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Abstract
PIWI-interacting RNAs (piRNAS) form an important class of non-coding RNAs that play a key role in gene expression
regulation and genome integrity by silencing transposable elements. However, despite the importance of piRNAs and the
large application of deep learning in computational biology, there are few studies of deep learning for piRNAs prediction.
Still, current methods focus on using advanced architectures like CNN and variations. This paper presents an investigation
on deep feedforward network models for classification of human transposon-derived piRNAs. We developed a lightweight
predictor (when compared to other deep learning methods) and we show by practical evidence that simple neural networks
can perform as well as better than complex neural networks when using the appropriate hyperparameters. For that, we
train, analyze and compare the results of a multilayer perceptron with different hyperparameter choices, such as numbers of
hidden layers, activation functions and optimizers, clarifying the advantages and disadvantages of each choice. Our proposed
predictor reached a F-score of 0.872, outperforming other state-of-the-art methods for human transposon-derived piRNAs
classification. In addition, to better access the generalization of our proposal, we also showed it achieved competitive results
when classifying piRNAs of other species.

Keywords piRNAs classification · Neural networks · Deep learning · Hyperparameters optimization

Introduction

PIWI-interacting RNAs (piRNAs) comprise a class of small
non-coding RNAs (ncRNAs) of approximately 24–31
nucleotides (although this range may change across different
species) [1,2] that are present in a wide range of eukaryotes,
from sponges to humans [1,3], where they are expressed pre-
dominantly in the gonads [1,4–6].
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There are twomain known classes of piRNAs: transposon-
derived and mRNA-derived. Transposon-derived piRNAs
are the most abundant and well-known [3,6]. In Drosophila
melanogaster, studies showed that transposon-derived piR-
NAs are generated from genomic heterochromatic regions,
in which the repertoire of all TEs is present. In these regions,
arrays of defective transposable elements (TEs), termed
“piRNA clusters”, are transcribed into full transcripts that
emerge from either one or both strands, followed by cleav-
age to produce the piRNAs [3].

The best-known role of piRNAs is silencing of TEs (from
which they are generated) in the germline cells similar to
other RNA-based mechanisms such as microRNAs (miR-
NAs) and small interfering RNAs (siRNAs) [1,3–7]. In brief,
after maturation, piRNAs bound with PIWI proteins – a
germline-specific subclass of the Argonaute family [1] – to
form piRNA-induced silencing complexes (piRISC) that can
recognize and silence complementary RNA targets at both
the transcriptional and post-transcriptional levels [1,3–5].

Although TEs have a significant role in evolution, their
mobility in the genome can generate deleterious muta-
tions leading to biological problems, such as infertility
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[4,7]. Therefore, silencing of TEs by piRNAs is indispens-
able to protect the integrity of genomes in germline cells
against harmful transposons [4,5,8], especially in animals
that undergo obligate sexual reproduction, making this class
of small ncRNAs guardians of the genome [4].

The importance of piRNAsbrings out the need for efficient
identification methods, capable of distinguishing the piRNA
sequences from other ncRNAs. However, the development of
computational tools for this task is complex [9]. Despite the
genomic locations of piRNA clusters being often conserved
between related species (such as mouse and humans), piR-
NAs are extremely diverse and known for lack in sequence
conservation [2,10,11]. For example, as presented by Weick
and Miska [12], in bothDrosophila melanogaster and verte-
brates, mature piRNAs are slightly longer than miRNAs and
siRNAs, with sequences between 24 and 31 nucleotides in
length, have a preference for a 5′ uracil, and possess a 3′-most
sugar that is 2′-O-methylated.On the other hand,Caenorhab-
ditis elegans piRNAs are 21 nt long but share the 5′ and 3′
features of piRNAs in other organisms. Therefore, due to
the large diversity of piRNA sequences, developing com-
putational methods based on common structural-sequence
features among species is challenging [13], making the use
of deep learning very attractive [14].

Deep learning is now one of the most active fields in
machine learning and has successfully performedmany com-
plex tasks such as image and speech recognition, machine
translation, text and audio generation, etc. In computational
biology, deep learning is attractive mainly due to the abil-
ity to learn a robust representation directly from raw input
data, including bases of DNA sequences or pixel intensities
of microscopy images [15]. On the other hand, traditional
machine learning algorithms require hard laboratory work to
extract relevant features to build reliable models [16].

Since 2016, many methods based on deep learning for
solving computational biology problems have been pub-
lished [15]. For example, U-Net [17] is a famous convo-
lutional neural network (CNN) developed for biomedical
image segmentation with great performance on tasks such
as retinal vessel, skin cancer and lung nodule segmenta-
tion. In the context of genome regulation, Xiong et al. [18]
developed a deep learning model that scores how strongly
genetic variants affect RNA splicing, a critical step in gene
expression whose disruption contributes to many diseases,
including cancers and neurological disorders. DNN-PCA-
GWO [19], is a method to predict diabetic retinopathy using
a CNN-based architecture. Aledhari et al. [20] developed
a model based on deep feedforward neural nets to detect
people’s emotions in real-time using voice and biofeedback,
achieving an accuracy of 85% in determining the emotional
scale. More recently, DeepMind published AlphaFold [21],
a method that predicts the 3D structure of a protein from its
amino acid sequence.

Still, there are few studies on the application of deep learn-
ing to identify piRNAs [14,16]. Most methods are based on
traditional machine learning techniques, like support vector
machines and random forests. Some examples are piRPred
[22], IpiRId [23], piRNAPredictor [13] and 2L-piRNA [24].
With the exception of piRNAPredictor, all methods have lim-
itation, which include the need for genomic and epigenomic
information, restrict application on specific organisms, and
performance problems in different datasets [14].

Only in the last few years deep learning started to be used
for piRNAs prediction. The first method developed is called
piRNN [14], which is a CNNwith 2,774,722 parameters and
was created to identifyHuman andDrosophila melanogaster
piRNAs. More recent methods are 2L-piRNADNN [25] and
piRNA(2L)-PseKNC [26], techniques whose objective is to
identify piRNAs and their functions, in particular piRNAs of
theMus musculus organism.

However, improvements are needed. Both piRNN and
piRNA(2L)-PseKNC use CNN, an architecture whose com-
putational cost is high, training is slow and hyperparameter
fine-tuning is difficult. Also, a large amount of data is needed
to create a robust model and avoid overfitting. Moreover,
none of thesemethods have been tested to predict transposon-
derived piRNAs.

Considering the lack of works in the literature regard-
ing applications of deep neural network models for piRNAs
prediction, this paper presents an investigation on deep feed-
forward network (DFN) models for classification of human
transposon-derived piRNAs. We developed a lightweight
predictor (when compared to CNN-based architectures), and
we show by practical evidence that simple neural networks
can perform as well as better than complex neural networks
when using the appropriate hyperparameters. We train, ana-
lyze and compare the results of a multilayer perceptron with
different hyperparameters choices, such as number of hid-
den layers, activation functions and optimizers, clarifying
the advantages and disadvantages of each choice.

Using 8 times less parameters than piRNN, our proposal,
called piRNet, reached an average F-score of 0.872, outper-
forming piRNN (average F-score of 0.834) and traditional
machine learning algorithms for human transposon-derived
piRNAs. When applied to other datasets of Human piRNAs,
Mus musculus piRNAs and other piRNAs from piRBASE,
piRNet achieved competitive results compared with piRNN,
2L-piRNA and piRNA(2L)-PseKNC, showing that although
piRNet has been tuned to identify human transposon-derived
piRNAs, it is also possible to use it for other organisms with
great performance. Additionally, we hope that this analysis
encourages the use of multilayer perceptrons in other classes
of small ncRNAs.

The remainder of this paper is organized as follows.
“Methodology” explains the methodology used for the
data acquisition, feature extraction from sequences, prepro-
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Fig. 1 Length distribution of piRNAs and non-piRNAs sequences
(human transposon-derived piRNAs)

cessing algorithms applied to data, network architectures,
hyperparameters chosen, the process of training and testing
for hyperparameter optimization, and comparison procedure
with other methods. “Results and discussion” presents the
results obtained by the DFNs proposed, including analysis of
the impact of each hyperparameter choice in the final result.
Also in “Results anddiscussion”we showcomparisons of our
modelwith other traditionalmachine learning algorithms and
piRNN, and show that our architecture can be used to iden-
tify piRNAs from different species with great performance.
Finally, “Conclusions” presents the conclusions obtained in
this work, and future research directions.

Methodology

Data acquisition and feature extraction process

To search for the best hyperparameter values for our pro-
posal, we constructed variations of a transposon-derived
piRNA benchmark dataset. The best neural network in this
benchmark was then compared with other methods from the
literature, using the datasets from these respective studies.
Since piRNN provides the source code of their proposal, we
also compared our proposal with piRNN in the transposon-
derived piRNA benchmark dataset.

The benchmark dataset used for the experiments has
a total of 14,810 samples, where 7405 are transposon-
derived piRNA sequences (positive samples) and 7405 are
pseudo-piRNA sequences (negative samples). All samples
areHuman ncRNAs and were obtained from the supplemen-
tary material provided in the work of Luo et. al. [13], where
it is possible to find details about its construction. Figure 1
shows the sequence lengths of positive and negative samples.

To analyze the results of each hyperparameter choice in
or proposal, we split the benchmark dataset into two equally

Table 1 Proportion of positive and negative samples in each subset
from the benchmark dataset (human transposon-derived piRNAs)

Dataset Positive samples Negative samples Total

Training subset 3703 3703 7406

Test subset 3702 3702 7404

disjoint subsets: training subset and test subset. The training
subset was used for hyperparameter tuning and the test subset
was used for comparison with piRNN. Table 1 presents the
proportion of positive and negative samples in each subset.

From the data collected, three different sequence-feature
sets were extracted using the Pse-in-One-2.0 tool (local ver-
sion) [27].

Spectrum profile Also named k-mer, counts the occur-
rences of k-mer motif frequencies (k-
length contiguous strings) in sequences.

Mismatch profile Also counts the occurrences of k-
mers, but allows max m (m ≤ k)
inexact matching, which is the penal-
ization of spectrum profile.

Subsequence profile Considers not only the contiguous k-
mers but also the non-contiguous k-
mers, and a penalty factorw (0 ≤ w ≤
1) is used to penalize the gap of non-
contiguous k-mers [13].

Furthermore, since we have parameters that can be
adjusted for obtaining of each feature set (k,m and w, where
k is present in all three features), we adopted different values:
for k-mers we adopted k = 1, 2, 3, 4. For mismatch profile we
used (k, m) = (1,0), (2,1), (3,1), (4,1) and for subsequence
profile (k,w) = (1,1), (2,1), (3,1), (4,1). Thus, a total of 340
attributes per sequence (sum of 41, 42, 43, 44, where k is the
exponent) were obtained in each of the feature sets.

To study the behavior of each model in different data spar-
sity and distribution scenarios we applied two feature scaling
algorithms on feature sets: Min–Max normalization (popu-
larly known as normalization), which scales and translates
each feature individually such that it is in a range of 0–1; and
Z-score normalization, which transforms the original data
distribution into a normal distribution with zero mean and
unit variance [28].

To verify the generalization of our proposal to different
organisms, we also tested the best model resulting from
the fine-tuning in the training subset (transposon-derived
piRNAs) in three additional datasets composed by: Human
piRNAs,Musmusculus piRNAs and other piRNAs frompiR-
BASE (Generic). These datasets were obtained, respectively,
from the studies of Wang et al. (piRNN) [14], Liu et al. (2L-
piRNA) [24] and Khan et al. (piRNA(2L)-PseKNC) [26]. So

123



480 Complex & Intelligent Systems (2022) 8:477–487

Table 2 Proportion of positive and negative samples in additional
datasets used to assess generalizability of our method

Dataset (Organism) Positive samples Negative samples Total

Human [14] 32,826 32,826 65,652

Mus musculus [24] 1408 1408 2816

Generic [26] 500 500 1000

we also compared our proposal with the methods proposed
in each study. Table 2 presents the proportion of positive and
negative samples in each additional dataset. Details about
the construction of each one can be found in their respective
works.

Neural network architecture and hyperparameters

We implemented a DFN with eight different hyperparame-
ter configurations, where each one is characterized by the
number of hidden layers, activation function and optimizer
used. As for the number of hidden layers, variations of three
and five hidden layers were implemented with 340 units per
layer (number equivalent to the input array dimension), and a
dropout layer with 0.5 dropout ratio between all layers [29].
These numbers were chosen to verify how increasing depth
can improve or impair the generalization capacity of the
model, together with the activation function and the opti-
mizer used [30–32]. In the output layer, a single neuron with
sigmoid was used to predict if a sequence is a transposon-
derived piRNA or not [31].

The activation functions selected were logistic function
(sigmoid) [30] and rectified linear unit (ReLU) [33]. Sig-
moid is very efficient to deal with sparse data, but when
used in a neural net with large number of layers, the gra-
dients may become vanishingly small, preventing learning
from occurring [30,31]. On the other hand, ReLU is the
most used activation function in very deepmodels, especially
due to its sparse activation and better gradient propagation,
enabling neural networks to have a large number of hid-
den layers decreasing vanishing gradient. Nevertheless, the
sparse activation along with the large natural sparsity of data
can produce an accumulation of large error gradient values,
resulting in large updates to the network weights and con-
sequently, a very unstable model [34,35]. Thus, given the
pros and cons of each activation function, we analyzed the
efficiency of both in the classification of piRNAs.

Moreover, we used the glorot weight initialization [30] in
layers with sigmoid activations to minimize the occurrence
of vanishing gradient. In layers with ReLU, we used the He
et al. weight initialization [34] to promote a faster and effi-
cient convergence, in addition to dealing with vanishing and
exploding gradient problems.

Table 3 The eight DFN configurations implemented

Model Hidden lyers Activation Optimizer

DFN1 3 ReLU Adam

DFN2 3 ReLU SGD

DFN3 3 Sigmoid Adam

DFN4 3 Sigmoid SGD

DFN5 5 ReLU Adam

DFN6 5 ReLU SGD

DFN7 5 Sigmoid Adam

DFN8 5 Sigmoid SGD

The adopted optimizers were the stochastic gradient
descent (SGD) [36], with a learning rate of 0.01 and Nes-
terovmomentum of 0.9, and the adaptive moment estimation
(Adam), with default parameters provided in its original
paper [37]. Adam is an adaptive learning rate optimization
algorithm that utilises both momentum and scaling, combin-
ing the benefits of RMSProp and SGDwith momentum. The
optimizer is designed to be appropriate for non-stationary
objectives and problems with very noisy or sparse gra-
dients [38]. When used with multilayer perceptrons and
CNNs, achieve great performance and fast convergence on
multi-classification tasks in datasets such as MNIST and
CIFAR-10 [37]. In contrast, SGD is the most traditional opti-
mizer for neural networks and other optimization-based ML
algorithms and was still used in many relevant works such as
Xception [39],ResNet [40] andFasterR-CNN[41]with great
results. Finally, the cost function used was the log loss [42].

All implementations and experiments were performed
using Python 3.8.2 [43], TensorFlow 2.1 [44], and scikit-
learn 0.23.1 [28]. Table 3 presents the eight hyperparameter
configurations implemented,where theX inDFNXstands for
the number (identification) of a DFN with a specific combi-
nation of hyperparameters.

Training andmodel comparison

All DFN models were trained with 256 epochs, batch size of
32 and evaluated using the tenfold cross-validation [45] in the
training subset. The best performing model in the hyperpa-
rameter selection stepwas tested in our test subset (composed
byHuman transposon-derived piRNAs), and also in the other
datasets fromTable 2. Figure 2 presents the complete pipeline
used for the execution of the experiments

Evaluationmetrics

We used five evaluation metrics to assess the performance
of the models. In the hyperparameter analysis step, we used:
recall (REC) (Eq. 1), precision (PRE) (Eq. 2) andF-score (F)
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Fig. 2 Pipeline of the execution
of the experiments. First, we
split the human
transposon-derived piRNAs
dataset into two subsets: training
and test. Then, we extract three
feature sets and for each feature
set we find the best
hyperparameters configuration.
The best configuration,
including feature, is tested on
datasets of different studies

(Eq. 3). In the test and for comparing different methods, we
also included accuracy (ACC) (Eq. 4) and specificity (SP)
(Eq. 5). In the equations, tp, tn, fp and fn stand, respectively,
for the number of true positive and number of true negative
samples, and for number of false positive and number of false
negative samples.

REC = tp

tp + fn
, (1)

PRE = tp

tp + fp
, (2)

F = 2tp

2tp + fp + fn
, (3)

ACC = tp + tn

tp + tn + fp + fn
, (4)

SP = tn

tn + fp
. (5)

Results and discussion

To understand the results, it is necessary to clarify the distri-
bution of the training data (samples of transposon-derived
piRNAs), since raw data and preprocessed data (i.e after
applying feature scaling) affect the results in different ways.

Since k-mers count the occurrences of k-mer motif fre-
quencies in sequences, the values are limited to a range of
0–1, making the application of Min–Max scaling not as effi-
cient as it could be.

Mismatch and subsequence in their raw state are com-
posed of positive integers, with mismatch ranging from 0 to
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Fig. 3 Sparsity of the first 20
attributes of original Mismatch
profile. The x-axis represents the
variation of data in each
attribute produced by 41 (1–4)
mismatchs count concatenated
with 42 (5–20) and y-axis the
variation interval of count

Fig. 4 Sparsity of the last 20
attributes of the original
Mismatch profile. The x-axis
represents the variation data in
the last 20 attributes produced
by 44 (85–340) mismatches
count and y-axis the variation
interval

30 and subsequence ranging from 0 to 14950. These very
sparse interval not only express the diversity of input sam-
ples but also the presence of several outliers. In addition,
since the piRNA sequences are small in length, the higher
the value of k, the lower the frequency. Consequently, the
first 84 attributes (sum of 41, 42, 43) have a slightly better
behavior than the other 256 attributes (equivalent to 44), as
shown in Figs. 3 and 4. Therefore, the use of Min–Max nor-
malization and Z-score normalization (although sensitive to
outliers) is extremely useful and necessary to reduce the inter-
val to which the features belong, facilitating the convergence
of the neural net.

Analysis of hyperparameter optimization

Considering the combination of hyperparameters, features
and feature scaling algorithms, a total of 72 results were
obtained. To present the results in a illustrative way, Fig. 5
shows the F-scores achieved by the models in the hyperpa-
rameter optimization step. Note that the names of the models
used for each configuration are defined inTable 3,where theX
in DFNX stands for the number (identification) of the hyper-
parameters combination (deep feedforward network number
X).

One important characteristic of deep learning models is
the high computational power generated by the large num-
ber of hidden layers. However, from the results presented in

Fig. 5, we can see that increasing the depth of the neural nets
did not improve their performance.AlthoughDFN7 achieved
the best result in k-mers and mismatch (both normalized)
(with the same being observed for DFN6 in normalized
subsequence), the differences between the results obtained
compared with the neural nets with three hidden layers are
irrelevant. Even models with ReLU activation, which allows
neural nets with a large number of hidden layers, did not
obtain better results. Thus, it is observed that in the case
of piRNAs prediction (and possibly other short ncRNAs),
very deep models may not produce good results, even with
an activation function adequate for deep models. It is also
worth mentioning that the excess of complexity of a model
can lead to the occurrence of overfitting [36], besides includ-
ing an unnecessary high computational cost.

Regarding the activation functions, ReLU has not been
effective in producing better results in deeper neural nets,
but obtained good results in the preprocessed datasets (even
on standardized datasets, whose presence of negative values
is significant). ReLU also had no vanishing gradient prob-
lem, considering that the increase of layers did not harm the
performance. However, its performances on raw mismatch
and subsequence were very poor, regardless of the number
of layers or optimizer used, as can be seen in Fig. 5a. Note
also from Fig. 5c that DFN6 had poor performances in stan-
dard mismatch and subsequence features.
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Fig. 5 F-score of models on
each dataset variation (i.e., raw,
normalized and standardized).
Each bar indicates the average
achieved by the model in the
tenfold cross validation on that
dataset (indicated by color in
legend). Black lines on each bar
indicates the standard deviation

In contrast, some models with sigmoid had the perfor-
mance impaired by increasing the number of hidden layers,
mainly on raw and normalized k-mers. For example, DFN4
andDFN8on raw k-mers (Fig. 5a) performed very poorly and
unstable, while DFN7 presented some instability. The only
model with sigmoid and good results was DFN3. Moreover,
DFN8 is the worst model, with a poor performance in seven
of nine experiments, as shown in Fig. 5. However, although
somemodelswith sigmoidhaveobtainedpoor results in some
datasets, in raw datasets the performance was as good as the
best results obtained in preprocessed data.

We can infer that the poor performances obtained by the
neural nets with sigmoid must have occurred due to the van-
ishing gradient, since models with 3 layers (and sigmoid)
had good results in general, while models with 5 layers did
not perform well. In addition, it is known in the literature
that neural networks with a large number of hidden layers
together with sigmoid activation tend to have such a problem.
At the same time, the properties that make sigmoid incapable
of being used with many layers make it very powerful for

Table 4 Possible vanishing gradient in neural nets with sigmoid in
(raw) k-mers feature set. Note that the increase in the number of hidden
layers in the neural net with sigmoid produced an unstable model

Model Hidden Layers Activation F-score

DFN1 3 ReLU 0.784 ± 0.026

DFN3 3 Sigmoid 0.811 ± 0.025

DFN5 5 ReLU 0.783 ± 0.022

DFN7 5 Sigmoid 0.693 ± 0.241

dealing with the immense sparsity of the data, outliers and
any other problem in the raw data, since models with sig-
moid achieved good results in raw datasets and the DFN3
achieved good results in all datasets. Table 4 shows cases
with the occurrence of vanishing gradient in neural nets with
sigmoid.

Considering ReLU, it had no vanishing gradient prob-
lems, but the sparse activation of ReLU may have caused
the exploding gradient problem, since models with ReLU
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Table 5 Possible exploding gradient in neural nets with ReLU on (raw)
subsequence feature set. Note that regardless of the number of layers,
neural nets with ReLU were unable to learn (underfitting)

Model Hidden layers Activation F-score

DFN1 3 ReLU 0.130 ± 0.260

DFN3 3 Sigmoid 0.770 ± 0.019

DFN5 5 ReLU 0.131 ± 0.262

DFN7 5 Sigmoid 0.762 ± 0.024

(mainly with SGD) were unable to learn from training data
with raw mismatch and subsequence features. In these data
the sparsity is large, which can lead to very large gradient
and, consequently, large updates to the neural net weights,
producing an unstable model. Table 5 shows cases with the
occurrence of exploding gradient in neural nets with ReLU.

The optimization algorithms chosen also have significant
impacts on the analyzed models. From Fig. 5, we can see
that several models with SGD failed to successfully execute
the classification task due to the feature used or poor choice
of hyperparameters. For example, DFN4 was unable to learn
from both raw k-mers and normalized k-mers, and DFN8
was unable to learn from practically all datasets.

Instead, DFN3 and DFN7, whose number of layers and
activation function used correspond to the same ones used in
DFN4 andDFN8, reached a great performance in all datasets.
Note that Adam was a better choice not only for models with
sigmoid, but also models with ReLU. After all, since stan-
dardized datasets contain negative values,many neurons tend
to be inactive (i.e. only 0 outputs), preventing learning from
occurring. Thus, comparing the results obtained by DFN5
and DFN6 in standardized datasets, it is clear that the use of
an optimization algorithm such as Adam is much more indi-
cated in this case than the SGD. Adam is muchmore efficient
to deal with noisy data or outliers, sparse gradients and bad
hyperparameter choices, as can be seen in our experimental
results.

Comparison with other methods considering
transposon-derived piRNAs

The best performing model in the hyperparameter opti-
mization step was DFN3, which has three hidden layers,
sigmoid activation and Adam optimizer. Figure 6 presents
the described neural net architecture. Considering that the
best performance of DFN3 was in standardized mismatch
(i.e., the mismatch profile rescaled by Z-score normaliza-
tion), only these features were used in the comparison with
other literature methods.

To verify the performance of DFN3 in predicting human
transposon-derived piRNAs in comparison with other meth-
ods, we used piRNN, since it is the only predictor developed

to classify human piRNAs (although it was not specifically
proposed for transposon-derived piRNAs). Besides piRNN,
we also built a support vector machine (SVM) and random
forest (RF) following exactly the same procedure used for
our neural network. The best configuration for SVM was
C = 7.0, γ = 0.0005 and radial basis function kernel (where
C is the penalty parameter and γ is the kernel coefficient
gamma). For RF, we used 500 trees and entropy criterion.

The results obtained by all methods are shown in Table 6.
We show the average results after a tenfold cross-validation
in the test subset. To compare the computational cost between
DFN3 and piRNN, Table 6 also shows the total number of
trainable parameters (“Total params” column) for both neural
networks.

From the results obtained by all predictors, we can see that
our proposed model outperformed piRNN in all evaluation
measures, specially Recall. The computational cost of our
method is also much lower than piRNN with a total number
of parameters approximately 8 times smaller. Regarding the
SVM, it achieved excellent performance with better Preci-
sion than our method, but Recall and F-score were lower.
Considering RF, although it obtained a Recall value close
to piRNN, it was the worst performing predictor. Thus, it
is clear that despite the success and good performance of
CNNs in classification tasks and their wide use in computa-
tional biology, DFNs can perform such prediction tasks as
well as better than CNNs, achieving good results with less
computational resources.

Generalization to different scenarios (non
transposon-derived piRNAs)

To access the generalization and learning capabilities of our
proposal in predicting other types of piRNAs, we executed
our best neural network (DFN3) in the datasets provided by
three other studies:

• Human piRNAs provided by Wang et al. (piRNN
method) [14];

• Musmusculus piRNAs, provided byLiu et al. (2L-piRNA
method) [24];

• other piRNAs from piRBASE (Generic), provided by
Khan et al. (piRNA(2L)-PseKNC method) [26].

For a fair comparisonwith thesemethods, we downloaded
the provided datasets and performed a cross-validation
experiments just like described in the respective works: a
tenfold cross-validation was executed for the Human piR-
NAs (piRNN method), while a fivefold cross-validation was
executed for the other datasets (2L-piRNA and piRNA(2L)-
PseKNC methods).

As shown in Table 7, our predictor achieved competi-
tive results compared with piRNN considering the dataset of
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Fig. 6 Architecture with the
best performance in the training
subset (transposon-derived
piRNAs)

Table 6 Comparison between
DFN3, piRNN, SVM and RF on
test subset and tenfold cross
validation

Model Recall Precision F-score Total params

DFN3 0.893 ± 0.019 0.853 ± 0.018 0.872 ± 0.007 348,161

SVM 0.880 ± 0.011 0.860 ± 0.021 0.870 ± 0.009 –

piRNN 0.830 ± 0.025 0.838 ± 0.021 0.834 ± 0.011 2,774,722

RF 0.825 ± 0.015 0.744 ± 0.007 0.782 ± 0.005 –

Table 7 Comparison between DFN3 and piRNN in Human piRNAs

Model Accuracy Recall Specificity

DFN3 0.95 ± 0.003 0.96 ± 0.005 0.94 ± 0.005

piRNN 0.95 ± 0.004 0.97 ± 0.012 0.97 ± 0.012

Table 8 Comparison between DFN3 and 2L-piRNA in Mus musculus
piRNAs

Model Accuracy Recall Specificity

DFN3 0.861 0.865 0.857

2L-piRNA 0.861 0.883 0.839

Human piRNAs. Since our method has 8 times less parame-
ters, we can consider that the DFN3 is an option as good as
better than piRNN.

As for Mus musculus piRNAs, our method also achieved
competitive results with better specificity, lower recall and
equal accuracy, as shown Table 8. Considering that DFN3
was adjusted for human transposon-derived piRNAs, com-
petitive results in piRNAs classification ofMus musculus are
quite satisfactory.

When compared to piRNA(2L)-PseKNC (other piRNAs
from piRBASE (Generic)), our method also achieved satis-
factory results, with better recall and specificity Table 9.

Table 9 Comparison between DFN3 and piRNA(2L)-PseKNC in
Generic piRNAs

Model Accuracy Recall Specificity

DFN3 0.906 0.909 0.903

piRNA(2L)-PseKNC 0.926 0.871 0.852

Conclusions

A deep feedforward network is a basic architecture, but pow-
erful and capable of successfully perform classification tasks
in computational biology, including piRNAs prediction.
Although very deep architectures have high computational
power, they did not necessarily achieve excellent results.
Thus, it is very important to correctly fit the number of hidden
layers, since a much more complex model than the problem
can overfit with an unnecessary high computational cost.

ReLU activation function, although being the state-of-the-
art in avoiding the vanishing gradient problem, is not a good
choice when data has a large sparsity and many outliers,
which is common for piRNA sequences and other ncRNAs
(negative samples). Thus, the application of a feature scaling
algorithm is essential when using ReLU.

On the other hand, sigmoid activation is very susceptible
to the occurrence of vanishing gradient problems. However,
it was very efficient to deal with the sparsity and outliers in
the datasets used in our study, reaching great results before
and after the feature scaling. Therefore, for both piRNAs
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and other ncRNAs, the use of sigmoid in DFNs may be a
good solution.

The correct choice of the optimization algorithm also has a
significant impact on the neural network performances, with
Adam being a better choice than the SGD for the data in
question.

Finally, our proposedmodel (piRNet) has achieved a great
performance in human transposon-derived piRNAs classifi-
cation, outperforming piRNN using 8 times less parameters,
which suggests that simpler multilayer perceptrons can be
classifiers as good as better than complex architectures. Fur-
thermore, despite the choice of hyperparameters being driven
to human transposon-derived piRNAs, piRNet achieved
competitive results compared with several methods in var-
ious datasets.

As future works, activation functions like LeakyReLU,
ELU and Swish, and optimizers like Nadam and AMSGrad
should be tested. Finally, we plan to extend our study and
proposedmodel to other small ncRNAs, such asmiRNAs and
siRNAs. This certainly can help computational biologists to
build models with high classification performances.

Funding This work was supported by the National Council for Sci-
entific and Technological Development (CNPq, from portuguese:
Conselho Nacional de Desenvolvimento Científico e Tecnológico).

Data availibility All datasets, materials and codes associated with the
current submission are available at https://gitlab.com/biomal/pirnet.
The current version of piRNet (available in the provided repository)
was trained on all transposon-derived piRNAs used in the study (i.e.
complete benchmark dataset). Any updates will be published on the
provided link. In the future, we hope to make a web server available for
use by scientists.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Iwasaki YW, Siomi MC, Siomi H (2015) Piwi-interacting RNA:
its biogenesis and functions. Annu Rev Biochem 84(1):405–433

2. Ha H, Song J, Wang S, Kapusta A, Feschotte C, Chen KC, Xing
J (2014) A comprehensive analysis of pirnas from adult human
testis and their relationship with genes and mobile elements. BMC
Genom 15(1):545

3. Rojas-Ríos P, Simonelig M (2018) pirnas and piwi proteins:
regulators of gene expression in development and stemcells.Devel-
opment 145(17):dev161786

4. Hirakata S, Siomi MC (2016) piRNA biogenesis in the germline:
From transcription of piRNA genomic sources to piRNA matura-
tion. Biochim Biophys Acta 1859(1):82–92

5. Siomi MC, Sato K, Pezic D, Aravin AA (2011) Piwi-interacting
small rnas: the vanguard of genome defence. Nat Rev Mol Cell
Biol 12(4):246–258

6. Han BW, Zamore PD (2014) pirnas. Curr Biol 24(16):R730–R733
7. Slotkin RK, Martienssen R (2007) Transposable elements and the

epigenetic regulation of the genome. Nat Rev Genet 8:272–285
8. Lindsay MA, Griffiths-Jones S, Sato K, Siomi MC (2013) Piwi-

interacting rnas: biological functions and biogenesis. Essays
Biochem 54:39–52

9. ZhangY,WangX,Kang L (2011) A k-mer scheme to predict pirnas
and characterize locust pirnas. Bioinformatics 27(6):771–776

10. Girard A, Sachidanandam R, Hannon GJ, Carmell MA (2006) A
germline-specific class of small rnas binds mammalian piwi pro-
teins. Nature 442(7099):199–202

11. OzataDM,Gainetdinov I, ZochA,O’Carroll D, Zamore PD (2018)
Piwi-interacting rnas: small rnas with big functions. Nat RevGenet
20:1

12. Weick EM, Miska EA (2014) pirnas: from biogenesis to function.
Development 141(18):3458–3471

13. LuoL, LiD, ZhangW,TuS, ZhuX, TianG (2016)Accurate predic-
tion of transposon-derived pirnas by integrating various sequential
and physicochemical features. PLoS One 11(4):1–13

14. Wang K, Hoeksema J, Liang C (2018) pirnn: deep learning algo-
rithm for pirna prediction. PeerJ 6:e5429 (5429[PII])

15. Angermueller C, Pärnamaa T, Parts L, Stegle O (2016) Deep learn-
ing for computational biology. Mol Syst Biol 12(7):878

16. Jones W, Alasoo K, Fishman D, Parts L (2017) Computational
biology: deep learning. Emerg Top Life Sci 1(3):257–274

17. Ronneberger O, Fischer P, and Brox T (2015) U-net: convolutional
networks for biomedical image segmentation. In: International
conference on medical image computing and computer-assisted
intervention. Springer, New York, pp 234–241

18. Xiong HY, Alipanahi B, Lee LJ, Bretschneider H, Merico D, Yuen
RK, Hua Y, Gueroussov S, Najafabadi HS, Hughes TR et al (2015)
Thehuman splicing code reveals new insights into the genetic deter-
minants of disease. Science 347(6218):1254806. https://doi.org/
10.1126/science.1254806

19. Alfian G, Syafrudin M, Fitriyani NL, Anshari M, Stasa P, Svub J,
Rhee J (2020)Deepneural network for predicting diabetic retinopa-
thy from risk factors. Mathematics 8(9):1620

20. AledhariM,RazzakR, Parizi RM, SrivastavaG (2021)Deep neural
networks for detecting real emotions using biofeedback and voice.
In: Del Bimbo A, Cucchiara R, Sclaroff S, Farinella GM, Mei T,
BertiniM, EscalanteHJ, Vezzani R (eds) Pattern recognition. ICPR
International Workshops and Challenges. Springer International
Publishing, Cham, pp 302–309

21. Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T,
Qin C, Žídek A, Nelson AW, Bridgland A et al (2020) Improved
protein structure prediction using potentials from deep learning.
Nature 577(7792):706–710

22. Brayet J, Zehraoui F, Jeanson-Leh L, Israeli D, Tahi F (2014)
Towards a pirna prediction usingmultiple kernel fusion and support
vector machine. Bioinformatics 30(17):i364–i370

23. Boucheham A, Sommard V, Zehraoui F, Boualem A, Batouche M,
BendahmaneA, IsraeliD,Tahi F (2017) Ipirid: integrative approach

123

https://gitlab.com/biomal/pirnet
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1126/science.1254806
https://doi.org/10.1126/science.1254806


Complex & Intelligent Systems (2022) 8:477–487 487

for pirna prediction using genomic and epigenomic data. PLoSOne
12(6):1–16

24. Liu B, Yang F, Chou KC (2017) 2l-pirna: a two-layer ensemble
classifier for identifying piwi-interacting rnas and their function.
Mol Therapy Nucl Acids 7:267–277

25. Khan S, KhanM, Iqbal N, Hussain T, Khan SA, ChouKC (2019) A
two-level computation model based on deep learning algorithm for
identification of pirna and their functions via chou’s 5-steps rule.
Int J Peptide Res Ther 26:1–15

26. Khan S, KhanM, Iqbal N, Khan SA, ChouKC (2020) Prediction of
pirnas and their function based on discriminative intelligent model
using hybrid features into chou’s pseknc. Chemom Intell Lab Syst
203:104056

27. LiuB,WuH,ChouKC(2017)Pse-in-one 2.0: an improvedpackage
of web servers for generating variousmodes of pseudo components
of dna, rna, and protein sequences. Nat Sci 9(04):67

28. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B,
Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al
(2011) Scikit-learn: machine learning in Python. J Mach Learn
Res 12:2825–2830

29. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov
R (2014) Dropout: a simple way to prevent neural networks from
overfitting. J Mach Learn Res 15:1929–1958

30. Glorot X, Bengio Y (2010) Understanding the difficulty of training
deep feedforward neural networks. In: Yee Whye T, Mike T (eds)
Proceedings of the thirteenth international conference on artificial
intelligence and statistics. PMLR, pp 249–256

31. LeCun YA, Bottou L, Orr GB, Müller KR (2012) Efficient back-
prop. Neural networks: tricks of the trade. Springer, New York, pp
9–48

32. Haykin SS, Haykin SS, Haykin SS, Elektroingenieur K, Haykin
SS (2009) Neural networks and learning machines, vol 3. Pearson,
Upper Saddle River

33. Zeiler MD, Fergus R (2014) Visualizing and understanding con-
volutional networks. European conference on computer vision.
Springer, New York, pp 818–833

34. He K, Zhang X, Ren S, Sun J (2015) Delving deep into recti-
fiers: surpassing human-level performance on imagenet classifica-
tion. In: 2015 IEEE international conference on computer vision
(ICCV). pp 1026–1034

35. Ramachandran P, Zoph B, Le Q (2018) Searching for activation
functions. arXiv:1710.05941

36. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT
Press, New York. http://www.deeplearningbook.org

37. Kingma DP, Ba J (2015) Adam: a method for stochastic optimiza-
tion. In: Bengio Y, LeCun Y (eds) 3rd International conference on
learning representations, ICLR 2015, San Diego, CA, USA, May
7–9, 2015, conference track proceedings. arXiv:1412.6980

38. Ruder S (2015) An overview of gradient descent optimization algo-
rithms. arXiv preprint arXiv:1609.04747 (2016)

39. Chollet F (2017) Xception: deep learningwith depthwise separable
convolutions. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp 1251–1258

40. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for
image recognition. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp 770–778

41. Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: towards
real-time object detection with region proposal networks. In:
Cortes C, Lawrence N, Lee D, Sugiyama M, Garnett R (eds)
Advances in neural information processing systems, vol 28. Cur-
ran Associates, Inc. https://proceedings.neurips.cc/paper/2015/
file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf

42. Murphy KP (2012) Machine learning: a probabilistic perspective.
MIT press, New York

43. Van Rossum G, Drake FL (2009) Python 3 reference manual. Cre-
ateSpace, Scotts Valley

44. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Cor-
rado GS, Davis A, Dean J, Devin M et al (2015) TensorFlow:
Large-scale machine learning on heterogeneous systems. https://
www.tensorflow.org/. Software available from tensorflow.org

45. Bengio Y, Grandvalet Y (2004) No unbiased estimator of the vari-
ance of k-fold cross-validation. J Mach Learn Res 5(Sep):1089–
1105

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1710.05941
http://www.deeplearningbook.org
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1609.04747
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://www.tensorflow.org/
https://www.tensorflow.org/

	Investigating deep feedforward neural networks for classification of transposon-derived piRNAs
	Abstract
	Introduction
	Methodology
	Data acquisition and feature extraction process
	Neural network architecture and hyperparameters
	Training and model comparison
	Evaluation metrics

	Results and discussion
	Analysis of hyperparameter optimization
	Comparison with other methods considering transposon-derived piRNAs
	Generalization to different scenarios (non transposon-derived piRNAs)

	Conclusions
	References




