evolutionary algorithms.

Keywords Surrogate-assisted evolutionary optimization · Expensive problems · Hybrid optimization · Infill criterion

Introduction

In real-world applications, some optimization problems
[7,10,17] are not able to be given in explicit mathematical
models, which are called the black-box problems. Fur-
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thermore, some of them are time-consuming to evaluate
the performance of a design, i.e., the time to evaluate the
fitness or the objective function is very expensive. Evolu-
tionary algorithms (EAs), such as genetic algorithms (GA)
[8], differential evolution (DE) [5,33], and particle swarm
optimization (PSO) [20], have been shown good perfor-
mances for solving optimization problems, especially for
those discontinuous and non-differential problems. How-
ever, a large number of fitness evaluations are required by
EAs to locate the optimal solution, which, thus, limits the
applications of EAs on the optimization of computation-
ally expensive problems [18]. Surrogate models, which are
normally computationally cheaper than the exact expen-
sive objective evaluation, are often adopted to assist the
evolutionary algorithms, called surrogate-assisted evolution-
ary algorithms (SAEAs), for solving expensive optimization
problems [16,18]. The commonly utilized surrogate mod-
els include Gaussian process model (GP) [4,19], radial
basis function(RBF) [12,13], artificial neural network (ANN)
[14], support vector machine (SVM) [3,32], and polynomial
regression (PR) [11,38].
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Generally, surrogate-assisted evolutionary algorithms can
be classified into online and offline methods according to
whether any new solution will be evaluated using the real
expensive objective function in the optimization [18,29,40].
In the offline SAEAs, no new solutionwill be evaluated using
the exact objective function and added to the archive for
updating the surrogate models. Wang et al. [40] proposed
to build a number of surrogate models using different sub-
sets of data, and then at each generation some of themwill be
selected to approximate the fitness of each individual in the
current population. Li et al. [24] proposed to train a group
of surrogates using all evaluated data and some generated
data around them to approximate the expensive problem.
Recently, Wang et al. [15] proposed an offline data-driven
evolutionary optimization based on tri-training for expensive
problems. On the contrary, the online surrogate-assisted evo-
lutionary algorithms allow some solutions to be selected for
exact fitness evaluation, which will be used to update the sur-
rogate models. Many online surrogate-assisted evolutionary
algorithms have been proposed [1], which can be classified
into three categories according towhat the surrogatemodel is
used for, i.e., the global model-assisted EAs, the local model-
assisted EAs, and the surrogate ensemble-assisted EAs. The
global surrogate models are generally trained on the overall
fitness landscape and used for assisting the global search.
Tian et al. [37] proposed to train a global GP model and a
multi-objective infill criterion focusing on the approximated
value and the approximation uncertainty is used to select
solutions on the first and last fronts to be evaluated using
the exact objective function. Yu et al. [43] also proposed
to train a global RBF model and the optimal solution of
the model is searched by SL-PSO, which will be evaluated
using the exact objective function. Recently, Li et al. [23]
proposed to train a global RBF model, the optimal solution
of which will be searched by both teaching-learning-based
optimization (TLBO) and PSO. However, constructing accu-
rate global surrogate models is less likely due to the curse
of dimensionality. Therefore, local models are proposed to
capture the local details of the fitness landscape. Ong et al.
[28] proposed an evolutionary algorithm with a sequential
quadratic programming solver in the spirit of Lamarckian
learning, in which computationally cheap surrogate mod-
els are used in the local search. Sun et al. [36] proposed
a new fitness estimation strategy based on the evolutionary
dynamics of particle swarm optimization for solving compu-
tationally expensive problems. However, the key drawback
of the local surrogate models is that they cannot assist the
algorithm in escaping from the local optimum. A number of
surrogate ensembles have been proposed, which are expected
to take advantage of the global and local surrogate models.
Generally, in the surrogate ensemble assisted evolutionary
algorithms, a global surrogate model is used to smooth out
the local optima to speed up the search for the optimal solu-

tion and a local model is utilized to assist in exploiting the
local region to locate at the optimal solution accurately. Sun et
al. [34] proposed a cooperative swarm optimization method
for high-dimensional expensive problems, in which a global
RBF surrogate model is used to assist SL-PSO to explore the
decision space and the fitness estimation strategy is utilized
as a local surrogate model to assist each individual of PSO to
exploit a local region. In [44], Yu et al. utilized PSO assisted
by an RBF surrogate model to explore the decision space, in
which each solution will learn from its own experiences and
the best position found by a local RBF model assisted social
learning particle swarm optimization.

Surrogate ensembles have been paid more attention than
a single surrogate model due to their better performances for
finding a good solution of expensive problem [1]. However,
modelmanagement, especially the infill criterion, plays a cru-
cial role to get a good solution for computationally expensive
problems. Liao [25] regarded two surrogate models, one is
global and the other is local, as two tasks and utilized the
multi-tasking optimization technique to search for the opti-
mal solutions of these two tasks, which will be evaluated
using the exact objective function. In [39], Wang et al. pro-
posed to alternately optimize a global ensemble model and
a local ensemble model, in which the individuals having the
maximum uncertainty and minimum mean predicted value
in the global search, and the individual with a minimum pre-
dicted function value by the local surrogate model will be
selected to be evaluated using the exact objective function.
Li et al. [22] utilized two kinds of surrogate ensemble, in
which one is the ensemble of two RBF models with differ-
ent kernel functions, and the other is the ensemble of RBF
and PR models. The LCB function is adopted as the infill
criterion of the two RBF ensembles, and in the RBF and PR
ensemble, the solutions with minimum approximated value,
and the best diversity, respectively, will be selected for exact
objective evaluation. Recently, Ren et al. [31] proposed a
bi-stage surrogate-assisted hybrid algorithm, inwhich a num-
ber of global searches will be conducted in the first stage for
exploring the whole decision space, and the solution with the
maximum uncertainty in the last generation of each global
search will be evaluated using the exact objective function.
In the second stage, the local search is conducted as a supple-
ment to the global search to exploit the local region around
the best solution found so far and the solution with the min-
imum approximated value will be evaluated using the exact
objective function. From the literature review, we can see
that an efficient infill criterion will significantly affect the
performance of the optimization method.

In this paper, a global search and a local search are con-
ducted in sequence at each generation of the optimization,
and different infill criteria are utilized in two searches for
choosing informative solutions to be evaluated using the
exact fitness function. The algorithms for global and local
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searches can be either the same or different. Thus, we call the
method multiple infill criteria assisted hybrid evolutionary
algorithm, denoted as MIC-assisted HEA. The main contri-
butions of this paper can be summarized as follows.

1. A new method is proposed to measure the approximation
uncertainty of the RBF surrogate model. For any solution,
the information of samples, including their positions in
the decision space and the fitness values in the objective
space, of the neighborhood of this solutionwill be utilized
simultaneously to measure its approximation uncertainty.

2. A global search and a local search, assisted by RBF sur-
rogate models trained using different sets of samples, are
conducted in sequence in each generation.

3. The proposed approximation uncertainty is adopted to be
the infill criterion to select a solution from the final popu-
lation of the global search to be evaluated using the exact
expensive objective function. It is expected to reduce the
approximation error in the subspace where the optimal
solution may be located. While in the local search, the
solutionwith the best approximated fitness value found so
far will be selected for exact fitness evaluation to improve
the opportunity to find the real optimal solution.

The remainder of this paper is organized as follows. The
next section briefly introduces the radial basis function net-
work, differential evolution algorithm, and social learning
particle swarm optimization algorithm. Details of the pro-
posed MIC-assisted HEA are described in the subsequent
section. Next, parameter settings and the analysis on the
experimental results are given. Finally, the conclusion of this
paper and the future work are summarized.

Preliminaries

Radial basis function network

Gaussian process [30] (also known as Kriging [4] or DACE
[21]) is popular to be used as a model in the surrogate-
assisted evolutionary algorithms because it can provide both
the approximated value and the uncertainty of the approxi-
mation. However, GP is impeded to be widely applied due
to the expensive cost to optimize the hyperparameters of GP,
especially the dimension of decision space of the problem
is high. Furthermore, a large number of training samples are
required to train an accurate GP model for high-dimensional
problems, which is impossible for expensive optimization
problems. Contrary to GP, the radial basis function network
(RBF) is insensitive to the number of decision variables [41].
Therefore, in this paper, the RBF is adopted to train both
the global model and the local one for medium-dimension
expensive problems. The RBF [13] model is a feedforward

neural network only containing three layers, i.e., an input
layer, a hidden layer and an output layer. The hidden layer
consists of Nh neurons and each of them has an active func-
tion ϕ(‖x − xp‖) that can be a Gaussian kernel, a thin plate
spline, amultiquadrics, an inversemultiquadrics, a cubic ker-
nel, etc. In this paper, the simple cubic kernel function is
adopted to be utilized in the RBF model. Equation (1) gives
the basic function form of an RBF model,

f̂ (x) =
Nh∑

p=1

ωpϕ(‖x − xp‖) + ω0, (1)

where xp is the center of pth hidden node, and ωp is the pth
weight of the pth neuron in the hidden layer. Given an input
x = {x1, x2, ..., xn}, n is the number of decision variables,
its output f̂ (x) is the sum of the weighted sum of Nh basis
functions and the bias itemω0. Generally, ω0 is set to be zero
or the mean of all data used to train the model.

Differential evolution algorithm

Differential evolution (DE) [33] is an evolutionary algorithm
proposed by Storn and Price in the 1990s. The basic idea
behind DE is a new scheme for generating trial parameter
vectors. In one of the simplest forms of DE, an initial pop-
ulation with N individuals will be generated and evaluated
using the objective function at first. Then an intermediate
solution xui will be generated for individual i by adding the
weighted difference vector between two randomly selected
parent individuals to a third parent individual, i.e.,

xui (t + 1) = xr1(t) + F × (xr2(t) − xr3(t)), (2)

where xr1(t), xr2(t), and xr3(t) are three solutions selected
randomly from the parent population, r1, r2 and r3 are three
random number, r1 �= r2 �= r3 �= i . F ∈ [0, 2] is a control
parameter that scaling the difference vector (xr2(t)−xr3(t)).
Next, a crossover operation comes into play to generate a new
solution according to Eq. (3).

xv
i, j (t + 1) =

{
xui, j (t + 1), rand ≤ CR| j = jr
xi, j (t), otherwise,

(3)

where CR is the probability of crossover, j = {1, 2, ..., n},
n is the decision dimension, jr is a random number of
{1, 2, ..., n} and rand ∈ [0, 1]. Finally, the objective values
of solutions xv

i (t+1) and xi (t)will be compared and the one
with better fitness value will be kept to the next generation.
Equation (4) gives the selection operation.

xi (t + 1) =
{
xv
i (t + 1), f (xv

i (t + 1)) < f (xi (t))
xi (t), otherwise

(4)
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Social learning particle swarm optimization

The social learning particle swarm optimization (SL-PSO)
was proposed by Cheng and Jin [2], which can get good
balance between the exploration and exploitation due to its
learning strategy as is given in the following:

vi, j (t + 1) = r1 × vi, j (t) + r2 × (xk, j (t) − xi, j (t))

+ r3 × ε × (x̄ j (t) − xi, j (t)) (5)

xi, j (t + 1) = xi, j (t) + vi, j (t + 1). (6)

In Eqs. (5) and (6), vi, j (t+1) and xi, j (t+1) are the velocity
and position of individual i on j-dimension at (t+1)th gener-
ation, respectively. k represents an individual who has better
fitness value at t th generation than individual i , and x̄ j (t) is
the average position on j th dimension of the population at t th
generation. r1, r2 and r3 are three random numbers generated
from 0 to 1, respectively, and ε is the social influence factor
determining the influence degree of the average position on
the velocity of the individual in the next generation.

The proposedMIC-assisted HEA

Overall framework

Using multiple surrogate models has been shown better
performance than using a single one to assist evolution-
ary algorithms for expensive optimization problems [31,39].
Thus, in this paper, we also adopt to use multiple models
to assist the evolutionary algorithm. The global and local
searches are conducted in sequence at each generation to
search for the optimal solutions of two surrogate models,
respectively. Figure 1 shows the general flowchart of the
proposed MIC-assisted HEA. From Fig. 1, we can see that
a number of solutions will be generated using Latin hyper-
volume sampling technique and evaluated using the exact
objective function. All of these evaluated solutions will be
saved to an archive DB. In the global search, a global
surrogate model is trained using all solutions having been
evaluated using the exact objective function. It is used to
assist the DE algorithm to speed up locating close at the opti-
mal solution on one hand, and on the other hand, to improve
the exploration capability by evaluating the solution with the
maximum approximation uncertainty in the final population
of the search. While in the local search, a local surrogate
model is trained using a set of data in the archive that have
best fitness values. It is used to assist the algorithm to search
for the optimal solution of the model. The optimal solution
of the local search will be evaluated using the exact expen-
sive objective function, which will be expected to improve
the exploitation capability to find the optimal solution of the

Start

Train a global model 

Global model-based search

Train a local model 

Local model-based search 

UpdateSampling according to 
the approximation uncertainty

UpdateSampling according to 
the approximated fitness values

Terminal condition?

Output the best solution

N

End

Global Search

Local Search

Y

StoreSample  a set of training data using
LHS method and evaluate using the

exact objective function

Fig. 1 The general flowchart of the proposed MIC-assisted HEA

expensive optimization problem. Note that the final popu-
lation of the global search will be the initial population of
the following local and the global searches of the next round,
respectively. In the following, wewill give a detailed descrip-
tion of the global and local searches, respectively.

The global search

Generally, the approximation error of the global surrogate
model can give a potential positive impact to smooth out
the local optima [26]. Thus, it can assist to speeding up the
search to locate the region where a good optimal solution
may stay. So in our proposed MIC-assisted HEA, a global
surrogate model is trained using all data having been eval-
uated using the exact objective function, and used to assist
the DE algorithm in exploring the decision space to find an
informative population with potential good fitness values. To
decrease the approximation error in the spacewhere the infor-
mative population is located, the solution with the maximum
approximation uncertainty will be selected for exact objec-
tive evaluation. However, different to the Gaussian process
model, the RBF surrogate models are not able to provide the
uncertainty of the approximation. Thus, in this paper, we pro-
pose a newmethod tomeasure the approximation uncertainty
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for each solution i , in which both the positional relationships
in the decision space between solution i and its neighbors in
the archive DB and the fitness variation of its neighbors in
the archive are considered. Equation (7) gives the explicitly
formula to calculate the approximation uncertainty of solu-
tion i .

usi (t) =
Nn∑

k=1

(
−cos θ ik(t)

dik(t)
×

√
( f ik (t) − f̄ (t))2

)
, (7)

where usi (t) represents the approximation uncertainty of
solution i at generation t , Nn is the number of closest neigh-
bors in the archive DB of solution i . θ ik(t) and d

i
k(t) represent

the angle and Euclidean distance, respectively, between solu-
tion i and its kth neighbor in the archive DB at generation
t of the global search. Note that all solutions are ensured to
be located at the first quadrant so that the cosine value of any
angle between two solutions is kept positive andmonotonous.
Thus, we transform the coordinate by transforming its ori-
gin to the lower bound of the problem before calculating the
cosine value of each angle. That is, any position xi in the
original coordinate will be transformed to xi −L, where L is
the lower bound of the decision space. After that, the cosine
value of the angle between two solutions can be calculated.
On the other hand, to ensure that the contribution of each
decision variable for the distance calculation is the same,
in our method, each solution will be normalized as follows
before calculating the distance: xi = xi−L

U−L , where U is the

upper bound of the problem. f ik (t) is the fitness value of kth
neighbor of solution i in the archive DB and f̄ (t) is themean
value of all fitness values of solutions in the archive DB at t-
th generation. From Eq. (7), we can see that the larger θ ik (the

smaller cos θ ik) and d
i
k are, the smaller

cos θ ik
dik

is, indicating that

individual i is far from its kth neighbor in the archive DB
in the decision space, thus the accuracy of the approxima-
tion is not able to be ensured. Furthermore, the ruggedness
of the fitness landscape will also affect the approximation
accuracy. Thus, in our proposed method, we propose to use
the differences between the fitness values of the neighbors
and the mean fitness value of all data in the archive DB, i.e.,√

( f ik (t) − f̄ (t))2), k = 1, 2, . . . , Nn , to roughly measure
the ruggedness of the fitness landscape. Clearly, the larger
the difference is, the more irregular the fitness landscape is,
resulting in the difficulty of training a good surrogate model,
which will affect the approximation accuracy. So in our pro-
posed method, the ruggedness of the fitness landscape and
the distance to the neighbor samples in the decision space
are considered simultaneously to measure the approxima-
tion uncertainty. From Eq. (7), we can see that if a solution
is far from its neighbors in the decision space and the fitness
landscape is rugged in the objective space, then the approxi-

mated value will be highly uncertain. Thus, the solution with
the maximum value of us will be selected for exact objective
evaluation to prevent searching for the optimal solution in
a wrong direction and improve the exploration capability of
the proposed method.

The local search

Local surrogate models are normally used to assist the evo-
lutionary algorithms to exploit the local region to improve
the quality of the best solution found so far. In our proposed
MIC-assisted HEA, we sort the solutions in the archive in
ascending order, and a number of top solutions are used
to train a local surrogate model. At the beginning of the
proposed method, few solutions concentrate on a region.
Therefore, the local search assisted by the local model also
has the exploration capability to a certain extend.As the num-
ber of solutions in the archive increases, many solutions will
locate close to the best solution found so far. Thus, the local
search assisted by the local surrogate model will exploit the
region where the best solution found so far is located.

The local search is used to exploit a sub-space of the deci-
sion space to find a solution with a better fitness value than
the best solution found so far. Thus, the optimal solution of
the local search is adopted to be evaluated using the exact
objective function and used to update the best solution found
so far. Note that all solutions that have been evaluated using
the exact expensive fitness function at each generation will
be saved to the archive.

Experimental studies

To verify the performance of the proposed MIC-assisted
HEA, a number of experimental studies are conducted on
seven benchmark problems with 10, 20, 30 and 50 decision
variables and on a real-world application. The characteristics
of the seven test problems are given in Table 1.

Parameter settings

In the proposed MIC-assisted HEA, 2 × n solutions will be
generated using the Latin hypercube sampling (LHS) [42]
method at first and will be saved to an archive DB after being
evaluated using the exact objective function. Any algorithm
can be utilized for global and local searches, respectively. In
our method, the DE is adopted to the algorithm for search-
ing for the optimal solution of the global surrogate model as
the DE algorithms have good capability to escape from the
local optima, and the SL-PSO algorithm is used as the local
search algorithm because it has good performance to balance
the exploration and exploitation capability. The population
sizes of both algorithms are set to 50, the scale factor F and
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Table 1 The function features and global optimal positions of seven problems

Problem num. Problem Global optimum Features

F1 Ellipsoid 0 Uni-modal

F2 Rosenbrock 0 Multi-modal with narrow valley

F3 Ackley 0 Multi-modal

F4 Griewank 0 Multi-modal

F5 Rastrigin 0 Multi-modal

F6 Shifted rotated Rastrign −330 Very complicated multi-modal

F7 Rotated hybrid composition 10 Very complicated multi-modal

the crossover probability CR of DE are set to 0.5 [33] and
0.3 [27], respectively. The social influence factor of SL-PSO
is set to 0 to speed up the convergence speed. The maximum
number of iterations of both global and local searches are set
to 20. All data are used to train a global model, and the 2×n
best data in the archive DB are used to train a local model.
Nn = 10 data that are closest to each solution i in the global
search are used to measure the approximation uncertainty of
the solution i . The terminal condition is that the maximum
number of objective evaluations, which are set to 11× n for
problems with 10, 20 and 30 decision variables and 1000
for those with 50 decision variables, respectively, is met. All
comparison algorithms are run independently 20 times, and
theWilcoxon’s rank-sum test [42] with the significance level
of 5% is utilized to show whether the proposed algorithm
MIC-assisted HEA is significantly different from other algo-
rithms on the results, where ‘−’, ‘+’, and ‘=’ represent that
the proposed MIC-assisted HEA is significantly worse than,
better than, and approximated to the compared algorithms,
respectively.

The performance analysis of local search

To investigate the contribution of the local search in MIC-
assistedHEA,we compare the results to aMIC-assistedHEA
variant, denoted as GM-assisted HEA, which has a global
search only. Table 2 gives the statistical results obtained by
MIC-assisted HEA and GM-assisted HEA on F1–F7 prob-
lems with 10, 20, 30 and 50 decision variables. FromTable 2,
we can see that compared to GM-assisted HEA, our pro-
posed MIC-assisted HEA can obtain better results on 19/28
problems, and only loses to win GM-assisted EA on 1/28
problems, which shows that the local search can actually
assist in improving the performance to find a better solution
in a limited computational budget. To better show the con-
tribution of the surrogate-assisted local search, Fig. 2 plots
the convergence curves of the proposed MIC-assisted HEA
and GM-assisted HEA on F1–F7 functions with 50 decision
variables, from which we can see that MIC-assisted HEA
can converge much faster than GM-assisted HEA on most

of the test problems. The GM-assisted HEA method gets
more quickly convergence speed than MIC-assisted HEA on
F5 (Rastrigin problem). The reason we analyze is that the
Rastrigin problem is a multimodal problem and has a large
number of local minimums, while the approximation error
of a global surrogate model has a potential benefit to smooth
the local optima, thus being able to assist in searching for a
good solution, especially for problems with a large number
of local optima [35]. However, in our proposedMIC-assisted
HEA method, two evaluations shall be spent at each gener-
ation. Therefore it means that the times of the global search
will be cut down, resulting in poor performance for solving
this problem. However, generally, the local search plays an
important role in the proposed MIC-assisted HEA.

Comparison to other recently proposed algorithms

To evaluate the performance of our proposed MIC-assisted
HEA, we further compare the results on seven bench-
mark problems obtained by MIC-assisted HEA to those
obtained by algorithms recently proposed for computation-
ally expensive problems (including GORS-SSLPSO [43],
CAL-SAPSO [39], SHPSO [44], MGP-SLPSO [37], BiS-
SAHA [31] and DDEA-SE [40]). Among all comparison
algorithms, CAL-SAPSO and DDEA-SE are proposed for
low-dimensional expensive problems and others are pre-
sented for high-dimensional ones. Furthermore, DDEA-SE
is an offline data-driven method and all others are online
approaches. As SHPSO and MGP-SLPSO are specially pro-
posed for high-dimensional problems, in our experiments,
they are only used to compare MIC-assisted HEA on 50-
dimensional problems.

Experimental results on low-dimensional problems

Table 3 gives the statistical results obtained by the proposed
MIC-assisted HEA and other four algorithms, including
GORS-SSLPSO, CAL-SAPSO, BiS-SAHA and DDEA-SE,
on 10-, 20-, and 30-dimensional F1–F7 problems. From
Table 3, we can see that MIC-assisted HEA performs sig-
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Table 2 The statistical results
(median and standard deviation)
obtained by the proposed
MIC-assisted HEA and
GM-assisted HEA on F1–F7
problems with 10, 20, 30 and 50
decision variables

Problem Dec. MIC-assisted HEA GM-assisted HEA

F1 10 2.5710e−03(1.08e−02) 5.5267e−02(5.14e−02) [+]

20 4.3554e−02(1.37e−01) 4.0374e−01(3.05e+00) [+]

30 9.6084e−02(3.24e−01) 1.2649e+00(1.42e+00) [+]

50 1.3579e−02(2.79e−02) 5.7731e−01(1.53e+00) [+]

F2 10 8.9454e+00(1.34e+01) 1.1706e+01(1.39e+01) [+]

20 1.8568e+01(1.69e+01) 6.1010e+01(2.30e+01) [+]

30 2.8425e+01(2.69e+01) 8.9921e+01(2.70e+01) [+]

50 4.7269e+01(2.26e+01) 1.0314e+02(3.56e+01) [+]

F3 10 2.5708e+00(6.84e+00) 2.0952e+00(5.31e+00) [=]

20 1.3668e+00(6.30e−01) 2.0945e+00(8.94e−01) [+]

30 1.5390e+00(5.10e−01) 2.3507e+00(7.56e−01) [+]

50 1.5161e+00(7.20e−01) 2.2012e+00(4.96e−01) [+]

F4 10 4.3039e−01(3.08e−01) 1.4701e−01(2.30e−01) [−]

20 9.6139e−02(1.06e−01) 9.8430e−02(6.06e−02) [=]

30 6.8255e−02(4.29e−02) 1.1822e−01(6.66e−02) [+]

50 1.9544e−04(6.85e−03) 4.2748e−04(5.92e−03) [+]

F5 10 3.3211e+01(3.41e+01) 2.8356e+01(1.87e+01) [=]

20 6.0241e+01(2.26e+01) 6.2185e+01(2.58e+01) [=]

30 1.0114e+02(4.52e+01) 1.0849e+02(3.33e+01) [=]

50 1.5273e+02(8.16e+01) 1.5721e+02(3.25e+01) [=]

F6 10 −2.9037e+02(2.08e+01) −2.7714e+02(2.08e+01) [=]

20 −1.3934e+02(3.68e+01) −1.1435e+02(2.92e+01) [=]

30 −1.9035e+02(5.04e+01) −1.5234e+02(4.58e+01) [+]

50 −1.4710e+02(6.66e+01) −5.3805e+01(3.46e+01) [+]

F7 10 1.0648e+03(1.37e+02) 1.1763e+03(1.13e+02) [+]

20 1.2313e+03(9.76e+01) 1.2510e+03(7.31e+01) [+]

30 9.4720e+02(3.59e+01) 1.0086e+03(5.08e+01) [+]

50 9.8624e+02(4.78e+01) 1.0596e+03(5.61e+01) [+]

+/−/= – 19/1/8

The best results are highlighted

nificantly better on these problems than other algorithms.
Specifically, MIC-assisted HEA gets better results than
GORS-SSLPSO, CAL-SAPSO, BiS-SAHA, DDEA-SE on
14/21, 16/21, 13/21 and 20/21 problems, respectively.

Figure 3 plots the convergence profiles of the compared
algorithms on 10-, 20- and 30-dimensional F1–F7 problems.
From Fig. 3, we can see that MIC-assisted HEA shows good
performance of the convergence speed onmost of these prob-
lems. However, the proposed MIC-assisted HEA method is
not able to get better results than others on F5 and F6 prob-
lems. The reason we analyze is that the Rastrigin problem
(F5) has a large number of local optima, and the shifted
rotated Rastrigin problem (F6) has very complicated multi-
modal characteristics. Thus the search on the global surrogate
model may mislead to an error global optimal solution, and
the newly added solution for training the global surrogate
model,which is the optimal solution foundby the local search

and evaluated using the exact objective function, may not
contribute to improving the quality of the global model.

Experimental results on medium-dimensional problems

Table 4 summarizes the statistical results obtained by MIC-
assisted HEA and other five algorithms, including SHPSO,
GORS-SSLPSO,MGP-SLPSO,BiS-SAHA, andDDEA-SE,
on 50-dimensional F1–F7 problems. From Table 4, we can
see that compared to other algorithms, the proposed MIC-
assistedHEAmethod can also obtain better results than other
algorithms. To be specific, MIC-assisted HEA outperforms
SHPSO, GORS-SSLPSO, MGP-SLPSO, BiS-SAHA, and
DDEA-SE on 6, 6, 5, 5, and 7 out of 7 benchmark prob-
lems, which shows that our proposed method is also efficient
for solving medium-dimensional expensive problems.
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Fig. 2 The convergence profiles obtained by the proposed MIC-assisted HEA and GM-assisted HEA on 50-dimension F1–F7 test problems

Experimental results on a real-world application

The choice of the appropriate waveform is significantly
important in designing a radar system that uses pulse com-
pression. To evaluate the performance of the proposed
MIC-assisted HEA, we apply all comparison methods in the
spread spectrum radar Polly phase code design, which is a
min–max nonlinear non-convex optimization problem with
many local optima. The mathematical model is given as fol-
lows:

min f (x) = max{φ1(x), ..., φ2m(x)}, m = 2n − 1 (8)

φ2i−1(x) =
n∑

j=i

cos

⎛

⎝
j∑

k=|2i− j−1|+1

xk

⎞

⎠ , i = {1, 2, , n}

(9)

φ2i (x) = 0.5 +
n∑

j=i+1

cos

⎛

⎝
j∑

k=|2i− j |+1

xk

⎞

⎠ ,

i = {1, 2, , n − 1} (10)

φm+i (x) = −φi (x), i = {1, 2, ...,m}, (11)

where x = (x1, x2, ..., xn), x j ∈ [0, 2π ] is the decision vec-
tor with n variables. More details of this problem can be
referred to [6,9].

Tables 5 and 6 give the best, worst, median, mean results
and the standard deviation obtained by MIC-assisted HEA
and other six methods on the spread spectrum radar Polly
phase code design problemwith 30 and 50 decision variables,

respectively. All comparison algorithms are conducted 20
independently runs. Themaximumnumber of objective eval-
uations is set to 11×n and 1000 for 30- and 50-dimensional
spread spectrum radar Polly phase code design problem,
respectively. From Tables 5 and 6, we can see that the pro-
posed MIC-assisted HEA can outperform other algorithms
for the spread spectrum radar Polly phase code design prob-
lem, indicating further the goodperformanceofMIC-assisted
HEA for solving the expensive problems in a limited com-
putational budget.

Conclusion

A multiple infill criterion-assisted hybrid evolutionary algo-
rithm is proposed for computationally expensive problems,
in which a surrogate-assisted global search and a surrogate-
assisted local search are conducted in sequence at each
generation. The surrogate-assisted global search is used to
provide a potential good population, in which a solution with
the maximum approximation uncertainty measured by the
proposed method in this paper, will be selected for exact
objective evaluation to improve the exploration capability of
the method. In the surrogate-assisted local search, the best
solution found by the algorithm will be evaluated using the
real objective function to improve the quality of the best
solution found so far as much as possible. The experimental
results on seven benchmark problems with 10, 20, 30 and
50 dimensions and a real-world application with 30 and 50
decision variables show that our proposed method is effi-
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Fig. 3 The convergence profiles
obtained by the proposed
MIC-assisted HEA and other
four algorithms on F1–F7
problems with 10, 20 and 30
decision variables
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Table 5 The results obtained by
the proposed MIC-assisted HEA
and other four algorithms,
GORS-SSLPSO, CAL-SAPSO,
BiS-SAHA, and DDEA-SE on
the spread spectrum radar Polly
phase code design problem with
30 decision variables, in which
the best results are highlighted

Best Worst Median Mean Std

MIC-assisted HEA 2.2043e+00 4.3186e+00 3.0747e+00 3.2003e+00 6.37e−01

GORS-SSLPSO 2.4511e+00 4.0668e+00 3.4180e+00 3.3496e+00 4.65e−01

CAL-SAPSO 4.0339e+00 7.8224e+00 5.7051e+00 5.8896e+00 9.34e−01

BiS-SAHA 3.3204e+00 4.3429e+00 3.8105e+00 3.8286e+00 2.81e−01

DDEA-SE 5.8208e+00 2.7020e+01 9.5791e+00 1.1762e+01 5.70e+00

Table 6 The statistical results
obtained by the proposed
MIC-assisted HEA and other
five algorithms, SHPSO,
MGP-SLPSO, BiS-SAHA,
GORS-SSLPSO and DDEA-SE
on the spread spectrum radar
Polly phase code design
problem with 50 decision
variables, in which the best
results are highlighted

Best Worst Median Mean Std

MIC-assisted HEA 3.5389e+00 5.2851e+00 4.1305e+00 4.3044e+00 5.57e−01

SHPSO 4.2102e+00 5.7851e+00 5.0888e+00 5.0272e+00 3.70e−01

MGP-SLPSO 4.4997e+00 6.9537e+00 5.7380e+00 5.7798e+00 5.52e−01

BiS-SAHA 4.9032e+00 5.9937e+00 5.5201e+00 5.5353e+00 2.97e−01

GORS-SSLPSO 3.7392e+00 5.4624e+00 4.2421e+00 4.3915e+00 5.44e−01

DDEA-SE 8.7761e+00 2.9522e+01 1.1555e+01 1.3973e+01 5.70e+00

cient for solving low- and medium-dimensional expensive
problems. However, the method is not good for solving high-
dimensional problems. The reason we analyze is that most
solutions selected for exact objective evaluationmay not play
an important role in improving the quality of the best solu-
tion found so far. Therefore, in the future, we will consider
to reduce the fitness evaluations at each generation as much
as possible to save the number of evaluations so that more
generations can be run in a limited computational budget.
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