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Abstract
To obtain more semantic information with small samples for medical image segmentation, this paper proposes a simple and
efficient dual-rotation network (DR-Net) that strengthens the quality of both local and global feature maps. The key steps of
the DR-Net algorithm are as follows (as shown in Fig. 1). First, the number of channels in each layer is divided into four
equal portions. Then, different rotation strategies are used to obtain a rotation feature map in multiple directions for each
subimage. Then, the multiscale volume product and dilated convolution are used to learn the local and global features of
feature maps. Finally, the residual strategy and integration strategy are used to fuse the generated feature maps. Experimental
results demonstrate that the DR-Net method can obtain higher segmentation accuracy on both the CHAOS and BraTS data
sets compared to the state-of-the-art methods.

Keywords Dual-rotation convolution · Feature fusion · Medical segmentation · Deep learning

Introduction

Computer vision is widely used in medical tasks: med-
ical image semantic segmentation [1–3], medical image
classification [4–6], bioengineering recognition [7–9], three-
dimensional reconstruction [10–12] and others. Although
deep learning has achieved great success in the medical
field due to the complex structure of medical images, the
pathological tissue being similar to the surrounding normal
tissue, and the number of data samples being small, it is
difficult to obtain deeper semantic information. To further
enhance amodel’s ability to learn features ofmedical images,
researchers build various model strategies to mine deep fea-
tures and obtain deep semantic information. Ni et al. [3]
proposed a global context attentionmodule to obtain the con-
textual semantic information ofmedical images and integrate
the multiscale receptive field information generated by the
SEPP model, thereby providing more learning information
for segmentation tasks. The model achieved good segmenta-
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tion results on three public data sets and one local data set;
to better learn the subtle differences in the intensity, loca-
tion, shape, and size of the lesions in medical images, Chen
et al. [13] constructed a new convolutional neural network
structure named DRINet. The network integrates multiple
feature maps generated by dense network blocks [14], resid-
ual network blocks and inception network blocks [15] and
acquires a variety of semantic information. Finally, the results
show that DRINet is better than UNet in three challenging
applications; Alom et al. [16] improved U-Net [17] into a
joint model of a recursive U-Net and a residual U-Net. The
model realizes the feature fusion of deep features and shallow
features through the residual block and realizes the accumula-
tion of the semantic information of the residual convolutional
layer through the loop module. The algorithm obtained the
best segmentation results on three data sets: retinal images,
skin cancer segmentation, and lung lesion segmentation; Gu
et al. [18] proposed a context encoder network (CE-Net). The
network uses ResNet [19] to achieve feature extraction and
uses dense convolution blocks andmultilayer pooling blocks
[20] to obtain richer image contextual semantic information.
The results on 5 data sets prove the feasibility of the model
(Fig. 1).

The above research results show that different model
strategies can obtain different semantic information to gen-
erate different feature maps (for example, shallow feature
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Fig. 1 Outer rotation and inner
rotation of DR-Net. The reds
line represent internal rotation,
and the blue lines represent the
external rotation. The blue
squares mean that the same
feature maps are used, where the
numbers indicate the direction
of rotation. The green squares
indicate that the feature map is
rotated, and the local semantic
features and global semantic
features are obtained using the
FPM and DPFM (a negative
sign indicates reverse rotation)

maps, deep feature maps, local feature maps and global fea-
ture maps). The above strategies can only generate one or
two feature maps, which are insufficiently comprehensive to
obtain the semantic information ofmedical images.Although
more semantic information can be obtained through the fea-
turemaps generated after the fusion ofmultiple strategies, the
total number of parameters will also increase, which greatly
enhances the computational complexity of the algorithm.
Furthermore, the fusion of the feature maps of each strat-
egy is only established between the deep feature maps of
each strategy, making it impossible to obtain other semantic
information in the process of feature mining from shallow to
deep; and the feature maps generated are insufficiently rich.

The emergence of the group convolution allows
researchers to obtain richer semantic information without
increasing network parameters. The ResNeXt algorithm pro-
posed by Xie et al. [21] converts high-dimensional feature
maps into multiple low-dimensional feature maps and then
obtains deep features by learning the low-dimensional fea-
ture maps. The advantage of converting high-dimensional
feature maps to low-dimensional feature maps is that the
number of parameter calculations can be reduced. Their algo-
rithm obtained good results on the ImageNet-1 k data set,

thus proving that group convolution has good feature learn-
ing capabilities. Romero et al. [22] introduced an attention
strategy based on the group convolution, and the constructed
attention group convolution can enhance the feature maps.
The above research finds that the group convolution can
improve a network’s feature learning ability. In the previous
work, the researchers increased the number of training sam-
ples by preprocessing the images [23, 24], thereby improving
the testing accuracy on the data set.

To obtain richer semantic information without increasing
the complexity of the algorithm and reducing the preprocess-
ing of the data, this paper proposes a faithful deep learning
algorithm: the double rotation network (DR-Net).

The main contributions of this paper are as follows:

1. We divide the generated feature maps of the previous
layer into four equal channel parts according to the total
number of channels. Then, each part is rotated according
to different rotation angles (the rotation angles are 0°,
90°, 180°, and 270°) to achieve the internal rotation of
the traditional convolution. Then, different local seman-
tic information is obtained from the rotated feature maps
throughdifferent sized convolution kernels so as to gener-
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ate deeper local feature maps. Here, we call these feature
maps partial feature maps (PFMs).

2. We also divide the generated feature maps of the previ-
ous layer into four parts with equal numbers of channels
according to the total number of channels. Subsequently,
we also rotated each part in four directions. The feature
miningmethod that is different from the previousmethod
is that we use the dilated convolution to obtain different
receptive domains by setting different expansion values
so as to obtain more global semantic information. The
size of the convolution kernel of all our dilated convolu-
tions is set to 3. Here, we call these feature maps dilated
partial feature maps (DPFMs).

3. To further obtain richer semantic information, we fuse
the features of the PFM and DPFM in the same rotation
direction (through the feature map addition strategy) and
finally obtain 16 sets of richer feature maps in each layer
of the DR-Net algorithm (these feature maps constitute
the outer rotation).

4. To obtain the fusion feature maps of the shallow fea-
ture maps and the deep feature maps and simultaneously
obtain more semantic information, the shallow feature
maps of the previous submodule are obtained.We use the
transfer invariance of maximum pooling to compress the
feature maps. Finally, the three strategies of the rotation
angle, multiscale convolution and different dilation step
sizes are used to generate feature maps that describe the
semantic information of shallow features, the semantic
information of the deep features, the semantic informa-
tion of the local features and the semantic information of
the global features.

Themain content of the remainder of this paper is summa-
rized as follows. In the second section, we mainly introduce
the background and significance of the algorithm of this
paper. In the third section, we introduce the overall flow of
the DR-Net algorithm and the functions of each module in
detail. In the fourth section, we verify the performance of the
DR-Net algorithm through related experiments. In the fifth
section, we give a summary of this paper and further research
goals.

Related work

Feature maps are defined by their width, height, and number
of channels. In recent years, researchers have used the num-
ber of channels as a benchmark to enhance the relationship
between feature maps. For example, Xie et al. [21] et al. used
the group convolution,Chollet [25] used the separable convo-
lution, and You et al. [26] proposed using part of the feature
maps. Although the names of these methods are different,
they are all based on addressing the number of channels to

enhance the quality of feature maps or reduce the number of
parameter calculations. Next, we will analyze the pros and
cons of the above three sets of strategies in detail.

Group convolution (GC)

The principle of the group convolution is to use a 1×1 con-
volution kernel to compress the number of features from the
original feature maps (256 channels) and generate 32 sets of
new feature maps with 4 channels. The channel compression
strategy has also been verified in previous work [27–30]. The
purpose of thismethod is to reduce the redundant information
of deep feature maps and reduce the number of parameter
calculations. Subsequently, the previous 32 sets of feature
maps are mined by convolution with a convolution kernel of
3, which reduces the computational complexity of features.
Then, the compressed feature maps are restored by convo-
lution with a convolution kernel of 1 (the feature maps with
4 channels are restored to feature maps with the original
number of channels of 256). Finally, feature maps are fused
through the aggregate residual exchange strategy. The sub-
sequent Res2NeXt network proposed by Gao et al. [31] also
proved the efficiency of the group convolution.

Deep separable convolution (DSC)

The principle of the depth separable convolution is to divide
the original feature map into N subchannels and implement
feature mining through N convolution kernels to generate
intermediate feature maps. The number of feature maps with
the original number of feature channels is restored by splic-
ing the intermediate feature maps. Subsequently, the spliced
intermediate feature maps are compressed by a 1×1 convo-
lution to compress the featuremaps, andN 1×1 convolutions
are simultaneously constructed to restore the feature maps.

Multidirectional integrated convolution (MDIC)

The core idea of the algorithm is to divide the original feature
maps into four groups of subfeature maps, flip each sub-
feature map in different directions, and extract the feature
maps after flipping through multiscale features. The algo-
rithm obtains a variety of semantic information through the
above strategies to enhance the feature maps. As a result,
evenwith a small number of fitters, higher-precision segmen-
tation results can be obtained. In the end, the total number of
parameters of 5.2 million is much smaller than those of other
models.

Our strategy

Our proposed model obtains various local semantic infor-
mation through the PFM and simultaneously obtains var-
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Table 1 Total number of parameters of each module in a convolution
and the type of feature maps

Model Shallow Deep Local Global Parameters

C
√ × √ × 589824M2

GC
√ √ √ × 70144M2

DSC
√ × √ × 67840M2

MDIC
√ √ √ × 122880M2

PFM
√ √ √ × 61440M2

DPFM
√ √ × √

73728M2

ious global semantic information through the DPFM. The
acquired semantic information is richer than that of the
abovementioned algorithms. For deep feature maps and shal-
low feature maps, this paper introduces a new residual
strategy. This strategy compresses and expands featuremaps.
The semantic information of the feature maps of the upper
layer is merged in the encoder. The decoder not only obtains
the feature maps of the corresponding encoder but also the
feature maps of the upper layer decoder. The entire submod-
ule obtains richer semantic information.

Based on previous research, the main purpose of DR-
Net algorithm is to enhance features while reducing the
number of parameter calculations. Next, we use Table 1 to
directly compare the number of parameters of each group
convolution module and the type of feature maps obtained.
"Shallow" represents shallow feature maps, "Deep" repre-
sents deep feature maps, "Local" represents local feature
maps, "Global" represents the global feature maps, and "C"
represents the traditional convolution.

All blocks are implemented on a convolution. "M" repre-
sents the size of the feature maps. The size of the convolution
kernel is uniformly set to 3, and the sizes of the input and out-
put fitters are set to 256. Table 1 shows that the total number
of parameters of the PFMmodule we proposed is the lowest.
The DPFM module has a similar number of parameters as
the GC module and DSC module. Due to the addition strat-
egy of the PFM and DPFM, the number of calculations of all
parameters in this part is minimal.

Methodology

In this section, we will introduce our proposed DR-Net algo-
rithm in detail through four subsections. The next section
describes the framework of the entire model, the following
section describes the details of the PFM and DPFM, the next
section describes the different strategies used in the encoder
and decoder, and the following section introduces the envi-
ronmental details of the DR-Net algorithm (Fig. 2).

DR-Net

Figure 1 shows the overall structure of our proposed DR-
Net algorithm. The DR-Net algorithm is composed of
two inner rotation convolutions (traditional convolution and
dilated convolution) from the beginning of the second-layer
encoder submodule to the end of the penultimate layer
decoder submodule. Let

(1)

PFMd
n (k, D)

�
{(

PFM0
1(1, 1)

)
,
(
PFM90

1 (1, 1)
)
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(
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DPFM0
1(1, 1)

)
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DPFM90

1 (1, 2)
)
, . . . ,

(
DPFM270

4 (4, 4)
)}

,

(2)

generate 32 sets of new feature maps through multidirection
and multiscale feature mining and use these 32 sets of new
feature maps to form 16 sets of deep feature maps containing
global semantic information and local language information.
Here,n represents the different parts,d represents the rotation
angle, k represents the size of the convolution kernel, and
D represents the dilation values. Its purpose is to reduce
the number of feature maps while achieving strengthening
the feature maps. In the encoder part, to further improve the
quality of the feature maps Y (x), the feature maps generated
by the current submodule layer H (x) and the multirotation
direction featuremapsMd(x) generated by the submodule of
the previous layer are feature fused by the residual operation.

(3)

Y1(x) � H (PFM0
1(1, 1) + DPFM0

1(1, 1))

+ Md(Conv1(Maxp(Sinp{1, 1}))),

where Conv1 represents that the size of the convolution ker-
nel is equal to 1, Maxp represents maximum pooling, and
Sinp{1, 1} represents the input and direction of the first set
of features of the previous layer of feature maps.

In the decoder, the feature maps F(x) generated by the
submodule of the current layer not only obtain the prior infor-
mation of the featuremapsY (x) corresponding to the encoder
but also incorporate the feature maps generated by the sub-
module of the previous layer. Through the above two feature
fusion strategies of the encoder and decoder, the featuremaps
of each layer contain more semantic information of medical
images, and finally the multiclassification task is completed
through the softmax function.

(4)

F1(x � H (PFM0
1(1, 1)

+ DPFM0
1(1, 1) + Conv1(Y (x))

+ Md(Conv1(Sinp{1, 1})).
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Fig. 2 Illustration of the DR-Net model. Both the encoder and the
decoder are composed of 4 sets of fusion submodules (PFM andDPFM)
and a set of dual convolutional layers with a convolution kernel equal to
5. The orange lines represent the feature maps generated by the PFM;
the blue lines represent the feature maps generated by the DPFM; the
numbers in the circle represent different parts of the feature maps and

also include the addition strategy; the symbol denotes the feature

map concatenation operation;⊕ represents the fusion strategy of differ-
ent submodule feature maps; I and O represent the numbers of fitters
in each layer, and the numbers of fitters in different layers are different.
In both PFM and DPFM modules, the feature maps are rotated; and
the rotation angles are 0, 90, 180, 270 in turn. The number of feature
map fitters of the layer 1–5 submodules in the encoder are respectively
[24, 48, 96, 192, 192], and each layer of the decoder corresponds to the
fitters of the encoder

PFMs and DPFMs

Partial feature maps (PFMs)

In this internal rotation, we divided the four groups of PFMs
according to the total number of channels and rotated each
group of PFMs in different directions. Even when using the
same convolution kernel, different directions of feature maps
can be obtained semantic information [26]. To further obtain
more semantic information, in this part, we introduced the
multiscale convolution in PFMs and finally generated 16 sets
of featuremapswith different semantic information.Through
the above multidirection and multiscale convolution, a large
number of rich local feature maps is obtained. Although we
divide the total number of channels into multiple groups of
PFMs to reduce the number of parameter calculations, to
further reduce the number of parameter calculations, we have
performed featuremap compression on the featuremaps. The
specific total number of calculations of the local feature map
parameters is as follows:

NPFM �
4∑

k�1

(
M2 · k2 · I

4
· O
8

)
, (5)

where NPFM represents the total number of parameters, M
represents the scale of the feature map, k represents the size
of the convolution kernel, I represents the total number of
channels of the input feature map, and O represents the total
number of channels of the output feature map.

Dilated partial feature maps (DPFMs)

TheDPFMmodule is similar in structure to the PFMmodule.
The difference is that we replace the traditional convolution
with the dilated convolution. The purpose is to obtain differ-
ent receptive fields through different expansion coefficients
and finally obtain more global semantic information. We use
different dilated convolution structures in the last two sets of
submodules of the encoder and the first two sets of submod-
ules in the decoder. The purpose is to obtain a more valuable
feature map through the double-layer dilated convolution as
the scale of the feature map decreases. The structure of the
two groups of different cavity convolution modules is shown
in Fig. 3. The total number of computations with global fea-
ture map parameters is as follows:

NDPFM � 4 ×
(
M2 · 32 I

4
· O
8

)
. (6)
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Fig. 3 The network structure of the different submodules of the DPFM.
a The structure of the first two layers of the DPFM, and b the structure
of the latter two layers of the DPFM. The dotted lines represent dif-
ferent directions in the DPFM module, but the network structure is the
same. (Each dimension in the convolution represents the following: the
number of input feature maps, the size of the convolution kernel, the
number of output feature maps, and the scale of dilation)

Encoder and decoder

The encoder and decoder of DR-Net are composed of 5 sub-
modules. To further fully obtain the feature maps of different
semantic information, we combine the second submodule
with the fifth submodule in the encoder and the first submod-
ule with the fourth submodule in the decoder to be composed
of the PFM and DPFM strategies. Different from the U-Net
modes [17, 32, 33], in the encoder part, only the features
of the current layer are mined. Furthermore, only the prior
feature map of the corresponding encoder is included in the
decoder part. In addition, different from a network model
such asMC-Net [20], the semantic informationof the encoder
is increased by constructing multiple scales, and more infor-
mation is obtained by fusing the different scales of semantic
information. Our proposed DR-Net not only uses multidirec-
tion and multiscale strategies to obtain more feature maps. In

the encoder part, the method also integrates the local feature
maps generated by the PFM module and the global feature
maps generated by the DPFM module to expand the expe-
rience of each feature point. The input feature maps use the
feature invariance of themaximumpooling layer to introduce
more semantic information of the submodules of the upper
layer to the current layer. In the decoder part, in the current
previous layer, we not only introduce the feature maps out-
put by the corresponding layer encoder but also reference the
feature maps input by the upper layer of the decoder so that
more semantic information can be obtained. The different
structure models of the encoder and decoder are shown in
Fig. 4.

Figure 3 shows thatwedivide the featuremapgenerated by
the previous layer into 4 groups with equal numbers of chan-
nels. In Fig. 4a, the network structure in the blue dashed line
implements PFMs with different scales, the network struc-
ture in the red dashed line implements DPFMs with different
scales, and the other 14 network structures are the same as
the first and second groups. Therefore, we obtained 16 sets
of new feature maps from the previous layer of feature maps
through convolution kernels with different directions and dif-
ferent scales. Figure 4a above shows that in the encoder part,
we calculate the residuals between the feature maps gener-
ated by the current layer convolution and dilated convolution
and the feature maps generated by the previous layer. Fig-
ure 4b shows that the biggest difference between the encoder
and the decoder is that we have introduced the prior informa-
tion of the encoder. Through the above feature fusion, each
submodule of the DR-Net model can obtain richer feature
maps.

Implementation details

All our experiments are performed on 3 sets of Tesla V100
(16GB)GPUs. The two data sets only adjusted the size of the
medical images and retain the scales of their length andwidth
to 256 and 256, respectively. In addition, no preprocessing
was performed on the images. The optimization function we
chose is Adam, the learning rate is 0.001, the range of betas
is 0.9–0.999, the loss function is the cross entropy loss, and
all the comparison models are iterated 300 times during the
entire training process. We ran each set of experiments 5
times and selected the set of results with the highest compre-
hensive evaluation.

Experiments

Data sets

In this paper, we validated the proposed model DR-Net on
two multiclassification data sets: CHAOS and BraTS.
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Fig. 4 Model diagram of the DR-Net encoder and decoder. a Themodel
structure of the second to fifth submodules of the encoder, and b The
model structure of the first to the fourth submodules of the decoder.
Here, "submodule 1" represents the structural diagram of the submod-
ule of the current layer, "submodule 2" represents the structural diagram

of the submodule of the upper layer,⊕ represents the residual operation
of multiple types of feature maps, ⊗ represents the fusion of 16 groups
of residual feature maps, "interpolate" represents that the feature map
size is magnified by 2 times using a linear strategy, and d represents the
expansion coefficient of the dilated convolution

CHAOS dataset [34]: this data set consists of 4 foreground
classes (liver, left kidney, right kidney and spleen) and a back-
ground class. The scale of all itsmedical images is 256×256.
We selected 647MRI imageswith ground truth labels for ver-
ification. The ratio of the number of samples in the training
set to the test set is 3:2. The evaluation criteria of this data
set come from the article by You et al. [26].

BraTS dataset [35, 36]: this data set consists of 3 fore-
ground classes (oedema, nonenhancing solid core, and
enhancing core) and a background class. The scale of all

its medical images is 240×240, so we add zeros to each
medical image. We selected the two sample images with the
largest lesion area in each case in the 285 groups of cases.
Furthermore, we also divide the samples into the training set
and the validation set at a ratio of 3:2. The evaluation cri-
teria of this data set come from the article by Bakas et al.
[35] WT includes all three tumor structures, ET includes all
tumor structures except "edema", and TC only contains the
"enhancing core" structures that are unique to high-grade
cases.

123

Complex & Intelligent Systems (2022) 8:611–623 617



Table 2 Segmentation results
for the CHAOS data set
obtained by each model

Model Liver Kidney L Kidney R Spleen Sen Dice Spec

U-Net [17] 91.23 79.01 79.66 83.35 89.69 88.24 99.18

CE-Net [18] 93.03 81.14 79.52 86.71 90.08 89.98 99.21

DenseASPP [37] 91.21 72.85 78.34 82.23 88.17 87.34 99.05

MS-Dual [38] 91.87 80.58 80.59 84.03 89.38 88.82 99.15

DR-Net 92.03 82.52 82.71 88.57 90.32 89.88 99.24

Table 3 Segmentation results
for the BraTS 2018 data set
obtained by each model

Model Dice+ Sens+ Spec+

ET WT TC ET WT TC ET WT TC

U-Net [17] 69.41 68.73 67.11 75.58 69.23 78.81 98.99 99.52 98.53

CE-Net [18] 79.08 79.40 78.31 81.88 80.29 82.23 99.36 99.64 99.04

DenseASPP [37] 66.73 68.69 63.84 67.18 68.48 66.22 99.18 99.52 98.60

MS-Dual [38] 79.25 79.30 78.28 77.66 77.34 81.82 99.51 99.78 99.07

DR-Net 82.37 81.30 82.59 79.64 82.95 87.61 99.51 99.83 99.17

Comparison with the state-of-the-art models

In this section, we compare the classic medical segmentation
model U-Net and compare some recent algorithms that have
achieved good results in the field of medical image segmen-
tation, such as CE-Net [18], DenseASPP [37], and MS-Dual
[38]. The performance of the DR-Net model proposed in this
article is verified by comparing its results with the results of
other models (Tables 2, 3).

The experimental results of each model on the CHAOS
data set show that although the result for Liver for CE-Net
is 1% better than that of our method, in the Kidney L class,
our method is 1.38% points better than the second highest
method CE-Net. In the Kidney R category, our method is
2.12% points better than the second highest method MS-
Dual. In the Spleen class, our method is 1.86% better than
the second highest CE-Net. Furthermore, on the other three
comprehensive indicators, our method obtained higher accu-
racy, which proved the feasibility of our method.

To further evaluate the generalization ability of our pro-
posed method, we further verified each model on the BraTS
dataset. Our method is better than other models on all WT
values, indicating that our model has better generalization
ability in multiclassification. The results of the three values
of Dice+ clearly show that the DR-Net algorithm far outper-
forms other algorithms. The TC values in each test clearly
show that our proposed model is 4.28%, 5.38%, and 0.1%
better than the second-place algorithm in each test, which
further proves that DR-Net is better at learning high-level
cases. The experimental results on the above two data sets
clearly show that the method proposed in this paper is effec-
tive. We visualized the segmentation results of each model
in Fig. 4.

Figure 5 shows the segmentation results of each model
on different data sets. The segmentation results of the first
group, the fourth group and the sixth group show that the
DR-Net algorithm has a better segmentation effect on the
background class, thereby generating less noise. The seg-
mentation results of other groups also show that DR-Net also
has a good predictive ability in edge segmentation and small
shapes. This further proves that our proposedmethod obtains
deep feature maps that contain more semantic information
by strengthening multiple feature maps. Even on small data
sets and when there is a small number of feature maps, this
method can learn more meaningful deep features.

Comparison of the total number of parameters
in the two data sets

The total number of parameters directly affects the learning
efficiency of amodel, and the number of featuremaps directly
affects the total number of parameters. In this paper, our
proposedmethod still obtains good results onmost indicators
on the two data sets while reducing the feature maps. Table
4 details the total number of parameters of each model.

Table 4 shows that among the five groups of models com-
pared, our method uses only 2,700,581 parameters on the
CHAOSdata set and only 2,704,156 parameters on theBraTS
data set, which are far lower than those of other models. Fur-
thermore, there is no difference between the total number of
parameters of the model on single-input data (CHAOS data
set) and multiple-input data (BraTS data set).

The impact of different strategies on the experiment

To further analyze the feasibility of each strategy proposed
in our method, we have verified each strategy. Here, "1"
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Fig. 5 Segmentation results of each model on the CHAOS data set (rows 1–4) and the BraTS 2018 data set (rows 5–8). a Ground truth. b U-Net.
c CE-Net. d DenseASPP. e MS-Dual. f DR-Net
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Table 4 Total number of parameters of different models

Model CHAOS BraTS

U-Net [17] 31,042,629 31,044,292

CE-Net [18] 38,964,060 38,973,179

DenseASPP [37] 46,152,513 46,161,348

MS-Dual [38] 100,763,834 100,774,799

DR-Net 2,700,581 2,704,156

includes only the PFMmodule, "2" includes only the DPFM
module, "3" incorporates only the prior semantic informa-
tion of the previous layer, and "4" incorporates only the prior
semantic information of the symmetric encoder submodule in
the decoder submodule. To verify the semantic information,
neither the PFM nor DPFM in "5" uses a rotation strategy.
To use the feature fusion strategy in strategy "1" and strategy
"2", we changed strategy "1" into two sets of DPFMmodules
and strategy "2" into two sets of PFM modules. We describe
the learning process of each model through the line chart in
Fig. 5.

The experimental results in Fig. 6 show that each strat-
egy plays an active role in learning the semantic information
of medical images. The structure of the PFM on the CHAOS
data set has less of an impact. The reason may be that the dis-
tribution of various organs is not concentrated, so the global
characteristics have greater impacts. In the BraTS data set,
the PFM has a greater impact and has great fluctuations. The
reason may be that the focus of the data set is relatively
concentrated, and local features have become particularly
important. Our method has the best experimental effect after
fusing various feature maps, which proves the feasibility of
our proposed algorithm.

Application of our proposedmodule in other models

To further prove the feasibility of the PFM and DPFM in
our proposed DR-Net model, we introduced the PFM mod-
ules into U-Net. We made improvements in both the total
number of parameters and the learning results and compared
the results with those of the original U-Net. The results are
shown in Table 5 below. The higher the value of ↑, the better
the performance of the model.

We replaced the original convolution with the PFM mod-
ule, except for thefirst layer of convolution. The experimental
results on the CHAOS data set show that my improved U-
Net has a 3.38% higher mAverage than the traditional U-Net
mAverage, and the experimental results on theBraTS data set
show that my improved U-Net has a 3.58% better mAverage
than the traditional U-Net. The results of the above algorithm
clearly illustrate the feasibility of our proposed strategy. The
total number of parameters has also considerably decreased.

Fig. 6 The learning process of each strategy on different data sets.
a CHAOS data set. b BraTS data set

The influence of rotation angle and different
convolution strategies on DR-Net algorithm

To further verify that the rotation strategy and different con-
volutional strategies can be used at the same time to obtain
more semantic information, in this section, we use specific
experimental results to analyze the importance of each strat-
egy on the two data sets. DR-Net (0°) means that the feature
map is not rotated at all, DR-Net (90°) means that the feature
map is rotated by 90°, DR-Net (180°) means that the fea-
ture map is rotated by 180°, DR-Net (270°) means that the
feature map is rotated by 270°, DR-Net(a) means that only
the traditional convolution is used for feature learning, and
DR-Net(b) means that only the dilated volumes of product
feature learning are used. The concrete results on the two
data sets are shown in Table 6.

In Table 6, we find that the rotation strategy has a greater
effect on the CHAOS dataset than the convolution strategy.
Different rotation strategies obtain different features, which
leads to different learning points for each class. When the
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Table 5 Application of the PFM
in the U-Net algorithm Data set CHAOS BraTS

Model U-Net [17] Improved-UNet U-Net [17] Improved U-Net

mAverage ↑ 83.31 86.69 69.23 72.81

Total params 31,042,629 22,187,589 31,044,292 22,189,252

Table 6 The influence of the
rotation angle and different
convolutional strategies on
CHAOS data set

Model Liver Kidney L Kidney R Spleen Sen Dice Spec

DR-Net (0°) 90.43 80.04 80.70 86.27 88.36 87.89 99.07

DR-Net (90°) 90.53 80.35 80.58 87.18 88.84 88.14 99.08

DR-Net (180°) 89.76 80.83 80.63 87.34 88.20 88.56 99.15

DR-Net (270°) 89.66 81.56 81.34 86.33 88.19 88.63 99.16

DR-Net(a) 91.13 81.13 81.69 87.62 89.26 89.09 99.16

DR-Net(b) 91.21 81.36 81.36 88.12 89.67 89.73 99.17

DR-Net 92.03 82.52 82.71 88.57 90.32 89.88 99.24

Table 7 The influence of
rotation angle and different
convolution strategies on BraTS
data set

Model Dice+ Sens+ Spec+

ET WT TC ET WT TC ET WT TC

DR-Net (0°) 79.42 79.90 80.65 78.66 81.11 85.39 98.39 99.75 99.05

DR-Net (90°) 79.26 78.70 80.46 78.14 80.37 87.14 98.33 99.73 99.10

DR-Net (180°) 81.61 80.64 81.79 79.07 81.37 87.09 99.30 99.61 99.02

DR-Net (270°) 81.54 80.39 81.67 78.92 80.60 86.88 99.37 99.70 99.09

DR-Net(a) 80.41 79.15 80.31 78.42 80.53 86.57 99.38 99.79 99.09

DR-Net(b) 81.21 80.20 81.45 79.03 81.76 87.08 99.43 99.80 99.12

DR-Net 82.37 81.30 82.59 79.64 82.95 87.61 99.51 99.83 99.17

feature map is rotated by 90°, Liver obtains the highest value
of 90.53%; when the feature map is rotated by 180°, Spleen
achieved an accuracy of 87.34%; when the feature map was
rotated by 270°, Kidney L achieved an accuracy of 81.56%;
and when the feature map was not rotated, the various results
were relatively balanced. The best prediction results for the
various types in the CHAOS data set were obtained when
using the 4 types of rotations with DR-Net. In Table 7, on the
multimodalBraTSdataset,wefind that both the rotation strat-
egy and the convolution strategy play positive roles. If only
the traditional convolution is used in the DR-Net algorithm,
the results for the learned features are lower than when using
only the dilated convolution, which shows that the global
features obtained by the dilated convolution on multimodal
tasks are more important. Tables 6 and 7 show that when
the DR-Net algorithm uses the rotation strategy and multiple
convolution strategies at the same time, the best prediction
results are obtained, which further proves the rationality of
the DR-Net algorithm.

Conclusion

This paper proposes a dual-rotation network, which fully
learns and integrates global features, local features, shallow
features and deep features to mine more semantic infor-
mation. Furthermore, to further integrate more semantic
information in the encoder anddecoder,we further strengthen
the feature map through three strategies of rotation, multi-
scaling, and different dilation step sizes of the feature maps.
We fuse the original feature map of the previous submod-
ule through the latter submodule to provide more semantic
information for the encoder; furthermore, in order for the
decoder to obtain more semantic information, we compress
and expand the features. The graph realizes the fusion of
multiple types of feature graphs. Finally, the method pro-
posed in this paper obtained good segmentation results on
two multiclass medical image data sets.
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