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Abstract
Nowadays, data are the most valuable content in the world. In the age of big data, we are generating quintillions of data
daily in the form of text, image, video, etc. Among them, images are highly used in daily communications. Various types of
images, e.g., medical images, military images, etc. are highly confidential. But, due to data vulnerabilities, transmitting such
images in a secured way is a great challenge. For this reason, researchers proposed different image cryptography algorithms.
Recently, biological deoxyribonucleic acid (DNA)-based concepts are getting popular for ensuring image security as well
as encryption as they show good performance. However, these DNA-based methods have some limitations, e.g., these are
not dynamic and their performance results are far from ideal values. Further, these encryption methods usually involve two
steps, confusion and diffusion. Confusion increases huge time complexity and needs to send one or more additional map
tables with a cipher to decrypt the message. In this research, we propose a novel and efficient DNA-based key scrambling
technique for image encryption that addresses the above limitations. We evaluate our proposed method using 15 different
datasets and achieved superior performance scores of entropy, keyspace, cipher pixel correlations, variance of histogram, time
complexity and PSNR. The experimental results show that our method can be used for image encryption with a high level of
confidentiality.

Keywords DNA encryption · Image encryption · Novel key scrambling · Large key · DNA operation

Introduction

This is the era of big data which indicates that we are gener-
ating data in every aspect of our digital life. Data may come
in various formats including image, video, audio, number,
text, etc. Among them, the world is accumulating image data
enormously using different social applications. Due to the
popularity of using image data, it is a major concern for
researchers to keep data secured during storage and transmis-
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sion. Such security is ensured by incorporating cryptography
techniques where cryptography deals with changing a given
data to a format that has no visual or textual meaning at a
glance and sometimes it is in an unreadable format too.

Currently, a popular trend is to incorporate the concept of
biologicalDNAoperations for ensuring image security.Here,
binary [37,39] or hexadecimal [21] number based different
rules are used by the researchers for DNA mapping. Several
other operations on DNA (e.g., XOR, addition, subtraction,
etc.) are also applied. Such techniques are used for encryption
and decryption of the entire image. As reported by many
researchers, DNA-based techniques proved to be the most
successful method for image encryption because of less time
complexity and massive parallelism [7,11].

But in most cases, the DNA-based methods used map-
based encryption techniques. Therefore, an additional table
had to be sent to the receiver for decoding the encrypted
image. On the other hand, in the case of pixel substitution, it
is not required to send any table, but it is not highly resistive
to different attacks. Several methods also used confusion and
diffusion techniques for encryption, but the confusion pro-
cess takes a huge time. Different studies used the scrambling
techniques on the block, pixel, bit, row, or columns which
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needed huge time. Only one study used the key scrambling
technique [24] by repeating its sequence with increasing
numbers. So, it was not very difficult for attackers to assume
the originalmessage. Again,multipleDNA-based operations
increase time complexity to a significant scale which is dif-
ficult to use in practical aspects. However, the performance
results achieved by the existing studies are far from ideal
values.

In this research, we propose a method for image encryp-
tion using a novel DNA-based key scrambling technique
where we do not involve any confusion stage, and there is no
need to send an additional table with cipher image to decrypt
the message by the receiver. In our method, we receive an
encryption key of any length for encrypting a plain image.
Our proposed method generates a key of a size similar to the
size of the image in bits from a given key using Section 3.1.
Hence, every pixel of the input image can be encoded with a
different key to generate a cipher.

The following list includes the significant contributions of
our work:

– We propose a novel DNA operation-based image encryp-
tion technique.

– We introduce a novel key scrambling method for gener-
ating a large key from a given short key.

– Our method works dynamically by processing both the
gray and color images.

– It can work with variable input key length.
– It does not involve any confusion stage, thus it reduces
the encryption time.

– It can decrypt a cipher using the short input key only.
Hence, there is no need to send one or more additional
tables with a cipher image that requires high transmission
bandwidth.

– We evaluate our method using 15 different datasets for
justifying the robustness of our method. Among the 15
datasets, 12 are used in 12 existing studies and the remain-
ing 3 are publicly available standard datasets.

– Our approach achieves competitive performancewith the
state-of-the-art techniques in terms of entropy, key space,
variance of histogram, pixel correlations (e.g., horizontal,
vertical and diagonal), PSNR, and time complexity.

Our proposed work is organized as follows. In the next
section, we provide a background of existing studies on
image encryption. In the subsequent section, we illustrate
our proposed method in detail following which we discuss
the datasets and experimental configurations. Performance
evaluation metrics, experimental results in comparison with
few state-of-the-art methods are presented in the penultimate
section. Finally, we summarize our work, achievements, lim-
itations and provide future directions.

Background study

Recent trends show that image encryption techniques have
successfully attracted researchers in this domain [7]. Every
researcher is trying to overcome the performance of exist-
ing methods [7,11]. To understand the contributions of our
proposed model, here we discuss the existing DNA-based
encryption techniques with their strength and limitations.

Jithin et al. [11] instantiated a color image encryption
techniquebasedon theArnoldmap,DNAencodingoperation
and a Mandelbrot set. They applied a chaotic map selection
technique and chose Arnold’s map among several available
maps. Then they used multiple DNA encoding and decod-
ing operations for a key generation which increased the time
complexity remarkably. To perform the decryption operation,
it required to sendmultiple tables like keymap, confusion and
diffusion tables which were clearly burdensome. In addition,
they used only one rule among eight rules for DNA encoding
which was a limitation of their method. Because it always
had an encoded value for an intensity value and if the hacker
could know the encode value of any intensity, then he would
be able to get an idea of a large part of the plain image.

Farah et al. [6] ushered chaotic map, fractional Fourier
transformation (FRFT) and DNA XOR operation based
image encryption technique. They performed DNA XOR
operations on plain image four times and used a fixed 256-
bit key which limited the key space of the overall system.
The repeated XOR operation increased the system complex-
ity. Dongming et al. [10] proposed a DNA operation based
image encryption model where they generated a key image
using a chaotic map. The key image and the plain image were
encoded using DNA XOR operation and generated a disor-
dered image. Later this image was sorted in ascending order
of intensities and a cipher image was obtained with a table
containing the actual order of pixel intensities. However, the
system works only for gray images and their reconstruction
rate was only 95%. In addition, they were required to send
an additional table to decrypt the cipher image which was
obviously a freight.

Wu et al. [39] proposed an improved chaotic map for the
initial key generation which was the combination of Hanon
and sine maps. Then they applied DNA XOR operation on
the plain image and the map, and thus generated an initial
cipher image. Further, they applied bit permutation tech-
niques between plain image pixels and initial cipher images
to get the final cipher image. They obtained satisfactory per-
formance scores. However, the permutation of bits was used
to take large computational time. Also, this technique was
applied only for gray images. Wu et al. [41] introduced a
new method for image encryption where they used NCA
map based CML key and pseudo-random number genera-
tion. At first, they generated an SHA-256 hash code from a
plain RGB image. Then they partitioned the RGB image into
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three different channels, and each channel was encoded with
different DNA rules. Subsequently, those three DNA matri-
ces were merged into a new matrix and a row column based
index diffusion technique was used to confuse the attackers.
After that, the matrix was partitioned into N blocks and then
DNA XOR, addition and subtraction operations were per-
formed on each block. The sequence of operations on blocks
was determined by a previously generated random number.
Finally, a pixel-level permutation was applied to generate the
cipher image. The system showed good results in different
evaluationmetrics. But the use of pixel permutation andmul-
tilevel DNA operations increased the time complexity of the
approach.

Wang et al. [37] proposed an algorithm for image encryp-
tion based on the chaotic map. They converted the plain
image pixels into DNA for diffusing the image. Later, they
used DNA addition and subtraction rules for DNA permu-
tation. Also, they used a bit shifting algorithm for creating
confusion on pixels as well as on the entire image. After
applying all these steps, they got the final cipher image. They
achieved good performance scores. However, the confusion
step of their method is time consuming. Wu et al. [40] used
DNA operation based security for cloud CCTV systems.
They used a hyperchaotic system for keymap generation
which was used to diffuse the plain image. Besides, the DNA
encoding technique was applied on plain images, and both
the plain and encoded images were diffused together to pre-
pare a cipher image. They achieved a good performance, but
their system is limited to gray images and they need to send
additional tables to decrypt the image.

Nabarun et al. [21] proposed an image encryption method
based on DNA mapping where they converted the image
pixels into three different text files e.g., encoded text
(CODE_FILE), code combinations (CODE), most frequent
pixels (MOST_OCCUR_FILE) files where CODE and
MOST_OCCUR_FILE files worked as secret key files. This
methoddecrypted the imagewithout any loss.But themethod
prepared three different files from a single image file and the
CODE_FILE size is very large in comparison with the orig-
inal image size.

Nematzadeh et al. [22] conducted an experiment to secure
image transmission over an unsecured network using a binary
search tree (BST) and DNA encoding. They generated a
secret key and then a candidate BST in a deterministic way
by exploiting a logistic chaotic map. The BST was designed
based on a random value with the basis of the chaotic map.
Later, this BST is converted to DNA which is XORed with
the plain image DNA. For the conversion of binary to DNA
of both the BST and plain image, the encoding rule (among
8 rules) is determined by a chaotic map. They achieved high
performance scores in different parameters. But their method
needed to send the BST information to the receiver to decrypt

the image. Besides, an increase in the size of the keywas used
to increase the time complexity.

Wang et al. [34] introduced a coupled map lattices (CML)
and DNA sequence operation based image encryption tech-
nique where they utilized bit shifting on even rows and
columns of a DNA matrix. In the case of odd rows and
columns, they used an index scramblingmethod for pixel dif-
fusion. But bit scrambling operations took huge CPU time.
Xingyuan Wang & Chuanming Liu [35] presented an image
encryption technique using DNA-based operations. They
applied double DNA encoding and decoding technique on
the entire image and rotated the cipher image by 90 degrees.
Due to double encryption and pixel confusion through 90
degree rotation, the time complexity increased largely for
both the encryption and decryption process.

Belazi et al. [3] presented a system for medical image
encryption. They divided the images into different blocks and
then these blocks were permuted using Fermat’s little theo-
rem. They used a sine-Chebyshev map for key generation
and utilized this map in DNAXOR, decode and complement
operations. Finally, a cipher imagewas generated. The confu-
sion step increased the time complexity and they conducted
this experiment only for gray images. Yadollahi et al. [43]
proposed nucleic acid operation based image security ensur-
ing model only for gray images. They converted the DNA
cipher image to an RNA image; for that, they converted a 2D
DNA image to a 1D RNA image, then every six bits were
mapped to an RNA codon. Finally, they used RNA com-
plement operation and obtained the cipher image. However,
multilevel encryption increases the time complexity.

Different researchers worked on scrambling techniques
and they used pixel, bit, block, row and columns for scram-
bling. Zhongyun et al. [9] worked for encrypting medical
images where they used randomized block-wise scram-
bling technique for confusion. Ramasamy et al. [25] pro-
posed a new enhanced logistic map for the chaotic solution
and performed a block scrambling and zigzag transforma-
tion for pixel confusion. Shuliang Sun [30] proposed an
image encryption schema where they used pixel and bit-
level scrambling technique based on a chaotic map. For
all scrambling techniques, they used the confusion stage.
Wang et al. [36] introduced an image encryption technique
where they exploitedHash table structure scramble andDNA
sequence operations. However, confusion techniques using
pixel, bit, or block scrambling are time consuming. To the
best of our knowledge, the key scrambling technique was
used only by Prashan Premaratne and Malin Premaratne
in [24] where they generated the required key from a given
short key to encrypt the whole image by key repetition.
Finally, they performed row–column, column–rowand circu-
lar shifting. This technique was computationally effective as
it did not involve any confusion stage. However, they applied
their technique only on a single image, and they did not mea-
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sure their performance concerning any standard encryption
quality evaluation metric.

In the above paragraphs, we have mentioned the pros and
cons of several existing studies.Now,we summarize the over-
all limitations of state-of-the-art techniques below:

– The number of images in datasets used by most of the
studies was very small in numbers (usually, 4 to 10).

– The chaos basedmethodsmostly depended onmap selec-
tion and there might be enough room for a security
breach.

– In general, chaos based solutions consisted of two steps
e.g., confusion and diffusion where the confusion step
increased significant time complexity.

– It was necessary to send an additional map table with
cipher image to a receiver to decrypt the message which
caused overhead and increased the transmission time.

– Many researchers used different types of scrambling
techniques at the pixel, bit, block, row, or column level in
their works. Only a single work used the key scrambling
technique. To the best of our knowledge, no one used the
scrambling techniquewithDNA-based image encryption
technique.

– The performance scores of existing studies were far from
the ideal scores. So, there is still enough space to improve
these scores towards the ideal ones.

Being inspired by the existing studies, we propose a novel
method for DNA-based image encryption. We introduce a
key scrambling technique for encrypting each pixel in a
dynamic way which proves to be capable of overcoming the
above-mentioned limitations.

Proposedmethodology

In this section, we present our proposed method which con-
tains insight into the key scrambling, image encryption and
decryption processes.

Key scrambling

Given a plain image I of lI bits and an initial key K of
length lK bits, we aim to generate a large key G from K
which is as large as the number of bits in the image I . The
key scrambling process generates such a unique and large key
G with a series of mutation, replication, append, reverse and
rotation operations. Algorithm 1 describes the whole process
of generating the key G of size lI .

Key mutation:
It is a technique by which an existing key interchanges its bit
positions to generate a new key. Here, two consecutive bits of
K swap if they are not equal. This process is mathematically
represented by Eq. 1. In this way, we can generate a large

Algorithm 1: Key scrambling algorithm
Input: Key K , Required bits lI
Output: Key G of lI length

1 R = Replicate(K );
2 G = Append(G, R);
3 R = Reverse(R);
4 G = Append(G, R);
5 while length(G) < lI do
6 for ( i = 1 : (length(K ) − 1) ) {
7 if (Ki �= Ki+1) AND (length(G) < lI ) then
8 Mutation(Ki and Ki+1)
9 S=Replicate(K );

10 for ( j = 1 : length(S) AND (length(G) < lI ) ) {
11 R = Replicate(S);
12 G = Append(G, R);
13 R = Reverse(R);
14 G = Append(G, R);
15 LeftRotation(S);

16 K = Replicate(G);

17 Return G;

number of unique keys of size lK from a single key.

K = Ki <=> Ki+1 if(Ki �= Ki+1) and i ∈ {1, 2, ..., (lk − 1)},
(1)

where Ki represent the i th bit in K and <=> operator rep-
resents a swap operation between the i th and (i + 1)th bits.

Key replication:
Replication is a process which creates a copy of a key. The
replication operation R = K is performed using Eq. 2.

Ri = Ki where i ∈ {1, 2, ..., lK }. (2)

Key append:
This process appends a new key at the end of an existing
sequence. Let, the existing sequence be G of length lG and
the candidate sequence to be appended be R of lR length.
The append operation is performed as per Eq. 3.

GlG+i = Ri where i ∈ {1, 2, ..., lR}. (3)

Key reverse:
This process generates a new key from a given key. In this
process, we organize the bits in the given key in reverse order.
Let, the target key be R. The key reverse is accomplished
using Eq. 4.

Ri = KlK−i+1 where i ∈ {1, 2, ..., lK }. (4)

Key left rotation:
The left rotation indicates an event by which all bits change
their positions in a key where the MSB bit moves to LSB
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Fig. 1 Pictorial view of a key
scrambling technique for large
key generation from the given
input key “101” using
Algorithm 1 where the target
length is 50

Steps
 Input Key, K 1 0 1 Phase 1

Replicate 1 0 1 Phase 2 Append 1 0 1
1 0 1 Phase 3 Reverse Append 1 0 1 1 0 1

Muta�on of 1st & 2nd bits 0 1 1 Phase 4
Replica�on of Key 0 1 1 Phase 5 Append 1 0 1 1 0 1 0 1 1

Phase 6 Reverse Append 1 0 1 1 0 1 0 1 1 1 1 0
Key Le� Rota�on 1 1 0 Phase 7 Append 1 0 1 1 0 1 0 1 1 1 1 0 1 1 0

Phase 8 Reverse Append 1 0 1 1 0 1 0 1 1 1 1 0 1 1 0 0 1 1
Key Le� Rota�on 1 0 1 Phase 9 Append 1 0 1 1 0 1 0 1 1 1 1 0 1 1 0 0 1 1 1 0 1

Phase 10 Reverse Append 1 0 1 1 0 1 0 1 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 1
Key Le� Rota�on 0 1 1 Phase 11

Muta�on of 2nd & 3rd bits 0 1 1 Phase 12
New Key K is G

Key Processing Large Key (G) Genera�on

Original state, no append, go for muta�on
Not Possible, two bits are same

Replicate the 24-bit G to K and repeat all the above steps un�l reaching the target length

and every other bit performs a 1-bit left shift operation. Let,
the given key be S of length lS . The left rotation process is
performed using Eq. 5. In this equation, we temporarily store
the MSB, S1 in a buffer t , then shift the rest of the bits one
bit left. Finally, we replace the LSB with the buffer t .

t = S1

Si = Si+1 where i ∈ {1, 2, ..., (lS − 1)}
SlS = t . (5)

Let K = 101 and lI = 50. Figure 1 depicts the key
processing steps of Algorithm 1 as an example.

Image encryption

Given a plain image P with height, width and channel of h, w

and d, respectively and a key K with length of lK bits and a
pixel at location (i,j) and its intensity at channel k be denoted
respectively by P(i, j) and P(i, j, k) where i, j and k rep-
resent the row, column and channel numbers of the pixel
respectively. At first, we generate a large key G of the length
of lP bits as in Eq. 6 using the key scrambling technique as
described in Section 3.1.

lP = h × w × d × 8. (6)

To perform aDNAoperation on the intensity P(i, j, k) using
a key, we select a DNA Rule r using Eq. 7.

r = rem(((i − 1) × w) + ( j − 1), 8) + 1. (7)

To encrypt the 8-bit intensity P(i, j, k), we select an 8-bit
key segment Y from G using Eq. 8.

keyPos = ((i − 1) × w + ( j − 1)) × 24 + ((k − 1) × 8) + 1

Y = G(keyPos : keyPos + 7). (8)

The detail of our proposed encryption algorithm is pre-
sented in Algorithm 2 and the overall encryption system is
depicted in Fig. 2.

Algorithm 2: DNA-based image encryption
Input: Plain Image P , Given Key K
Output: Cipher Image C

1 [h, w, d] = si ze(P)

h, w and d are height, width and channel of P
2 lI = h × w × d × 8 ;
3 G = KeyScrambling(K , lI );
4 for ( i = 1 : h ) {
5 for ( j = 1 : w ) {
6 r = rem(((i − 1) × w) + ( j − 1), 8) + 1;
7 for ( k = 1 : d ) {
8 keyPos = ((i−1)×w+( j−1))×24+((k−1)×8)+1;
9 Y = G(keyPos : keyPos + 7);

10 pix Bit = Dec2Bin(P(i, j, k));
11 pixDN A = DN AEncode(pix Bit, r);
12 keyDN A = DN AEncode(Y , r);
13 xoredDN A = DN AXOR(pixDN A, keyDN A);
14 valDecode = DN ADecode(xoredDN A, r);
15 valueDec = Bin2Dec(valDecode);
16 C(i, j, k) = valueDec;

17 Return C ;

DNA encode:
Generally, DNA consists of four different chemical bases
e.g, Adenine (“A”), Guanine (“G”), Cytosine (“C”) and
Thymine (“T”) [22]. Again, each base has two strains. Some
researchers [3,10] proposed mapping of DNA base to two
binary bits. In this way, a total of 24 different mappings are
possible. But due to the complementary property of base
pairs, only 8 rules are possible [3,10,28] which are shown in
Table 1.

In our proposedmodel, given a string of bits and a rule, our
system returns a corresponding DNA sequence. For exam-
ple, if a pixel channel intensity is 16310 = 101000112 and
the Rule-2 is selected, the encoded DNA will contain the
bit sequence 10, 10, 00 and 11 which represents “G”, “G”,
“A” and “T” respectively. Thus, the final DNA sequence is
“GGAT”.
DNA XOR:
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Fig. 2 Block diagram of the
proposed image encryption
system

Get Plain

Image (P)
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P
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Encode
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DNA 

XOR
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Segment (Y)
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Select Rule r 
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Select 8-bit 
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based on (i,j,k) 
value

Cipher 

channel 

C(i,j,k)

Cipher 

Image (C)

DIFFUSION

Table 1 DNA encoding rules A T C G

Rule-1 00 11 10 01

Rule-2 00 11 01 10

Rule-3 11 00 10 01

Rule-4 11 00 01 10

Rule-5 10 01 00 11

Rule-6 01 10 00 11

Rule-7 10 01 11 00

Rule-8 01 10 11 00
Table 2 DNA XOR operations XOR A T C G

A A T C G

T T A G C

C C G A T

G G C T A

Being inspired by binary XOR operations [10], XOR opera-
tions on DNA sequences are incorporated for image encryp-
tion. Given two DNA sequences, the DNA XOR operation
between the sequences returns one DNA. Let us consider two
sequences “TACC” and “CATG”. Then, DNA XOR opera-
tion takes place between the 1st bases of the 1st and 2nd

sequences, i.e., “T” and “C”. As per Table 2, the XOR oper-
ation yields “G”. Similarly, the XOR operations for 2nd , 3rd

and 4th bases yield “A”, “G” and “T”, respectively. Hence,
the final DNA sequence is “GAGT”.

DNA decode:
It is the reverse process of DNA encode [10]. This time we
receive a DNA sequence and a rule. Our system generates
the corresponding binary bits as depicted in Table 1. Let us
consider a DNA sequence “ATTC” and Rule-5. Our system,
then generates the bit sequences 11 for “A”, 01 for “T”, 01 for
“T” and 00 for “C”. Hence, the final bit string is 110101002.

Image decryption

Given a cipher image, an image decryption process is sup-
posed to generate the original plain image. An appropriate
decryption algorithm reconstructs the image perfectly, i.e.,

100% similar to the plain image. Computationally, image
decryption is an opposite sequence of operations of the
encryption process 3.2. Algorithm 3 presents the working
procedure of image decryption.

Algorithm 3: DNA-based image decryption.
Input: Cipher Image C , Received Key K
Output: Decrypted Image D

1 [h, w, d] = si ze(C)

h, w and d are height, width and channel of the image C
respectively

2 lI = h × w × d × 8 ;
3 G = KeyScrambling(K , lI );
4 for ( i = 1; i <= h; i = i + 1 ) {
5 for ( j = 1; j <= w; j = j + 1 ) {
6 r = rem(((i − 1) × w) + ( j − 1), 8) + 1;
7 for ( k = 1; k <= d; k = k + 1 ) {
8 keyPos = ((i−1)×w+( j−1))×24+((k−1)×8)+1;
9 Y = G(keyPos : keyPos + 7);

10 pix Bit = Dec2Bin(C(i, j, k));
11 pixDN A = DN AEncode(pix Bit, r);
12 keyDN A = DN AEncode(Y , r);
13 xor Result = DN AXOR(pixDN A, keyDN A);
14 valDecode = DN ADecode(xor Result, r);
15 value = Bin2Dec(valDecode);
16 D(i, j, k) = value;

17 Return D;

Figure 4 presents the decryption process of the cipher of
the red channel of the first pixel of the sample image used as
an example of our encryption process in Fig. 3.

Dataset and experimental configurations

We validate our method using two categories of datasets. In
the first category, we select some existing methods related
to our work and choose datasets used by them. The sec-
ond category consists of publicly available three standard
image datasets. For the first category, we compare the perfor-
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Loca�on 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Key Bits 1 1 0 1 1 1 0 1 1 1 1 0 0 1 0 1 1 0 1 0 1 1 1 0 0 0 0 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0 1 0 1 1 0

Key DNA T G T G T C G G C C T C A C C T C T C T G C C G

Pixel Bits 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 0 0 0 1 1 1

Pixel DNA G G T T T T A T C T G T C C T T T T A G G A C T

Pixel Num Pixel 1 Pixel 2

Rule Num Rule 1 Rule 2

XOR Res C A A C A G G C A G C G C A G A G A C C A C A C

Cipher Bits 1 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1

Loca�on 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Key Bits 1 0 1 1 1 0 1 1 1 1 0 0 1 0 1 1 0 1 0 1 1 1 0 0 0 0 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0 1 0 1 1 0 1

Key DNA C T C T T A C T G G T A A C C T C T C T G C C G

Pixel Bits 0 1 0 1 1 1 1 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 0 0 1 1 0 1 1 0 0

Pixel DNA G G T T G C G C C G A G C C T T T T A G G A C T

Pixel Num Pixel 9 Pixel 10

Rule Num Rule 1 Rule 2

XOR Res T C G A C C T G T A T G C A G A G A C C A C A C

Cipher Bits 1 1 1 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1

(b)

(a)

Fig. 3 An example of image encryption with a 192-bit key. Encryption
steps and results of a 1st and 2nd pixels, and b 9th and 10th pixels. It
can be noted that the red channel of the 1st and 9th pixels has the same

intensity of 9510, and Rule-1 is used on both of them. The resultant
ciphers for the two pixels’ red channels are very different

Fig. 4 The decryption process
of the cipher of the red channel
of the first pixel of the sample
image (Fig. 3) is used as an
example of our encryption
process. The red, green and blue
columns represent the cipher of
the red, green and blue channels
of the pixel

First Pixel
Loca�on 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Key Bits 1 1 0 1 1 1 0 1 1 1 1 0 0 1 0 1 1 0 1 0 1 1 1 0
Key DNA T G T G

Cipher pixel Bits 1 0 0 0 0 0 1 0
Cipher pixel DNA C A A C

Pixel Num Pixel 1
Rule Num Rule 1
XOR Res G G T T

Decrypted Bits 0 1 0 1 1 1 1 1

mance of our approach with some existing approaches listed
in Table 3. These approaches considered different image
datasets with variations in the number of images, resolutions
and image types (e.g., gray or color).

We use the second category of the datasets to prove the
robustness of our method. Here, we take three more standard
datasets in addition to the datasets of existing studies. These
are (i) image enhancement dataset, (ii) USC-SIPI dataset
and (iii) information hiding datasets where (i) and (iii) con-
tain only color images and (ii) contains both the gray and
color images. The specifications of these datasets are given
in Table 4. We prepare 13 subsets from these datasets con-
sidering the different properties of the images (e.g., size,
color, etc.) to conduct experiments on different setups listed
in Table 5 and the detailed result is presented in 5.12.

Experimental results and discussion

This section discusses different performance evaluation
metrics, results obtained using our approach and per-
formance comparison with the-state-of-art methods. We
consider different evaluation metrics, some of which we
choose from existing studies, e.g., key space [4,11,22,
34,35,41,44,48], key sensitivity [4,11,22,34,35,41,44,48],
histogram analysis [4,6,22,34,41,44,48], variance of his-
togram [11], entropy [4,6,11,22,34,35,41,48], cipher pixels’
correlation [4,6,11,22,34,35,41,44,48], resisting differen-
tial attacks [4,6,11,22,34,35,41,48], PSNR [11,34,48], noise
attack [11,34,41,44], image reconstruction [5,18,48] and
time complexity [4,16,34,41]. We also use variable length
key and statistical parameters as evaluation metrics, and
applied them in publicly available datasets. Although it is
not necessary to use all these evaluation metrics, we analyze
them to show the robustness of our proposed method from
different angles.
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Table 3 Datasets collected from recent existing studies

Existing studies Description of dataset images

Jithin et al. [11] 10 color images (Lena, Baboon, Barbara, Corn Field, Flower, Lake, Monarch, Peppers,
Soccer and Yacht) of dimensions 256 × 256.

Nematzadeh et al. [22] 8 gray images (Peppers, House, Airplane, Cameraman, Lena, Boat, Painter and Baboon)
of 3 different dimensions e.g., 512 × 512, 256 × 256 and 128 × 128.

Wang et al. [34] 4 gray images e.g., Lena, Cameraman, Pepper and House of dimensions 256 × 256 .

Chen et al. [4] Single Lena image of dimension 256 × 256.

Wang et al. [35] 9 gray images (Bird, Boat, Brain, Finger, House, Lena, Moon, Peppers and Plain).

Nabarun et al. [21] Color Lena image of dimension 256 × 256.

Farah et al. [6] 3 color images e.g., Lena, Jasmin and Baboon of dimensions 256 × 256.

Wu et al. [40] 3 gray images e.g., Boat, Fruit and Baboon of dimensions 760 × 576, 444 × 336 and
512 × 512 respectively.

Wang et al. [36] 5 images (3 gray from USC-SIPI dataset, 1 black and 1 white) of dimensions 256× 256.

Yadollahi et al. [43] 8 gray images (Baboon, Boat, Cameraman, House, Lena, Barbara, Snow and Peppers)
of 2 different dimensions 512 × 512 and 256 × 256.

Ye et al. [45] 3 images e.g., Lena, Barb and Baboon of dimensions 256 × 256, 512 × 512 and
512 × 512, respectively.

Dongming et al. [10] Gray Boat image of dimension 256 × 256.

Table 4 Specifications of the datasets used for robustness testing

Sl no Dataset No of images Type Dataset description

1 Image enhancement (URL) 24 Color Busting image enhancement and
tone-mapping algorithms: The
most challenging cases

2 USC-SIPI (URL) Total 30 (Gray 15, Color 15) Gray Color To support research in image
processing, image analysis and
machine vision

3 Information hiding (URL) 22 Color To facilitate image hiding,
encryption and watermarking
research

Table 5 Different setups for robustness testing with their acronyms

No Setup Number of images Considered subset images

1 ImgEnhc 24 All images of Image Enhance dataset

2 USCSIPI 30 All images of USC-SIPI dataset

3 InfHide 22 All images of Information Hiding dataset

4 Col 61 All color images of three datasets

5 Gray 15 All gray images of USC-SIPI dataset

6 Col_256 14 Only 256 × 256 color images of three datasets

7 Col_512 21 Only 512 × 512 color images of three datasets

8 Col_1024 16 Only 1024 × 1024 color images of three datasets

9 Col_1728 12 Only 1728 × 2304 or 2304 × 1728 color images of all datasets

10 Gray_256 7 Only 256 × 256 gray images of three datasets

11 Gray_512 5 Only 512 × 512 gray images of three datasets

12 Gray_1024 3 Only 1024 × 1024 gray images of three datasets

13 Lena 18 Only Lena images with different resolutions for comparing with existing works
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From Table 5, we see that the number of images varies
from 1 to 61 for each experimental setup. We get one result
for each image in each experiment. So, if there are 15 images
in a dataset, we get 15 results. For brevity, we only present the
best results as the existing studies did the same. Therefore,
we compare our best results on each dataset with the best
results found by the existing studies.

Entropy

The entropy value of an image indicates the randomness of
pixels that have the same intensity. In other words, entropy is
the pixel crowdedness of an image. If the pixels are uniformly
distributed, the entropy value becomes high which means
it will be difficult for an intruder to perform any statistical
attack [7,29,38]. The entropy E2 is measured by Eq. 9 based
on the probability of intensity in any distribution [4,6,11,22,
34,35,41,48].

E2(Z) = −
2n−1∑

i=0

P(zi ) × log2P(zi ), (9)

where n is the number of bits used to represent the gray value
of a pixel, zi represents the height of i th bin in the histogram
z, P(zi ) is the probability of having the i th gray level in the
image.

The ideal value of entropy in image encryption is 8 [7,
23,42]. Our experimental results are given in Table 6 and
we observe that our method achieves a good entropy value
(best results in the 3rd column) which is closer to the ideal
one than the existing studies (best results in 2nd column).
We achieve the highest entropy score for Ye et al. [45]. We
obtain each of the entropies 7.9998842 and 7.9998817 for a
couple of datasets. For example, 7.9998842 is ordained for
the gray color Peppers image with 512x512 resolution both
in the datasets used in [22] and [43].

It is notable that for all datasets, we achieve better scores
than the existing ones. Hence, for any kind of statistical
attack, our method has better protection ability than exist-
ing methods.

Key space

In image encryption, the strength of the secret key plays an
important role [4,11,22,41,44,48]. Generally, the longer the
key, the stronger the resistivity against brute force attacks [8].
But the longer the key length, the higher the time complex-
ity. However, the standard size of key space is 2100 [7]. In
our approach, the minimum key size is 15 characters and
the maximum is the size of the input plain image in bits.
If we consider the minimum characters, then the key length
becomes 15 × 8 = 120 bits, i.e., the size of the key space

Table 6 Entropy comparison between existing methods and our pro-
posed method. The 1st column represents the list of existing methods.
2nd and 3rd columns represent entropy obtained by the existing meth-
ods and our proposed method, respectively. Each row uses the same
dataset used in the study mentioned in the 1st column. For each dataset,
the comparative best entropy between the existing method and our pro-
posed method are shown with an asterisk (*) sign

Dataset used in Existing entropy Our entropy

Jithin et al. [11] 7.9998 7.9998943∗

Nematzadeh et al. [22] 7.9991 7.9998842∗

Wang et al. [34] 7.9975 7.9998817∗

Chen et al. [4] 7.9974 7.9998927∗

Wang et al. [35] 7.9975 7.9998817∗

Farah et al. [6] 7.9991 7.9998935∗

Wu et al. [40] 7.99947 7.9998873∗

Wang et al. [36] 7.9975 7.9998796∗

Yadollahi et al. [43] 7.9994 7.9998842∗

Ye et al. [45] 7.99924 7.9998949∗

becomes 2120. In our method, we generate a key G large
enough to encode each pixel with a different portion of the
key generated by the key scrambling technique using Sec-
tion 3.1 Algorithm 1. For example, if we use a color image
of size 512 × 512 as a plain image for encryption in our
method, the length of G need to be 512 × 512 × 3 × 8 or
6291456 bits, i.e., the size of the key space is 26291456 which
is practically a large space.

Key sensitivity

Key sensitivity tests the visual change of a cipher image
for a slight change in the encryption key keeping its length
fixed [11].Different researchers used this evaluationmetric to
prove the strength of theirmethods [4,11,22,34,35,41,44,48].
Let, a plain image be encrypted with two different keys K1 =
“BangladeshIsMyHomeLand” and K2 = “BaNgLaDeShIs-
MyHoMeLaNd”. The only difference between the two keys
is capitalizing the third character and then every second char-
acter. The effects of such changes in the cipher and histogram
of the Lena image are depicted in Fig. 5. We can see that the
two ciphers and corresponding histograms are visually very
much different. This illustration strongly endorses that our
method is highly sensitive to key variations.

Variance of histogram

It is a metric to evaluate the uniformity of histograms of
different cipher images. This metric determines the strength
of confusion and diffusion ability of a method [11]. In this
experiment, we generate two cipher images from a plain
image using two different keys. Let, a plane image be P ,
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Table 7 Comparison of Variance of Histogram (VoH) between our
proposed and existing methods. The 1st column represents the list of
existing methods. 2nd and 3rd columns represent the best VoH score
obtained by the existingmethod and our proposedmethod, respectively.
Each row uses the same dataset used in the study mentioned in the 1st
column. For each dataset, the comparative best results between the exist-
ingmethod and our proposedmethod are shownwith an asterisk (*) sign

Dataset used in Existing VoH Our VoH

Jithin et al. [11] 240.16 199.16∗

Ye et al. [45] 248 186.42∗

the two keys K1 and K2, the generated cipher images C1,
and C2 and their corresponding histograms H1 = hist(C1),
and H2 = hist(C2) respectively. We calculate the variance
of histogram V using Eq. 10. The smaller the value of V , the
better the encryption quality [11]. Table 7 compares the vari-
ance of histogram obtained by two existingmethods with our
method. It is clearly seen that for each dataset, our method
outperforms the existing methods. We achieve the best score
for Ye et al. [45] dataset which depicts that our method has a
significant improvement over the existing methods. Hence,

our method shows strong confusion and diffusion ability.

V =
(

1

M2

) M∑

i=1

M∑

j=1

(H1(i) − H2( j))
2, (10)

where M is the number of intensity levels which is usually
256, H1(i) is the i th element of histogram H1, and H2( j) is
the j th element of histogram H2.

Cipher pixels correlation

In a normal distribution, neighbor pixels are correlatedwhich
leaves space for intruders to estimate neighboring pixels
by knowing a specific segment. To secure image contents
from intruders, image encryption research focuses on dis-
torting such relationships in cipher images [12,26,31]. The
correlation may occur with horizontal, vertical, or diagonal
neighbors. The correlation value ranges from−1 to 1, where
1 indicates a strong positive correlation, −1 means strong
negative correlation and 0 means no correlation. The ideal
value of correlation for a cipher image is expected to be 0,
i.e., no correlation among the pixels. Different studies use
this evaluation metric to test the ability to protect any kind of

Fig. 5 Cipher images and their corresponding histograms of Lena image with a resolution of 512× 512: a, b depicts the cipher & its histogram for
the key “BangladeshIsMyHomeLand” and c, d depicts the cipher & its histogram for the key “BaNgLaDeShIsMyHoMeLaNd”, respectively
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Table 8 Correlation comparison between existingmethods andour pro-
posed method. The 1st column represents the list of existing methods.
Columns 2–7 represent the best correlations obtained by the existing
method (columns 2–4) and our proposedmethod (columns 5–7), respec-

tively. Each row uses the same dataset used in the studymentioned in the
1st column. For each dataset, the comparative best results between the
existing method and our proposed method are shown with an asterisk
(*) sign

Dataset used in Existing Correlations Our correlations

H V D H V D

Jithin et al. [11] −0.00116 0.00106 −0.0043 −0.00012∗ −0.00012∗ 0.00012∗

Nematzadeh et al. [22] 0.0007 0.0031 0.0007 −0.00012∗ −0.00012∗ 0.00012∗

Wang et al. [34] 0.0013 0.0009 0.0012 0.00022∗ 0.00026∗ −0.00031∗

Chen et al. [4] 0.0022 0.0013 0.0008 −0.00012∗ −0.00012∗ 0.00012∗

Wang et al. [35] −0.0085 −0.0031 −0.0019 −0.00025∗ −0.00019∗ −0.00039∗

Farah et al. [6] 0.0693 0.0610 −0.0242 0.00016∗ 0.00015∗ −0.00019∗

Wu et al. [40] 0.01576 0.00229 −0.0336 0.00012∗ −0.00012∗ 0.00012∗

Wang et al. [36] 0.0015 0.0021 −0.0005 −0.00026∗ −0.00033∗ −0.00019∗

Yadollahi et al. [43] 0.0059 0.0047 0.0058 −0.00012∗ −0.00012∗ 0.00012∗

Ye et al. [45] 0.03989 0.03448 0.00195 −0.00025∗ 0.00029∗ 0.00022∗

statistical attack [4,6,11,22,34,35,41,44,48]. The correlation
is calculated using Eqs. 11 to 14 [11,22,34].

E(x) = 1

N

N∑

i=1

xi (11)

S(x) = 1

N

N∑

i=1

(xi − E(x))2 (12)

cov(x, y) = 1

N

N∑

i=1

(xi − E(x))(yi − E(y)) (13)

rx,y = cov(x, y)√
S(x)

√
S(y)

, (14)

where x represents the set of pixel intensities in an image, xi
represents the i th pixel in the set, yi is the horizontal, vertical,
or diagonal neighbor of xi , N is the number of pixels in the

image, E(x) is the average intensity of the image, S(x) is
the standard deviation of intensities in the image, S(y) is the
standard deviation of neighbors, cov(x, y) is the variance of
x and y, and r is the correlation coefficient.

We present our experimental findings in Table 8.We apply
our algorithm on 10 datasets that were used by existing stud-
ies listed in Table 3. We see that our method achieves better
results than existing methods. We observe that in existing
methods, the highest horizontal correlation is 0.0007, verti-
cal 0.0009 and diagonal −0.0005 denoted by H, V and D
respectively in the table. We achieve the highest correlations
±0.00012,±0.00012 and ± 0.00012, respectively, for H, V
and D for five datasets. The result clearly indicates that our
approach makes the system stronger in preventing all kinds
of attacks than existingmethods. Figure 6 shows the pictorial
view of correlations of our approach.

Table 9 Comparison between
existing methods and our
proposed method based on
NPCR and UACI metrics. The
1st column represents the list of
existing methods. Columns 2–5
represent the best NPCR and
UACI values obtained by the
existing method (Columns 2–3)
and our proposed method
(Columns 4–5), respectively.
Each row uses the same dataset
used in the study mentioned in
the 1st column. For each dataset,
the comparative best results
between the existing method
and our proposed method are
shown with an asterisk (*) sign

Dataset used in Original Scores Our scores

NPCR UACI NPCR UACI

Jithin et al. [11] 99.64∗ 33.42 99.6339 33.4479∗

Nematzadeh et al. [22] 99.6742∗ 33.6392∗ 99.6193 33.4471

Wang et al. [34] 99.64∗ 33.41 99.6082 33.4362∗

Chen et al. [4] 99.61 33.44 99.6337∗ 33.4478∗

Wang et al. [35] 99.60 33.47∗ 99.6066∗ 33.4397

Farah et al. [6] 99.5697 33.41 99.6337∗ 33.4483∗

Wu et al. [40] 99.51 33.36 99.6199∗ 33.4458∗

Wang et al. [36] 99.6459∗ 33.4633∗ 99.6045 33.4374

Yadollahi et al. [43] 99.6251∗ 33.1933 99.6177 33.4471∗

Ye et al. [45] 99.6056 33.4173 99.6345∗ 33.4594∗

123



3252 Complex & Intelligent Systems (2021) 7:3241–3258
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(o)
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(q)
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Horizontal Correla�on Ver�cal Correla�on Diagonal Correla�on
Plain Cipher Plain Cipher Plain Cipher

Fig. 6 Correlation analysis of Lena plain and cipher images. a–f hor-
izontal, g–l vertical and m–r diagonal correlations. In each group, the
first and second columns represent plain and cipher correlations respec-

tively. Again, the first, second and third rows indicate red, green, and
blue channel correlations, respectively

Resisting differential attacks

The intruders always try to decode a cipher and get its orig-
inal message. One of the techniques they usually apply is to
change small portions of the plain image pixels and observe
what happens in the cipher image. They repeatedly apply the
process to get any pitfall of encryption algorithms. We aim
to develop a robust approach to pretend such attacks. Two
metrics, e.g., the number of pixel change rates (NPCR) and
unified average changing intensity (UACI) are used to check
whether the system is strong enough to handle these dif-
ferential attacks [1,13,33]. Different studies utilize these two
metrics for evaluating theirmethods [4,6,11,22,34,35,41,48].
Let, P be a plain image. The system generates a cipher C1

from P . If a small change on P produces P1, the encryption
process generates a new cipher C2. NPCR denoted by Np

and UACI denoted by Ua scores are obtained from C1 and
C2 using Eqs. 15 and 17, respectively [1,13,33].

Np =
∑h

i=1
∑w

j=1 G1(i, j)

h × w
× 100, (15)

where h andw are image height andwidth andG1 is obtained
from Eq. 16.

G1(i, j) =
{
0, i f (C1(i, j) == C2(i, j)) for all i, j

1, i f (C1(i, j) �= C2(i, j)) for all i, j

(16)

where C1(i, j) the intensity value of cipher at location (i, j)
and

Ua = 1

255 × h × w

⎡

⎣
h∑

i=1

w∑

j=1

(C1(i, j) − C2(i, j))

⎤

⎦×100,

(17)

where h and w are image height and width, respectively.
The ideal values of NPCR and UACI are 99.61% and

33.46%, respectively [7,11]. Table 9 presents NPCR and
UACI scores obtained by our proposed method on refer-
ence datasets used by existing studies. Our method has
performed well on some datasets. We achieve the highest
NPCR 99.6345% and UACI 33.4594% for the dataset used
by Ye et al. [45]. We can see that our scores are very close to
the ideal score though there are a few existing methods that
have closer values than ours. Although our results are not
always the best one in comparison to other existing works, it
is still promising to defend against differential attacks.

Peak signal-to-noise ratio (PSNR)

PSNR is an encryption quality measurement technique
that measures the amount of wideness of the pixels in an
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Fig. 7 Different noise effects on the cipher imagewhere thefirst, second
and third columns contain Lena cipher image, Lena cipher image with
noise, and the decrypted image from noisy cipher image, respectively.

In the second column b Gaussian noise with (“zero-mean” & variance
0.01), e Poisson noise with (mean 5.5), h Salt & Pepper noise with
(density 0.05) and k Speckle noise with (mean 0 & variance 0.05)

image [19]. It can be calculated from the mean square error
value and it is a logarithmic modification of a plain image P
and corresponding cipher imageC .Generally, a largevalueof
PSNR, Ps indicates a goodquality of encryption [11]which is
measured using Eqs. 18 to 20 [11,34,48]. Also, a large PSNR
value makes it difficult for attackers to digest any message.

Me = 1

h × w

h∑

i=1

w∑

j=1

(P(i, j) − C(i, j))2, (18)

where h and w are the height and width of the image and
P(i, j) and C(i, j) represent intensity at location (i, j) in
images P and C , respectively, and

Mx = max({P(i, j)})|i = 1, 2, ..., h and j = 1, 2, ..., w

(19)

Ps = 10 log10
Mx

Me
, (20)
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Fig. 8 Two examples of image reconstruction. For Lena, a–d depict plain image, cipher image, reconstructed image, and plain and reconstructed
image difference, respectively. Similarly, e–h depict the Tulip example

Table 10 PSNR score comparison between existing methods and our
proposed method. The 1st column represents the list of existing meth-
ods. 2nd and 3rd columns represent the best PSNR value obtained by
the existing method and our proposed method respectively. Each row
uses the same dataset used in the studymentioned in the 1st column. For
each dataset, the comparative best results between the existing method
and our proposed method are shown with an asterisk (*) sign

Dataset used in Existing PSNR Our PSNR

Jithin et al. [11] 36.07 88.5642∗

Nabarun et al. [21] 74.94 88.5642∗

Wang et al. [34] 20.86 87.6532∗

Dongming et al. [10] 45.08 88.6496∗

where Mx is maximum value obtained in Eq. 19 and Me

mean square error obtained in Eq. 18. We present our results
in Table 10 which compares our method with some existing
works. It reveals that our PSNR score is better than exist-
ing works with a remarkable difference and we achieve the
highest score for two datasets. We also observe a high PSNR
value for the rest of the two datasets which are very close to
the highest score. Hence, it alludes that our encryption tech-
nique generates a wider range of pixel distributions in cipher
images which makes it difficult for the attackers to digest the
message.

Noise attack

During the transmission of an image, the cipher image may
sometimes be altered or affected in a small amount due to
various reasons. Hence, it becomes difficult to decrypt the
noisy cipher because the cipher pixels are changed due to
noise. Different researchers use this metric to express the
strength of their encryption methods [11,34,41,44]. So, we

apply different noises in the cipher image and test the sys-
tem whether is it capable to decrypt the cipher perfectly or
not. Let, a cipher C is affected by Gaussian noise Gn (with
mean 0& variance 0.01) and produces a new cipherCgn . The
receiver receives the cipher Cgn and a key. Then the cipher is
decrypted to Dgn . Similarly, we add Poison with mean 5.5,
Speckle with mean 0 & variance 0.05, Salt & Peeper noises
with default density 0.05 and reconstruct them in return. For
all noises, we use the function imnoise()with default param-
eters in Matlab 1. The results shown in Fig. 7 reveal that our
approach can reconstruct the images properly and is capable
to handle noise attacks.

Image reconstruction

An image encryption system is considered to be efficient if
its decryption process can reconstruct the encrypted image
perfectly, i.e., the original image and reconstructed image are
pixel-wise same. Different studies use this metric to evalu-
ate the efficiency of the model [5,18,48]. In our system, we
achieve this milestone. The visual result of Lena and Tulip
images with resolution 512 × 512 are shown in Fig. 8.

Computational time complexity

Computational time complexity is a performance evalua-
tion parameter that indicates how fast an algorithm gives
results [46]. It means how many internal machine instruc-
tions have to be completed by the computer to complete an
algorithmic task. The lower the time complexity of the image
encryption algorithm, the better the model [2]. Different
researchers use this metric to represent the time complex-

1 https://www.mathworks.com/help/images/ref/imnoise.html

123

https://www.mathworks.com/help/images/ref/imnoise.html


Complex & Intelligent Systems (2021) 7:3241–3258 3255

Ta
bl
e
11

C
om

pa
ri
so
n
of

al
go
ri
th
m
ic
co
m
pu
ta
tio

na
lt
im

e
co
m
pl
ex
ity

be
tw
ee
n
ou
r
pr
op
os
ed

m
et
ho
d
an
d
so
m
e
ex
is
tin

g
m
et
ho
ds

M
et
ho

d
T
im

e
co
m
pl
ex
ity

W
u
et
al
.[
41

]
St
ep

1:
θ
(1
2

×
M

×
N

),
St
ep

2:
θ
(3

×
M

×
N

),
St
ep

3:
θ
(1
2

×
M

×
N

),
St
ep

4:
θ
(1
2

×
M

×
N

),
St
ep

5:
θ
(2
4

×
M

×
N

),
St
ep

6:
θ
(3

×
M

×
N

),
St
ep

7:
θ
(2
4

×
M

×
N

)

W
an
g
et
al
.[
34

]
St
ep

1:
O

(9
×

M
×

N
),
St
ep

2:
O

(8
×

M
×

N
),
St
ep

3:
O

(4
×

M
×

N
),
St
ep

4:
O

(4
×

M
×

N
)

Ji
ah
ui

et
al
.[
39

]
St
ep

1:
O

(M
×

N
),
St
ep

2:
O

(M
×

N
),
St
ep

3:
O

(M
×

N
)

L
id
on

g
et
al
.[
16

]
St
ep

1:
O

(M
+

N
),
St
ep

2:
O

(8
×

M
×

N
),
St
ep

3:
O

(4
×

M
×

N
)

O
ur

pr
op
os
ed

m
et
ho
dS

te
p
1
K
ey

sc
ra
m
bl
in
g:

O
(L

×
lo
g(
L
))
,S

te
p
2
D
if
fu
si
on
:
O

(M
×

N
)

ity of their method [16,34,39,41]. Our proposed algorithm
has two steps. In the first step, it generates a large key from
a given short key using the key scrambling technique which
has the time complexity of O(L × log(L)), where L is the
length of the given short key. The second step is the encryp-
tion algorithm which takes O(M × N ) where M and N are
the height andwidth of the plain image, respectively. The sec-
ond step is more time consuming than the first step. Hence,
our final time complexity is O(M × N ). We present the time
complexity of our method and compare it with some recent
DNA-based image encryption techniques in Table 11. From
the table, we see that our method is computationally very
faster than other methods. As our method does not involve
any confusion or pixel permutation steps, there exist only two
steps that involve very fewer operations compared to others.
Hence, ourmethod is verywell suited to perform faster image
encryption.

Key of variable length

Different research groups focused on DNA-based image
encryption techniques and used a fixed-length key using
a chaotic map [2,14,15,17,20,27,47]. Some of them used
SHA-256 [6,41,48], SHA-2 [32] and MD5 [33] for image
encryption. On the contrary, our method can work with
different key lengths. It can generate very different cipher
images for two keys of different lengths. For instance,
given two keys K1 =“BangladeshIsMyHomeLand” and
K2 = “BangladeshIsMyHomeLandILoveMyCountryVery-
Much”, our method generates the ciphers depicted in Fig. 9.
The figure depicts huge textural variations on cipher images.

Robustness in publicly available datasets

We use the datasets of existing studies for justifying the
strength of our proposed method. We also justify the robust-
ness of our system by applying our method on three standard
and comparatively large datasets. We divide the datasets into
13 different subsets (Table 4) and apply our proposedmethod
on each subset and then list the results of different parame-
ters (key of variable length, variance of histogram, entropy,
cipher pixels correlation, resisting differential attacks and
PSNR) in Table 12. Here, we see that our method achieves
satisfactory results on those subsets. In most cases, we find
the best results for the image subset that contains only Lena
images of different resolutions. The results are very much
aligned with datasets from existing studies. Hence, we can
conclude that our system is robust to challenging datasets.

Therefore, we conduct comprehensive experiments in
terms of different performance evaluation metrics from dif-
ferent viewpoints where we use 12 datasets from existing
studies for comparing the overall system performance and 3
standard datasets with 13 setups for robustness testing. We
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Fig. 9 Cipher images and their corresponding histograms of Tulip image. Top row: result of encryption with the key “BangladeshIsMyHomeLand”.
Bottom row: result of encryption with the key “BangladeshIsMyHomeLandILoveMyCountryVeryMuch”

Table 12 Different results from datasets of robustness testing: column
1 setup name according to column 2 Variance of Histogram, column 3
Entropy, column (4–6) Pixel Correlations, column 7 NPCR, column 8

UACI and the last column represent the PSNR scores. (*) sign indicates
the comparative best result

Setup Name VoH Entropy Correlations NPCR UACI PSNR
H V D

ImgEnhc 215.1 7.99988 0.00040 0.00022 0.00016 99.55 33.45 86.45

USCSIPI 207.16 7.99985 0.00033 0.00019 0.00026 99.56 33.45 84.02

InfHide 195.59 7.99986 0.00022 0.00026 – 0.00031 99.60* 33.45* 87.65

Col 196.12 7.99987 – 0.00040 – 0.00038 0.00028 99.59 33.44 88.55

Gray 199.14 7.99986 -0.00025 – 0.00019 – 0.00039 99.55 33.43 84.12

Col_256 186.39* 7.99986 – 0.00022 – 0.00019 0.00013 99.58 33.41 84.90

Col_512 215.66 7.99987 0.00016 0.00013 – 0.00019 99.56 33.42 86.12

Col_1024 202.79 7.99988 0.00012* – 0.00012* 0.00012* 99.58 33.41 87.12

Col_1728 215.62 7.99989* – 0.00026 – 0.00035 – 0.00019 99.59 33.41 88.55

Gray_256 213.53 7.99985 0.00019 0.00021 0.00033 99.41 33.40 84.25

Gray_512 206.19 7.99986 – 0.00025 0.00039 0.00022 99.58 33.44 84.36

Gray_1024 188.15 7.99987 0.00017 – 0.00033 – 0.00019 99.59 33.43 85.54

Lena 187.12 7.99989* – 0.00012* – 0.00012* 0.00012* 99.59 33.43 88.56*
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find that our novel key scrambling-based image encryption
technique achieves the best entropy score in comparisonwith
existing methods. We also achieve the best scores for key
space, pixel correlations, variance of histogram, PSNR and
time complexity. The scores of key sensitivity and differ-
ential attack show very promising results. In addition, we
evaluate our system performance for image reconstruction
and various noise attacks. Our reconstruction scores reveal
that the proposed method is a novel method for image cryp-
tography. Hence, we can conclude that our method is highly
effective, suitable and has enough security strength for image
encryption.

Conclusion

For secured data transmission, image encryption is essential
in the digital world. In this research work, a DNA opera-
tion using key scrambling based image encryption system
is proposed. In our approach, we do not involve any con-
fusion step. We conduct experiments on 15 datasets and
evaluate the proposed approach using different performance
metrics. We compare our results with cutting-edge tech-
niques. We achieve the best scores which are very close to
ideal milestones for six evaluation metrics. Our system is
able to reconstruct the original image from the cipher image
100% accurately. We extend our experiments by applying
13 different data subsets from 3 publicly available datasets
which clearly reveal that our system is equally performing.
Our novel key scrambling technique is highly efficient for
diffusing pixels. This efficiency is confirmed with achieved
correlation and entropy scores. In addition, most of the recent
works are supposed to send one or more tables for decryp-
tion, which is obviously burdensome for traffic. We reduce
that burden in our approach without compromising security.
Hence, it reduces transmission time and space. Moreover,
our method is robust in terms of the number of channels and
variable key length processing. Therefore, we can conclude
that our method is highly efficient for image encryption and
our key scrambling technique is new and innovative.

The advantages of our method are faster encryption time,
less bandwidth to transmit the cipher image, less time to
transmit and decrypt the image, a very high level of encryp-
tion quality on different evaluation metrics, and the system
is robust and dynamic.

Although we achieve the best scores in different parame-
ters, we aim to improve the competitive scores towards the
ideal scores in futurework.Moreover, wewill test our system
for hyperspectral image datasets.
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