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Abstract
For automating the harvesting of bunches of tomatoes in a greenhouse, the end-effector needs to reach the exact cutting point 
and adaptively adjust the pose of peduncles. In this paper, a method is proposed for peduncle cutting point localization and 
pose estimation. Images captured in real time at a fixed long-distance are detected using the YOLOv4-Tiny detector with 
a precision of 92.7% and a detection speed of 0.0091 s per frame, then the YOLACT +  + Network with mAP of 73.1 and a 
time speed of 0.109 s per frame is used to segment the close-up distance. The segmented peduncle mask is fitted to the curve 
using least squares and three key points on the curve are found. Finally, a geometric model is established to estimate the pose 
of the peduncle with an average error of 4.98° in yaw angle and 4.75° in pitch angle over the 30 sets of tests.
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Introduction

Harvesting cherry tomatoes relies mainly on manual picking, 
which is time consuming and labor intensive [1]. Moreover, 
the aging population and increasing labor costs have led to 
a shortage of labor. Therefore, there is an urgent need to 
integrate robot technology with artificial intelligence in agri-
culture, using automated picking instead of manual picking 
[2]. At present, the research of picking robots is focused on 
the following directions: fruit localization, ripeness deter-
mination, obstacle localization, task planning and motion 
planning [3]. In this paper, we focus on fruit detection and 
localization, which is a hot topic of current research and a 
prerequisite for automated robotic picking.

The use of deep learning to detect fruit has become very 
popular and has been mentioned in some prior work [4]. 
Koirala et al. improved the YOLOv3 detector by reduc-
ing the model to 33 layers for better connecting the deeper 
semantic information with the shallower fine-grained infor-
mation to detect mangoes with an F1-score of 0.89 and a 
detection speed of 70 ms per image(on an NVIDIA GTX 
1070 Ti GPU) [5]. Li et al. proposed an improved YOLOv3 

network to detect apples by replacing the backbone from 
DarkNet53 method to DenseNet method and cost 0.304 s 
on a 3000 × 3000 pixels image [6]. Liu et al. used a circu-
lar bounding box instead of a rectangular bounding box for 
individual tomato localization based on YOLOv3, achiev-
ing the correct identification rate of 94.58% with an average 
detection time of 0.054 s per image under slight occlusion 
conditions [7]. Birrell et al. automated the harvesting of 
mature lettuce in the natural environment [8]. The images 
are captured in real time by a stationary camera and passed 
into the YOLOv3 network for coarse positioning, and the 
detected images are cropped and passed into the darknet 
network for fine classification, enabling the differentia-
tion between immature lettuce, mature lettuce, and lettuce 
affected by pests and diseases. Isaac et al. improved Mask 
RCNN for strawberry fruit segmentation and also performed 
well on the detection of partially obscured strawberries [9]. 
Song et al. used DeepLabV3 + to segment calyces, branches 
and wires on kiwifruit canopy images, which achieved mIoU 
of 0.694 with a detection time of 210.0 ms [10]. As deep 
learning models push the envelope, detectors are able to 
detect fruit faster and better, for example using YOLOv4 
to detect citrus with 3.15% better accuracy compared to 
YOLOv3 [11].

Although the current research has been able to solve 
the problem of fruit identification and positioning, such as 
harvesting the bunch of tomatoes, the robotic end-effector 
must be able to accurately grip the peduncle attached to the 
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fruit. However, compared to the detection and localization of 
fruit, the peduncles are smaller and more complex, and var-
ied in shape, and the detector is susceptible to interference 
from complex backgrounds such as the main stem. Many 
attempts have been made by scholars to address these issues. 
Sa et al. [12] proposed a three-dimensional vision detec-
tion method for fruit stem recognition of automatic picking 
sweet pepper in the greenhouse. Based on HSV color space 
and geometric features (different curvature of stem and fruit 
surface), the detection features are extracted and classified 
by the support vector machine. Luo et al. studied the detec-
tion of cutting points on peduncles of overlapping grape 
clusters in the unstructured vineyard [13]. After segmenting 
individual clusters using k-means clustering and effective 
color component, a geometric constraint method is used to 
determine the cutting point in the region of interest of each 
grape cluster's peduncle. Yoshida et al. used the support 
vector machine to classify the point cloud data, clustering 
to obtain fruit peduncle pixels, and then looking for cut-
ting points [14, 15]. For solving the problem of the gripping 
pose of the end-effector of the pepper picking robot, Barth 
et al. first semantically segmented the pixels of the fruit and 
the main stem and then determined the spatial relationship 
between the fruit and the main stem to estimate the pose of 
the sweet pepper [16]. To solve the pose estimation prob-
lem for automated strawberry picking, Yu et al. [17] used 
a labeled dataset of bounding boxes with angles based on 
YOLO object detection and let the network learn the rotation 
angle of the bounding boxes to estimate the growing pose of 
strawberries. Xiong et al. [18] proposed a nighttime litchi 
fruit and fruit stalk detection method. The method is based 
on YOLOv3 to detect litchi fruits in the natural environment 
at night and determine the region of interest of fruit stalks 
based on the predicted litchi fruit bounding box. Finally, the 
litchi fruit stalks are segmented based on U-Net networks.

Existing methods allow for the identification and posi-
tioning of fruit peduncles to some extent, grapes and lychees 
are usually vertical downwards, the methods proposed by 
Luo et al. and Xiong et al. work well for vertical downwards 
growing stalks, but peduncles of tomato can deflect to any 
angle [13, 18]. The method proposed by Barth et al. esti-
mates the angle of a pepper relative to the main stem, but 
only estimates a pose that is only applicable to the unique 
end-effector designed by themselves [16]. Therefore, to real-
ize the fully autonomous picking of the robot, the current 
vision system needs to be continuously improved. The pur-
pose of this work is to study the cutting point positioning 
and pose estimation of the peduncle of tomatoes, provide 
coordinates for the robot end-effector grasping and adjust 
the grasping posture of the hand, so as to improve the pick-
ing success rate.

In this paper, we present a two-stage peduncle localiza-
tion method for cutting point localization of peduncles for 

bunches of cherry tomatoes in an unstructured environment. 
First, the tomatoes are coarsely located using a YOLOv4-
Tiny detector. Second, YOLACT +  + is used to segment the 
fruit pixels and peduncle pixels. Finally, the peduncle mask 
is used to fit the curve and three key points are found to 
construct a geometric model to estimate the peduncle pose. 
The outline of this paper is as follows: in Sect. 2, the materi-
als and methods used in the study including image acquisi-
tion and detection methods are described. In Sect. 3, the 
experimental results are presented and discusses. Lastly, in 
Sect. 4, the research work is summarized and future work 
is prospected.

Materials and methods

This study focused on estimating the cutting point and cut-
ting pose of the bunch of cherry tomatoes. Since ripe toma-
toes are not distributed at a similar height, the camera needs 
to collect images at a relatively long distance to obtain a 
field of view that is sufficient to cover most ripe tomatoes. 
However, the image obtained at a long distance has too few 
peduncle pixels, which makes it difficult to use the algo-
rithm to segment peduncle of tomato bunches. If the camera 
is close to the peduncle to collect images, the larger pixel 
area of the peduncle is easier to be segmented, and a better 
point cloud data for the peduncle can be obtained by RGB-D 
camera [19]. Besides, close-up images can also avoid back-
ground interference to a certain extent.

Combining the advantages of a large field of view for 
long-shot detection and a large pixel area of peduncle for 
close-shot detection, we developed a two-stage method 
for segment peduncle pixels corresponding to a bunch of 
cherry tomatoes. The flowchart of the two-stage peduncle 
segmentation method is illustrated in Fig. 1. In step 1 and 
step 2, images captured at different distances need to be col-
lected, images input to YOLOv4-Tiny need to be captured 
at a fixed distance of 0.5 to 0.7 m from the cherry tomatoes 
(see Fig. 2a), while images input to YOLACT +  + need to 
be captured by moving the camera installed on the end of 
the robotic arm to 0.3 m in front of the tomato bunch (see 
Fig. 2b). Therefore, the camera is mounted at the end of the 
robotic arm using an Eye-in-hand method, which allows the 
robotic arm to reach the position where the camera able to 
collect close-up images. Step 1 is the coarse positioning of 
the cherry tomato bunch which is the center of a tomato 
bunch. An image is collected at 0.5–0.7 m that has a field 
of view covering the entire pickable area of the ripe cherry 
tomatoes, as a result of which the pixel area of the indi-
vidual peduncle will be very small and difficult to detect. 
The YOLOv4-Tiny object detection algorithm is, there-
fore, first adopted to detect the pickable tomato bunch in 
the image and obtain a bounding box containing the tomato 
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bunch. After tomato bunches are detected, the state of the 
mobile robot platform used to install the robotic arm changes 
from moving to stopped. Then, the robotic arm approaches 
coarse positions (the coarse positions of tomato bunches are 
obtained in step 1, and robotic arm is moved to make the 
RGB-D camera reach the position 0.3 m in front of tomato 
bunch with a pose of 20 degrees counterclockwise around 
the X-axis of the camera coordinate system, as shown in 
Fig. 3) and perform operations in step 2. Step 2 is to seg-
ment the peduncle pixel that corresponds to the pickable 
tomato bunch. Compared to the image captured at a longer 
distance, the pixel area of the peduncle is larger in the image 
captured 0.3 m in front of the fruit, with a relative reduction 
in the pixel size of the complex background. In step 2, the 
YOLACT +  + instance segmentation algorithm is adopted 
to produce the masks for tomato bunches and peduncles. 
However, the output of the instance segmentation algorithm 
lacks a correlation between masks for the tomato bunch and 
the peduncle. To better construct the connection between 
masks for the tomato bunch and the peduncle, an algorithm 

to suppress non-corresponding peduncle masks is developed 
inspired by the non-maximum suppression algorithm. After 
obtaining the peduncle masks, we use the mask to find three 
key points on the peduncle masks (the upper point, the lower 

Fig. 1  Flowchart of the two-
stage peduncle segmentation 
method

Fig. 2  The position change 
of the robotic arm in differ-
ent steps: a the position of the 
robotic arm when an image is 
captured at a long distance; b 
the position of the robotic arm 
when a close-up image captured 
0.3 m in front of the tomato 
bunch

Fig. 3  Schematic diagram of close-up image collection location
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point, and the cutting point) and map the two-dimensional 
coordinates on the point cloud image to obtain the corre-
sponding three-dimensional coordinates to construct the 
geometry model to predict the pose of the peduncle.

Image acquisition

The cherry tomato datasets used in this paper were col-
lected in a period from September 2020 to January 2021 
in Nijiawan Water Field Greenhouse, Xiangcheng District, 
Suzhou, China. The images were captured using multiple 
RGB-D cameras (Intel RealSense D435i and D415) with 
1280 × 720-pixel resolution. To allow the visual system of 
the harvesting robot to have a wide range of adaptability in 
unstructured environments, images of tomatoes with differ-
ent growth cycles under different lighting conditions were 
collected.

Different datasets were required to train the models for 
YOLOv4-Tiny and YOLACT +  + . To meet this requirement, 
images captured at the long-distance and short-distance were 
collected separately. A total of 1528 images were collected, 
of which 828 images were acquired with the camera at a 
distance of 0.5–0.7 m from the cherry tomatoes and another 
700 at 0.25–0.35 m. Figure 4 shows some samples in dif-
ferent poses and captured at a different distance from the 
dataset. Before the tomato matures, to facilitate light trans-
mission and reduce diseases and pests, the staff will remove 
the leaves from the area to be mature. Therefore, all images 
we collect in this paper are tomatoes without leaves.

To make the image algorithm based on the deep neural 
network learn the characteristics of the tomatoes, it is neces-
sary to label the acquired images and mark the tomatoes and 
peduncles to be detected. In this paper, the rectangular box 
in the ‘labelImg’ calibration tool(see Fig. 5a) is used to label 

Fig. 4  Tomato samples in 
different poses and captured at 
a different distance: a tomato 
leaning forward; b tomato lean-
ing left; c tomato leaning right; 
d tomato captured at a long 
distance; e tomato captured at a 
short distance

Fig. 5  Tomato labeling meth-
ods: a the rectangular boxes 
are used to label tomatoes 
captured at a long distance; b 
two polygon boxes are used to 
label a bunch of tomatoes and 
the peduncle
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images captured at a long distance, while the polygon box in 
the ‘labelme’ calibration tool (see Fig. 5b) is used to mark 
images along the edge of the object captured at a short dis-
tance. As shown in Fig. 5b, there are two polygon boxes in 
total: the first one labels cherry tomatoes with the peduncle 
and the second one marks only the peduncle.

Tomato bunch detection based on YOLOv4‑Tiny

YOLOv4 is the latest single-stage object detection algo-
rithm, which is upgraded from YOLOv3 and can achieve 
better performance without reducing the speed [20–23]. 
YOLOv4 chooses CSPDarknet53 as the backbone, which 
consists of a multiple residual module and downsampling, 
and uses the Cross Stage Partial (CSP) Module to divide the 
feature mapping of the ‘Resblock_body’ into two parts and 
merge them in a cross-stage hierarchy (see Fig. 6). The Spa-
tial Pyramid Pooling (SPP) module is added to CSPDark-
net53 to enhance the receptive field and isolate important 
contextual features. After a comparative experiment on our 
tomato dataset, YOLOv4-Tiny detector is adopted in this 
work, which is a simplified version of YOLOv4 and has a 
higher detection speed without reducing detection accuracy. 
It uses the backbone with fewer layers, cancels the SPP mod-
ule, and reduces the number of detector heads from three 
to two. As the robot moves, the vision system needs to be 
able to detect the presence of cherry tomatoes in the field 
of view in real time. Therefore, the YOLOv4-Tiny detector 
is adopted to coarsely locate the cherry tomato fruit in a 

complex unstructured environment and to obtain information 
on the position of the fruit in the image.

Peduncle segmentation based on YOLACT  +  + 

After the cherry tomato fruit has been detected at a long 
distance, the camera mounted at the end of the robotic arm 
moves in front of the fruit. The fruit detected in the YOLOv4 
detector and the corresponding peduncle appears in the 
center of the camera’s field of view, with an increased pro-
portion of the peduncle pixel area in the overall image and 
relatively less interference from the complex background. 
This significantly reduces the difficulty of segmenting the 
peduncle pixels and the point cloud information provided by 
the RealSense D415 is more accurate. The ultimate goal of 
step 2 is to find the peduncle that corresponds to the cherry 
tomato fruit. The instance segmentation network simulta-
neously separates the pixels of the whole bunch of cherry 
tomato and the pixels of the individual peduncle and finally 
uses a relative position of the segmented pixels to suppress 
the peduncle pixels that are not in the whole bunch of cherry 
tomato. The YOLACT +  + instance segmentation neural net-
work is used as a detector to find a whole bunch of tomatoes 
and the corresponding peduncle in the close-up image.

YOLACT +  + uses ResNet-101 as the feature back-
bone, enabling deeper abstract semantic information fea-
tures to be extracted [24, 25]. Different from the single-
stage object detector, YOLACT +  + divides the instance 
segmentation task into two parallel processes, as shown 

Fig. 6  The structure of YOLOv4
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in Fig. 7. The first branch uses Fully Convolutional Net-
works (FCN) to generate a series of prototype masks that 
are consistent with the original image size. At the same 
time, the second branch is to add another output based 
on the object detector. In addition to predicting the cat-
egory confidence scores and bounding box coordinates, a 
series of mask coefficients need to be predicted for each 
instance. Finally, to produce the instance masks, the 
branch that produces the prototype masks and the branch 
that produces the mask coefficients are combined in lin-
ear combinations, and the results of the combinations are 
nonlinearized using the Sigmoid function to obtain the 
final masks.

In this paper, YOLACT +  + is selected to split the pix-
els of the two types of objects in the close-up image, 
one is the whole bunch of cherry tomatoes containing 
peduncle and fruit, and the other is only the peduncle. 
When processing image data, we have labeled the col-
lected data set accordingly. The network will learn the 
feature information of these two types of objects in the 
training phase, and finally, be able to make robust predic-
tions in the test set.

Background interference filter

In some cases, even if the camera is close enough to the 
whole bunch of cherry tomatoes to be picked for image 
acquisition, multiple bunches of tomatoes may appear in 
the close-up image or other peduncles are misidentified (see 
Fig. 8), because the other bunches of tomatoes or pedun-
cles are too close to the tomatoes to be picked. At this time, 
YOLACT +  + detects multiple bunches of tomatoes in the 
field of view simultaneously. But in subsequent processing, 
only one bunch of tomatoes is needed to find its correspond-
ing peduncle, so the masks for the remaining whole bunches 
of tomatoes and the peduncles need to be suppressed.

Based on this requirement, the output of YOL-
ACT +  + is post-processed, as shown in Fig. 9. First, the 
output obtained is the category, confidence score, bound-
ing box, and binary mask of each detected instance. If 
bunches of tomatoes and peduncle instances are detected 
in the image, all binary masks are stored separately 
according to categories (‘peduncle’ binary masks and 
‘fruit’ binary masks). Next, we find the mask with the 
highest confidence score in the ‘fruit’ binary masks, 
which is usually the mask for the whole bunch of cherry 

Fig. 7  The structure of YOL-
ACT +  + 

Fig. 8  Multiple bunches of 
cherry tomatoes in the field of 
view: a multiple bunches of 
tomatoes appear in an image; b 
multiple peduncles are detected
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tomatoes that can be picked. After obtaining the ‘fruit’ 
binary mask with the highest confidence score, multiply 
it with the ‘peduncle’ binary masks (each binary mask is 
a matrix of the same size) to have the new masks and cal-
culate the intersection ratio of fruit and peduncle masks 
(the ratio of the number of elements with a value of 1 in 
the new mask to the number of elements with a value of 
1 in the peduncle mask). Finally, find the peduncle mask 
with the maximum ratio and judge whether the ratio is 
greater than a threshold. This method is inspired by the 
Non-Maximum Suppression (NMS) algorithm and can 
find the peduncle corresponding to the pickable bunch of 
cherry tomatoes [26].

Cutting point and pose estimation

After obtaining the peduncle mask corresponding to the 
pickable bunch of tomatoes by the two-stage peduncle seg-
mentation method above, the appropriate cutting point and 
pose of the peduncle are estimated using a geometric model 
so that the end effector can reach the correct cutting point 
position in a suitable pose for a harvesting operation.

The method of estimating the cutting point of the 
peduncle is illustrated in Fig.  10. For the segmented 
peduncle mask, the pixel value of the mask position rep-
resenting the peduncle is set to 1 (white) and the rest of 
the region is set to 0 (black). Then, all pixel points set to 
1 are found and the curve is fitted using the least-squares 
polynomial by calling the function ‘polyfit’ in NumPy. 
Afterward, the minimum and maximum coordinates of 

Fig. 9  The process of obtaining the mask for the most suitable peduncle

Fig. 10  Estimation of peduncle 
cutting point
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the contour in the Y-direction are obtained by searching 
the upper and lower extreme value points of the peduncle 
mask whose coordinates corresponding to the X-direction 
are found, and the two extreme value points are regarded 
as the upper and lower points of the peduncle. Ultimately, 
the coordinate of the cutting point of the peduncle in the 
Y-direction is obtained by averaging the highest and low-
est points of the peduncle, while the coordinates must be 
satisfied on the fitted curve, and calculate the coordinate 
in the X-direction inverting the polynomial using formula 
(1):

where � , � and � are coefficient obtained by fitting 
the peduncle mask, the polynomial power(n) is set to 2, 
ycutting point is the average of the highest and lowest points, 

(1)
ycutting point = � ∗ xn

cutting point
+ � ∗ xn−1

cutting point
+ ⋯ + � ,

and xcutting point is the coordinate of the cutting point to be 
solved in the X-direction.

The robot can easily harvest bunches of tomatoes with 
the peduncles vertically in front of them. However, the 
peduncles of tomatoes in production greenhouses are often 
irregular and the success rate of picking bunches of toma-
toes in a fixed pose is low, so a vision system is needed to 
estimate the pose of the peduncles and drive the robot to 
be able to adapt to the pose of the peduncles for picking. 
A mathematical geometric model is, therefore, established 
based on three points to find the pose of the peduncle after 
obtaining the upper point ( P1 =

(

x1, y1, z1
)

 ), the lower point 
( P2 =

(

x2, y2, z2
)

 ), and the cutting point ( P3 =
(

x3, y3, z3
)

 ) 
of the peduncle (see Fig. 11a), of which 3D coordinates are 
obtained from the point cloud map.

In the greenhouse, except in cases where the peduncle 
is shaded by the main stem, the peduncles of tomatoes 
vertically downward, tilt to the left or the right. There-
fore, it is necessary to estimate the angles of yaw and 

Fig. 11  Estimation of the 
peduncle pose: a the results of 
three points predicted; b the 
top view of the model used to 
estimate the yaw angle θ of the 
peduncle; c the three-dimen-
sional view of the model used to 
estimate the pitch angle φ of the 
peduncle
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pitch rotations of peduncles relative to the ideal verti-
cal downward situation. As shown in Fig. 11b, the upper 
point P1 and the lower point P2 are used to calculate the 
angle of yaw rotation, and P1 and P2 are projected to form 
points P4(P4 =

(

x1, y2, z2
)

 ) and P5(P5 =
(

x1, y2, z1
)

 ) with 
angle θ being the angle of yaw rotation for the peduncle. 
Then, the projection of the lower point P2 and the cutting 
point P3 is used to get point P6(P6 =

(

x3, y2, z3
)

 ), and the 
angle ψ is the angle of pitch rotation for the peduncle 
(see Fig. 11c). P2 , P4 , P5 and P6 are all in the same plane 
parallel to xoz plane. The formulas (2) and (3) to solve 
the angles of yaw and pitch rotations for peduncles is as 
follows:

Experiments and discussion

All field experiments in this paper are conducted in Caoy-
ang agricultural technology demonstration greenhouse, 
Xiangcheng District, Suzhou, China. Before our experi-
ments, the staff trimmed the leaves of tomatoes in the 
area to be matured, which is part of gardening, in order 
to ventilate light and reduce pests and diseases. There-
fore, we do not consider the situation where the leaves 
occlude tomatoes and peduncles. Besides, we choose 
tomato varieties with long peduncles as our research 
object, and peduncles of tomato bunches are usually not 
blocked. Therefore, we acquiesce that peduncles of toma-
toes appear in the images collected by the camera, and 
the detection of occluded peduncles is not in the study 
of this paper. In this field experiments, we focus on the 
detection effect of tomato bunches in the images captured 
at a long distance, the segmentation effect of peduncles 
in the close-up images and the accuracy of the peduncle 
pose estimation.

In this demonstration, an industrial computer with an 
AMD Ryzen5-2600X CPU, an NVIDIA GeForce RTX 
2060 SUPER GPU with 8 GB memory, and Windows 10 
system is used for training the object detection algorithm 
and instance segmentation algorithm. A laptop with an 
Intel Core i7-8750H, an NVIDIA GeForce GTX 1080 is 
used for testing in the greenhouse.

(2)θ = cos−1
P4P5

P2P5

= cos−1

√

(

z1 − z2
)2

√

(

x1 − x2
)2

+
(

z1 − z2
)2

(3)

ψ = cos−1
P3P6

P2P3

= cos−1

√

(

y1 − y3
)2

√

(

x1 − x3
)2

+
(

y1 − y3
)2

+
(

z1 − z3
)2

Results of tomato bunch detection

As the representative work of single-stage object detectors, 
YOLO series achieves a balance between accuracy and speed. 
With the appearance of YOLOv3 and YOLOv4 detectors, the 
accuracy of real-time object detection algorithms has been 
continuously updated, achieving the best balance between 
speed and accuracy. Whereas the real-time requirement is 
important in the practical application of picking robots, so 
we compare several single-stage detectors to find a real-time 
detector with the best accuracy for detecting tomato bunches.

In this paper, experiments are carried out to compare the 
performance of the tomato bunch detection based on the 
YOLOv3, YOLOv4, and YOLOv4-Tiny. A total of 828 images 
are divided into training sets, validation sets, and test sets, as 
shown in Table 1. These models are trained for 600 epochs 
with a batch size of 8, an initial learning rate of 0.00261, a 
momentum of 0.949, and a decay of 0.0005.

The prediction results can be divided into the following 
four types: TP, actual true samples are predicted to be posi-
tive; FP, actual false samples are predicted to be positive; TN, 
actual false samples are predicted to be negative and FN, actual 
true samples are predicted to be negative. Speed, recall, preci-
sion, and F1 score are used to evaluate the model performance. 
The indexes for evaluation of the trained model are defined as 
follows:

(4)Recall =
TP

TP + FN

(5)Precision =
TP

TP + FP

(6)F1 =
2 × Recall × Precision

Recall + Precision
.

Table 1  Number of tomato bunch datasets captured at the long-dis-
tance

Training sets Validation sets Test sets Total

496 166 166 828

Table 2  Testing results of the YOLOv4 model

Bold values indicate better results than other methods under the cur-
rent index

Methods Speed (ms) Recall Precision F1

YOLOv3 28.7 95.6 95.9 95.7
YOLOv4 34.4 95.4 92.2 93.8
YOLOv4-Tiny 9.1 96.2 92.7 94.4



2964 Complex & Intelligent Systems (2022) 8:2955–2969

1 3

Table 2 shows the comparison results of tomato bunch 
detection by three methods. Compared to YOLOv3 and 
YOLOv4, YOLOv4-Tiny is the fastest, taking only 9.1 ms 
to detect an image resized to 512. YOLOv3 has the best 
accuracy of 95.9%, which is 3.7 and 3.2% higher than 
YOLOv4 and YOLOv4-Tiny, respectively. In terms of 
recall, YOLOv4-Tiny achieves 96.2% that is higher than 
the other two methods. Considering the recall and preci-
sion together (F1 score), YOLOv3 performs best. How-
ever, YOLOv4-Tiny is 19.6 ms faster than YOLOv3 at the 
expense of a 1.3% F1 score, which means that YOLOv4-
Tiny has lower hardware requirements and better real-time 
performance for a similar accuracy.

Discussion of tomato bunch detection

Figure 12 shows the prediction results of different methods 
tested on one of the samples. All the tomato bunches in 
this image have been detected by YOLOv4-Tiny, while 
YOLOv3 misses one and YOLOv4 detects two tomato 
bunches in the background as well. Such a result, also 
seen in the other test samples, is the reason for the lower 
accuracy of YOLOv4 compared to the other two methods. 
The reason for this phenomenon can be that YOLOv4 has 
better performance for detecting multi-scale targets, with a 
deeper network and a better multi-scale feature map fusion 
method enabling tomato bunches in the background to be 
detected as well. The tomato bunch in the background 
and the tomato bunch in the foreground have some simi-
lar characteristics, but their scales are different, fusing the 
output of different layers will destroy this characteristic of 
scale changes. The test results of YOLOv4-Tiny suggest 
that for simpler classification, such as detecting a single 
target of tomato bunches, a lightweight detector with the 
shallower depth may be better, especially the speed advan-
tage will be more obvious.

By comparison, we choose YOLOv4-Tiny as the object 
detector to detect and coarsely locate tomato bunches 
while the robot is moving.

Results of peduncle cutting point positioning

After the tomato bunch is detected, the robot arm approaches 
a specific whole bunch of tomatoes for a close-up shot (at 
this position the camera's field of view can cover the whole 
bunch of tomatoes and make it appear in the middle of the 
image), then we applied an instance segmentation model to 
find the pixel mask of the tomato bunch and corresponding 
peduncle. Therefore, we need to verify the effect of instance 
segmentation and use the YOLACT +  + model with different 
backbones to test the effect of instance segmentation. The 
instance segmentation model YOLACT +  + receives 410 
images as the training sets and 170 images as the validation 
sets (see Table 3), adjusting the resolution from 1280 × 720 
pixels to 700 × 700 as the input to the network. In this paper, 
we don’t consider the situation that the peduncle is blocked. 
If the camera cannot see the peduncle corresponding to the 
tomato bunch, the robot will not pick it. Therefore, only 
close-up images that peduncles have not been blocked are in 
the dataset. Due to GPU memory constraints, the batch size 
is had to be set to 3, which affects the performance of the 
network to some extent. The momentum and weight decay 
are, respectively, set to 0.9 and 0.0005. The model is trained 
for 600 epochs with an initial learning rate of 10−3 , which is 
then divided by 10 after 100 epochs.

The trained model parameters are loaded into YOL-
ACT +  + to test 120 images in the test set. We introduce 

Fig. 12  Detection results of different methods: a YOLOv3; b YOLOv4; c YOLOv4-Tiny

Table 3  Number of tomato datasets captured at the close-up distance

Training sets Validation sets Test sets Total

410 170 120 700

Table 4  Testing results of the YOLACT +  + model

Bold values indicate better results than other methods under the cur-
rent index

Backbone FPS mAP mAP50 mAP75

R-50-FPN 17.7 61.9 94.2 71.0
R-101-FPN 9.2 73.1 96.9 87.3
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FPS (Frames Per Second) to evaluate the running speed of 
the model, and AP (Average Precision) is used to evaluate 
the quality of the mask predicted by the model. As shown in 
Table 4, the YOLACT +  + network with R-101-FPN back-
bone improves mAP by 11.2 compared to the backbone 
being R-50-FPN. However, the model using the R-101-FPN 
backbone is 9.2 FPS, while the model using R-50-FPN is 
able to achieve 17.7 FPS. The experimental results show that 
using a backbone with more layers improves the accuracy 
and precision of the model, but deeper backbones consume 
more time. In this paper, the close-up peduncle segmenta-
tion task requires better accuracy, and a deeper backbone 
network can bring significant accuracy improvements, hence 
the backbone of YOLACT +  + chooses R-101-FPN.

Then, we use the peduncle mask predicted YOL-
ACT +  + to fit a curve, and find the key points on the curve. 
The prediction result of the field experiment is shown in 
Fig. 13. In this way, three key points of the fruit correspond-
ing to the fruit stem can be found. In 120 tests conducted, 
the algorithm can accurately find the key points of the cor-
responding peduncle in 112 images and misses 8 peduncles.

Discussion of peduncle cutting point positioning

In the first detection, we have balanced the accuracy and 
speed of the object detector, and have higher requirements 
for real-time performance. When considering the peduncle 
segmentation algorithm, we pay more attention to the accu-
racy of detection. The reason is that the robot is moving at 
the first detection. Only when the tomato bunch is detected, 
the robot stops, then the camera mounted on the robot arm 
approaches the tomato bunch for a second detection. In 
the second detection, the robot is static, so the accuracy of 
peduncle segmenting is given priority.

Fig. 13  Field experimental 
results of positioning the key 
points of peduncles

Table 5  Analysis of the failure detection

Reasons for failure of detection Number 
in test 
sets

Disturbed by neighboring tomatoes 1
Incomplete or undetectable masks 6
Light interference 1
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According to the experimental results, we analyzed the 
failure reasons for peduncle cutting point positioning fail-
ure. Table 5 shows the reasons why the algorithm does 
not find the key points correctly. In one of the images, two 
fruits and a peduncle are detected, and the masks of the 
fruit with the highest confidence level and the peduncle do 
not intersect, so this detection fails. The absence of any 
peduncles in the predictions of the YOLACT +  + model 
is the cause of detection failure in the six test images. 
Finally, the presence of strong sunlight in the background 
also makes a detection failure. By analyzing and summa-
rizing the reasons for the failures, we find that when the 
peduncle is vertically downward and overlaps the main 
stem, the predicted mask will be incomplete or undetect-
able. The possible reason is that there are too few data 
samples of peduncles that overlap the main stem vertically 
so that the network does not distinguish the characteristics 
of this different object well. In the future, we will add 

these samples that may cause failure in the training set and 
validation set to improve the detection effect.

Results of pose estimation

In Sect. 3.4, we try to find three key points of fruit pedun-
cles, based on which a geometric model is established to 
estimate the angles of yaw and pitch rotations of peduncles 
relative to the ideal vertical downward situation, allowing 
the picking robot to adaptively adjust the end-effector to 
grip the peduncle in a more reasonable pose. For the perfor-
mance evaluation, we test 30 different bunches of tomatoes 
in a greenhouse (all 30 test data can obtain peduncle masks) 
and then measure two angles of the peduncle using an angle 
ruler. Finally, the error between the predicted angle and 
the measured angle is analyzed as the basis for evaluating 
the performance of the pose estimation algorithm. Table 6 
shows the pose prediction and measurement results of the 

Table 6  Testing results on the 
estimation of the peduncle pose

No. L ( +) /R (−) F ( +)/B (−) Estimated 
yaw angle 
θ(°)

Estimated 
pitch angle 
ϕ(°)

Measured yaw 
angle θ  (°)

Measured 
pitch angle 
ϕ(°)

1 − + 26.0 29.9 22.4 32.0
2 − − 53.9 32.3 60.3 32.0
3 − − 37.0 21.6 33.6 23.5
4 − − 72.0 26.9 69.9 35.4
5 − + 47.3 25.1 43.7 31.6
6 −  + 85.4 36.2 81.2 33.6
7 − − 58.8 29.3 56.2 31.9
8 − − 33.4 18.8 33.1 22.7
9 − − 52.7 42.6 57.2 55.2
10 − − 80.9 24.8 82.2 29.6
11 − − 43.6 23.9 53.3 30.6
12 − − 84.2 32.1 83.7 31.5
13 −  + 42.4 16.8 44.5 17.5
14 − − 68.9 23.9 77.1 16.4
15 − − 31.7 27.5 35.4 37.8
16 − − 22.1 17.1 32.7 26.5
17 −  + 90.0 30.3 85.1 29.2
18 − − 47.7 21.1 58.9 20.9
19 − + 82.9 43.6 85.8 38.8
20 −  + 79.2 35.7 87.3 35.9
21 −  + 34.5 15.7 28.3 26.8
22 −  + 59.2 27.8 57.4 30.5
23  +  + 38.3 15.9 28.7 23.7
24 −  + 86.6 22.8 80.5 31.5
25 −  + 68.9 33.4 75.1 28.5
26 −  + 44.8 15.9 43.0 16.0
27 −  + 73.4 29.9 74.3 27.5
28  +  + 73.3 26.9 63.0 31.4
29  +  + 77.3 29.9 66.7 37.5
30 −  + 77.6 32.8 75.7 38.3
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corresponding peduncle of 30 different groups of bunches 
of tomatoes. L( +) means that the peduncle is inclined to 
the left and R(-) means that the peduncle is inclined to the 
right. As shown in Fig. 11, if the coordinate of Point P1 in 
the X-direction is greater than Point P2 , it is considered to 
be inclined to the left. F( +) means that it is inclined forward 
and B(−) means that it is inclined backward. If the coordi-
nate of Point P1 in the Z-direction is greater than Point P2 
(see Fig. 11), it is considered to be inclined to the forward. 
The pose predictions of the 30 groups of peduncles can well 
predict whether the fruit peduncles are forward or backward, 
left or right. Yaw angle and Pitch angle are θ and φ which 
are defined in Fig. 11b and c respectively. Estimated angles 
are calculated by the pose estimation algorithm and meas-
ured angle is measured by an angle ruler. Since the measured 
angle is manually measured in the greenhouse using an angle 
ruler, there is a measurement error of ±5◦.

During the experiment, we excluded the effects caused by 
missing data in the point cloud images, and the angle estima-
tion results were all based on the successful predictions of 
YOLACT +  + . The results of the 30 sets of peduncle pose 
predictions are analyzed to obtain prediction errors for yaw 
and pitch angles as shown in Fig. 14. The mean error of the 
predicted yaw angle θ is 4.98° with a maximum error of 
11.2°, while the mean error of the pitch angle φ is 4.75° with 
a maximum error of 12.6°. The errors above are all based 
on the fact that the segmentation algorithm can correctly 

segment the pixel area of the peduncles in 93.3% of cases, 
thus being able to find the correct three key points on the 
fitted curve.

Discussion of pose estimation

The peduncle pose estimation algorithm constructs a pol-
ynomial curve by fitting the peduncle mask predicted by 
YOLACT +  + to obtain three key points and finds the corre-
sponding three-dimensional coordinates and then establishes 
a mathematical model about these three points to obtain the 
relative posture of the peduncle(the pose is relative to the 
ideal vertical downward peduncle). The error of the pose 
estimation depends on the accuracy of the prediction of the 
peduncle mask and the accuracy of the point cloud obtained 
by the RGB-D camera. We have done a separate experimen-
tal analysis on the results of peduncle masks predicted by 
YOLACT +  + . Therefore, most of the measurement errors 
above in pose estimation are caused by inaccurate point 
cloud information. Also, to reduce the impact caused by 
missing holes, the adjacent point cloud data is used to fill 
the missing data, which further increasing the error in the 
point cloud data.

Fig. 14  Error analysis of the estimated peduncle pose angle for the 30 tested images
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Conclusions

In this paper, we develop a two-stage peduncle segmentation 
method and establish a geometric model of the peduncle 
mask corresponding to the bunch of tomatoes to find the 
cutting point and pose. The performance of the proposed 
method is tested in Sect. 3 and the results demonstrate the 
effectiveness of using this method to find the cutting point 
and the cutting pose of the peduncle in the greenhouse.

YOLOv4-Tiny is chosen as the object detector to find 
bunches of tomatoes in real-time as the robot moves, with 
a detection time of 0.0091 s per frame and an accuracy of 
92.7%. After YOLOv4 detects tomatoes, the camera moves 
sequentially to the front of the tomato to take a close-up 
image. YOLACT +  + is then selected as the network for seg-
menting the peduncle mask, and in test sets, the mAP is 73.1 
with a time speed of 0.109 s per frame. Finally, a geometric 
model is developed to estimate the cutting point and pose 
of the peduncle based on the peduncle mask segmented by 
YOLACT +  + . To find the peduncle mask corresponding 
to the bunch of tomatoes, the ratio of the intersection of the 
bunch of tomatoes mask and the peduncle mask is calcu-
lated, and only the peduncle mask with intersection ratios 
greater than a set threshold is output. Finally, a mathematical 
geometric model is developed using the three key points to 
predict the pose of the peduncle, with an average error of 
4.98° in yaw angle and 4.75° in pitch angle over the 30 sets 
of tests.

When predicting peduncle masks, the segmentation suc-
cess rate is low for peduncles that grow vertically downward. 
The reason is that this kind of peduncle data accounts for a 
relatively small proportion in the training sets. Therefore, 
we will expand our data set for better performance in the 
future. Besides, the quality of the point cloud data output 
from RGB-D cameras affects the accuracy and stability of 
pose estimation. Compare different RGB-D cameras and 
select the one more suitable for use in the greenhouse.

Future work is to design an end-effector and build a har-
vesting robot system. Using the peduncle cutting point posi-
tioning and pose estimation methods proposed in this paper, 
the gripper mounted at the end of the robotic arm will be 
able to pick bunches of tomatoes adaptively and the perfor-
mance of the robotic system will be evaluated.
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