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Abstract
In this study, the notions of picture fuzzy tolerance graphs, picture fuzzy interval containment graphs and picture fuzzy
φ-tolerance graphs are established. Three special types of picture fuzzy tolerance graphs having bounded representations are
introduced and studied corresponding properties of them taking φ as max, min and sum functions. Also, picture fuzzy proper
and unit tolerance graphs are established and some related results are investigated. The class of picture fuzzy φ-tolerance
chaingraphs which is the picture fuzzy φ-tolerance graphs of a nested family of picture fuzzy intervals are presented. A
real-life application in sports competition is modeled using picture fuzzy min-tolerance graph. Also a comparison is given
between picture fuzzy tolerance graphs and intuitionistic fuzzy tolerance graphs.

Keywords Picture fuzzy graphs · Picture fuzzy tolerance graphs · Picture fuzzy φ-tolerance graphs · Picture fuzzy proper
and unit tolerance graphs · Picture fuzzy φ-tolerance chain graphs

Abbreviations
FG Fuzzy graph
PF Picture fuzzy
PFG Picture fuzzy graph
FPG Fuzzy planar graph
PFC Picture fuzzy clustering
CG Competition graph
IG Interval graph
TG Tolerance graph
TR Tolerance representation
IC Interval containment
SL Support length
CL Core length
PFI Picture fuzzy interval
PFT Picture fuzzy tolerance
PFIG Picture fuzzy interval graph
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PFTG Picture fuzzy tolerance graph
PFICG Picture fuzzy interval containment graph
PFφ-TG Picture fuzzy φ-tolerance graph
PFφ-TCG Picture fuzzy φ-tolerance chain graph
PF max, min Picture fuzzy max, min and sum tolerance
and sum TG graph, respectively
PFmax, min, Picture fuzzy max, min and sum-tolerance
sum TCG chain graph, respectively
TMS, AMS Degree of truth, abstinence and false
and FMS membership, respectively

Introduction

Research background

In 1965, the notion of fuzzy set (FS) was initially posed
by Zadeh [51] to model the problems having uncertain-
ties. It was seen that FS with one component may fail
to modeled some problems properly. To illustrate those
problems Atanassov [2] invited another component namely
non-membership value and defined intuitionistic fuzzy (IF)
set. But, in some cases, an extra component namely ‘neutral-
ity’ is needed to explain an existing information completely.
To recover this situation, Cuong [6] initiated the idea of pic-
ture fuzzy (PF) set as an extended version of IF set. After
that, Son [43] introduced generalized picture distance mea-
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sure with its applications in PF clustering (PFC) and he
described some measuring analogousness in PF sets [44].
Based on PFC method, Thong and Son presented weather
now casting from satellite image sequences in [45] and par-
ticle swarm optimization with picture composite cardinality
in [46]. They also explained PFC: a new computational intel-
ligence method [47] and PFC for complex data [48]. Graph
theory waswell studied bymany researcher in discretemath-
ematics, computer science, railway network, traffic network,
ecological modeling, archaeology, etc. for its wide applica-
tions. The concept of fuzziness was initiated in graph theory
by Rosenfeld [33] and defined fuzzy graph (FG), whereas
in 1973 Kauffman [22] initially posed its basic idea. After
that, in the domain of FG many works have been done by
the researchers in several directions such as Samanta and
Pal defined the notion of fuzzy competition graphs (CGs)
[36] and fuzzy planar graphs (FPGs) [37]. Samanta et al.
explainedm-step fuzzy CGs [38] and they investigated com-
pleteness and regularity of generalized FGs in [39]. Several
newconcepts of bipolar FGswith applicationswere proposed
by Poulik and Ghorai in [29–31]. Later on, Naz et al. [26]
introduced the novel concepts of energy of a graph in the
context of a bipolar fuzzy environment with its application
in decisionmaking problem.Ghorai and Pal introduced some
operations onm-polar FGs [15], some isomorphic properties
of m-polar FGs with applications [16] and m-polar FPGs
[17]. They also studied certain types of product bipolar FGs
in [18]. The concept of IF graph was first given by Shannon
and Atanassov [34]. Sahoo and Pal introduced IF competi-
tion graph [40] and explained certain types of edge irregular
IF graphs in [42]. Next, Karaaslan [24] exhibited structure
of hesitant FGs with their applications in decision making.
Recently, Akram et al. [3] proposed the concept of CGs under
complex fuzzy environment and designed an application of
it in ecology.

Al-Hawary et al. [1] proposed the notion of PF graph
(PFG) with some operations as an extended version of IF
graph. Later on, Zuo et al. presented the new concepts of
PFGs with application in [50]. Mohamedlsmayil and Asha-
Bosely [25] described domination in PFGs. Recently, Das
and Ghorai [8] have defined picture FPGs and applied it
to construct road map designs. They have also applied the
idea of PF sets to CGs, PF genus graphs [9–11]. Xiao et al.
studied on regular PFG and its application in communication
networks in [49].

Golumbic andMonma [12] first initiated tolerance graphs
(TGs) as a natural generalization of interval graphs (IGs)
using tolerances and examined TG in [13]. Jacobson et al.
[19,20] introduced tolerance intersection graph and estab-
lished some general results of it. The equivalence relation
between proper and unit intervals for sum-TGs are explained
by Jacobson and McMorris in [21]. Bogart and Fishburn [5]
describedproper andunit TGs.The idea of toleranceCGswas

initiated by Brigham et al. [4]. Samanta and Pal [35] defied
fuzzyTGs. Pramanik et al. introduced fuzzyφ-toleranceCGs
[27] and interval-valued fuzzy φ-tolerance CGs [28]. Then
TGs with application in IF environment were explained by
Sahoo and Pal [41]. Kiersteada and Saoubb [23] discussed
about the first-fit coloring of bounded TGs. Max-point-TGs
were studied by Catanzaro et al. [7] in 2017 and recently,
Paul [32] discussed on central max-point-TGs.

Research challenges and gaps

• The TG is a well-known topic. But till now, no work has
been done on it in PF environment.

• The PF tolerance graph (PFTG) can model the conflicts
of events occurring in a block of time and can also fix up
the relation between them.

• PFTGmodels are very effective to solve certain schedul-
ing and resource allocation problems in operations
research than the models in other fields.

• All the introduced TGs are crisp graphs which cannot
describe all the real-world problems that contains uncer-
tainty or haziness and fuzzy in nature.

• The PFTG models give more legibility, flexibility and
suitability to the system as compared with the models in
other fields due to uncertainty.

Motivation and contribution of this study

In graph theory, an intersection graph represents the pattern
of overlap of collection of sets.An IG is the intersection of the
intervals on a real line RL . In certain scheduling and resource
allocation problems of operations research the IG model
is very fruitful. Moreover, IGs have numerous applications
in several fields such as ecological model, developmental
psychology, archaeology, mathematical modeling, etc. TGs
were invited to generalize few well-known applications of
IGs. The original purpose was to model certain scheduling
and resource allocation problems for sharing of vehicles and
rooms, etc. We have presented a new classification of TGs in
PF environment.Due to uncertainty in the description ofTGs,
it is a necessity to design PFTG models. We have general-
ized IGs by using tolerance and constructed PFTGmodels by
assuming PFIs as the vertices. And two vertices are combined
by an edge iff the intersection of the corresponding picture
fuzzy intervals (PFIs) are at least as large as the picture fuzzy
tolerance (PFT) associated with one of the PF vertices. The
PFTG, a worthwhile generalization of IF tolerance graph
(IFTG), is a proficient model to deal with uncertainties of
human judgement in more comprehensive and logical way
due to the presence of an additional term known as ‘neutral
membership’. This graph has an acuity over the other exist-
ing models of the literature due to its additional features of
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handling the uncertainties. On the other hand, if we remove
the ‘neutralmembership’ of PFTG, the PFTG reduces to con-
ventional IFTG. Thus, PFTG is an effective generalization of
IFTG. The TGs developed under PF environment are useful
enough to tackle all the tolerances of real world which pos-
sess the information with more possible types of vagueness
and uncertainties.

In this research article, we present the innovative concept
of PFTGs. Moreover, we consider PF φ-tolerance graphs
(PFφ-TGs), PF max, min and sum TGs, PF unit TGs, PF
proper TGs and PF φ-tolerance chain graphs (PFφ-TCGs)
with interesting properties. In addition, we discuss an appli-
cation of PFmin TG in sports competition to emphasize the
superiority of this graphs in real life. The main contribu-
tion to this article is TGs with its remarkable specializations
are developed in PF environment to overcome the deficien-
cies of other existing TGs of the literature. An algorithm is
initiated to find the tolerances among the real-world enti-
ties with an application in sports competition. A comparison
between PFTG and IFTG is provided to show the superiority
and authenticity of our proposed TGs.

Framework of this study

This work is constructed as follows: some basic observa-
tions connected to PFTGs are provided in “Preliminaries”.
“Picture fuzzy tolerance graphs” presents new notions of
PF max, min and sum TGs and studies several properties
of them. “Picture fuzzy φ-tolerance chain graph” gives the
idea of PFφ-TCGs with some properties. An application of
PFmin TG in sports competition is given in “Application of
tolerance graph in sports competition”. Before the conclud-
ing section, comparison of the proposed TGs with existing
IFTGs is given. Finally, the conclusion is presented in “Con-
clusion”.

Preliminaries

This section, we reminisce some preliminary observations
related to our study such as TG, bounded TG, unit TG, proper
TG, interval containment graph, max TG, PF set and PFG.

Definition 2.1 [13]A graphG = (V , B) is a TG if ∃ a collec-
tion of the closed intervals I = {Ir : r ∈ V } on RL with the
corresponding positive tolerances t = {tr : r ∈ V } satisfying
rs ∈ B ⇔ |Ir ∩ Is | ≥ min{tr , ts}, where |I | is the length
of I and the pair (I , t) is known as tolerance representation
(TR) of G.

A TR (I , t) is bounded if tr ≤ |Ir | for all r ∈ V . A TG
is bounded [13] if it confess a bounded TR. An interval rep-
resentation (IR) is an unit-IR when all intervals are of equal

length and it will be proper-IR when no interval contained
completely in another.

Definition 2.2 [13] A vertex r ∈ G is an assertive if for every
TR (I , t) of G replacing tr by min{tr , |Ir |} leaves the TG
unchanged. An assertive vertex is one which never requires
unbounded tolerance. If each vertex of a TG G is assertive,
then G is bounded TG.

If r be a vertex of G and adj(r) − adj(s) �= ∅, ∀s �= r in
G, then r is assertive, where adj(r) is the set of all vertices
adjacent to r by an edge in G.

Definition 2.3 [5] A unit TG is one that has a TR in which
all intervals are of equal length and proper TG is one that has
a TR in which no interval contained properly in another.

Now we define interval containment (IC) graph and max
TG below.

Definition 2.4 [13] An IC graph G = (V , B) is represented
by the set of intervals I = {Ir : r ∈ V } such that an edge
(r , s) ∈ B(G) if one of Ir , Is contains the other. This repre-
sentation is known as IC representation.

Definition 2.5 [14] A graph G = (V , B) is a max TG if ∃
a collection of the closed intervals I = {Ir : r ∈ V } on RL

with the corresponding positive tolerances t = {tr : r ∈ V }
satisfying rs ∈ B ⇔ |Ir ∩ Is | ≥ max{tr , ts}. For max TGs,
we may assume tr ≤ |Ir | ∀ r ∈ V ; otherwise, r becomes
isolated. A max TG is a unit-max TG if Ir = Is ∀ r , s ∈ V .

Definition 2.6 [6] A PF set A is defined on an universe
X as A = {p, (μA(p), ηA(p), νA(p)) : p ∈ X}, where
μA(p), ηA(p), νA(p) ∈ [0, 1] are the degree of truth mem-
bership (TMS), degree of abstinence membership (AMS),
degree of false membership (FMS) of p ∈ A, respectively,
with 0 ≤ μA(p) + ηA(p) + νA(p) ≤ 1 ∀p ∈ X . Also
∀p ∈ X , DA(p) = 1− (μA(p)+ ηA(p)+ νA(p)) represent
denial degree of p ∈ A.

Now, we define support, core and height of a PF set. Also,
define PFG with an example as follows:

Definition 2.7 [9] Let A = {p, (μA(p), ηA(p), νA(p)) :
p ∈ X} be a PF set. The support of A is defined as
Supp(A)={p ∈ V : μA(p) ≥ 0, ηA(p) ≥ 0 and νA(p) ≥ 0}
and its support length (SL) is s(A) = |Supp(A)|. The
core of A is defined as Core(A)={p ∈ V : μA(p) =
1, ηA(p) = 0 and νA(p) = 0} and its core length (CL)
is c(A) = |Core(A)|. The height of A is defined as
h(A) = (supp∈V μA(p), supp∈V ηA(p), inf p∈V νA(p)) =
(hμ(A), hη(A), hν(A)).

Definition 2.8 [1] A PFG is G = (V , A, B) where A =
(μA, ηA, νA), B = (μB, ηB, νB) and
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Fig. 1 Example of a PFG

(i) V = {r1, r2, . . . , rn} such that μA, ηA, νA : V → [0, 1]
are the TMS, AMS and FMS of ri ∈ V , respectively,
with 0 ≤ μA(ri ) + ηA(ri ) + νA(ri ) ≤ 1 ∀ri ∈ V ,
(i = 1, 2, . . . , n).

(ii) μB, ηB, νB : V × V → [0, 1] are the TMS, AMS and
FMSof edge (ri , r j ), respectively, such thatμB(ri , r j ) ≤
min{μA(ri ), μA(r j )}, ηB(ri , r j ) ≤ min{ηA(ri ), ηA(r j )}
and νB(ri , r j ) ≤ max{νA(ri ), νA(r j )} with
0 ≤ μB(ri , r j ) + ηB(ri , r j ) + νB(ri , r j ) ≤ 1 for every
(ri , r j ), (i, j = 1, 2, . . . , n).

Example 2.9 We consider a PFGG = (V , A, B) as shown in
Fig. 1,whereV = {r1, r2, r3, r4}, A = {(r1, (0.35, 0.2, 0.1)),
(r2, (0.4, 0.3, 0.2)), (r3, (0.3, 0.1, 0.5)), (r4, (0.15, 0.4,
0.3))} is a PF set on V and B = {(r1r2, (0.3, 0.2, 0.2)),
(r1r4, (0.15, 0.2, 0.3)), (r2r3, (0.2, 0.1, 0.5)), (r2r4, (0.1,
0.3, 0.3)), (r3r4, (0.15, 0.1, 0.5))} is the PF relation on a PF
subset of V × V . The TMS, AMS and FMS of the vertex
r1 are 0.35, 0.2 and 0.1, respectively, and similarly for other
vertices and edges.

Picture fuzzy tolerance graphs

In this section, first we define PF intersection graph and then
PFφ-TG. Here φ is restricted as one of the functions of maxi-
mum, minimum and sum.We describe PF max, min and sum
TGs, respectively, and study some important properties of
them.

Definition 3.1 Let F = {Ai : i = 1, 2, . . . , n} be the finite
collection of PF sets defined on X and consider each PF
set as vertex of the PFG. Let V = {ri : i = 1, 2, . . . , n}
be the vertex set. Then the PF intersection graph of F is a
PFG Int(F) = (V , A, B). The TMS, AMS and FMS of the
vertices are given by μA(ri ) = hμ(Ai ), ηA(ri ) = hη(Ai )

and νA(ri ) = hν(Ai ). Also, the TMS, AMS and FMS
of an edge (r j , rk) ∈ Int(F) are given by μB(r j , rk) ={
hμ(A j ∩ Ak), if j �= k
0, if j = k,

Fig. 2 Example of a PFT

ηB(r j , rk) =
{
hη(A j ∩ Ak), if j �= k
0, if j = k,

and

νB(r j , rk) =
{
hν(A j ∩ Ak), if j �= k
0, if j = k.

Now, we will discuss about the notion of PFI, PFTG and
PFφ-TG.

Definition 3.2 A PFI I on a real interval I is a PF set I : I →
[0, 1], it is denoted by I = (

I, (μA(I), ηA(I), νA(I))
)
. A PFI

I is normal and convex PF-subset of I. A PFI I is normal if ∃
a r ∈ I such that h(r) = (1, 0, 0) and convex if the ordering
r ≤ s ≤ t implies that

μA(s) ≥ min{μA(r), μA(t)},
ηA(s) ≤ min{ηA(r), ηA(t)},
νA(s) ≤ max{νA(r), νA(t)}.

Definition 3.3 The PFT T of a PFI is an arbitrary PFI whose
CL is a positive real number. If the real number is taken as
L and |in − in−1| = L , where in, in−1 ∈ R, then the PFT
is the PF set of the interval [in − in−1]. s(T ) and c(T ) are,
respectively, the SL and CL of T . PFT may be a PF number.
The PFT is shown in Fig. 2.

PFφ-TG is the generalization of PF interval graph (PFIG)
which is defined below and explained a general characteri-
zation of it as follows:

Definition 3.4 Let φ : R+ × R+ → R+ be a function,
where R+ is the set of all positive real numbers. Let I =
{Ii : i = 1, 2, . . . , n} be a finite family of PFIs on RL along
with corresponding PFTs T = {Ti : i = 1, 2, . . . , n}. Con-
sider each PFI as vertex of the PFφ-TG. Let V = {ri :
i = 1, 2, . . . , n} be the vertex set and corresponding PFφ-TG
is the PF graphG = (V , A, B). The TMS, AMS and FMS of
the vertices are given by μA(ri ) = hμ(Ii ), ηA(ri ) = hη(Ii )
and νA(ri ) = hν(Ii ). Also the TMS, AMS and FMS of the
edge (ri , r j ) in G are, respectively,the following:
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μB(ri , r j ) =

⎧⎪⎨
⎪⎩
1, if c(Ii ∩ I j ) ≥ φ{c(Ti ), c(Tj )}
s(Ii∩I j )−φ{s(Ti ),s(Tj )}

s(Ii∩I j )
hμ(Ii ∩ I j ), if s(Ii ∩ I j ) ≥ φ{s(Ti ), s(Tj )}

0, otherwise.

ηB(ri , r j ) =

⎧⎪⎨
⎪⎩
0, if c(Ii ∩ I j ) ≥ φ{c(Ti ), c(Tj )}
s(Ii∩I j )−φ{s(Ti ),s(Tj )}

s(Ii∩I j )
hη(Ii ∩ I j ), if s(Ii ∩ I j ) ≥ φ{s(Ti ), s(Tj )}

0, otherwise.

νB(ri , r j ) =

⎧⎪⎨
⎪⎩
0, if c(Ii ∩ I j ) ≥ φ{c(Ti ), c(Tj )}
s(Ii∩I j )−φ{s(Ti ),s(Tj )}

s(Ii∩I j )
hν(Ii ∩ I j ), if s(Ii ∩ I j ) ≥ φ{s(Ti ), s(Tj )}

1, otherwise.

where c(Ii ∩ I j ) and s(Ii ∩ I j ) are the CL and SL of Ii ∩ I j ,
respectively. Also, hμ(Ii ∩ I j ), hη(Ii ∩ I j ) and hν(Ii ∩ I j ) are
the TMS,AMS and FMS of the height of Ii ∩ I j , respectively.

Theorem 3.5 Let G = (V , A, B) be the PFφ-TG. If h(Ii ∩
I j ) = (1, 0, 0) and s(Ii ∩ I j ) ≥ 2φ{s(Ti ), s(Tj )}. Then
μB(ri , r j ) ≤ 1

2 , ηB(ri , r j ) ≤ 1
2 and νB(ri , r j ) ≤ 1

2∀(ri , r j ) ∈ G.

Proof Let G = (V , A, B) be a PFφ-TG of the PFIs
I = {Ii : i = 1, 2, . . . , n} with the corresponding PFTs
T = {Ti : i = 1, 2, . . . , n}. Since h(Ii ∩ I j ) = (1, 0, 0),
then hμ(Ii ∩ I j ) = 1, hη(Ii ∩ I j ) = 0 and hν(Ii ∩
I j ) = 0. Also, since s(Ii ∩ I j ) ≥ 2φ{s(Ti ), s(Tj )}, then
s(Ii ∩ I j ) ≥ φ{s(Ti ), s(Tj )}. Therefore, μB(ri , r j ) =
s(Ii∩I j )−φ{s(Ti ),s(Tj )}

s(Ii∩I j )
hμ(Ii ∩ I j ) = [1− φ{s(Ti ),s(Tj )}

s(Ii∩I j )
] × 1 ≤

1 − 1
2 = 1

2 , ηB(ri , r j ) = s(Ii∩I j )−φ{s(Ti ),s(Tj )}
s(Ii∩I j )

hμ(Ii ∩
I j ) = [1 − φ{s(Ti ),s(Tj )}

s(Ii∩I j )
] × 0 = 0 < 1

2 and νB(ri , r j ) =
s(Ii∩I j )−φ{s(Ti ),s(Tj )}

s(Ii∩I j )
hμ(Ii ∩ I j ) = [1− φ{s(Ti ),s(Tj )}

s(Ii∩I j )
] × 0 =

0 < 1
2 .

Picture fuzzymin-tolerance graphs

The PF min-tolerance graph (PFmin TG) is a PFφ-TG in
which φ is restricted to the minimum (min) function defined
by φ(r , s) = min{r , s}. The PFmin-TG is defined below.

Definition 3.6 Let I = {Ii : i = 1, 2, . . . , n} be a finite
collection of PFIs on RL along with corresponding PFTs
T = {Ti : i = 1, 2, . . . , n}. Consider each PFI as vertex
of the PFmin-TG. Let V = {ri : i = 1, 2, . . . , n} be the
vertex set and corresponding PFmin-TG is the PF graph
G = (V , A, B). The TMS, AMS and FMS of the ver-
tices are given by μA(ri ) = hμ(Ii ), ηA(ri ) = hη(Ii ) and
νA(ri ) = hν(Ii ). Also the TMS, AMS and FMS of the edge
(ri , r j ) in G are, respectively, the following:

μB(ri , r j ) =

⎧⎪⎨
⎪⎩
1, if c(Ii ∩ I j ) ≥ min{c(Ti ), c(Tj )}
s(Ii∩I j )−min{s(Ti ),s(Tj )}

s(Ii∩I j )
hμ(Ii ∩ I j ), if s(Ii ∩ I j ) ≥ min{s(Ti ), s(Tj )}

0, otherwise.

ηB(ri , r j ) =

⎧⎪⎨
⎪⎩
0, if c(Ii ∩ I j ) ≥ min{c(Ti ), c(Tj )}
s(Ii∩I j )−min{s(Ti ),s(Tj )}

s(Ii∩I j )
hη(Ii ∩ I j ), if s(Ii ∩ I j ) ≥ min{s(Ti ), s(Tj )}

0, otherwise.

νB(ri , r j ) =

⎧⎪⎨
⎪⎩
0, if c(Ii ∩ I j ) ≥ min{c(Ti ), c(Tj )}
s(Ii∩I j )−min{s(Ti ),s(Tj )}

s(Ii∩I j )
hν(Ii ∩ I j ), if s(Ii ∩ I j ) ≥ min{s(Ti ), s(Tj )}

1, otherwise.
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Fig. 3 Representation of PFIs

Fig. 4 Corresponding PFmin-TG

We explain it by the following example:

Example 3.7 We consider four PFIs {Ii : i = 1, 2, 3, 4} on
RL along with corresponding PFTs {Ti : i = 1, 2, 3, 4}.
Suppose PFIs are the vertices and V = {ri : i = 1, 2, 3, 4}
is the vertex set of PFmin TG G = (V , A, B). Let the
support of these PFIs are respectively [1, 7.5], [3.5, 10],
[5, 11], [10.5, 17]. Also the cores are respectively [2, 6],
[4, 8], [6.5, 9], [12, 15.5] and s(T1) = 5, s(T2) = 4.25,
s(T3) = 2, s(T4) = 2.75 and c(T1) = 1.5, c(T2) = 3,
c(T3) = 4.5, c(T4) = 1.25. The corresponding PFIs are
shown in Fig. 3.

We have I1 ∩ I2 = [3.5, 7.5], I1 ∩ I3 = [5, 7.5], I2 ∩
I3 = [5, 10], I3 ∩ I4 = [10.5, 11]. Also, s(I1 ∩ I2) = 4,
s(I1 ∩ I3) = 2.5, s(I2 ∩ I3) = 5, s(I3 ∩ I4) = 0.5 and
c(I1∩I2) = 2, c(I1∩I3) = 0, c(I2∩I3) = 1.5, c(I3∩I4) = 0.
Here, h(I1∩ I2) = (1, 0, 0), h(I1∩ I3) = (0.83, 0.05, 0.12),
h(I2∩ I3) = (1, 0, 0), h(I3∩ I4) = (0.14, 0.22, 0.64). Since,
I1 ∩ I2 �= ∅ and c(I1 ∩ I2) ≥ min{c(T1), c(T2)}, (r1, r2) is
an edge of G with TMS, AMS and FMS (1, 0, 0). Also, I1 ∩
I3 �= ∅ and s(I1 ∩ I3) ≥ min{s(T1), s(T3)}. Hence (r1, r3) is
an edge of G with TMS, AMS and FMS (0.16, 0.01, 0.02).
Again, I2 ∩ I3 �= ∅ and s(I2 ∩ I3) ≥ min{s(T2), s(T3)}. So
(r2, r3) is an edge ofG with TMS,AMS and FMS (0.6, 0, 0).
As, I3 ∩ I4 �= ∅ and c(I3 ∩ I4) � min{c(T3), c(T4)}, s(I3 ∩
I4) � min{s(T3), s(T4)}, then (r3, r4) is an edge of G with
TMS, AMS and FMS (0, 0, 1). The corresponding PFmin
TG is shown in Fig. 4.

Definition 3.8 Let I = {Ii : i = 1, 2, . . . , n} be a finite
collection of PFIs on RL along with corresponding PFTs

T = {Ti : i = 1, 2, . . . , n}. Let c(Ii ), s(Ii ) be the CL and
SL of the PFI Ii and c(Ti ), s(Ti ) be the CL and SL of the PFT
Ti , respectively, such that c(Ii ) ≥ c(Ti ) and s(Ii ) ≥ s(Ti ) of
the PFTG. Then the PFTG is called bounded PFTG.

Theorem 3.9 If G is a PFIG, then G is PFmin TG with con-
stant CL and constant SL.

Proof Let G be a PFIG with PFI Ii that is assigned to be
the vertex of V . Let CL of the PFIs Ii , I j be denoted by
c(Ii ), c(I j ) and SL of that be denoted by s(Ii ), s(I j ), respec-
tively. Let c(Ii ∩ I j ) = min{c(Ii ), c(I j )} and s(Ii ∩ I j ) =
min{s(Ii ), s(I j )}.

Let n1, n2 be two positive real numbers such that c(Ii ∩
I j ) > n1 and s(Ii ∩ I j ) > n2. Then min{c(Ii ), c(I j )} > n1
and min{s(Ii ), s(I j )} > n2. Therefore, the PFI Ii together
with PFT with CL n1 and SL n2 give PFT representation.

Theorem 3.10 If G is a PFTGwith constant CL and constant
SL, then G is bounded PFTG.

Proof Let I = {Ii : i = 1, 2, . . . , n} be a finite collection
of PFIs on RL along with corresponding PFTs T = {Ti :
i = 1, 2, . . . , n}. Let G = (V , A, B) be PFTG with PFI I
and PFT T . Let n1, n2 be two positive real numbers such that
c(Ti ) = n1 and s(Ti ) = n2 for i = 1, 2, . . . , n.

If c(Ii ) ≥ n1 and s(Ii ) ≥ n2, then c(Ii ) ≥ c(Ti ) and
s(Ii ) ≥ s(Ti ) ∀ i = 1, 2, . . . , n. Then G is bounded PFTG.

If c(Ii ) < n1 and s(Ii ) < n2 for some i and j , we take
c(Ii ) = n1 and s(Ii ) = n2 to make G is bounded. Therefore,
G is bounded PFTG.

Definition 3.11 Let G be a PFTG. A vertex r of G is
an assertive if for every PFTR of G replacing c(Tr ) by
min{c(Tr ), |c(Ir )|} and s(Tr ) by min{s(Tr ), |s(Ir )|} leaves
the PFTG unchanged. An assertive vertex is one which never
requires unbounded PFT. If each vertex of a PFTG G is
assertive, then G is bounded PFTG.

If r be a vertex of G and adj(r) − adj(s) �= ∅, ∀s �= r in
G, then r is assertive, where adj(r) is the set of all vertices
adjacent to r by an edge in G.

Theorem 3.12 Let G be a PFTG that is not bounded and let
U be the set of all non assertive vertices. Then, the graph G∗
formed in addition to a new pendant vertex to each member
of U, is not a PFTG.

Proof If possible let,G∗ be aPFTGalongwith arbitraryPFTs
associated to each vertex of G∗. Since each r ∈ U has an
exclusive new neighbor in G∗, then each r of U is assertive
in G∗. Therefore, we may assume that c(Ir ) ≥ c(Tr ) and
s(Ir ) ≥ s(Tr ) ∀r ∈ U . Thus, we obtain a TR for G in which
all non assertive vertices have bounded PFT. This shows that
G is a bounded PFTG, which contradicts the assumption that
G is not a bounded PFTG. Hence G∗ is not a PFTG.
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Fig. 5 Unbounded PFTG (T ) and non PFTG (T ∗)

We will explain it by the following example:

Example 3.13 We consider an unbounded PFTG T . The non
assertive vertices of T are its three leaves r1, r5 and r7. If we
add a new pendant vertex to each non assertive vertices of
T , then it will form a new graph T ∗ as shown in Fig. 5. By
Theorem 3.12, it is not a PFTG.

Picture fuzzy interval containment graphs

Now, we define PF interval containment graphs (PFICGs).

Definition 3.14 Let I = {Ii : i = 1, 2, . . . , n} be a finite
collection of PFIs on RL . Consider each PFI as vertex as
the PFICG. Let V = {ri : i = 1, 2, . . . , n} be the vertex
set and corresponding PFICG G = (V , A, B). The TMS,
AMS and FMS of the vertices are given byμA(ri ) = hμ(Ii ),
ηA(ri ) = hη(Ii ) and νA(ri ) = hν(Ii ). Also the TMS, AMS
andFMSof the edge (ri , r j ) inG are, respectively, as follows:

μB(ri , r j ) =
⎧⎨
⎩
1, if support and core of one of Ii, Ij include the other

1
2

[
c(Ii∩I j )

min{c(Ii ),c(I j )} + s(Ii∩I j )
min{s(Ii ),s(I j )}

]
hμ(Ii ∩ I j ), otherwise

ηB(ri , r j ) =
⎧⎨
⎩
0, if support and core of one of Ii, Ij include the other

1
2

[
c(Ii∩I j )

min{c(Ii ),c(I j )} + s(Ii∩I j )
min{s(Ii ),s(I j )}

]
hη(Ii ∩ I j ), otherwise

νB(ri , r j ) =
⎧⎨
⎩
0, if support and core of one of Ii, Ij include the other

1
2

[
c(Ii∩I j )

min{c(Ii ),c(I j )} + s(Ii∩I j )
min{s(Ii ),s(I j )}

]
hν(Ii ∩ I j ), otherwise

We will explain it by the following example:

Example 3.15 We consider four PFIs {Ii : i = 1, 2, 3, 4} on
RL along with corresponding PFTs {Ti : i = 1, 2, 3, 4}. Let
the support of these PFIs be, respectively, [1, 7.5], [3.5, 10],
[5, 11], [10.5, 17]. Also the cores are, respectively, [2, 6],
[4, 8], [6.5, 9], [12, 15.5] and s(T1) = 5, s(T2) = 4.25,
s(T3) = 2, s(T4) = 2.75 and c(T1) = 1.5, c(T2) = 3,

Fig. 6 Representation of PFIs

Fig. 7 Corresponding PFICG

c(T3) = 4.5, c(T4) = 1.25. The corresponding PFIs are
shown in Fig. 6.

Thenh(I1∩I2) = (1, 0, 0),h(I1∩I3) = (0.83, 0.05, 0.12),
h(I2 ∩ I3) = (1, 0, 0), h(I3 ∩ I4) = (0.14, 0.22, 0.64).
Therefore, the TMS, AMS and FMS of the edges (r1, r2),
(r2, r3), (r1, r3) and (r3, r4) are, respectively, (0.55, 0, 0),
(0.71, 0, 0), (0.17, 0.01, 0.02) and (0.005, 0.009, 0.026).
The corresponding PFICG is shown in Fig. 7.

Theorem 3.16 If G = (V , A, B) is a PFICG with either
(μB(r , s), ηB(r , s), νB(r , s)) = (1, 0, 0) or (0, 0, 1) for any
edge (r , s) ∈ B, then G has PFT representation with CL and
SL of a PFI are equal to the CL and SL of the corresponding
PFT, respectively.

Proof Let I = {Ii : i = 1, 2, . . . , n} be a finite col-
lection of PFIs on RL . Consider each PFI as vertex of
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the PFICG. Let V = {ri : i = 1, 2, . . . , n} be the ver-
tex set. If (μB(r , s), ηB(r , s), νB(r , s)) = (1, 0, 0) for
the edge (r , s) ∈ B. Then the support and core of one
PFI include the other PFI. Let G∗ = (V , A, B ′) be a
PFTG with PFI I with the corresponding PFT T = {Ti :
i = 1, 2, . . . , n} such that c(Ir ) = c(Tr ) and s(Ir ) = s(Tr ).
Then, c(Ir ∩ Is) = min{c(Ir ), c(Is)} = min{c(Tr ), c(Ts)}.
So, (μB′(r , s), ηB′(r , s), νB′(r , s)) = (1, 0, 0).

Again, if (μB(r , s), ηB(r , s), νB(r , s)) = (0, 0, 1). Then
there is no common part of the support and core between two
PFIs. Therefore, (μB′(r , s), ηB′(r , s), νB′(r , s)) = (0, 0, 1).

This proves that G has PFT representation with CL and
SL of a PFI are equal to the CL and SL of the corresponding
PFT, respectively.

Picture fuzzymax-tolerance graphs

APFmax-tolerance graph (PFmaxTG) is a PFφ-TG inwhich
φ is restricted to the maximum (max) function defined by
φ(r , s) = max{r , s}. The PFmax TG is defined below as
follows:

Definition 3.17 Let I = {Ii : i = 1, 2, . . . , n} be a finite
collection of PFIs on RL along with corresponding PFTs
T = {Ti : i = 1, 2, . . . , n}. Consider each PFI as vertex
of the PFmax-TG. Let V = {ri : i = 1, 2, . . . , n} be the
vertex set and corresponding PFmax-TG is the PF graphG =
(V , A, B). The TMS,AMSand FMSof the vertices are given
by μA(ri ) = hμ(Ii ), ηA(ri ) = hη(Ii ) and νA(ri ) = hν(Ii ).
Also the TMS, AMS and FMS of the edge (ri , r j ) in G are,
respectively, as fpllows:

μB(ri , r j ) =

⎧⎪⎨
⎪⎩
1, if c(Ii ∩ I j ) ≥ max{c(Ti ), c(Tj )}
s(Ii∩I j )−max{s(Ti ),s(Tj )}

s(Ii∩I j )
hμ(Ii ∩ I j ), if s(Ii ∩ I j ) ≥ max{s(Ti ), s(Tj )}

0, otherwise.

ηB(ri , r j ) =

⎧⎪⎨
⎪⎩
0, if c(Ii ∩ I j ) ≥ max{c(Ti ), c(Tj )}
s(Ii∩I j )−max{s(Ti ),s(Tj )}

s(Ii∩I j )
hη(Ii ∩ I j ), if s(Ii ∩ I j ) ≥ max{s(Ti ), s(Tj )}

0, otherwise.

νB(ri , r j ) =

⎧⎪⎨
⎪⎩
0, if c(Ii ∩ I j ) ≥ max{c(Ti ), c(Tj )}
s(Ii∩I j )−max{s(Ti ),s(Tj )}

s(Ii∩I j )
hν(Ii ∩ I j ), if s(Ii ∩ I j ) ≥ max{s(Ti ), s(Tj )}

1, otherwise.

An example is given to explain the above.

Example 3.18 We consider three PFIs {Ii : i = 1, 2, 3} on
RL along with corresponding PFTs {Ti : i = 1, 2, 3}. Let
the support of these PFIs are respectively [1, 6], [4.5, 13],
[9.5, 16.5] and also the cores are respectively [2, 5], [7, 10],
[12, 15] and s(T1) = 1.5, s(T2) = 2.5, s(T3) = 3 and
c(T1) = 0.75, c(T2) = 1.25, c(T3) = 2. The correspond-
ing PFIs are shown in Fig. 8.

Fig. 8 Representation of PFIs

Fig. 9 Corresponding PFmax TG

Then h(I1 ∩ I2) = (0.42, 0.17, 0.41), h(I2 ∩ I3) =
(0.63, 0.03, 0.34). Therefore the TMS, AMS and FMS of
the edges (r1, r2) and (r2, r3) are,respectively, (0, 0, 1) and
(0.09, 0.004, 0.04). The corresponding PFmax TG is shown
in Fig. 9.

Now, we define PF unit TG and PF proper TG. The class
of PF unit TG is a subset of the class of PF proper TG.

Definition 3.19 The PF unit max TG is a PFTG that has TR
in which all PFIs have same SL and same CL. A PF proper
TG is one that has a TR in which no PFI support and core
contain completely in another PFI support and core.

Theorem 3.20 The chordless PF cycle Cn is a PF unit max
TG.

Proof For 1 ≤ i ≤ n, we define core of PFI Ii = [i, i + n].
Then the CL of PFI Ii is c(Ii ) = n. Also, let the CL of the
corresponding PFT c(T1) = c(Tn) = 1 and c(Tj ) = n − 1
for 2 ≤ j ≤ n − 1. Then it is simple to verify that this is a
PF unit max TG.
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Fig. 10 Representation of PFIs

Picture fuzzy sum-tolerance graphs

APF sum-tolerance graph (PFsumTG) is a PFφ-TG inwhich
φ is restricted to the sum function defined by φ(r , s) =
sum{r , s}. The PFsum TG is defined below as follows:

Definition 3.21 Let I = {Ii : i = 1, 2, . . . , n} be a finite
collection of PFIs on RL along with corresponding PFTs
T = {Ti : i = 1, 2, . . . , n}. Consider each PFI as vertex
of the PFsum TG. Let V = {ri : i = 1, 2, . . . , n} be the
vertex set and corresponding PFsum-TG is the PF graph
G = (V , A, B). The TMS, AMS and FMS of the ver-
tices are given by μA(ri ) = hμ(Ii ), ηA(ri ) = hη(Ii ) and
νA(ri ) = hν(Ii ). Also the TMS, AMS and FMS of the edge
(ri , r j ) in G are,respectively, as follows:

μB(ri , r j ) =

⎧⎪⎨
⎪⎩
1, if c(Ii ∩ I j ) ≥ sum{c(Ti ), c(Tj )}
s(Ii∩I j )−sum{s(Ti ),s(Tj )}

s(Ii∩I j )
hμ(Ii ∩ I j ), if s(Ii ∩ I j ) ≥ sum{s(Ti ), s(Tj )}

0, otherwise.

ηB(ri , r j ) =

⎧⎪⎨
⎪⎩
0, if c(Ii ∩ I j ) ≥ sum{c(Ti ), c(Tj )}
s(Ii∩I j )−sum{s(Ti ),s(Tj )}

s(Ii∩I j )
hη(Ii ∩ I j ), if s(Ii ∩ I j ) ≥ sum{s(Ti ), s(Tj )}

0, otherwise.

νB(ri , r j ) =

⎧⎪⎨
⎪⎩
0, if c(Ii ∩ I j ) ≥ sum{c(Ti ), c(Tj )}
s(Ii∩I j )−sum{s(Ti ),s(Tj )}

s(Ii∩I j )
hν(Ii ∩ I j ), if s(Ii ∩ I j ) ≥ sum{s(Ti ), s(Tj )}

1, otherwise.

We explain it by the following example:

Example 3.22 We consider three PFIs {Ii : i = 1, 2, 3} on
RL along with corresponding PFTs {Ti : i = 1, 2, 3}. Let the
support of these PFIs are,respectively,[1.5, 7.5], [3.5, 9.5],
[6, 14.5] and also the cores are,respectively, [3, 6], [5, 8],

Fig. 11 Corresponding PFsum TG

[9, 12] and s(T1) = 1.5, s(T2) = 1, s(T3) = 2 and c(T1) =
1, c(T2) = 0.5, c(T3) = 1.5. The corresponding PFIs are
shown in Fig. 10.

Then h(I1∩I2) = (1, 0, 0), h(I1∩I3) = (0.33, 0.07, 0.6),
h(I2 ∩ I3) = (0.77, 0.01, 0.22). Therefore,the TMS, AMS
and FMS of the edges (r1, r2), (r1, r3) and (r2, r3) are,
respectively,(0.37, 0, 0), (0, 0, 1) and (0.11, 0.001, 0.03).
The corresponding PFsum TG is shown in Fig. 11.

Theorem 3.23 Every PFmin TG G = (V , A, B) with
c(Ti ) = c(Ii ) and s(Ti ) = s(Ii ) ∀ i ∈ V (G) is a PFICG.

Proof Let G = (V , A, B) be a PFmin TG with PFIs I =
{Ii : i = 1, 2, . . . , n} and PFTs T = {Ti : i = 1, 2, . . . , n}
such that c(Ti ) = c(Ii ) and s(Ti ) = s(Ii ) ∀ i ∈ V (G). We
have by the definition of PFmin TG
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μB(ri , r j ) =

⎧⎪⎨
⎪⎩
1, if c(Ii ∩ I j ) ≥ min{c(Ti ), c(Tj )}
s(Ii∩I j )−min{s(Ti ),s(Tj )}

s(Ii∩I j )
hμ(Ii ∩ I j ), if s(Ii ∩ I j ) ≥ min{s(Ti ), s(Tj )}

0, otherwise.

ηB(ri , r j ) =

⎧⎪⎨
⎪⎩
0, if c(Ii ∩ I j ) ≥ min{c(Ti ), c(Tj )}
s(Ii∩I j )−min{s(Ti ),s(Tj )}

s(Ii∩I j )
hη(Ii ∩ I j ), if s(Ii ∩ I j ) ≥ min{s(Ti ), s(Tj )}

0, otherwise.

νB(ri , r j ) =

⎧⎪⎨
⎪⎩
0, if c(Ii ∩ I j ) ≥ min{c(Ti ), c(Tj )}
s(Ii∩I j )−min{s(Ti ),s(Tj )}

s(Ii∩I j )
hν(Ii ∩ I j ), if s(Ii ∩ I j ) ≥ min{s(Ti ), s(Tj )}

1, otherwise.

Now, c(Ii ∩ I j ) ≥ min{c(Ti ), c(Tj )} = min{c(Ii ), c(I j )}
is true iff when the core of Ii , I jcontains another. Also, s(Ii ∩
I j ) ≥ min{s(Ti ), s(Tj )} = min{s(Ii ), s(I j )} is true iff when
the support of Ii , I j contains another. This givesμB(ri , r j ) ≥
0, ηB(ri , r j ) ≥ 0 and νB(ri , r j ) ≥ 0. Therefore,one of Ii , I j
contains another. Hence G is a PFICG.

Theorem 3.24 Any PF proper or unit TR be assumed to have
bounded PFT.

Proof Let G = (V , A, B) be a PF proper or unit TG with
PFIs I = {Ir : r ∈ V } and PFTs T = {Tr : r ∈ V }. We
assume that all endpoints of support and core in this repre-
sentation are distinct. We replace c(Tr ) by |c(Ir )| for each
r ∈ V when c(Tr ) ≥ |c(Ir )| and s(Tr ) by |s(Ir )| for each
r ∈ V when s(Tr ) ≥ |s(Ir )|. Since there are no containment
of support and core of the PFIs, this will not change any adja-
cency. Therefore, any PF proper or unit TR be assumed to
have bounded PFT.

: We explain it by the following example:

Example 3.25 We consider four PFIs {Ii : i = 1, 2, 3} on
RL along with corresponding PFTs {Ti : i = 1, 2, 3}.
Assume that PFIs are the vertices and V = {ri : i =
1, 2, 3} be the vertex set of the TG. Let the support of
these PFIs are,respectively,[1, 7.5], [3.5, 10], [8.5, 15] and
cores are,respectively,[2, 6], [4, 8], [9, 13] and s(T1) = 6.5,
s(T2) = 4, s(T3) = 1 and c(T1) = 4, c(T2) = 2,
c(T3) = 0.5. The corresponding PFIs are shown in Fig. 12.

We have I1 ∩ I2 = [3.5, 7.5], I2 ∩ I3 = [8.5, 10]. Also,
s(I1 ∩ I2) = 4, s(I2 ∩ I3) = 1.5 and c(I1 ∩ I2) = 2,
c(I2 ∩ I3) = 0. Here, h(I1 ∩ I2) = (1, 0, 0), h(I2 ∩
I3) = (0.6, 0.1, 0.3). Therefore,the TMS, AMS and FMS
of the edges (r1, r2) and (r2, r3) are,respectively,(1, 0, 0)
and (0.2, 0.03, 0.1). Here, no PFI core and support properly
contain another PFI core and support. Also, all PFIs have
same CL(=4) and same SL (=6.5). So the PFIs together with
PFTs represent PF proper (unit)-TG. The corresponding PF
proper (unit) TG is shown in Fig. 13. It has bounded PFTs as

c(Ir ) ≥ c(Tr ) and s(Ir ) ≥ s(Tr ) for each r ∈ V . Otherwise,
to make bounded PFTs we may replace c(Tr ) by 4 and s(Tr )
by 6.5. This replacement will not change any adjacency, as
there are no containment of support and core of the PFIs.

Theorem 3.26 AllPFmaxTGsandPFsumTGshavebounded
representations.

Proof Let r ∈ V be a vertex in a PFmax TG or PFsum
TG such that c(Tr ) > c(Ir ) and s(Tr ) > s(Ir );then r is an
isolated vertex. In that case we reassign this vertex with a dif-
ferent PFI which is disjoint from other PFIs and an arbitrary
bounded PFT. This theorem is true for any PFφ-TG and also
applies to PF proper and unit TRs.

Fig. 12 Representation of PFIs

Fig. 13 Corresponding proper (unit)- TG
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Picture fuzzy �-tolerance chain graphs

We introduce the normalized representation of PFIs and
define a special case of PFφ-TG, known as the class of PFφ-
TCG which consists of a nested family of PFIs. Here we
investigated some specific results when φ is the max, min
and sum functions.

Definition 4.1 Any nested family of PFIs Ii can be normal-
ized by replacing each PFI Ii by the intervals [0, ri ], where
ri = |Ii |. Thus the normalized representation of the nested
family of PFIs Ii is of the form N = {I ∗

i : i = 1, 2, . . . , n},
where I ∗

i = [0, ri ] and 0 < r1 ≤ r2 ≤ .. ≤ rn .

Definition 4.2 In a PFG G, a vertex is an universal if it is
adjacent to all other vertices and an isolated if is adjacent to
no other vertex of G.

Definition 4.3 A PFG G is a threshold graph iff for each
subset S ⊆ V , ∃ a vertex r ∈ S which is either isolated or
universal in the induced subgraph GS of G.

Theorem 4.4 APFmin-tolerance chaingraph (PFmin-TCG)
is a PF threshold graph.

Proof Let N = {I ∗
i : i = 1, 2, . . . , n} be a nested fam-

ily of PFIs along with corresponding PFTs T ∗ = {T ∗
i :

i = 1, 2, . . . , n}, where I ∗
i = [0, ri ] and 0 < r1 ≤ r2 ≤

· · · ≤ rn . Consider each nested family of PFI as vertex of the
PFmin TCG. Let V = {ui : i = 1, 2, . . . , n} be the vertex
set and corresponding PFmin TCG be the PFG G∗. We have
to prove G∗ has an universal or an isolated vertex.

If c(T1) ≤ c(I1) and s(T1) ≤ s(I1), then u1 is an universal
vertex as c(I1 ∩ I j ) = c(I1) ≥ c(T1) ≥ min{c(T1), c(Tj )}
and s(I1 ∩ I j ) = s(I1) ≥ s(T1) ≥ min{s(T1), s(Tj )}, ∀ j .

Again if c(T1) > c(I1) and s(T1) > s(I1), then u1 is not
an isolated vertex, then u1 has a neighbor uk . This implies
that c(Tk) ≤ c(I1) and c(Tk) ≤ c(I1), that means uk is
an universal vertex as c(Ik ∩ I j ) = min{c(Ik), c(I j )} ≥
c(I1) ≥ c(Tk) ≥ min{c(Tk), c(Tj )} and s(Ik ∩ I j ) =
min{s(Ik), s(I j )} ≥ s(I1) ≥ s(Tk) ≥ min{s(Tk), s(Tj )},
∀ j .

This proves that G∗ is a PF threshold graph.

Theorem 4.5 A PF max-tolerance chain graph (PFmax
TCG) is an PFIG.

Proof Let N = {I ∗
i : i = 1, 2, . . . , n} be a nested fam-

ily of PFIs along with corresponding PFTs T ∗ = {T ∗
i :

i = 1, 2, . . . , n}, where I ∗
i = [0, ri ] and 0 < r1 ≤ r2 ≤

. . . ≤ rn . Consider each nested family of PFI as vertex of the
PFmax TCG. Let V = {ui : i = 1, 2, . . . , n} be the vertex
set and corresponding PFmax TCG is the PFG G∗.

Assume that c(Ti ) ≤ c(Ii ) and s(Ti ) ≤ s(Ii ), for
i = 1, 2, . . . , n, for if c(Ti ) > c(Ii ) and s(Ti ) > s(Ii ), then

ui is an isolated andwe disregard ui . Consequently, ui and u j

are adjacent iff min{c(Ii ), c(I j )} ≥ max{c(Ti ), c(Tj )} and
min{s(Ii ), s(I j )} ≥ max{s(Ti ), s(Tj )}.

This will be true iff [Ti , ri ] and [Tj , r j ] have a non-empty
intersection.

Thus, the PFmax TCG of N is the PFIG of the intervals
{[Ti , ri ] : i = 1, 2, . . . , n}.
Theorem 4.6 A PF sum-tolerance chain graphs (PFsum
TCGs) are chordal.

Proof Let N = {I ∗
i : i = 1, 2, . . . , n} be a nested fam-

ily of PFIs along with corresponding PFTs T ∗ = {T ∗
i :

i = 1, 2, . . . , n}, where I ∗
i = [0, ri ] and 0 < r1 ≤ r2 ≤

. . . ≤ rn . Consider each nested family of PFI as vertex of the
PFsum TCG. Let V = {ui : i = 1, 2, . . . , n} be the vertex
set and corresponding PFsum TCG is the PFG G∗.

Let u j be a vertex with maximum tolerance and let ui and
uk be two distinct neighbors of u j . Then we have c(Ti ) +
c(Tk) ≤ c(Ti ) + c(Tj ) ≤ min{c(Ii ), c(I j )} ≤ c(Ii ). s(Ti ) +
s(Tk) ≤ s(Ti ) + s(Tj ) ≤ min{s(Ii ), s(I j )} ≤ s(Ii ) and
c(Ti )+c(Tk) ≤ c(Tj )+c(Tk) ≤ min{c(I j ), c(Ik)} ≤ c(Ik).
s(Ti )+ s(Tk) ≤ s(Tj )+ s(Tk) ≤ min{s(I j ), s(Ik)} ≤ s(Ik).

So that, c(Ti ) + c(Tk) ≤ min{c(Ii ), c(Ik)} and s(Ti ) +
s(Tk) ≤ min{s(Ii ), s(Ik)}.

This shows that PFsum TCGs are chordal.

Application of tolerance graph in sports
competition

The PFTG is an important tool that can be applied in different
types of real life problems.We consider a PFGmodel of PFIs
in Fig. 14 representing the 4×100 meter relay race competi-
tion of a group of team, each having 4 runners and assigned
them to run for a fixed interval of distance in a lane. The lead
off runner starts the race with baton in-hand from the starting
pointwhenhehears the starter’s gun.Each runner tries to han-
dover the baton without dropping to his next teammate after
completing own assigned distance. Also, that teammatemust
have to receive this baton within 20 m area from his starting
point, otherwise his team will be disqualified. A team will
win this competition if its last runner successfully cross the
finish line first. Each team has some tolerances, because run-
ners have to wait some distances for other. The problem is to
schedule the teams to finish the race under certain rules. This
problem can be modeled by the PFmin TG, where the run-
ners are considered as vertices and there is an edge between
the vertices if interval of distances of two runners intersect.
In practical situation, the tolerance of a graph may be a PF-
number. For example, each runner tries to receive baton from
his earlier teammate in between 0 and 20 m distance, i.e., the
baton will be handed over within any distance in between 0
and 20 m. This is an uncertainty. So, we may consider the
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Fig. 14 PFI representation of the problem

tolerances as a PF-number. The following algorithm finds the
minimum tolerance between two runners when they run on
the same lane.

Algorithm
Aim: To get a PFTG of the competition such that there is

a minimum tolerance between two runners when they run on
the same lane under certain rules.

Input:FourPFIs of distanceswith their cores and supports
and the corresponding PFTs with their CLs and SLs.

Output:APFmin TG havingminimum tolerances among
the runners.

Step 1: Assign PFIs of distances {Ii : i = 1, 2, 3, 4}
with their respective cores and supports for the set of runners
{ri : i = 1, 2, 3, 4} in the competition.

Step 2: Assign PFTs {Ti : i = 1, 2, 3, 4} corresponding
to the PFIs with their respective CLs and SLs.

Step 3:Compute Ii∩ I j , c(Ii∩ I j ), s(Ii∩ I j ) and h(Ii∩ I j ),
where i, j = 1, 2, 3, 4 (i �= j).

Step 4: If Ii ∩ I j �= ∅, then draw an edge (ri , r j ), where
i �= j .

Step 5: Calculate the TMS, AMS and FMS for each of
vertices by using the formula μA(ri ) = hμ(Ii ), ηA(ri ) =
hη(Ii ) and νA(ri ) = hν(Ii ).

Step 6: Calculate the TMS, AMS and FMS of edges by
using the respective formulas as follows:

μB(ri , r j ) =

⎧⎪⎨
⎪⎩
1, if c(Ii ∩ I j ) ≥ min{c(Ti ), c(Tj )}
s(Ii∩I j )−min{s(Ti ),s(Tj )}

s(Ii∩I j )
hμ(Ii ∩ I j ), if s(Ii ∩ I j ) ≥ min{s(Ti ), s(Tj )}

0, otherwise.

ηB(ri , r j ) =

⎧⎪⎨
⎪⎩
0, if c(Ii ∩ I j ) ≥ min{c(Ti ), c(Tj )}
s(Ii∩I j )−min{s(Ti ),s(Tj )}

s(Ii∩I j )
hη(Ii ∩ I j ), if s(Ii ∩ I j ) ≥ min{s(Ti ), s(Tj )}

0, otherwise.

νB(ri , r j ) =

⎧⎪⎨
⎪⎩
0, if c(Ii ∩ I j ) ≥ min{c(Ti ), c(Tj )}
s(Ii∩I j )−min{s(Ti ),s(Tj )}

s(Ii∩I j )
hν(Ii ∩ I j ), if s(Ii ∩ I j ) ≥ min{s(Ti ), s(Tj )}

1, otherwise.

Fig. 15 Corresponding PFmin-TG

Illustration of algorithm
Step 1:Assume that the runners r1, r2, r3 and r4 can run for

the interval of distances I1, I2, I3 and I4, respectively. They
run actively in the intervals [0, 100], [100, 200], [200, 300]
and [300, 400];these are considered as core of the intervals.
Also, they run both actively and inactively in the interval
of distances [0, 112], [100, 215], [200, 318] and [300, 430];
these are considered as support of the intervals as shown in
the diagram of Fig. 14.

Step 2: Let {Ti : i = 1, 2, 3, 4} are the tolerances corre-
sponding to the intervals {Ii : i = 1, 2, 3, 4} with c(T1) = 8,
c(T2) = 9, c(T3) = 13, c(T4) = 16 and s(T1) = 10,
s(T2) = 12, s(T3) = 15, s(T4) = 22.

Step 3: Here, I1 ∩ I2 = [100, 112], I2 ∩ I3 = [200, 215],
I3 ∩ I4 = [300, 318]; s(I1 ∩ I2) = 12, s(I2 ∩ I3) = 15,
s(I3∩ I4) = 18; c(I1∩ I2) = 0, c(I2∩ I3) = 0, c(I3∩ I4) = 0;
h(I1 ∩ I2) = (1, 0, 0), h(I2 ∩ I3) = (1, 0, 0), h(I3 ∩ I4) =
(1, 0, 0).

Step 4: Since some interval of distances overlapped, then
tolerance arises between some runners. There exist tolerances
between the runners r1 and r2; r2 and r3; r3 and r4.

Step 5: The TMS, AMS and FMS of each vertex are
obtained as follows: (μA(ri ), ηA(ri ), νA(ri )) = (hμ(Ii ),
hη(Ii ), hν(Ii )) = (1, 0, 0), i = 1, 2, 3, 4

Step 6: Using the formula of Definition 3.6, we have
the TMS, AMS and FMS of the edges (r1, r2), (r2, r3) and
(r3, r4) as (0.166, 0, 0), (0.2, 0, 0) and (0.166, 0, 0)
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Table 1 The characteristic
comparison of PFTGs with
IFTGs

Method Whether have the ability Whether have the ability Whether have
to handle problems to represent PF the characteristics
with more uncertainties information of generalization

Sahoo and Pal [41] × × ×
The proposed PFTGs

√ √ √

respectively,in the corresponding PFmin TG (see Fig. 15).
The following observations are made from the PFmin

TG:There are tolerances between the runners r1 and r2; r2
and r3; r3 and r4. But there is no tolerance between r1 and
r3; r1 and r4; r2 and r4. Thus, the runners are assigned to run
for a fixed interval of distance in own lane such that there is
a minimum tolerance.

Comparative study with existing IFTG
models

In existing papers on IFTGs, all information was taken in IF
sense. When more possible types of vagueness and uncer-
tainty occur in information,then the IFTG models are not
appropriate to handle such situation. For these cases, the
information should be collected or represented as PF sense.
The currently developedmodel plays a vital role in such cases
to give a fruitful conclusion.

Sahoo and Pal [41] proposed an IFTGmodel by consider-
ing each vertex and edge with IF information and determined
the minimum tolerance among the employees in a company
when they scheduled to work on the same work station. In
IFTGmodels, onlymembership and non-membership values
of vertices and edges are considered. So these models are not
applicable when the models are considered in other envi-
ronment like in PF environment. In our currently developed
PFTG model, we include another parameter called neutral
membership value and it is practically useful in case of real
life problem. The PFTG models are more generalized and
superior than the IFTG models. Moreover, it will be capable
to accommodate more vagueness and uncertainties and pro-
vides better results than the existing models. On removing
the neutral membership value of PFTG, the PFTG reduces to
conventional IFTG. Thus, PFTG can be viewed as an effec-
tive generalization of IFTG. The characteristics comparison
of our proposed PFTGs with IFTGs is given in Table 1.

Conclusion

In this study,wehave applied the powerful tool of fuzziness to
generalize PFIGs using tolerances under the PF environment.
Our proposed PF model provides more legibility, flexibility

and suitability to the system as compared with the models
in other fields due to the existence of additional term named
as ‘neutrality’ and which discriminate this model from all
other existing models of literature. We have mainly studied
the construction methods of several types of PFTGs. Adding
more uncertainty to fuzzy φ-TGs and IF φ-TGs, we have
introduced PFφ-TGs. Some specific results are established
when φ is the max, min and sum functions. Also, PF proper
TGs and unit TGs are defined and investigated few strong
properties related to the stated TGs. Later on, PFφ-TCGs
have been studied with some results. In addition, to reveal
the importance of these TGs in realistic situations, we have
applied our proposed model in sports competition. Finally,
we have compared our proposed PFTGswith IFTGs to check
the superiority and authenticity of proposed graphs which
leads us to handle the problems having more possible types
of vagueness and uncertainties. In future, we will extend this
work to PFT CGs and m-Step PFT CGs.
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