
Vol.:(0123456789)1 3

Complex & Intelligent Systems (2022) 8:2955–2969
https://doi.org/10.1007/s40747-021-00522-7

ORIGINAL ARTICLE

A peduncle detection method of tomato for autonomous harvesting

Jiacheng Rong1 · Guanglin Dai1 · Pengbo Wang1

Received: 29 March 2021 / Accepted: 31 August 2021 / Published online: 28 September 2021
© The Author(s) 2021

Abstract
For automating the harvesting of bunches of tomatoes in a greenhouse, the end-effector needs to reach the exact cutting point
and adaptively adjust the pose of peduncles. In this paper, a method is proposed for peduncle cutting point localization and
pose estimation. Images captured in real time at a fixed long-distance are detected using the YOLOv4-Tiny detector with
a precision of 92.7% and a detection speed of 0.0091 s per frame, then the YOLACT + + Network with mAP of 73.1 and a
time speed of 0.109 s per frame is used to segment the close-up distance. The segmented peduncle mask is fitted to the curve
using least squares and three key points on the curve are found. Finally, a geometric model is established to estimate the pose
of the peduncle with an average error of 4.98° in yaw angle and 4.75° in pitch angle over the 30 sets of tests.

Keywords Harvesting robot · Peduncle detection · Deep learning · Pose estimation

Introduction

Harvesting cherry tomatoes relies mainly on manual picking,
which is time consuming and labor intensive [1]. Moreover,
the aging population and increasing labor costs have led to
a shortage of labor. Therefore, there is an urgent need to
integrate robot technology with artificial intelligence in agri-
culture, using automated picking instead of manual picking
[2]. At present, the research of picking robots is focused on
the following directions: fruit localization, ripeness deter-
mination, obstacle localization, task planning and motion
planning [3]. In this paper, we focus on fruit detection and
localization, which is a hot topic of current research and a
prerequisite for automated robotic picking.

The use of deep learning to detect fruit has become very
popular and has been mentioned in some prior work [4].
Koirala et al. improved the YOLOv3 detector by reduc-
ing the model to 33 layers for better connecting the deeper
semantic information with the shallower fine-grained infor-
mation to detect mangoes with an F1-score of 0.89 and a
detection speed of 70 ms per image(on an NVIDIA GTX
1070 Ti GPU) [5]. Li et al. proposed an improved YOLOv3

network to detect apples by replacing the backbone from
DarkNet53 method to DenseNet method and cost 0.304 s
on a 3000 × 3000 pixels image [6]. Liu et al. used a circu-
lar bounding box instead of a rectangular bounding box for
individual tomato localization based on YOLOv3, achiev-
ing the correct identification rate of 94.58% with an average
detection time of 0.054 s per image under slight occlusion
conditions [7]. Birrell et al. automated the harvesting of
mature lettuce in the natural environment [8]. The images
are captured in real time by a stationary camera and passed
into the YOLOv3 network for coarse positioning, and the
detected images are cropped and passed into the darknet
network for fine classification, enabling the differentia-
tion between immature lettuce, mature lettuce, and lettuce
affected by pests and diseases. Isaac et al. improved Mask
RCNN for strawberry fruit segmentation and also performed
well on the detection of partially obscured strawberries [9].
Song et al. used DeepLabV3 + to segment calyces, branches
and wires on kiwifruit canopy images, which achieved mIoU
of 0.694 with a detection time of 210.0 ms [10]. As deep
learning models push the envelope, detectors are able to
detect fruit faster and better, for example using YOLOv4
to detect citrus with 3.15% better accuracy compared to
YOLOv3 [11].

Although the current research has been able to solve
the problem of fruit identification and positioning, such as
harvesting the bunch of tomatoes, the robotic end-effector
must be able to accurately grip the peduncle attached to the

 * Pengbo Wang
 pbwang@suda.edu.cn

1 School of Mechanical and Electric Engineering, Jiangsu
Provincial Key Laboratory of Advanced Robotics, Soochow
University, Suzhou 215123, China

http://orcid.org/0000-0003-3828-3053
http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-021-00522-7&domain=pdf

2956 Complex & Intelligent Systems (2022) 8:2955–2969

1 3

fruit. However, compared to the detection and localization of
fruit, the peduncles are smaller and more complex, and var-
ied in shape, and the detector is susceptible to interference
from complex backgrounds such as the main stem. Many
attempts have been made by scholars to address these issues.
Sa et al. [12] proposed a three-dimensional vision detec-
tion method for fruit stem recognition of automatic picking
sweet pepper in the greenhouse. Based on HSV color space
and geometric features (different curvature of stem and fruit
surface), the detection features are extracted and classified
by the support vector machine. Luo et al. studied the detec-
tion of cutting points on peduncles of overlapping grape
clusters in the unstructured vineyard [13]. After segmenting
individual clusters using k-means clustering and effective
color component, a geometric constraint method is used to
determine the cutting point in the region of interest of each
grape cluster's peduncle. Yoshida et al. used the support
vector machine to classify the point cloud data, clustering
to obtain fruit peduncle pixels, and then looking for cut-
ting points [14, 15]. For solving the problem of the gripping
pose of the end-effector of the pepper picking robot, Barth
et al. first semantically segmented the pixels of the fruit and
the main stem and then determined the spatial relationship
between the fruit and the main stem to estimate the pose of
the sweet pepper [16]. To solve the pose estimation prob-
lem for automated strawberry picking, Yu et al. [17] used
a labeled dataset of bounding boxes with angles based on
YOLO object detection and let the network learn the rotation
angle of the bounding boxes to estimate the growing pose of
strawberries. Xiong et al. [18] proposed a nighttime litchi
fruit and fruit stalk detection method. The method is based
on YOLOv3 to detect litchi fruits in the natural environment
at night and determine the region of interest of fruit stalks
based on the predicted litchi fruit bounding box. Finally, the
litchi fruit stalks are segmented based on U-Net networks.

Existing methods allow for the identification and posi-
tioning of fruit peduncles to some extent, grapes and lychees
are usually vertical downwards, the methods proposed by
Luo et al. and Xiong et al. work well for vertical downwards
growing stalks, but peduncles of tomato can deflect to any
angle [13, 18]. The method proposed by Barth et al. esti-
mates the angle of a pepper relative to the main stem, but
only estimates a pose that is only applicable to the unique
end-effector designed by themselves [16]. Therefore, to real-
ize the fully autonomous picking of the robot, the current
vision system needs to be continuously improved. The pur-
pose of this work is to study the cutting point positioning
and pose estimation of the peduncle of tomatoes, provide
coordinates for the robot end-effector grasping and adjust
the grasping posture of the hand, so as to improve the pick-
ing success rate.

In this paper, we present a two-stage peduncle localiza-
tion method for cutting point localization of peduncles for

bunches of cherry tomatoes in an unstructured environment.
First, the tomatoes are coarsely located using a YOLOv4-
Tiny detector. Second, YOLACT + + is used to segment the
fruit pixels and peduncle pixels. Finally, the peduncle mask
is used to fit the curve and three key points are found to
construct a geometric model to estimate the peduncle pose.
The outline of this paper is as follows: in Sect. 2, the materi-
als and methods used in the study including image acquisi-
tion and detection methods are described. In Sect. 3, the
experimental results are presented and discusses. Lastly, in
Sect. 4, the research work is summarized and future work
is prospected.

Materials and methods

This study focused on estimating the cutting point and cut-
ting pose of the bunch of cherry tomatoes. Since ripe toma-
toes are not distributed at a similar height, the camera needs
to collect images at a relatively long distance to obtain a
field of view that is sufficient to cover most ripe tomatoes.
However, the image obtained at a long distance has too few
peduncle pixels, which makes it difficult to use the algo-
rithm to segment peduncle of tomato bunches. If the camera
is close to the peduncle to collect images, the larger pixel
area of the peduncle is easier to be segmented, and a better
point cloud data for the peduncle can be obtained by RGB-D
camera [19]. Besides, close-up images can also avoid back-
ground interference to a certain extent.

Combining the advantages of a large field of view for
long-shot detection and a large pixel area of peduncle for
close-shot detection, we developed a two-stage method
for segment peduncle pixels corresponding to a bunch of
cherry tomatoes. The flowchart of the two-stage peduncle
segmentation method is illustrated in Fig. 1. In step 1 and
step 2, images captured at different distances need to be col-
lected, images input to YOLOv4-Tiny need to be captured
at a fixed distance of 0.5 to 0.7 m from the cherry tomatoes
(see Fig. 2a), while images input to YOLACT + + need to
be captured by moving the camera installed on the end of
the robotic arm to 0.3 m in front of the tomato bunch (see
Fig. 2b). Therefore, the camera is mounted at the end of the
robotic arm using an Eye-in-hand method, which allows the
robotic arm to reach the position where the camera able to
collect close-up images. Step 1 is the coarse positioning of
the cherry tomato bunch which is the center of a tomato
bunch. An image is collected at 0.5–0.7 m that has a field
of view covering the entire pickable area of the ripe cherry
tomatoes, as a result of which the pixel area of the indi-
vidual peduncle will be very small and difficult to detect.
The YOLOv4-Tiny object detection algorithm is, there-
fore, first adopted to detect the pickable tomato bunch in
the image and obtain a bounding box containing the tomato

2957Complex & Intelligent Systems (2022) 8:2955–2969

1 3

bunch. After tomato bunches are detected, the state of the
mobile robot platform used to install the robotic arm changes
from moving to stopped. Then, the robotic arm approaches
coarse positions (the coarse positions of tomato bunches are
obtained in step 1, and robotic arm is moved to make the
RGB-D camera reach the position 0.3 m in front of tomato
bunch with a pose of 20 degrees counterclockwise around
the X-axis of the camera coordinate system, as shown in
Fig. 3) and perform operations in step 2. Step 2 is to seg-
ment the peduncle pixel that corresponds to the pickable
tomato bunch. Compared to the image captured at a longer
distance, the pixel area of the peduncle is larger in the image
captured 0.3 m in front of the fruit, with a relative reduction
in the pixel size of the complex background. In step 2, the
YOLACT + + instance segmentation algorithm is adopted
to produce the masks for tomato bunches and peduncles.
However, the output of the instance segmentation algorithm
lacks a correlation between masks for the tomato bunch and
the peduncle. To better construct the connection between
masks for the tomato bunch and the peduncle, an algorithm

to suppress non-corresponding peduncle masks is developed
inspired by the non-maximum suppression algorithm. After
obtaining the peduncle masks, we use the mask to find three
key points on the peduncle masks (the upper point, the lower

Fig. 1 Flowchart of the two-
stage peduncle segmentation
method

Fig. 2 The position change
of the robotic arm in differ-
ent steps: a the position of the
robotic arm when an image is
captured at a long distance; b
the position of the robotic arm
when a close-up image captured
0.3 m in front of the tomato
bunch

Fig. 3 Schematic diagram of close-up image collection location

2958 Complex & Intelligent Systems (2022) 8:2955–2969

1 3

point, and the cutting point) and map the two-dimensional
coordinates on the point cloud image to obtain the corre-
sponding three-dimensional coordinates to construct the
geometry model to predict the pose of the peduncle.

Image acquisition

The cherry tomato datasets used in this paper were col-
lected in a period from September 2020 to January 2021
in Nijiawan Water Field Greenhouse, Xiangcheng District,
Suzhou, China. The images were captured using multiple
RGB-D cameras (Intel RealSense D435i and D415) with
1280 × 720-pixel resolution. To allow the visual system of
the harvesting robot to have a wide range of adaptability in
unstructured environments, images of tomatoes with differ-
ent growth cycles under different lighting conditions were
collected.

Different datasets were required to train the models for
YOLOv4-Tiny and YOLACT + + . To meet this requirement,
images captured at the long-distance and short-distance were
collected separately. A total of 1528 images were collected,
of which 828 images were acquired with the camera at a
distance of 0.5–0.7 m from the cherry tomatoes and another
700 at 0.25–0.35 m. Figure 4 shows some samples in dif-
ferent poses and captured at a different distance from the
dataset. Before the tomato matures, to facilitate light trans-
mission and reduce diseases and pests, the staff will remove
the leaves from the area to be mature. Therefore, all images
we collect in this paper are tomatoes without leaves.

To make the image algorithm based on the deep neural
network learn the characteristics of the tomatoes, it is neces-
sary to label the acquired images and mark the tomatoes and
peduncles to be detected. In this paper, the rectangular box
in the ‘labelImg’ calibration tool(see Fig. 5a) is used to label

Fig. 4 Tomato samples in
different poses and captured at
a different distance: a tomato
leaning forward; b tomato lean-
ing left; c tomato leaning right;
d tomato captured at a long
distance; e tomato captured at a
short distance

Fig. 5 Tomato labeling meth-
ods: a the rectangular boxes
are used to label tomatoes
captured at a long distance; b
two polygon boxes are used to
label a bunch of tomatoes and
the peduncle

2959Complex & Intelligent Systems (2022) 8:2955–2969

1 3

images captured at a long distance, while the polygon box in
the ‘labelme’ calibration tool (see Fig. 5b) is used to mark
images along the edge of the object captured at a short dis-
tance. As shown in Fig. 5b, there are two polygon boxes in
total: the first one labels cherry tomatoes with the peduncle
and the second one marks only the peduncle.

Tomato bunch detection based on YOLOv4‑Tiny

YOLOv4 is the latest single-stage object detection algo-
rithm, which is upgraded from YOLOv3 and can achieve
better performance without reducing the speed [20–23].
YOLOv4 chooses CSPDarknet53 as the backbone, which
consists of a multiple residual module and downsampling,
and uses the Cross Stage Partial (CSP) Module to divide the
feature mapping of the ‘Resblock_body’ into two parts and
merge them in a cross-stage hierarchy (see Fig. 6). The Spa-
tial Pyramid Pooling (SPP) module is added to CSPDark-
net53 to enhance the receptive field and isolate important
contextual features. After a comparative experiment on our
tomato dataset, YOLOv4-Tiny detector is adopted in this
work, which is a simplified version of YOLOv4 and has a
higher detection speed without reducing detection accuracy.
It uses the backbone with fewer layers, cancels the SPP mod-
ule, and reduces the number of detector heads from three
to two. As the robot moves, the vision system needs to be
able to detect the presence of cherry tomatoes in the field
of view in real time. Therefore, the YOLOv4-Tiny detector
is adopted to coarsely locate the cherry tomato fruit in a

complex unstructured environment and to obtain information
on the position of the fruit in the image.

Peduncle segmentation based on YOLACT + +

After the cherry tomato fruit has been detected at a long
distance, the camera mounted at the end of the robotic arm
moves in front of the fruit. The fruit detected in the YOLOv4
detector and the corresponding peduncle appears in the
center of the camera’s field of view, with an increased pro-
portion of the peduncle pixel area in the overall image and
relatively less interference from the complex background.
This significantly reduces the difficulty of segmenting the
peduncle pixels and the point cloud information provided by
the RealSense D415 is more accurate. The ultimate goal of
step 2 is to find the peduncle that corresponds to the cherry
tomato fruit. The instance segmentation network simulta-
neously separates the pixels of the whole bunch of cherry
tomato and the pixels of the individual peduncle and finally
uses a relative position of the segmented pixels to suppress
the peduncle pixels that are not in the whole bunch of cherry
tomato. The YOLACT + + instance segmentation neural net-
work is used as a detector to find a whole bunch of tomatoes
and the corresponding peduncle in the close-up image.

YOLACT + + uses ResNet-101 as the feature back-
bone, enabling deeper abstract semantic information fea-
tures to be extracted [24, 25]. Different from the single-
stage object detector, YOLACT + + divides the instance
segmentation task into two parallel processes, as shown

Fig. 6 The structure of YOLOv4

2960 Complex & Intelligent Systems (2022) 8:2955–2969

1 3

in Fig. 7. The first branch uses Fully Convolutional Net-
works (FCN) to generate a series of prototype masks that
are consistent with the original image size. At the same
time, the second branch is to add another output based
on the object detector. In addition to predicting the cat-
egory confidence scores and bounding box coordinates, a
series of mask coefficients need to be predicted for each
instance. Finally, to produce the instance masks, the
branch that produces the prototype masks and the branch
that produces the mask coefficients are combined in lin-
ear combinations, and the results of the combinations are
nonlinearized using the Sigmoid function to obtain the
final masks.

In this paper, YOLACT + + is selected to split the pix-
els of the two types of objects in the close-up image,
one is the whole bunch of cherry tomatoes containing
peduncle and fruit, and the other is only the peduncle.
When processing image data, we have labeled the col-
lected data set accordingly. The network will learn the
feature information of these two types of objects in the
training phase, and finally, be able to make robust predic-
tions in the test set.

Background interference filter

In some cases, even if the camera is close enough to the
whole bunch of cherry tomatoes to be picked for image
acquisition, multiple bunches of tomatoes may appear in
the close-up image or other peduncles are misidentified (see
Fig. 8), because the other bunches of tomatoes or pedun-
cles are too close to the tomatoes to be picked. At this time,
YOLACT + + detects multiple bunches of tomatoes in the
field of view simultaneously. But in subsequent processing,
only one bunch of tomatoes is needed to find its correspond-
ing peduncle, so the masks for the remaining whole bunches
of tomatoes and the peduncles need to be suppressed.

Based on this requirement, the output of YOL-
ACT + + is post-processed, as shown in Fig. 9. First, the
output obtained is the category, confidence score, bound-
ing box, and binary mask of each detected instance. If
bunches of tomatoes and peduncle instances are detected
in the image, all binary masks are stored separately
according to categories (‘peduncle’ binary masks and
‘fruit’ binary masks). Next, we find the mask with the
highest confidence score in the ‘fruit’ binary masks,
which is usually the mask for the whole bunch of cherry

Fig. 7 The structure of YOL-
ACT + +

Fig. 8 Multiple bunches of
cherry tomatoes in the field of
view: a multiple bunches of
tomatoes appear in an image; b
multiple peduncles are detected

2961Complex & Intelligent Systems (2022) 8:2955–2969

1 3

tomatoes that can be picked. After obtaining the ‘fruit’
binary mask with the highest confidence score, multiply
it with the ‘peduncle’ binary masks (each binary mask is
a matrix of the same size) to have the new masks and cal-
culate the intersection ratio of fruit and peduncle masks
(the ratio of the number of elements with a value of 1 in
the new mask to the number of elements with a value of
1 in the peduncle mask). Finally, find the peduncle mask
with the maximum ratio and judge whether the ratio is
greater than a threshold. This method is inspired by the
Non-Maximum Suppression (NMS) algorithm and can
find the peduncle corresponding to the pickable bunch of
cherry tomatoes [26].

Cutting point and pose estimation

After obtaining the peduncle mask corresponding to the
pickable bunch of tomatoes by the two-stage peduncle seg-
mentation method above, the appropriate cutting point and
pose of the peduncle are estimated using a geometric model
so that the end effector can reach the correct cutting point
position in a suitable pose for a harvesting operation.

The method of estimating the cutting point of the
peduncle is illustrated in Fig. 10. For the segmented
peduncle mask, the pixel value of the mask position rep-
resenting the peduncle is set to 1 (white) and the rest of
the region is set to 0 (black). Then, all pixel points set to
1 are found and the curve is fitted using the least-squares
polynomial by calling the function ‘polyfit’ in NumPy.
Afterward, the minimum and maximum coordinates of

Fig. 9 The process of obtaining the mask for the most suitable peduncle

Fig. 10 Estimation of peduncle
cutting point

2962 Complex & Intelligent Systems (2022) 8:2955–2969

1 3

the contour in the Y-direction are obtained by searching
the upper and lower extreme value points of the peduncle
mask whose coordinates corresponding to the X-direction
are found, and the two extreme value points are regarded
as the upper and lower points of the peduncle. Ultimately,
the coordinate of the cutting point of the peduncle in the
Y-direction is obtained by averaging the highest and low-
est points of the peduncle, while the coordinates must be
satisfied on the fitted curve, and calculate the coordinate
in the X-direction inverting the polynomial using formula
(1):

where � , � and � are coefficient obtained by fitting
the peduncle mask, the polynomial power(n) is set to 2,
ycutting point is the average of the highest and lowest points,

(1)
ycutting point = � ∗ xn

cutting point
+ � ∗ xn−1

cutting point
+ ⋯ + � ,

and xcutting point is the coordinate of the cutting point to be
solved in the X-direction.

The robot can easily harvest bunches of tomatoes with
the peduncles vertically in front of them. However, the
peduncles of tomatoes in production greenhouses are often
irregular and the success rate of picking bunches of toma-
toes in a fixed pose is low, so a vision system is needed to
estimate the pose of the peduncles and drive the robot to
be able to adapt to the pose of the peduncles for picking.
A mathematical geometric model is, therefore, established
based on three points to find the pose of the peduncle after
obtaining the upper point (P1 =

(

x1, y1, z1
)

), the lower point
(P2 =

(

x2, y2, z2
)

), and the cutting point (P3 =
(

x3, y3, z3
)

)
of the peduncle (see Fig. 11a), of which 3D coordinates are
obtained from the point cloud map.

In the greenhouse, except in cases where the peduncle
is shaded by the main stem, the peduncles of tomatoes
vertically downward, tilt to the left or the right. There-
fore, it is necessary to estimate the angles of yaw and

Fig. 11 Estimation of the
peduncle pose: a the results of
three points predicted; b the
top view of the model used to
estimate the yaw angle θ of the
peduncle; c the three-dimen-
sional view of the model used to
estimate the pitch angle φ of the
peduncle

2963Complex & Intelligent Systems (2022) 8:2955–2969

1 3

pitch rotations of peduncles relative to the ideal verti-
cal downward situation. As shown in Fig. 11b, the upper
point P1 and the lower point P2 are used to calculate the
angle of yaw rotation, and P1 and P2 are projected to form
points P4(P4 =

(

x1, y2, z2
)

) and P5(P5 =
(

x1, y2, z1
)

) with
angle θ being the angle of yaw rotation for the peduncle.
Then, the projection of the lower point P2 and the cutting
point P3 is used to get point P6(P6 =

(

x3, y2, z3
)

), and the
angle ψ is the angle of pitch rotation for the peduncle
(see Fig. 11c). P2 , P4 , P5 and P6 are all in the same plane
parallel to xoz plane. The formulas (2) and (3) to solve
the angles of yaw and pitch rotations for peduncles is as
follows:

Experiments and discussion

All field experiments in this paper are conducted in Caoy-
ang agricultural technology demonstration greenhouse,
Xiangcheng District, Suzhou, China. Before our experi-
ments, the staff trimmed the leaves of tomatoes in the
area to be matured, which is part of gardening, in order
to ventilate light and reduce pests and diseases. There-
fore, we do not consider the situation where the leaves
occlude tomatoes and peduncles. Besides, we choose
tomato varieties with long peduncles as our research
object, and peduncles of tomato bunches are usually not
blocked. Therefore, we acquiesce that peduncles of toma-
toes appear in the images collected by the camera, and
the detection of occluded peduncles is not in the study
of this paper. In this field experiments, we focus on the
detection effect of tomato bunches in the images captured
at a long distance, the segmentation effect of peduncles
in the close-up images and the accuracy of the peduncle
pose estimation.

In this demonstration, an industrial computer with an
AMD Ryzen5-2600X CPU, an NVIDIA GeForce RTX
2060 SUPER GPU with 8 GB memory, and Windows 10
system is used for training the object detection algorithm
and instance segmentation algorithm. A laptop with an
Intel Core i7-8750H, an NVIDIA GeForce GTX 1080 is
used for testing in the greenhouse.

(2)θ = cos−1
P4P5

P2P5

= cos−1

√

(

z1 − z2
)2

√

(

x1 − x2
)2

+
(

z1 − z2
)2

(3)

ψ = cos−1
P3P6

P2P3

= cos−1

√

(

y1 − y3
)2

√

(

x1 − x3
)2

+
(

y1 − y3
)2

+
(

z1 − z3
)2

Results of tomato bunch detection

As the representative work of single-stage object detectors,
YOLO series achieves a balance between accuracy and speed.
With the appearance of YOLOv3 and YOLOv4 detectors, the
accuracy of real-time object detection algorithms has been
continuously updated, achieving the best balance between
speed and accuracy. Whereas the real-time requirement is
important in the practical application of picking robots, so
we compare several single-stage detectors to find a real-time
detector with the best accuracy for detecting tomato bunches.

In this paper, experiments are carried out to compare the
performance of the tomato bunch detection based on the
YOLOv3, YOLOv4, and YOLOv4-Tiny. A total of 828 images
are divided into training sets, validation sets, and test sets, as
shown in Table 1. These models are trained for 600 epochs
with a batch size of 8, an initial learning rate of 0.00261, a
momentum of 0.949, and a decay of 0.0005.

The prediction results can be divided into the following
four types: TP, actual true samples are predicted to be posi-
tive; FP, actual false samples are predicted to be positive; TN,
actual false samples are predicted to be negative and FN, actual
true samples are predicted to be negative. Speed, recall, preci-
sion, and F1 score are used to evaluate the model performance.
The indexes for evaluation of the trained model are defined as
follows:

(4)Recall =
TP

TP + FN

(5)Precision =
TP

TP + FP

(6)F1 =
2 × Recall × Precision

Recall + Precision
.

Table 1 Number of tomato bunch datasets captured at the long-dis-
tance

Training sets Validation sets Test sets Total

496 166 166 828

Table 2 Testing results of the YOLOv4 model

Bold values indicate better results than other methods under the cur-
rent index

Methods Speed (ms) Recall Precision F1

YOLOv3 28.7 95.6 95.9 95.7
YOLOv4 34.4 95.4 92.2 93.8
YOLOv4-Tiny 9.1 96.2 92.7 94.4

2964 Complex & Intelligent Systems (2022) 8:2955–2969

1 3

Table 2 shows the comparison results of tomato bunch
detection by three methods. Compared to YOLOv3 and
YOLOv4, YOLOv4-Tiny is the fastest, taking only 9.1 ms
to detect an image resized to 512. YOLOv3 has the best
accuracy of 95.9%, which is 3.7 and 3.2% higher than
YOLOv4 and YOLOv4-Tiny, respectively. In terms of
recall, YOLOv4-Tiny achieves 96.2% that is higher than
the other two methods. Considering the recall and preci-
sion together (F1 score), YOLOv3 performs best. How-
ever, YOLOv4-Tiny is 19.6 ms faster than YOLOv3 at the
expense of a 1.3% F1 score, which means that YOLOv4-
Tiny has lower hardware requirements and better real-time
performance for a similar accuracy.

Discussion of tomato bunch detection

Figure 12 shows the prediction results of different methods
tested on one of the samples. All the tomato bunches in
this image have been detected by YOLOv4-Tiny, while
YOLOv3 misses one and YOLOv4 detects two tomato
bunches in the background as well. Such a result, also
seen in the other test samples, is the reason for the lower
accuracy of YOLOv4 compared to the other two methods.
The reason for this phenomenon can be that YOLOv4 has
better performance for detecting multi-scale targets, with a
deeper network and a better multi-scale feature map fusion
method enabling tomato bunches in the background to be
detected as well. The tomato bunch in the background
and the tomato bunch in the foreground have some simi-
lar characteristics, but their scales are different, fusing the
output of different layers will destroy this characteristic of
scale changes. The test results of YOLOv4-Tiny suggest
that for simpler classification, such as detecting a single
target of tomato bunches, a lightweight detector with the
shallower depth may be better, especially the speed advan-
tage will be more obvious.

By comparison, we choose YOLOv4-Tiny as the object
detector to detect and coarsely locate tomato bunches
while the robot is moving.

Results of peduncle cutting point positioning

After the tomato bunch is detected, the robot arm approaches
a specific whole bunch of tomatoes for a close-up shot (at
this position the camera's field of view can cover the whole
bunch of tomatoes and make it appear in the middle of the
image), then we applied an instance segmentation model to
find the pixel mask of the tomato bunch and corresponding
peduncle. Therefore, we need to verify the effect of instance
segmentation and use the YOLACT + + model with different
backbones to test the effect of instance segmentation. The
instance segmentation model YOLACT + + receives 410
images as the training sets and 170 images as the validation
sets (see Table 3), adjusting the resolution from 1280 × 720
pixels to 700 × 700 as the input to the network. In this paper,
we don’t consider the situation that the peduncle is blocked.
If the camera cannot see the peduncle corresponding to the
tomato bunch, the robot will not pick it. Therefore, only
close-up images that peduncles have not been blocked are in
the dataset. Due to GPU memory constraints, the batch size
is had to be set to 3, which affects the performance of the
network to some extent. The momentum and weight decay
are, respectively, set to 0.9 and 0.0005. The model is trained
for 600 epochs with an initial learning rate of 10−3 , which is
then divided by 10 after 100 epochs.

The trained model parameters are loaded into YOL-
ACT + + to test 120 images in the test set. We introduce

Fig. 12 Detection results of different methods: a YOLOv3; b YOLOv4; c YOLOv4-Tiny

Table 3 Number of tomato datasets captured at the close-up distance

Training sets Validation sets Test sets Total

410 170 120 700

Table 4 Testing results of the YOLACT + + model

Bold values indicate better results than other methods under the cur-
rent index

Backbone FPS mAP mAP50 mAP75

R-50-FPN 17.7 61.9 94.2 71.0
R-101-FPN 9.2 73.1 96.9 87.3

2965Complex & Intelligent Systems (2022) 8:2955–2969

1 3

FPS (Frames Per Second) to evaluate the running speed of
the model, and AP (Average Precision) is used to evaluate
the quality of the mask predicted by the model. As shown in
Table 4, the YOLACT + + network with R-101-FPN back-
bone improves mAP by 11.2 compared to the backbone
being R-50-FPN. However, the model using the R-101-FPN
backbone is 9.2 FPS, while the model using R-50-FPN is
able to achieve 17.7 FPS. The experimental results show that
using a backbone with more layers improves the accuracy
and precision of the model, but deeper backbones consume
more time. In this paper, the close-up peduncle segmenta-
tion task requires better accuracy, and a deeper backbone
network can bring significant accuracy improvements, hence
the backbone of YOLACT + + chooses R-101-FPN.

Then, we use the peduncle mask predicted YOL-
ACT + + to fit a curve, and find the key points on the curve.
The prediction result of the field experiment is shown in
Fig. 13. In this way, three key points of the fruit correspond-
ing to the fruit stem can be found. In 120 tests conducted,
the algorithm can accurately find the key points of the cor-
responding peduncle in 112 images and misses 8 peduncles.

Discussion of peduncle cutting point positioning

In the first detection, we have balanced the accuracy and
speed of the object detector, and have higher requirements
for real-time performance. When considering the peduncle
segmentation algorithm, we pay more attention to the accu-
racy of detection. The reason is that the robot is moving at
the first detection. Only when the tomato bunch is detected,
the robot stops, then the camera mounted on the robot arm
approaches the tomato bunch for a second detection. In
the second detection, the robot is static, so the accuracy of
peduncle segmenting is given priority.

Fig. 13 Field experimental
results of positioning the key
points of peduncles

Table 5 Analysis of the failure detection

Reasons for failure of detection Number
in test
sets

Disturbed by neighboring tomatoes 1
Incomplete or undetectable masks 6
Light interference 1

2966 Complex & Intelligent Systems (2022) 8:2955–2969

1 3

According to the experimental results, we analyzed the
failure reasons for peduncle cutting point positioning fail-
ure. Table 5 shows the reasons why the algorithm does
not find the key points correctly. In one of the images, two
fruits and a peduncle are detected, and the masks of the
fruit with the highest confidence level and the peduncle do
not intersect, so this detection fails. The absence of any
peduncles in the predictions of the YOLACT + + model
is the cause of detection failure in the six test images.
Finally, the presence of strong sunlight in the background
also makes a detection failure. By analyzing and summa-
rizing the reasons for the failures, we find that when the
peduncle is vertically downward and overlaps the main
stem, the predicted mask will be incomplete or undetect-
able. The possible reason is that there are too few data
samples of peduncles that overlap the main stem vertically
so that the network does not distinguish the characteristics
of this different object well. In the future, we will add

these samples that may cause failure in the training set and
validation set to improve the detection effect.

Results of pose estimation

In Sect. 3.4, we try to find three key points of fruit pedun-
cles, based on which a geometric model is established to
estimate the angles of yaw and pitch rotations of peduncles
relative to the ideal vertical downward situation, allowing
the picking robot to adaptively adjust the end-effector to
grip the peduncle in a more reasonable pose. For the perfor-
mance evaluation, we test 30 different bunches of tomatoes
in a greenhouse (all 30 test data can obtain peduncle masks)
and then measure two angles of the peduncle using an angle
ruler. Finally, the error between the predicted angle and
the measured angle is analyzed as the basis for evaluating
the performance of the pose estimation algorithm. Table 6
shows the pose prediction and measurement results of the

Table 6 Testing results on the
estimation of the peduncle pose

No. L (+) /R (−) F (+)/B (−) Estimated
yaw angle
θ(°)

Estimated
pitch angle
ϕ(°)

Measured yaw
angle θ (°)

Measured
pitch angle
ϕ(°)

1 − + 26.0 29.9 22.4 32.0
2 − − 53.9 32.3 60.3 32.0
3 − − 37.0 21.6 33.6 23.5
4 − − 72.0 26.9 69.9 35.4
5 − + 47.3 25.1 43.7 31.6
6 − + 85.4 36.2 81.2 33.6
7 − − 58.8 29.3 56.2 31.9
8 − − 33.4 18.8 33.1 22.7
9 − − 52.7 42.6 57.2 55.2
10 − − 80.9 24.8 82.2 29.6
11 − − 43.6 23.9 53.3 30.6
12 − − 84.2 32.1 83.7 31.5
13 − + 42.4 16.8 44.5 17.5
14 − − 68.9 23.9 77.1 16.4
15 − − 31.7 27.5 35.4 37.8
16 − − 22.1 17.1 32.7 26.5
17 − + 90.0 30.3 85.1 29.2
18 − − 47.7 21.1 58.9 20.9
19 − + 82.9 43.6 85.8 38.8
20 − + 79.2 35.7 87.3 35.9
21 − + 34.5 15.7 28.3 26.8
22 − + 59.2 27.8 57.4 30.5
23 + + 38.3 15.9 28.7 23.7
24 − + 86.6 22.8 80.5 31.5
25 − + 68.9 33.4 75.1 28.5
26 − + 44.8 15.9 43.0 16.0
27 − + 73.4 29.9 74.3 27.5
28 + + 73.3 26.9 63.0 31.4
29 + + 77.3 29.9 66.7 37.5
30 − + 77.6 32.8 75.7 38.3

2967Complex & Intelligent Systems (2022) 8:2955–2969

1 3

corresponding peduncle of 30 different groups of bunches
of tomatoes. L(+) means that the peduncle is inclined to
the left and R(-) means that the peduncle is inclined to the
right. As shown in Fig. 11, if the coordinate of Point P1 in
the X-direction is greater than Point P2 , it is considered to
be inclined to the left. F(+) means that it is inclined forward
and B(−) means that it is inclined backward. If the coordi-
nate of Point P1 in the Z-direction is greater than Point P2
(see Fig. 11), it is considered to be inclined to the forward.
The pose predictions of the 30 groups of peduncles can well
predict whether the fruit peduncles are forward or backward,
left or right. Yaw angle and Pitch angle are θ and φ which
are defined in Fig. 11b and c respectively. Estimated angles
are calculated by the pose estimation algorithm and meas-
ured angle is measured by an angle ruler. Since the measured
angle is manually measured in the greenhouse using an angle
ruler, there is a measurement error of ±5◦.

During the experiment, we excluded the effects caused by
missing data in the point cloud images, and the angle estima-
tion results were all based on the successful predictions of
YOLACT + + . The results of the 30 sets of peduncle pose
predictions are analyzed to obtain prediction errors for yaw
and pitch angles as shown in Fig. 14. The mean error of the
predicted yaw angle θ is 4.98° with a maximum error of
11.2°, while the mean error of the pitch angle φ is 4.75° with
a maximum error of 12.6°. The errors above are all based
on the fact that the segmentation algorithm can correctly

segment the pixel area of the peduncles in 93.3% of cases,
thus being able to find the correct three key points on the
fitted curve.

Discussion of pose estimation

The peduncle pose estimation algorithm constructs a pol-
ynomial curve by fitting the peduncle mask predicted by
YOLACT + + to obtain three key points and finds the corre-
sponding three-dimensional coordinates and then establishes
a mathematical model about these three points to obtain the
relative posture of the peduncle(the pose is relative to the
ideal vertical downward peduncle). The error of the pose
estimation depends on the accuracy of the prediction of the
peduncle mask and the accuracy of the point cloud obtained
by the RGB-D camera. We have done a separate experimen-
tal analysis on the results of peduncle masks predicted by
YOLACT + + . Therefore, most of the measurement errors
above in pose estimation are caused by inaccurate point
cloud information. Also, to reduce the impact caused by
missing holes, the adjacent point cloud data is used to fill
the missing data, which further increasing the error in the
point cloud data.

Fig. 14 Error analysis of the estimated peduncle pose angle for the 30 tested images

2968 Complex & Intelligent Systems (2022) 8:2955–2969

1 3

Conclusions

In this paper, we develop a two-stage peduncle segmentation
method and establish a geometric model of the peduncle
mask corresponding to the bunch of tomatoes to find the
cutting point and pose. The performance of the proposed
method is tested in Sect. 3 and the results demonstrate the
effectiveness of using this method to find the cutting point
and the cutting pose of the peduncle in the greenhouse.

YOLOv4-Tiny is chosen as the object detector to find
bunches of tomatoes in real-time as the robot moves, with
a detection time of 0.0091 s per frame and an accuracy of
92.7%. After YOLOv4 detects tomatoes, the camera moves
sequentially to the front of the tomato to take a close-up
image. YOLACT + + is then selected as the network for seg-
menting the peduncle mask, and in test sets, the mAP is 73.1
with a time speed of 0.109 s per frame. Finally, a geometric
model is developed to estimate the cutting point and pose
of the peduncle based on the peduncle mask segmented by
YOLACT + + . To find the peduncle mask corresponding
to the bunch of tomatoes, the ratio of the intersection of the
bunch of tomatoes mask and the peduncle mask is calcu-
lated, and only the peduncle mask with intersection ratios
greater than a set threshold is output. Finally, a mathematical
geometric model is developed using the three key points to
predict the pose of the peduncle, with an average error of
4.98° in yaw angle and 4.75° in pitch angle over the 30 sets
of tests.

When predicting peduncle masks, the segmentation suc-
cess rate is low for peduncles that grow vertically downward.
The reason is that this kind of peduncle data accounts for a
relatively small proportion in the training sets. Therefore,
we will expand our data set for better performance in the
future. Besides, the quality of the point cloud data output
from RGB-D cameras affects the accuracy and stability of
pose estimation. Compare different RGB-D cameras and
select the one more suitable for use in the greenhouse.

Future work is to design an end-effector and build a har-
vesting robot system. Using the peduncle cutting point posi-
tioning and pose estimation methods proposed in this paper,
the gripper mounted at the end of the robotic arm will be
able to pick bunches of tomatoes adaptively and the perfor-
mance of the robotic system will be evaluated.

Author contributions JR: methodology, software, validation, writing.
GD: methodology, software, validation. PW: conceptualization, fund-
ing acquisition, methodology, validation, writing.

Funding This research was funded by National Key Research and
Development Program of China (2017YFD0701502).

Declarations

Conflict of interest The authors declare no conflict of interest.

Availability of data and materials Not applicable.

Code availability Not applicable.

Humans and/or animal rights Not applicable.

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Fu L, Wang B, Cui Y, Su S, Gejima Y, Kobayashi T (2015)
Kiwifruit recognition at nighttime using artificial lighting based
on machine vision. Int J Agric Biol Eng 8(4):52–59

 2. Zhao Y, Gong L, Huang Y, Liu C (2016) A review of key tech-
niques of vision-based control for harvesting robot. Comput
Electron Agric 127:311–323

 3. Bac CW, Henten EJ, Hemming J, Edan Y (2014) Harvesting
robots for high-value crops: state-of-the-art review and chal-
lenges ahead. J Field Robot 31(6):888–911

 4. Kamilaris A, Prenafeta-Boldú FX (2018) Deep learning in agri-
culture: a survey. Comput Electron Agric 147:70–90

 5. Koirala A, Walsh KB, Wang Z, McCarthy C (2019) Deep
learning for real-time fruit detection and orchard fruit load
estimation: benchmarking of “MangoYOLO.” Precis Agric
20(6):1107–1135

 6. Tian Y, Yang G, Wang Z, Wang H, Li E, Liang Z (2019) Apple
detection during different growth stages in orchards using the
improved YOLO-V3 model. Comput Electron Agr 157:417–426

 7. Liu G, Nouaze JC, Mbouembe PLT, Kim JH (2020) YOLO-
Tomato: a robust algorithm for tomato detection based on
YOLOv3. Sensors (Basel) 20(7):2145

 8. Birrell S, Hughes J, Cai J, Iida F (2020) A field-tested robotic
harvesting system for iceberg lettuce. J Field Robot 37(2):225–245

 9. Perez-Borrero I, Marin-Santos D, Gegundez-Arias ME, Cor-
tes-Ancos E (2020) A fast and accurate deep learning method
for strawberry instance segmentation. Comput Electron Agric
178:105736

 10. Song Z, Zhou Z, Wang W, Gao F, Fu L, Li R, Cui Y (2021)
Canopy segmentation and wire reconstruction for kiwifruit robotic
harvesting. Comput Electron Agric 181:105933

http://creativecommons.org/licenses/by/4.0/

2969Complex & Intelligent Systems (2022) 8:2955–2969

1 3

 11. Chen W, Lu S, Liu B, Li G, Qian T (2020) Detecting citrus in
orchard environment by using improved YOLOv4. Sci Program
Neth 2020:13

 12. Sa I, Lehnert C, English A, McCool C, Dayoub F, Upcroft B,
Perez T (2017) Peduncle detection of sweet pepper for autono-
mous crop harvesting-combined color and 3-D information. IEEE
Robot Autom Let 2(2):765–772

 13. Luo L, Tang Y, Lu Q, Chen X, Zhang P, Zou X (2018) A vision
methodology for harvesting robot to detect cutting points on
peduncles of double overlapping grape clusters in a vineyard.
Comput Ind 99:130–139

 14. Yoshida T, Fukao T, Hasegawa T (2018) Fast detection of tomato
peduncle using point cloud with a harvesting robot. J Robot
Mechatron 30(2):180–186

 15. Yoshida T, Fukao T, Hasegawa T (2020) Cutting point detection
using a robot with point clouds for tomato harvesting. J Robot
Mechatron 32(2):437–444

 16. Barth R, Hemming J, Van Henten EJ (2019) Angle estimation
between plant parts for grasp optimisation in harvest robots. Bio-
syst Eng 183:26–46

 17. Yu Y, Zhang K, Liu H, Yang L, Zhang D (2020) Real-time visual
localization of the picking points for a ridge-planting strawberry
harvesting robot. IEEE Access 8:116556–116568

 18. Liang CX, Xiong JT, Zheng ZH, Zhong Z, Li ZH, Chen SM, Yang
ZG (2020) A visual detection method for nighttime litchi fruits
and fruiting stems. Comput Electron Agr 169:105192

 19. Liu JZ, Yuan Y, Zhou Y, Zhu XX, Syed TN (2018) Experiments
and analysis of close-shot identification of on-branch citrus fruit
with RealSense. Sensors (Basel) 18(5):23

 20. Redmon J, Divvala S, Girshick R, Farhadi (2016) A You only look
once: unified, real-time object detection. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp
779–788

 21. Redmon J, Farhadi A (2017) YOLO9000: better, faster, stronger.
In: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp 7263–7271

 22. Redmon J, Farhadi A (2018) YOLOv3: an incremental improve-
ment. 1804.02767

 23. Bochkovskiy A, Wang C, Liao H (2020) Yolov4: Optimal speed
and accuracy of object detection.

 24. Bolya D, Zhou C, Xiao F, Lee Y (2019) Yolact: real-time instance
segmentation. In: Proceedings of the IEEE/CVF international con-
ference on computer vision, pp 9157–9166

 25. Bolya D, Zhou C, Xiao F, et al (2019) YOLACT++: better real-
time instance segmentation [J]

 26. Neubeck A, Van Gool L (2006) Efficient non-maximum suppres-
sion. In: Eighteenth international conference on pattern recogni-
tion (ICPR’06), pp 850–855

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	A peduncle detection method of tomato for autonomous harvesting
	Abstract
	Introduction
	Materials and methods
	Image acquisition
	Tomato bunch detection based on YOLOv4-Tiny
	Peduncle segmentation based on YOLACT +  + 
	Background interference filter
	Cutting point and pose estimation

	Experiments and discussion
	Results of tomato bunch detection

	Discussion of tomato bunch detection
	Results of peduncle cutting point positioning
	Discussion of peduncle cutting point positioning
	Results of pose estimation
	Discussion of pose estimation

	Conclusions
	References

