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Abstract
Autoencoder has been widely used as a feature learning technique. In many works of autoencoder, the features of the original
input are usually extracted layer by layer using multi-layer nonlinear mapping, and only the features of the last layer are used
for classification or regression. Therefore, the features of the previous layer aren’t used explicitly. The loss of information
and waste of computation is obvious. In addition, faster training and reasoning speed is generally required in the Internet of
Things applications. But the stacked autoencodersmodel is usually trained by the BP algorithm, which has the problem of slow
convergence. To solve the above two problems, the paper proposes a dense connection pseudoinverse learning autoencoder
(DensePILAE) from reuse perspective. Pseudoinverse learning autoencoder (PILAE) can extract features in the form of
analytic solution, without multiple iterations. Therefore, the time cost can be greatly reduced. At the same time, the features
of all the previous layers in stacked PILAE are combined as the input of next layer. In this way, the information of all the
previous layers not only has no loss, but also can be strengthened and refined, so that better features could be learned. The
experimental results in 8 data sets of different domains show that the proposed DensePILAE is effective.

Keywords Dense connection · Feature reuse · Pseudoinverse learning · Pseudoinverse learning autoencoder

Introduction

With the development of the Internet of things (IoT), people
can obtain all kinds of data anytime and anywhere through
various types of sensors. It lays the foundation for the appli-
cation of deep learning. With the continuous growth of data
volume, deep learning technology has been applied in many
fields of IoT, such as smart cities [16,17], intelligent trans-
portation [20,27], healthcare [4,15,29], and so on. Deep
neural network (DNN) is formed by stacking of shallow neu-
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ral network, that is, the output of the former layer is used as
the input of the latter layer. Then DNN is trained by error
back propagation (BP) algorithm. This paradigm has been
used in a large number of applications and has achieved very
good results. Deep autoencoder [9] is a typical application.

The deep autoencoder utilizes the excellent feature recon-
struction capability of the autoencoder to learn features.
Many variants of deep autoencoder have been proposed, such
as stacked autoencoder (SAE) [12], deep denoising autoen-
coder [21]. In addition, it has been applied in many fields,
such as remote sensing image recognition [30] and anomaly
detection [5].

Since the deep autoencoder is usually trained by BP algo-
rithm, the two notorious problems of BP algorithms, local
minima and slow convergence, are present in the training pro-
cess of the network. In this way, the network not only has a
long training time, but also cannot obtain an optimal solution.
Especially in the application of the IoT, DNN needs to run on
resource-constrained devices, which often have low comput-
ing power and can not adapt to a large amount of computing.
To overcome the shortcomingsmentioned above, researchers
have proposed many non-BP based methods, such as pseu-
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doinverse learning algorithm (PIL) [6,22] and random vector
functional link (RVFL) [18].

RVFL is only a single hidden layer feedforward neural
network. In order to introduce RVFL into deep learning,
dRVFL was proposed in [14]. This method can extract fea-
tures quickly and get a satisfactory performance.However, its
disadvantage is that the features of each layer are obtained by
random projection, which is difficult to understand. PILAE
[25] is proposed by combining PIL with autoencoder. It uses
PIL to train autoencoder. PILAE is a unsupervised feature
learning method, and could exactly learn feature. Therefore,
interpretability of PILAE is more acceptable than RVFL.

However, stacked PILAE and all other deep autoencoder
have information loss problems. Autoencoder is a unsuper-
vised feature learning method by setting the input equal to
the output. To avoid trivial solutions, there are usually multi-
ple bottleneck layers, which could force the network to learn
abstract compression. The narrower the layer is, the greater
the compression is. As the increase of network depth, feature
is becoming more and more abstract, and information loss is
becomingmore andmore serious [31]. The learning ability of
the model is affected by information loss. To strength learn-
ing ability of model, loss information should be supplied.

In deep CNN networks, feature reuse is used to reduce
the information loss. ResNet [10] introduces an identity
connection, which integrates linear activation and nonlinear
activation. Each residual block reuses the information of the
previous layer. DenseNet [13] further extends the input range
of the identity connection. The output of each layer is used as
the input of the subsequent layer. The previously extracted
features are preserved in the later layers. The problem of
loss of information is alleviated by feature reuse. Inspired
by DenseNet, dense connection is introduced to PILAE. The
feature reuse is used to solve the problem of information
loss in autoencoder, and a new feature learning approach
is proposed, namely, dense connection pseudoinverse learn-
ing autoencoder (DensePILAE). The input of each layer in
DensePILAE is the concatenation of all previous layer out-
puts, and the new feature is learned by reconstructing all
historical features. By reusing the features learned in all the
previous layers, more lossless and compressed features are
extracted. It could get better accuracy with fewer parameters.
In this paper, we make the following contributions: (1) aim-
ing at the problem of information loss in stacked PILAE, a
dense connection PILAE method is proposed; (2) the effec-
tiveness of DensePILAE is analyzed from the perspective
of feature reuse; (3) experiments are carried out on 8 data
sets, and the accuracy, the area under curve, time cost and
parameter sensitivity are analyzed to verify the effectiveness
of DensePILAE. The rest of the paper is organized as fol-
lows: In “Related work”, we briefly review the related works
of this paper. Then we detail the basic theory of PILAE and
the proposed DensePILAE in “DensePILAE”. In “Experi-

ments and discussion”, we conduct experiments and present
the comparison and analysis. Finally,wegive our conclusions
in “Discussion”.

Related work

Feature reuse

Feature reuse is an important concept, which is proposed by
Bengio in seminal paper [1]. Feature reuse can be achieved by
depth of network. Through themulti-layer nonlinear transfor-
mation, the input is compressed, so the current deep network
can be seen as a way of feature reuse. This is an implicit
feature reuse. Another feature reuse is to directly input the
output of the front non-adjacent layer into the current layer by
crossing connection,which can be regarded as an explicit fea-
ture reuse. ResNet introduces the concept of residual blocks,
which is essentially combination of the previous layer feature
and the current layer feature. This is the reuse of the previous
layer feature. DenseNet go one step further by concatenate
the output of all the previous layers as input for subsequent
layers. Not only the feature of the previous layer is reused,
but also the features of all layers before the previous layer are
reused. Therefore, the subsequent layers could make use of
the knowledge learned from all previous layers. Deep layer
aggregation [28] extends the way feature reuse. It does not
simply concatenate the features of the previous layer or all of
the previous features, but selectively reuse them. Two effec-
tive reuse methods are proposed, namely, iterative reuse and
hierarchical reuse.

Similar feature reuse methods have also been used in fully
connected networks. The deep stacking network (DSN) [3]
reuses the predictions of all previous layers. In DSN, the
reused features have lower dimensionality, whose represen-
tation ability is limited. In addition, for some simple samples,
the prediction results of each layer will be more consis-
tent, which leads to a lot of simple redundant information.
Different from the reuse of DSN, DensePILAE reuses the
hidden layer of autoencoder, which has larger dimension and
includes richer information. The feature reuse of sequence
data is studied in ResInNet [19], which is applied in the traf-
fic prediction of Internet of things.

Non-BP based fast learning network

As a training method, BP algorithm has been widely used
in the training of deep neural network and has become the
most popular training method. However, there are two noto-
rious shortcomings, local minimum and slow convergence
rate, which are also widely criticized. To avoid using the BP
algorithm, many network architectures are proposed, such
as RVFL [18], PIL [6–8]. The weight of the network is
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obtained by solving the analytical solution. The differences
between PIL and RVFL are the network structure and the
initialization method of weight. PIL adopts standard single
layer feed-forward neural network (SLFN),whileRVFLadds
direct connection between input layer and output layer. For
the weight between input layer and hidden layer, PIL adopts
pseudoinverse or random, while RVFL adopts random value.

After years of development, many variants of PIL and
RVFL have been developed, such as PILAE [25], LR-PILAE
[26], CPILer [24], D-RVFL [11], dRVFL [14], SP-RVFL
[32]. PILAE is proposed by applying PIL to the training of
autoencoder. LR-PILAE is proposed to solve the problem of
automatic selection of network structure by using low rank
constraint. CPILer uses graph Laplace regularization to solve
the robustness problemofAutoML system. In [23], The com-
bination of PILAEandAdaBoost is used to solve the problem
of driving stress recognition. Deep random vector functional
link (D-RVFL) [11] is a multi-layer RVFL network by stack-
ing. The deep RVFL (dRVFL) [14] is another multi-layer
RVFL network. The dRVFL uses RVFL as the basic building
block. Except for the first layer, the enhancement unit of each
layer is obtained by multiplying the previous layer enhance-
ment unit by a random weight. The enhancement units of
all layers are concatenated together as the enhancement unit
of the dRVFL, and then the weight of the output layer is
determined by the least squares method.

DensePILAE

In this section, we will introduce the basic theory of PILAE
and our proposed DensePILAE.

Basic theory of PILAE

The pseudoinverse learning algorithm (PIL) [6–8] is a fast
trainingmethod for a single hidden layer feed-forward neural
network. It uses the random or pseudoinverse of input data to
initialize the weight between the input layer and the hidden
layer, and the weight between the hidden layer and the output
layer can be obtained in the form of an analytical solution.

Given training set D = {X,Y}, the weight between the
input layer and the hidden layer is represented as Win, and
the weight between the hidden layer and the output layer is
represented as Wout. Win is initialized by random or pseu-
doinverse of input matrix X, the hidden layer output H is

H = f (XWin), (1)

f (·) is activation function. Learning problems can be
expressed as

min
Wout

||HWout − Y||2, (2)

We can get the analytical solution of Wout by solving the
pseudoinverse of H:

Wout = H+Y. (3)

The pseudoinverse of H is

H+ = (HTH)−1HT . (4)

The autoencoder is essentially a three-layer neural net-
work. The biggest difference is that a constraint is added.
That is to make the input and output equal

Y = X. (5)

Wang et al. [25] proposed PILAE using PIL training
autoencoder. The weight of the encoder We is initialized
by random or pseudoinverse of input matrixX. According to
formulas Eqs. (3), (4) and (5), the weight of the decoderWd

can be obtained as

Wd = (HTH)−1HTX. (6)

To avoid the ill-conditioned problem and enhance the gen-
eralization ability of the network, the L2 regularization
constraint is adopted for the decoder weight in PILAE. The
weight formula of the decoder can be rewritten as

Wd = (HTH+ λI)−1HTX, (7)

where λ > 0 is the regularization parameter. Since the
autoencoder is a symmetrical structure, to reduce the risk
of overfitting, weight tied is used to reduce the number of
parameters, then the weight of the encoder will be updated
to

We = WT
d . (8)

Recalculating the output of hidden layer with new weights
of encoder, we can get the feature.

Because the learning ability of single PILAE is limited,
several PILAEs are stacked to learn. However, with the
increase of depth, the performance improvement of stacked
PILAE is not obvious. The reason is that to avoid identity
mapping, the constraint of forced dimension reduction is
added in the network structure of each PILAE. Therefore,
there are a lot of necklace layers in stacked PILAE. Although
the features are refined with the increase of depth, partial
information is also lost. Therefore, it leads to the increase of
model error.
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Fig. 1 Network structure of stacked PILAE and DensePILAE with four layers. a The structure of stacked PILAE. b lth layer of stacked PILAE. c
The structure of DensePILAE. d The lth layer of DensePILAE
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DensePILAE

To this end, we concatenate the output of all the previous
layers as input to the subsequent layer. Figure 1 illustrates
network structure of DensePILAE. The input of the lth layer
is

Dl = [X,F1,F2, . . . ,Fl−1], (9)

where Fi is the extracted feature of i th layer. According to
Eq. (1), the hidden output Hl is

Hl = f (DlWel), (10)

where Wel is the random weight of the encoder in lth layer.
According to Eqs. (7) and (8), the weight of the decoder in
lth layer can be calculated as

Wdl = (HT
l Hl + λI)−1HT

l Dl . (11)

The weight of the lth layer encoder is obtained by weight
tied, the feature extracted Fl by the lth layer autoencoder can
calculated as

Fl = f (DlDT
l Hl((HT

l Hl + λI)−1
l )T ). (12)

DensePILAE is implemented by applying feature reuse
to stacked PILAE. It has two advantages. One is that the
lost information can be directly supplemented by identity
connections, thus the error of the model is reduced. Another
advantage is that the supplementary information comes from
the features of low layers that have been learned, so there is
no need to design new modules to learn the lost information.

On the whole, DensePILAE is a combination of width
reuse and depth reuse. Layer by layer stacking realizes the
feature reuse in depth perspective. It is implicit reuse. The
concatenated feature realizes the feature reuse in width per-
spective. It is explicit reuse. Feature reuse reduces the error
of the network and improves the feature learning ability of
the network.

Experiments and discussion

Data set

To verify the validity of our proposed method, several exper-
iments are performed on 8 public data sets in several fields,
including MNIST, USPS, BA, Yale, ORL, COIL-20, COIL-
100 and NORB data set. The MNIST, USPS and BA data set
are handwritten font recognition data set. The Yale and ORL
data set are face recognition data set. The COIL-20, COIL-

Table 1 Details of data sets

Data set Samples Dimensions Classes

MNIST 4000 748 10

BA 1404 320 36

USPS 9298 256 10

ORL 400 1024 40

Yale 165 1024 15

COIL-20 1440 1024 20

COIL-100 7200 1024 100

NORB 48,600 2048 5

100 and NORB are object recognition data set. The data sets
are described in detail as follows (Table 1):

• MNIST The Mixed National Institute of Standards and
Technology (MNIST) is a handwritten digital identifica-
tion data set, which contains a total of ten numbers from
0 to 9. MNIST has a total of 70,000 images, of which
60,000 images are trained and 10,000 images are tested.
Each image is a 28 × 28 pixel grayscale image. In the
experiment, we randomly selected 400 images for each
class to form our experimental data set. The experimental
data set contains a total of 4000 images.

• BA The Binary Alphadigits (BA) data set includes 1404
samples, and each sample is a image, whose size is 20×
16. There are 36 categories, including numbers from 0 to
9 and letters fromA to Z. Each category have 39 samples.

• USPS: The US Postal (USPS) handwritten digital data
set includes 8-bit gray-scale images from “0” to “9”. The
data set consists of 9298 images. The dimension of every
image is 256.

• ORL The ORL data set is a face data set produced
by Olivetti research laboratory in Cambridge Univer-
sity. There are 40 people, and each one has 10 different
images. The size of each image is 92× 112. To compare
with other methods, each image is subsampled to a size
of 32× 32.

• Yale The Yale data set is created by Yale University. It
consists of 165 samples from 15 different people. The
samples of the same person has different lighting, expres-
sion or posture. Compared with ORL face database, the
samples collected in Yale database contain more obvious
changes of illumination, expression, posture and occlu-
sion.

• COIL-20 The Columbia object image library (COIL)
contains two data sets, COIL-20 and COIL-100. It can be
used for target and pose recognition. The COIL-20 data
set contains images of 20 objects from different angles.
The size of each image is 128 × 128. To compare with
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Table 2 Performance
comparison in terms of ACC
(%)

Data set RVFL stacked PILAE dRVFL DensePILAE

MNIST 86.03 ± 0.61 90.55 ± 1.05 88.02 ± 2.10 92.25 ± 1.50

BA 61.25 ± 4.16 68.63 ± 2.61 63.22 ± 3.68 73.31 ± 3.00

USPS 92.98 ± 1.11 95.17 ± 0.69 95.17 ± 0.69 96.25 ± 0.70

Yale 80.33 ± 10.38 81.33 ± 8.33 87.33 ± 7.57 82.33 ± 12.12

ORL 97.50 ± 2.24 98.25 ± 1.95 98.25 ± 2.51 98.75 ± 1.68

COIL-20 98.18 ± 1.38 99.93 ± 0.21 99.09 ± 0.63 99.94 ± 0.19

COIL-100 87.91 ± 0.97 96.48 ± 0.55 90.55 ± 1.07 99.34 ± 0.22

NORB 87.73 ± 1.21 83.40 ± 1.05 88.23 ± 8.92 92.99 ± 0.74

The best performance is shown in bold

Table 3 Performance
comparison in terms of AUC
(%)

Data set RVFL stacked PILAE dRVFL DensePILAE

MNIST 97.66 ± 0.31 99.31 ± 0.17 97.85 ± 0.52 99.50 ± 0.13

BA 95.60 ± 0.48 98.01 ± 0.46 96.11 ± 0.97 98.59 ± 0.25

USPS 99.18 ± 0.28 99.71 ± 0.10 99.36 ± 0.17 99.82 ± 0.07

Yale 96.37 ± 2.65 95.80 ± 2.98 98.82 ± 0.62 97.18 ± 2.17

ORL 99.88 ± 0.23 99.98 ± 0.03 99.87 ± 0.28 100.00 ± 0.00

COIL-20 99.97 ± 0.03 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

COIL-100 99.20 ± 0.22 99.99 ± 0.00 99.20 ± 0.20 100.00 ± 0.00

NORB 97.43 ± 0.34 97.47 ± 0.26 96.71 ± 4.40 99.42 ± 0.10

The best performance is shown in bold

other methods, each image is subsampled to a size of
32× 32.

• COIL-100 The COIL-100 data set contains 100 objects
fromdifferent angles. The size of each image is 128×128.
To compare with other methods, each image is subsam-
pled to a size of 32× 32.

• NORB The NYU object recognition benchmark (NORB)
contains 5 classes, namely, animals, humans, airplanes,
trucks and cars. There are 9720 images in each category.
The SmallNORB [2] is used in the experiment. The size
of each image is 32× 32.

Comparedmethods

We compare the proposed DensePILAE with three non-BP
methods, stacked PILAE [25], RVFL [18], and dRVFL [14].
Stacked PILAE is a forward learning algorithm that uses PIL
to quickly train SAE. In RVFL, the input layer is directly
connectedwith the output layer. Therefore, RVFL is a special
single hidden layer feed-forward neural network. The dRVFL
is an extension of RVFL in the depth direction. Its charac-
teristic is that only the weight of the last layer is obtained
by learning, and the weights of all the previous layers are
generated by random projection.

Table 4 Performance comparison in terms of time cost on feature learn-
ing (measured by second)

Data set RVFL stacked PILAE dRVFL DensePILAE

MNIST 0.02 0.54 0.08 0.13

BA 0.04 0.43 0.08 0.12

USPS 0.04 0.09 0.07 0.12

Yale 0.02 0.58 0.08 0.11

ORL 0.03 0.27 0.08 0.17

COIL-20 0.02 0.77 0.11 0.18

COIL-100 0.02 0.72 0.06 0.15

NORB 0.04 1.03 0.07 1.53

Experiment settings

To compare the different methods fairly, the number of neu-
rons in the hidden layer of RVFL is set to 100. The number
of neurons all hidden layers of dRVFL and DensePILAE is
all set to 100, and the number of layers is set to 10. The width
and depth of stacked PILAE is set by cross validation. The
activation functions of all methods is sigmoid function. The
regularization parameter λ is selected in the range of {2−6,
2−4, 2−2, 20, 22, 24, 26, 28, 210}. To reduce the randomness
and contingency as much as possible, the final experimental
results are obtained by 10-fold cross validation. Our experi-
ments are performed on a Geforce GTX 1080 GPU.
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Performance comparison and analysis

To verify the effectiveness of DensePILAE, we first report
the accuracy (ACC) and the area under curve (AUC) of
DensePILAE and othermethods on 8 data sets. Among them,
DensePILAE gets the best ACC and AUC on 7 data sets. In
other words, DensePILAE outperformed other methods on
87.5% data sets. The ACC of DensePILAE is more than 99%
on COIL-20 and COIL-100 data set. The AUC of DensePI-
LAE is 100% on ORL, COIL-20 and COIL-100 data set.
Table 2 shows the average values of ACC for the compared
method and our proposed method, and Table 3 shows the
average AUC of the compared method and our proposed
method. The results are the average values of tenfold cross
validation.

Comparison between stacked PILAE and DensePILAE In
Tables 2 and 3, we can find that DensePILAE achieves the
best results on all 8 data sets. Specifically, the accuracy of
DensePILAE is improved more obviously on NORB, BA
and COIL-100 data sets, where the improvements of ACC
reach 9.59%, 4.68% and 2.86%, respectively. However, the
improvement is smaller on ORL and COIL-20 data sets, only
0.5% and 0.01%. The AUC of DensePILAE is significantly
improved on NORB and Yale data sets, where the improve-
ments of ACC reach 1.95% and 1.38%, respectively. The
resulta of experiments show that the feature reuse can sig-
nificantly improve the feature extraction ability of network,
and make the network helpful to extract more generalized
features.

Comparison between dRVFL and DensePILAE In Tables 2
and 3, we can find that DensePILAE get the best results on
7 data sets and is defeated on Yale data set. Specifically, the
accuracy of DensePILAE is significantly improved on BA,
COIL-100, NORB and MNIST data sets, reaching 10.09%,
9.79%, 4.76% and 4.23%, respectively. In the COIL-20 and
ORL data sets, the accuracy of improvement is weak, less
than 1%. The AUC of DensePILAE, respectively, increases
by 2.71%, 2.48% and 1.65% on NORB, BA and MNIST
data sets. However, the improvement on USPS is weak, only
0.46%. The results show that compared with the features
obtained by random projection with dRVFL, the features
obtained by pseudoinverse have stronger discrimination abil-
ity. In addition, it also shows that the feature reuse by densely
connect can extract better features even for simple network
structure.

Time analysis

The time cost is an important criteria to evaluate the per-
formance of the model. Feature learning takes up most of
the time cost. We report the time of feature learning on 8

data sets in Table 4. It can be seen from the table that the
order of feature learning speed from fast to slow is RVFL,
dRVFL, DensePILAE and stacked PILAE. Except NORB
data set, DensePILAE is slightly slower than dRVFL. This
is because the weights of each layer of dRVFL except output
layer don’t need to be learned, is only set to random pro-
jection of input. However, the weights of DensePILAE need
to be learned. DensePILAE is faster than stacked PILAE.
As the depth increases of DensePILAE, the input of every
PILAE is increasing in DensePILAE, but the hidden width
is fixed. Because the features of low layers are reused, the
width of hidden layer could be set smaller. In stacked PILAE,
the width of hidden is closely related to the width of input,
which is usually lager. The width of stacked PILAE is larger
than that of DensePILAE, so the time cost of stacked PILAE
is large.

Parameter sensitivity analysis

In neural networks, the selection of parameters plays an
important role in the network performance. In DensePILAE,
regularization parameter and the number of hidden neu-
rons are two important hyperparameters. We use grid search
method to analyze the influence of two parameters on the
performance of DensePILAE. The search range of regular-
ization parameters λ is from 2−6 to 212. Each sample point is
four times the previous one. Therefore, the selected regular-
ization parameters are {2−6, 2−4, 2−2, 20, 22, 24, 26, 28, 210,
212}. The number of neurons in the hidden layer is selected
from 10 to 100, and the interval between the two samples is
10. Therefore, the selected numbers of hidden neurons H are
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

We have carried out parameter sensitivity analysis exper-
iments on 8 data sets. Figures 2 and 3 are the experimental
results of ACC and AUC, respectively. On NORB, MNIST,
COIL-100 and USPS data sets, when the regularization
parameter is small, ACC and AUC will gradually reach
the best performance with the increase of width in hidden
layer. The best ACC values are 92.99%, 92.58%, 99.35%
and 96.25%, respectively. In addition, the best AUC values
are 99.42%, 99.51%, 100.00% and 99.83%, respectively. On
Yale andORL data sets, larger regularization parameters lead
to better ACC and AUC. The width of hidden layer has lim-
ited influence on the final results. The best ACC values are
83.33% and 98.75%, respectively. The best AUC values are
97.96% and 100.00%, respectively. For COIL-20 data set,
when the regularization parameter is small, as long as the
number of hidden layer neurons exceeds threshold, the per-
fect learning can be obtained. The best ACC and AUC is
99.94% and 100%, respectively. For BA data set, although
ACCandAUCwill increase slowlywith the increase ofwidth
in the hidden layer, the regularization parameter have great
influence. Therefore, it must be selected carefully.
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Fig. 2 Performance of DensePILAE with different parameters in terms of ACC(%)

In a word, ACC and AUC can be improved with the
increase of the number of neurons in the hidden layer. The
larger number of hidden neurons will contribute to get better
results. The regularization parameter has a more important
impact on the performance of the model. For most data sets,
smaller regularization parameterwill get an acceptable result.
However, if youwant to get the best result, you need to choose
it carefully.

Discussion

There are significant differences betweendRVFLandDensePI-
LAE in feature reuse and feature learning. The dRVFL reuses
the features of the all previous layer in the last layer.However,
the DensePILAE reuses the features of all previous layers in
every layer. Therefore, the feature learned from every layer
in DensePILAE is the comprehensive utilization of historical
information. It can be seen from Tables 2 and 3 that DensePI-
LAE can obtain better results than dRVFL. In addition, the
features of hidden layer are obtained by random projection in
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Fig. 3 Performance of DensePILAE with different parameters in terms of AUC(%)

dRVFL, sodRVFL is similar towidth learningnetwork.How-
ever, the hidden layer features in DensePILAE are obtained
by pseudoinverse learning. Therefore, it can be seen from
Table 4 that the speed of feature learning in DensePILAE is
slightly slower.

Conclusion

In this paper, a dense connection pseudoinverse learning
autoencoder based on feature reuse is proposed. The method

can reuse the information of the middle layer faster and bet-
ter, and the learned features have a stronger discriminating
ability. Our method can be seen as a combined implementa-
tion of explicit reuse and implicit reuse. The explicit reuse of
features is realized by crossing connections, and the implicit
reuse of features is realized by multi-layer stacking. In addi-
tion, the method can not only greatly shorten the feature
extraction time of the network, but also effectively avoid
the gradient explosion and gradient vanished problems. The
experimental results show that the proposedmethod has com-
prehensive performance compared with the other non-BP
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based methods. This is because the feature reuse makes up
for the loss of information and reduces the error of network.
Moreover, this strategy can also be applied to other non-BP
based learning networks to further improve the performance
of the network. In addition to image classification, DensePI-
LAE can be applied in many scenarios. In the future, we will
apply DensePILAE to object detection and fault detection.
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