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Abstract
Although a single-valued neutrosophic multi-valued set (SVNMVS) can reasonably and perfectly express group evaluation
information and make up for the flaw of multi-valued/hesitant neutrosophic sets in group decision-making problems, its
information expression and group decision-making methods still lack the ability to express and process single- and interval-
valued hybrid neutrosophic multi-valued information. To overcome the drawbacks, this study needs to propose single- and
interval-valued hybrid neutrosophic multi-valued sets (SIVHNMVSs), correlation coefficients of consistency interval-valued
neutrosophic sets (CIVNSs), and their multi-attribute group decision-making (MAGDM) method in the setting of SIVHN-
MVSs. First, we propose SIVHNMVSs and a transformation method for converting SIVHNMVSs into CIVNSs based on the
mean and consistency degree (the complement of standard deviation) of truth, falsity and indeterminacy sequences. Then,
we present two correlation coefficients between CIVNSs based on the multiplication of both the correlation coefficient of
interval-valued neutrosophic sets and the correlation coefficient of neutrosophic consistency sets and twoweighted correlation
coefficients of CIVNSs. Next, a MAGDM method is developed based on the proposed two weighted correlation coefficients
of CIVNSs for performing MAGDM problems under the environment of SIVHNMVSs. At last, a selection case of landslide
treatment schemes demonstrates the application of the proposed MAGDM method under the environment of SIVHNMVSs.
By comparative analysis, our newmethod not only overcomes the drawbacks of the existingmethod, but also is more extensive
and more useful than the existing method when tackling MAGDM problems in the setting of SIVHNMVSs.

Keywords Single- and interval-valued hybrid neutrosophic multi-valued set · Consistency interval-valued neutrosophic set ·
Correlation coefficient · Group decision-making

Introduction

In recent decades, neutrosophic decision-making theo-
ries and methods [1, 2] have aroused general interest
in indeterminate and inconsistent situations. Then, sim-
plified neutrosophic sets (SNSs), including single-valued
neutrosophic sets (SVNSs) and interval-valued neutrosophic
sets (IVNS), and their various multiple attribute (group)
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decision-making (MADM/MAGDM) methods have been
effectively applied inmany decision-making problems [3–9].
Under neutrosophic hesitant situations, various neutro-
sophic hesitant fuzzy sets (NHFSs), such as single-valued
and interval-valued NHFSs, and their MADM/MAGDM
methods have been proposed to resolve neutrosophic hes-
itant decision-making problems [10–15]. Further, multi-
valued/hesitant neutrosophic sets (MVNSs) and their
MADM/MAGDM methods have been also introduced and
applied in MADM/MAGDM problems [16–20]. Since there
is the loss of some identical neutrosophic values/elements
in NHFSs and MVNSs, single-valued neutrosophic mul-
tisets were proposed to make up for the shortcomings
of NHFSs and MVNSs, and then their MADM/MAGDM
methods were developed and applied in MADM/MAGDM
problems [21–23]. Especially in the current literature
[24], single-valued neutrosophic multi-valued sets/elements
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(SVNMVSs/SVNMVEs) were presented based on the
truth, falsity and indeterminacy sequences with the same
and/or different fuzzy values, and then a transformation
method was introduced to convert SVNMVSs/SVNMVEs
into consistency single-valued neutrosophic sets/elements
(CSVNSs/CSVNEs) by the average value and consistency
degree (the complement of standard deviation) of truth, fal-
sity and indeterminacy sequences. However, CSVNSs can
simplify the information expression and difficult operation
problems of SVNMVSswith different truth, falsity and inde-
terminacy sequence lengths, which indicate the outstanding
advantages. Then, a MAGDM method [24] was developed
by the proposed correlation coefficients of CSVNSs to tackle
MAGDM problems with the information of SVNMVSs.
Although the proposed techniques [24] can overcome the
drawbacks of existing techniques and provide more exten-
sive information representation and decision-makingmethod
in performing MAGDM problems with the information of
SVNMVSs, the existing techniques still lack the single- and
interval-valued hybrid neutrosophic (multi-valued) informa-
tion expression andoperational processing capabilities in real
group decision-making problems.

In the neutrosophic multi-valued decision-making prob-
lem, because decision-makers have certainty and uncer-
tainty in the judgment/cognition of some evaluated object,
they possibly give single-valued/exact fuzzy values and
interval-valued fuzzy values (IVFVs) of the truth, falsity
and indeterminacy simultaneously in the evaluation pro-
cess. For example, decision-makers give the single- and
interval-valued hybrid neutrosophic evaluation informa-
tion<(0.8, [0.6, 0.7], [0.5, 0.6]), (0.2, [0.2, 0.3], [0.2, 0.3]),
(0.3, 0.1, [0.3, 0.4])> . Thus, the aforementioned NHFSs,
MVNSs and SVNMVSs cannot express the single- and
interval-valued hybrid neutrosophic multi-valued informa-
tion, and then various MADM/MAGDMmethods presented
in existing literature cannot also perform the single- and
interval-valued hybrid neutrosophic multi-valued decision-
making problem. To our best knowledge, none of the
existing studies focused on the expression, correlation coef-
ficient, and decision-making problems of the single- and
interval-valued hybrid neutrosophic multi-valued informa-
tion. Therefore, it is necessary to propose the hybrid
neutrosophicmulti-valued information expression form, cor-
relation coefficient, and decision-making method to solve
the aforementioned challenges. Motivated by the new chal-
lenging ideas, the targets of this study are (1) to propose
a single- and interval-valued hybrid neutrosophic multi-
valued set/element (SIVHNMVS/(SIVHNMVE) and a trans-
formation method that converts SIVHNMVS/SIVHNMVE
into a consistency interval-valued neutrosophic set/element
(CIVNS/CIVNE) based on the average value and consis-
tency degree (the complement of standard deviation) of the
truth, falsity and indeterminacy sequences, (2) to present two

correlation coefficients between CIVNSs based on the mul-
tiplication of both the correlation coefficient of IVNSs and
the correlation coefficient of neutrosophic consistency sets
(NCSs) in the setting of SIVHNMVSs and then twoweighted
correlation coefficients of CIVNSs, and (3) to develop a
MAGDMmethod by the proposed two weighted correlation
coefficients of CIVNSs for performing MAGDM problems
under the environment of SIVHNMVSs.

To indicate the application of the proposed MAGDM
method under the environment of SIVHNMVSs, a selection
case of landslide treatment schemes demonstrates the validity
of the proposed MAGDMmethod. By comparative analysis,
our new method not only overcomes the drawbacks of the
existing method [24], but also is more extensive and more
useful than the existing method when tackling MAGDM
problems in the setting of SIVHNMVSs.

In this study, the advantages of the proposed new tech-
niques are summarized as follows:

1. The proposed SIVHNMVS can overcome the single
information expression defect of existing SVNMVS.

2. The proposed transformation method that converts
SIVHNMVS/SIVHNMVE into CIVNS/CIVNE based
on the average value and consistency degree of the truth,
falsity and indeterminacy sequences can extend the exist-
ing conversion method and solve operational problems
between different hybrid information forms.

3. The proposed correlation coefficients of CIVNSs based
on the multiplication of two correlation coefficients of
IVNSs and NCSs can obviously reflect that the cor-
relation coefficients of IVNSs are special cases of the
proposed correlation coefficients of CIVNSs when the
correlation coefficients of NCSs are equal to one, while
the existing correlation coefficients [24] cannot reflect
the cases. Hence, the proposed correlation coefficients
of CIVNSs are more extensive and more useful than the
existing correlation coefficients of CSVNSs [24] under
the environment of SIVHNMVSs.

4. The developedMAGDMmethod can solve theMAGDM
problems with the SIVHNMVS information, which the
existingMAGDMmethods cannot do, andmake the deci-
sion results more reasonable and more effective.

However, the proposed hybrid neutrosophic multi-valued
information expression, correlation coefficients of CIVNSs,
and MAGDM method in this article show the contributions
of these new techniques.

The remainder of this article consists of the parts. The next
section introduces basic concepts of SVNMVSs and their
drawbacks. In the subsequent section, we propose SIVHN-
MVS for representing the hybrid information of SVNMVS
and an interval-valued neutrosophic multi-valued set (IVN-
MVS) simultaneously and then introduce a transformation
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method for converting SIVHNMVS into CIVNS based on
the mean and consistency degree of the truth, falsity and
indeterminacy sequences in SIVHNMVS. Following this,
two correlation coefficients of CIVNSs and two weighted
correlation coefficients of CIVNSs in the setting of SIVHN-

MVSs are put forward. Then aMAGDMmethod is developed
using the proposed two weighted correlation coefficients of
CIVNSs in the SIVHNMVS setting. Before the last section,
a selection case of landslide treatment schemes and compar-
ison with existing relative method to indicate the validity of
the newmethod are introduced. The final section summarizes
conclusions and further research.

Basic concepts of SVNMVSs and drawbacks

A SVNMVS S on a universe set X � {x1, x2, …, xn} is
defined as the following form [24]:

S � {〈
x j , TMS(x j ), IMS(x j ), FMS(x j )

〉|x j ∈ X
}
,

where TMS(xj), IMS(xj) and FMS(xj) are the truth, inde-
terminacy and falsity membership functions in [0, 1],
which are depicted by the three decreasing single-valued
sequences with the same and/or different fuzzy values
T MS(x j ) � (μ1

H (x j ), μ2
H (x j ), ..., μ

p j
H (x j )), I MS(x j ) �

(ρ1
S(x j ), ρ2

S(x j ), ..., ρ
p j
S (x j )), and FMS(x j ) � (ν1S(x j ),

ν2S(x j ), ..., ν
p j
S (x j )), such that μk

S(x j ), ρk
S(x j ), νkS(x j ) ∈ [0,

1] (k � 1, 2, …, pj; j � 1, 2, …, n) and 0 ≤ μ1
S(x j ) +

ρ1
S(x j )+ν1S(x j ) ≤ 3 for xj ∈X and j � 1, 2, …, n. Then, each

element
〈
x j , T MS(x j ), I MS(x j ), FMS(x j )

〉
in S can be sim-

ply denoted as the SVNMVE s j � 〈
T Mj , I M j , FMj

〉 �〈
(μ1

j , μ2
j , ..., μ

p j
j ), (ρ1

j , ρ2
j , ..., ρ

p j
j ), (ν1j , ν2j , ..., ν

p j
j )
〉

(j

� 1, 2, …, n).

Set S1 � {s11, s12, …, s1n} and S2 � {s21, s22, …,
s2n} as two SVNMVSs, where si j � 〈

TMi j , IMi j , FMi j
〉 �〈

(μ1
i j , μ2

i j , ..., μ
pi j
i j ), (ρ1

i j , ρ2
i j , ..., ρ

pi j
i j ), (ν1i j , ν2i j , ..., ν

pi j
i j )
〉

(i � 1, 2; j � 1, 2, …, n) are SVNMVEs. Then, the weight
of sij is ωj with ωj ≥0 and

∑n
j�1 ω j � 1. Based on the

mean and consistency degree (the complement of standard
deviation) of TMij, IMij and FMij, two weighted correlation
coefficients between CSVNSs are defined as follows [24]:

MW1(S1, S2) �
∑n

j�1 ω j
[
μm1 jμm2 j + ρm1 jρm2 j + νm1 jνm2 j

]
+
∑n

j�1 ω j
[
cμ1 j cμ2 j + cρ1 j cρ2 j + cν1 j cν2 j

]

⎛

⎜⎜
⎝

√∑n

j�1
ω j

[(
μm1 j

)2 +
(
ρm1 j

)2 +
(
νm1 j

)2 +
(
cμ1 j

)2 +
(
cρ1 j

)2 +
(
cν1 j

)2]

×
√∑n

j�1
ω j

[(
μm2 j

)2 +
(
ρm2 j

)2 +
(
νm2 j

)2 +
(
cμ2 j

)2 +
(
cρ2 j

)2 +
(
cν2 j

)2]

⎞

⎟⎟
⎠

, (1)

MW2(S1, S2) �
∑n

j�1 ω j
[
μm1 jμm2 j + ρm1 jρm2 j + νm1 jνm2 j

]
+
∑n

j�1 ω j
[
cμ1 j cμ2 j + cρ1 j cρ2 j + cν1 j cν2 j

]

max

⎛

⎜
⎝

∑n

j�1
ω j

[(
μm1 j

)2 +
(
ρm1 j

)2 +
(
νm1 j

)2 +
(
cμ1 j

)2 +
(
cρ1 j

)2 +
(
cν1 j

)2],
∑n

j�1
ω j

[(
μm2 j

)2 +
(
ρm2 j

)2 +
(
νm2 j

)2 +
(
cμ2 j

)2 +
(
cρ2 j

)2 +
(
cν2 j

)2]

⎞

⎟
⎠

, (2)

whereμmij,ρmij, νmji, cμij, cρij and cνij are the average values
and consistency degrees of TMij, IMij and FMij, which are
yielded by the following Eqs. (3)–(8):

μmi j � 1

pi j

pi j∑

k�1

μk
i j , (3)

ρmi j � 1

pi j

pi j∑

k�1

ρk
i j , (4)

νmi j � 1

pi j

pi j∑

k�1

νki j , (5)

cμi j � 1 − σμi j � 1 −
√√√√ 1

pi j − 1

pi j∑

k�1

(
μk
i j − μmi j

)2
, (6)

cρi j � 1 − σρi j � 1 −
√√√√ 1

pi j − 1

pi j∑

k�1

(
ρk
i j − ρmi j

)2
, (7)

cνi j � 1 − σνi j � 1 −
√√√√ 1

pi j − 1

pi j∑

k�1

(
νki j − νmi j

)2
, (8)

where σμij, σρij, σνij ∈ [0, 1] are the standard deviations
corresponding to TMij, IMij and FMij (i � 1, 2; j � 1, 2,
…, n), respectively, and pij is the number of fuzzy values in
TMij, IMij and FMij.

Then, the weighted correlation coefficients MW1(S1, S2)
and MW2(S1, S2) imply the following properties [24]:

(p1) MW1(S1, S2) � MW2(S1, S2) � 1 if S1 � S2;

123



3228 Complex & Intelligent Systems (2021) 7:3225–3239

(p2) MW1(S1, S2) � MW1(S2, S1) and MW2(S1, S2) �
MW2(S2, S1);

(p3) 0≤MW1(S1, S2),MW2(S1, S2)≤1.
However, the above information expression and cor-

relation coefficients of SVNMVSs cannot perform either
IVNMVS or SIVHNMVS information expression and pro-
cessing capabilities in real decision-making problems, which
show main drawbacks of the existing techniques [24].

SIVHNMVSs and CIVNSs

Based on the extension of the SVNMVS and CSVNS con-
cepts [24], this section proposes SIVHNMVSs, then intro-
duces a transformation method for converting SIVHNMVSs
into CIVNSs based on the average values and credibility
degrees of the truth, falsity and indeterminacy sequences
so as to reasonably simplify the information expression and
operation of different lengths/information types of the truth,
falsity and indeterminacy sequences in the setting of SIVH-
NMVSs.

Definition 1 Set X � {x1, x2, …, xn} as a universe set. A
SIVHNMVS H on X is defined as the following form:

H � {〈
x j , T SH (x j ), I SH (x j ), FSH (x j )

〉|x j ∈ X
}
,

where TSH (xj), ISH (xj) and FSH (xj) are the truth member-
ship function, the indeterminacy membership function and
the falsity membership function in [0, 1] respectively, which
are described by the three single- and interval-valued fuzzy
sequences including decreasing subsequences with the same
and/or different pαj/pβj/pγ j single-valued/exact fuzzy values
and decreasing subsequences with the same and/or differ-
ent qαj/qβj/qγ j interval-valued fuzzy values: TSH (x j ) �
(α1

H (x j ), α2
H (x j ), ..., α

pα j
H (x j ), α

pα j+1
H (x j ), α

pα j+2
H (x j ), ...,

α
pα j+qα j
H (x j )), ISH (x j ) � (β1

H (x j ), β2
H (x j ), ..., β

pβ j
H (x j ),

β
pβ j+1
H (x j ), β

pβ j+2
H (x j ), ..., β

pβ j+qβ j
H (x j )), FSH (x j ) �

(γ 1
H (x j ), γ 2

H (x j ), ..., γ
pγ j
H (x j ), γ

pγ j+1
H (x j ), γ

pγ j+2
H (x j ), ...,

γ
pγ j+qγ j
H (x j )), such that αk

H (x j ), βk
H (x j ), γ k

H (x j ) ∈ [0, 1] (k
� 1, 2, …, pαj/pβj/pγ j; j � 1, 2, …, n) and αk

H (x j ), βk
H (x j ),

γ k
H (x j ) ⊆ [0, 1] (k � pαj + 1/pβj + 1/pγ j + 1, pαj + 2/pβj +

2/pγ j + 2, …, pαj + qαj/pβj + qβj/pγ j + qγ j; j � 1, 2, …, n)
for xj ∈X.

Then, the basic element
〈
x j , TSH (x j ), ISH (x j ), FSH (x j )

〉

(j � 1, 2, …, n) in H is denoted as the following simple
form:

h j � 〈
TS j , IS j , FS j

〉

�
〈 (α

1
j , α2

j , ..., α
pα j
j , α

pα j+1
j , α

pα j+2
j , ..., α

pα j+qα j
j ),

(β1
j , β2

j , ..., β
pβ j
j , β

pβ j+1
j , β

pβ j+2
j , ..., β

pβ j+qβ j
j ),

(γ 1
j , γ 2

j , ..., γ
pγ j
j , γ

pγ j+1
j , γ

pγ j+2
j , ..., γ

pγ j+qγ j
j )

〉

,

which is called SIVHNMVE.
Especially when pαj � pβj � pγ j � 0 or qαj � qβj � qγ j

� 0 (j � 1, 2, …, n), SIVHNMVS is reduced to IVNMVS
or SVNMVS. It is clear that SIVHNMVS contains SVNS,
IVNS, SVNMVS, and IVNMVS as its special cases.

Based on the average values and consistency degrees of
TSj, ISj and FSj (j � 1, 2, …, s) in each SIVHNMVE hj,
the SIVHNMVS H can be converted into CIVNS, which is
defined below.

Definition 2 Assume there is the SIVHNMVS H �
{h1, h2, …, hn}, where h j � 〈

T Sj , I S j , FSj
〉 �

〈 (α
1
j , α2

j , ..., α
p j
j , α

p j+1
j , α

p j+2
j , ..., α

p j+q j
j ),

(β1
j , β2

j , ..., β
p j
j , β

p j+1
j , β

p j+2
j , ..., β

p j+q j
j ),

(γ 1
j , γ 2

j , ..., γ
p j
j , γ

p j+1
j , γ

p j+2
j , ..., γ

p j+q j
j )

〉

(j � 1, 2,

…, n) is the jth SIVHNMVE. Based on the average val-
ues and consistency degrees of TSj, ISj and FSj (j � 1,
2, …, n), the SIVHNMVS H can be converted into the
CIVNS R � {r1, r2, …, rn} including the n SIVHNMVEs

r j �
〈
([α−

mj , α+
mj ], [c

−
α j , c

+
α j ]), ([β

−
mj , β+

mj ], [c
−
β j , c

+
β j ]),

([γ −
mj , γ +

mj ], [c
−
γ j , c

+
γ j ])

〉
(j � 1, 2, …, n), where [α−

mj ,

α+
mj ] ⊆ [0, 1], [β−

mj , β+
mj ] ⊆ [0, 1], and [γ −

mj , γ +
mj ] ⊆ [0,

1] are the interval-valued fuzzy average values of TSj, ISj
and FSj and then [c−

α j , c
+
α j ] ⊆ [0, 1], [c−

β j , c
+
β j ] ⊆ [0, 1],

and [c−
γ j , c

+
γ j ] ⊆ [0, 1] are the interval-valued consistency

degrees of TSj, ISj andFSj. Then, these interval-valued fuzzy
average values and consistency degrees are given by the fol-
lowing equations:
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[
α−
mj ,α

−
mj

]
�
⎡

⎣ 1

pα j + qα j

⎛

⎝
pα j∑

k�1

αk
j +

pα j+qα j∑

k�pα j+1

inf αk
j

⎞

⎠,
1

pα j + qα j

⎛

⎝
pα j∑

k�1

αk
j +

pα j+qα j∑

k�pα j+1

supαk
j

⎞

⎠

⎤

⎦, (9)

[
β−
mj ,β

+
mj

]
�
⎡

⎣ 1

pβ j + qβ j

⎛

⎝
pβ j∑

k�1

βk
j +

pβ j+qβ j∑

k�pβ j+1

inf βk
j

⎞

⎠,
1

pβ j + qβ j

⎛

⎝
pβ j∑

k�1

βk
j +

pβ j+qβ j∑

k�pβ j+1

supβk
j

⎞

⎠

⎤

⎦, (10)

[
γ −
mj , γ

+
mj

]
�
⎡

⎣ 1

pγ j + qγ j

⎛

⎝
pγ j∑

k�1

γ k
j +

pγ j+qγ j∑

k�pγ j+1

inf γ k
j

⎞

⎠,
1

pγ j + qγ j

⎛

⎝
pγ j∑

k�1

γ k
j +

pγ j+qγ j∑

k�pγ j+1

sup γ k
j

⎞

⎠

⎤

⎦, (11)

[
c−
α j , c

+
α j

]
�
[
1 − σ +

α j , 1 − σ−
α j

]
�

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 − max

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

√√√√√
1

pα j + qα j − 1

⎛

⎝
pα j∑

k�1

(
αk
j − α−

mj

)2
+

pα j+qα j∑

k�pα j+1

(
inf αk

j − α−
mj

)2
⎞

⎠,

√√√√√
1

pα j + qα j − 1

⎛

⎝
pα j∑

k�1

(
αk
j − α+

mj

)2
+

pα j+qα j∑

k�pα j+1

(
supαk

j − α+
mj

)2
⎞

⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

1 − min

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

√√√√√
1

pα j + qα j − 1

⎛

⎝
pα j∑

k�1

(
αk
j − α−

mj

)2
+

pα j+qα j∑

k�pα j+1

(
inf αk

j − α−
mj

)2
⎞

⎠,

√√√√√
1

pα j + qα j − 1

⎛

⎝
pα j∑

k�1

(
αk
j − α+

mj

)2
+

pα j+qα j∑

k�pα j+1

(
supαk

j − α+
mj

)2
⎞

⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

(12)

[
c−
β j , c

+
β j

]
�
[
1 − σ +

β j , 1 − σ−
β j

]
�

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 − max

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

√√√√√
1

pβ j + qβ j − 1

⎛

⎝
pβ j∑

k�1

(
βk
j − β−

mj

)2
+

pβ j+qβ j∑

k�pβ j+1

(
inf βk

j − β−
mj

)2
⎞

⎠,

√√√√√
1

pβ j + qβ j − 1

⎛

⎝
pβ j∑

k�1

(
βk
j − β+

mj

)2
+

pβ j+qβ j∑

k�pβ j+1

(
supβk

j − β+
mj

)2
⎞

⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

1 − min

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

√√√√√
1

pβ j + qβ j − 1

⎛

⎝
pβ j∑

k�1

(
βk
j − β−

mj

)2
+

pβ j+qβ j∑

k�pβ j+1

(
inf βk

j − β−
mj

)2
⎞

⎠,

√√√√√
1

pβ j + qβ j − 1

⎛

⎝
pβ j∑

k�1

(
βk
j − β+

mj

)2
+

pβ j+qβ j∑

k�pβ j+1

(
supβk

j − β+
mj

)2
⎞

⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

(13)
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[
c−
γ j , c

+
γ j

]
�
[
1 − σ +

γ j , 1 − σ−
γ j

]
�

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 − max

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 −

√√√√√
1

pγ j + qγ j − 1

⎛

⎝
pγ j∑

k�1

(
γ k
j − γ −

mj

)2
+

pγ j+qγ j∑

k�pγ j+1

(
inf γ k

j − γ −
mj

)2
⎞

⎠,

1 −

√√√√√
1

pγ j + qγ j − 1

⎛

⎝
pγ j∑

k�1

(
γ k
j − γ +

mj

)2
+

pγ j+qγ j∑

k�pγ j+1

(
sup γ k

j − γ +
mj

)2
⎞

⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

1 − min

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 −

√√√√√
1

pγ j + qγ j − 1

⎛

⎝
pγ j∑

k�1

(
γ k
j − γ −

mj

)2
+

pγ j+qγ j∑

k�pγ j+1

(
inf γ k

j − γ −
mj

)2
⎞

⎠,

1 −

√√√√√
1

pγ j + qγ j − 1

⎛

⎝
pγ j∑

k�1

(
γ k
j − γ +

mj

)2
+

pγ j+qγ j∑

k�pγ j+1

(
sup γ k

j − γ +
mj

)2
⎞

⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

(14)

where pαj/pβj/pγ j is the number of single-valued fuzzy val-
ues and qαj/qβj/qγ j is the number of IVFVs in TSj, ISj

and FSj and then
[
c−
α j , c

+
α j

]
�

[
1 − σ +

α j , 1 − σ−
α j

]
⊆

[0, 1],
[
c−
β j , c

+
β j

]
�
[
1 − σ +

β j , 1 − σ−
β j

]
⊆ [0, 1] and

[
c−
γ j , c

+
γ j

]
�
[
1 − σ +

γ j , 1 − σ−
γ j

]
are the interval-valued

consistency degrees (the complements of the standard devi-

ations
[
σ−

α j , σ +
α j

]
⊆ [0, 1],

[
σ−

β j , σ +
β j

]
⊆ [0, 1] and

[
σ−

γ j , σ +
γ j

]
⊆ [0, 1]) of TSj, ISj and FSj.

Remarks 1. The consistency degree indicates a measure of
how close the fuzzy values in TSj, ISj and FSj are to their
average values. The closer the fuzzy values are to the
average value, the better the consistency and consensus
of group fuzzy judgments.

2. The fuzzy values in TSj, ISj and FSj are identical when[
c−
α j , c

+
α j

]
�
[
c−
β j , c

+
β j

]
�
[
c−
γ j , c

+
γ j

]
� [1, 1], which can

indicate the complete consensus of group fuzzy judg-
ments.

3. From the viewpoint of standard deviation, the closer the
fuzzy values are to the average value, the smaller the dis-
persion degree of the fuzzy values relative to the average
value and the higher the consistency and consensus of
group fuzzy judgments.

Example 1. Set SIVHNMVS as H � {< (0.8, 0.6, [0.6, 0.7],
[0.5, 0.6]), (0.3, 0.2, [0.2, 0.3], [0.1, 0.2]), (0.4, 0.2, [0.3,
0.4], [0.3, 0.4])> ,< (0.7, 0.5, 0.4, [0.4, 0.6]), (0.2, 0.2, 0.2,
[0.3, 0.5]), (0.4, 0.2, 0.1, [0.2, 0.4])>} in X � {x1, x2}.
Thus, using Eqs. (9)–(14) the SIVHNMVS H can be con-
verted into the CIVNS R � {< ([0.625, 0.675], [0.8742,
0.9043]), ([0.25, 0.8], [0.9184, 0.9423]), ([0.25, 0.8],
[0.9184, 0.9423])> ,< ([0.3, 0.65], [0.9, 0.9184]), ([0.225,
0.275], [0.85, 0.95]), ([0.2250, 0.275], [0.85, 0.8742])>}.

In this example, it is clear that existing various fuzzy con-
cepts cannot express and process SIVHNMVS information,
while the proposed expression and transformation techniques
of SIVHNMVS demonstrate their advantages.

Correlation coefficients between CIVNSs

Under the environment of SIVHNMVSs, two correlation
coefficients between CIVNSs are defined below.

Definition 3 Set r1 j �
〈
([α−

m1 j , α+
m1 j ], [c

−
α1 j , c

+
α1 j ]),

([β−
m1 j , β+

m1 j ], [c
−
β1 j , c

+
β1 j ]), ([γ

−
m1 j , γ +

m1 j ], [c
−
γ 1 j , c

+
γ 1 j ])

〉

and r2 j �
〈
([α−

m2 j , α+
m2 j ], [c

−
α2 j , c

+
α2 j ]), ([β

−
m2 j , β+

m2 j ],

[c−
β2 j , c

+
β2 j ]), ([γ

−
m2 j , γ +

m2 j ], [c
−
γ 2 j , c

+
γ 2 j ])

〉
(j � 1, 2, …,

n) as two groups of CIVNEs in two CIVNSs R1 � {r11,
r12, …, r1n} and R2 � {r21, r22, …, r2n} regarding the
SIVHNMVSsH1 andH2. Thus, two correlation coefficients
between CIVNSs are defined as follows:

N1(H1, H2) � N1(R1, R2)

�
∑n

j�1

[
α−
m1 jα

−
m2 j + β−

m1 jβ
−
m2 j + γ −

m1 jγ
−
m2 j + α+

m1 jα
+
m2 j + β+

m1 jβ
+
m2 j + γ +

m1 jγ
+
m2 j

]

⎛

⎜⎜⎜⎜⎜
⎝

√
∑n

j�1

[(
α−
m1 j

)2
+
(
β−
m1 j

)2
+
(
γ −
m1 j

)2
+
(
α+
m1 j

)2
+
(
β+
m1 j

)2
+
(
γ +
m1 j

)2]

×
√
∑n

j�1

[(
α−
m2 j

)2
+
(
β−
m2 j

)2
+
(
γ −
m2 j

)2
+
(
α+
m2 j

)2
+
(
β+
m2 j

)2
+
(
γ +
m2 j

)2]

⎞

⎟⎟⎟⎟⎟
⎠

×
∑n

j�1

[
c−
α1 j c

−
α2 j + c−

β1 j c
−
β2 j + c−

γ 1 j c
−
γ 2 j + c+α1 j c

+
α2 j + c+β1 j c

+
β2 j + c+γ 1 j c

+
γ 2 j

]

⎛

⎜⎜⎜⎜⎜
⎝

√
∑n

j�1

[(
c−
α1 j

)2
+
(
c−
β1 j

)2
+
(
c−
γ 1 j

)2
+
(
c+α1 j

)2
+
(
c+β1 j

)2
+
(
c+γ 1 j

)2]

×
√
∑n

j�1

[(
c−
α2 j

)2
+
(
c−
β2 j

)2
+
(
c−
γ 2 j

)2
+
(
c+α2 j

)2
+
(
c+β2 j

)2
+
(
c+γ 2 j

)2]

⎞

⎟⎟⎟⎟⎟
⎠

,

(15)
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N2(H1, H2) � N2(R1, R2)

�
∑n

j�1

[
α−
m1 jα

−
m2 j + β−

m1 jβ
−
m2 j + γ −

m1 jγ
−
m2 j + α+

m1 jα
+
m2 j + β+

m1 jβ
+
m2 j + γ +

m1 jγ
+
m2 j

]

1
2

∑n
j�1

[
α−
m1 j + α−

m2 j + β−
m1 j + β−

m2 j + γ −
m1 j + γ −

m2 j + α+
m1 j + α+

m2 j + β+
m1 j + β+

m2 j + γ +
m1 j + γ +

m2 j

]

×
∑n

j�1

[
c−
α1 j c

−
α2 j + c−

β1 j c
−
β2 j + c−

γ 1 j c
−
γ 2 j + c+α1 j c

+
α2 j + c+β1 j c

+
β2 j + c+γ 1 j c

+
γ 2 j

]

1
2

∑n
j�1

[
c−
α1 j + c−

α2 j + c−
β1 j + c−

β2 j + c−
γ 1 j + c−

γ 2 j + c+α1 j + c+α2 j + c+β1 j + c+β2 j + c+γ 1 j + c+γ 2 j

] ,

(16)

where [α−
m1 j , α+

m1 j ], [α
−
m2 j , α+

m2 j ], [β
−
m1 j , β+

m1 j ], [β
−
m2 j ,

β+
m2 j ], [γ

−
m1 j , γ +

m1 j ], [γ
−
m2 j , γ +

m2 j ] and [c−
α1 j , c

+
α1 j ], [c

−
α2 j ,

c+α2 j ], [c
−
β1 j , c

+
β1 j ], [c

−
β2 j , c

+
β2 j ], [c

−
γ 1 j , c

+
γ 1 j ], [c

−
γ 2 j , c

+
γ 2 j ]

are the interval-valued fuzzy average values and consistency
degrees of TSij, ISij and FSij (i � 1, 2; j � 1, 2, …, n), which
are obtained by Eqs. (9)–(14).

Clearly, Eqs. (15) and (16) can be viewed as the multipli-
cation of both the correlation coefficient between IVNSs and
the correlation coefficient betweenNCSs regarding CIVNSs.
Especially when the correlation coefficients of NCSs in Eqs.
(15) and (16) are equal to one, Eq. (15) is reduced to a tradi-
tional correlation coefficient of IVNSs [25] and Eq. (16) is
reduced to another correlation coefficient of IVNSs.

Then, the two correlation coefficients contain the follow-
ing proposition:

Proposition 1. The correlation coefficients N1(H1, H2) and
N2(H1, H2) contain the following properties:

(p1) N1(H1, H2) and N2(H1, H2) � 1 if H1 � H2;
(p2)N1(H1,H2)�N1(H2,H1) andN2(H1,H2)�N2(H2,

H1);
(p3) 0≤N1(H1, H2), N2(H1, H2)≤1.

Proof: According to Eqs. (15) and (16), the two properties
(p1) and (p2) are straightforward. Then, the property (p3)
can be verified below.

There is the inequality
√∑n

j�1 a
2
j

√∑n
j�1 b

2
j ≥

∑n
j�1 a jb j based on the Cauchy–Schwarz inequality

∑n
j�1 a

2
j

∑n
j�1 b

2
j ≥

(∑n
j�1 a jb j

)2
. Thus, there also exist

the following inequalities:
n∑

j�1

[
α−
m1 jα

−
m2 j + β−

m1 jβ
−
m2 j + γ −

m1 jγ
−
m2 j + α+

m1 jα
+
m2 j + β+

m1 jβ
+
m2 j + γ +

m1 jγ
+
m2 j

]

≤

⎛

⎜⎜⎜⎜⎜⎜
⎝

√√√√
n∑

j�1

[(
α−
m1 j

)2
+
(
β−
m1 j

)2
+
(
γ −
m1 j

)2
+
(
α+
m1 j

)2
+
(
β+
m1 j

)2
+
(
γ +
m1 j

)2]

×
√√√√

n∑

j�1

[(
α−
m2 j

)2
+
(
β−
m2 j

)2
+
(
γ −
m2 j

)2
+
(
α+
m2 j

)2
+
(
β+
m2 j

)2
+
(
γ +
m2 j

)2]

⎞

⎟⎟⎟⎟⎟⎟
⎠

,

n∑

j�1

[
c−
α1 j c

−
α2 j + c−

β1 j c
−
β2 j + c−

γ 1 j c
−
γ 2 j + c+α1 j c

+
α2 j + c+β1 j c

+
β2 j + c+γ 1 j c

+
γ 2 j

]

≤

⎛

⎜⎜⎜⎜⎜⎜
⎝

√√√√
n∑

j�1

[(
c−
α1 j

)2
+
(
c−
β1 j

)2
+
(
c−
γ 1 j

)2
+
(
c+α1 j

)2
+
(
c+β1 j

)2
+
(
c+γ 1 j

)2]

×
√√√√

n∑

j�1

[(
c−
α2 j

)2
+
(
c−
β2 j

)2
+
(
c−
γ 2 j

)2
+
(
c+α2 j

)2
+
(
c+β2 j

)2
+
(
c+γ 2 j

)2]

⎞

⎟⎟⎟⎟⎟⎟
⎠

.

Regarding the above inequalities, there is 0≤N1(H1,
H2)≤1.

Based on a×b ≤ (a +b)/2 for a, b ∈ [0, 1], there are also
the inequalities:
n∑

j�1

[
α−
m1 jα

−
m2 j + β−

m1 jβ
−
m2 j + γ −

m1 jγ
−
m2 j + α+

m1 jα
+
m2 j + β+

m1 jβ
+
m2 j + γ +

m1 jγ
+
m2 j

]

≤ 1

2

n∑

j�1

[
α−
m1 j + α−

m2 j + β−
m1 j + β−

m2 j + γ −
m1 j + γ −

m2 j + α+
m1 j + α+

m2 j + β+
m1 j

+β+
m2 j + γ +

m1 j + γ +
m2 j

]

n∑

j�1

[
c−
α1 j c

−
α2 j + c−

β1 j c
−
β2 j + c−

γ 1 j c
−
γ 2 j + c+α1 j c

+
α2 j + c+β1 j c

+
β2 j + c+γ 1 j c

+
γ 2 j

]

≤ 1

2

n∑

j�1

[
c−
α1 j + c−

α2 j + c−
β1 j + c−

β2 j + c−
γ 1 j + c−

γ 2 j + c+α1 j + c+α2 j + c+β1 j

+ c+β2 j + c+γ 1 j + c+γ 2 j

]

Based on the above inequalities, there is 0≤N2(H1,
H2)≤1.

In actual problems, the importance of the SIVHNMVEs
h1j and h2j (j� 1, 2,…, n) is reflected by theweightωj ≥0 for∑n

j�1 ω j � 1. Thus, we can give the weighted correlation
coefficients:
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NW1(H1, H2) � NW1(R1, R2)

�
∑n

j�1 ω j

[
α−
m1 jα

−
m2 j + β−

m1 jβ
−
m2 j + γ −

m1 jγ
−
m2 j + α+

m1 jα
+
m2 j + β+

m1 jβ
+
m2 j + γ +

m1 jγ
+
m2 j

]

⎛

⎜⎜⎜⎜
⎝

√
∑n

j�1
ω j

[(
α−
m1 j

)2
+
(
β−
m1 j

)2
+
(
γ −
m1 j

)2
+
(
α+
m1 j

)2
+
(
β+
m1 j

)2
+
(
γ +
m1 j

)2]

×
√
∑n

j�1
ω j

[(
α−
m2 j

)2
+
(
β−
m2 j

)2
+
(
γ −
m2 j

)2
+
(
α+
m2 j

)2
+
(
β+
m2 j

)2
+
(
γ +
m2 j

)2]

⎞

⎟⎟⎟⎟
⎠

×
∑n

j�1 ω j

[
c−
α1 j c

−
α2 j + c−

β1 j c
−
β2 j + c−

γ 1 j c
−
γ 2 j + c+α1 j c

+
α2 j + c+β1 j c

+
β2 j + c+γ 1 j c

+
γ 2 j

]

⎛

⎜⎜⎜⎜
⎝

√
∑n

j�1
ω j

[(
c−
α1 j

)2
+
(
c−
β1 j

)2
+
(
c−
γ 1 j

)2
+
(
c+α1 j

)2
+
(
c+β1 j

)2
+
(
c+γ 1 j

)2]

×
√
∑n

j�1
ω j

[(
c−
α2 j

)2
+
(
c−
β2 j

)2
+
(
c−
γ 2 j

)2
+
(
c+α2 j

)2
+
(
c+β2 j

)2
+
(
c+γ 2 j

)2]

⎞

⎟⎟⎟⎟
⎠

,

(17)

NW2(H1, H2) � NW2(R1, R2)

�
∑n

j�1 ω j

[
α−
m1 jα

−
m2 j + β−

m1 jβ
−
m2 j + γ −

m1 jγ
−
m2 j + α+

m1 jα
+
m2 j + β+

m1 jβ
+
m2 j + γ +

m1 jγ
+
m2 j

]

1
2

∑n
j�1 ω j

[
α−
m1 j + α−

m2 j + β−
m1 j + β−

m2 j + γ −
m1 j + γ −

m2 j + α+
m1 j + α+

m2 j + β+
m1 j + β+

m2 j + γ +
m1 j + γ +

m2 j

]

×
∑n

j�1 ω j

[
c−
α1 j c

−
α2 j + c−

β1 j c
−
β2 j + c−

γ 1 j c
−
γ 2 j + c+α1 j c

+
α2 j + c+β1 j c

+
β2 j + c+γ 1 j c

+
γ 2 j

]

1
2

∑n
j�1 ω j

[
c−
α1 j + c−

α2 j + c−
β1 j + c−

β2 j + c−
γ 1 j + c−

γ 2 j + c+α1 j + c+α2 j + c+β1 j + c+β2 j + c+γ 1 j + c+γ 2 j

] .

(18)

Similarly, the above weighted correlation coefficients also
contain the following proposition.

Proposition 2. The two weighted correlation coefficients
NW1(H1,H2) and NW2(H1,H2) contain the following prop-
erties:

(p1) NW1(H1, H2) � NW2(H1, H2) � 1 if H1 � H2;
(p2) NW1(H1, H2) � NW1(H2, H1) and NW2(H1, H2) �

NW2(H2, H1);
(p3) 0≤NW1(H1, H2), NW2(H1, H2)≤1.

Proof: Obviously, the above properties of the two weighted
correlation coefficients can be easily verified corresponding
to the similar proofmanner of Proposition 1,which is omitted
here.

MAGDMmethod based on the weighted
correlation coefficients of CIVNSs

In this section, we propose a MADGM method using the
weighted correlation coefficients of CIVNSs to resolve group
decision-making problems under the environment of SIVH-
NMVSs.

In aMAGDMproblem under the environment of SIVHN-
MVSs, t alternatives are preliminarily provided and denoted
as a set of them K � {K1, K2, …, Kt}, then they must sat-
isfy the requirements of n attributes, denoted by a set of n
attributes L � {L1, L2, …, Ln}. However, the importance
of n attributes is reflected by their weight vector ω � (ω1,
ω2, …, ωn) with ωj ∈ [0, 1] and

∑n
j�1 ω j � 1. Then, the t

alternatives are satisfactorily assessed over the n attributes
by a group of decision-makers, and then their assessed truth,
falsity and indeterminacy sequences are expressed as the fol-
lowing SIVHNMVEs:

hi j � 〈
T Si j , I Si j , FSi j

〉

�
〈 (α

1
i j , α2

i j , ..., α
pαi j
i j , α

pαi j+1
i j , α

pαi j+2
i j , ..., α

pαi j+qαi j
i j ),

(β1
i j , β2

i j , ..., β
pβi j
i j , β

pβi j+1
i j , β

pβi j+2
i j , ..., β

pβi j+qβi j
i j ),

(γ 1
i j , γ 2

i j , ..., γ
pγ i j
i j , γ

pγ i j+1
i j , γ

pγ i j+2
i j , ..., γ

pγ i j+qγ i j
i j )

〉

,

where αk
i j , βk

i j , γ k
i j ∈ [0, 1](i � 1, 2, …, t; j � 1, 2, …, n) for

k � 1, 2, …, pαij/pβij/pγ ij and αk
i j , βk

i j , γ k
i j ⊆ [0, 1] for k �

pαij + 1/pβij + 1/pγ ij + 1, pαij + 2/pβij + 2/pγ ij + 2, …, pαij +
qαij/pβij + qβij/pγ ij + qγ ij . Thus, all the assessed values can
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be constructed as the decision matrix of SIVHNMVEs D �
(hij )t×n (i � 1, 2, …, t; j � 1, 2, …, n).

In thisMAGDMproblem, aMAGDMmethod is presented
by using the weighted correlation coefficients of CIVNSs to
resolve group decision-making problems under the environ-
ment of SIVHNMVSs, then its decision process is detailed
below:

Step 1: Based on Eqs. (9)–(14), we can convert
SIVHNMVEs into CIVNEs, then CIVNEs are con-
structed as the CIVNE matrix R � (rij )t×n, where ri j �〈
([α−

mi j , α+
mi j ], [c

−
αi j , c

+
αi j ]), ([β

−
mi j , β+

mi j ], [c
−
βi j , c

+
βi j ]),

([γ −
mi j , γ +

mi j ], [c
−
γ i j , c

+
γ i j ])

〉
(j � 1, 2, …, n; i � 1, 2, …, t)

are CIVNEs.

Step 2: Based on the CIVNE matrix R, we give an ideal
solution composed of ideal CIVNEs r∗

j (j � 1, 2, …, n),
namely the ideal CIVNS R∗ � {r∗

1 , r
∗
2 , ..., r∗

n }, where r∗
j (j� 1, 2, …, n) are yielded by the formula:

r∗
j �

〈
([α∗−

mj , α∗+
mj ], [c

∗−
α j , c

∗+
α j ]), ([β

∗−
mj , β∗+

mj ], [c
∗−
β j , c

∗+
β j ]),

([γ ∗−
mj , γ ∗+

mj ], [c
∗−
γ j , c

∗+
γ j ])

〉

�
〈 ([max

i
(α−

mi j ), max
i

(α+
mi j )], [max

i
(c−

αi j ), max
i

(c+αi j )]),

([min
i
(β−

mi j ), min
i
(β+

mi j )], [min
i
(c−

βi j ), min
i
(c+βi j )]),

([min
i
(γ −

mi j ), min
i
(γ +

mi j )], [min
i
(c−

γ i j ), min
i
(c+γ i j )])

〉

.

Step 3: Using Eq. (17) or (18), the weighted correlation
coefficient values between Ri (i � 1, 2, …, t) and R* for Ki

are obtained by the following formula:

(19)

NW1(Ri , R
∗) �

∑n
j�1 ω j

[
α−
mi jα

∗−
mj + β−

mi jβ
∗−
mj + γ −

mi jγ
∗−
mj + α+

mi jα
∗+
mj + β+

mi jβ
∗+
mj + γ +

mi jγ
∗+
mj

]

⎛

⎜⎜⎜⎜
⎝

√
∑n

j�1
ω j

[(
α−
mi j

)2
+
(
β−
mi j

)2
+
(
γ −
mi j

)2
+
(
α+
mi j

)2
+
(
β+
mi j

)2
+
(
γ +
mi j

)2]

×
√
∑n

j�1
ω j

[(
α∗−
mj

)2
+
(
β∗−
mj

)2
+
(
γ ∗−
mj

)2
+
(
α∗+
mj

)2
+
(
β∗+
mj

)2
+
(
γ ∗+
mj

)2]

⎞

⎟⎟⎟⎟
⎠

×
∑n

j�1 ω j

[
c−
αi j c

∗−
α j + c−

βi j c
∗−
β j + c−

γ i j c
∗−
γ j + c+αi j c

∗+
α j + c+βi j c

∗+
β j + c+γ i j c

∗+
γ j

]

⎛

⎜⎜⎜⎜
⎝

√
∑n

j�1
ω j

[(
c−
αi j

)2
+
(
c−
βi j

)2
+
(
c−
γ i j

)2
+
(
c+αi j

)2
+
(
c+βi j

)2
+
(
c+γ i j

)2]

×
√
∑n

j�1
ω j

[(
c∗−
α j

)2
+
(
c∗−
β j

)2
+
(
c∗−
γ j

)2
+
(
c∗+
α j

)2
+
(
c∗+
β j

)2
+
(
c∗+
γ j

)2]

⎞

⎟⎟⎟⎟
⎠

or

(20)

NW2(Ri , R
∗) �

∑n
j�1 ω j

[
α−
mi jα

∗−
mj + β−

mi jβ
∗−
mj + γ −

mi jγ
∗−
mj + α+

mi jα
∗+
mj + β+

mi jβ
∗+
mj + γ +

mi jγ
∗+
mj

]

1
2

∑n
j�1 ω j

[
α−
mi j + α∗−

mj + β−
mi j + β∗−

mj + γ −
mi j + γ ∗−

mj + α+
mi j + α∗+

mj + β+
mi j + β∗+

mj + γ +
mi j + γ ∗+

mj

]

×
∑n

j�1 ω j

[
c−
αi j c

∗−
α j + c−

βi j c
∗−
β j + c−

γ i j c
∗−
γ j + c+αi j c

∗+
α j + c+βi j c

∗+
β j + c+γ i j c

∗+
γ j

]

1
2

∑n
j�1 ω j

[
c−
αi j + c∗−

α j + c−
βi j + c∗−

β j + c−
γ i j + c∗−

γ j + c+αi j + c∗+
α j + c+βi j + c∗+

β j + c+γ i j + c∗+
γ j

] .

Step 4: We rank the alternatives in a descending order
based on the weighted correlation coefficient values, then
the first one is the best choice.

Step 5: End.
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Fig. 1 The flowchart of the proposed MAGDM method

Generally, the above decision process of the proposed
MAGDM method is shown in Fig. 1.

Actual case and relative comparative
analysis

A selection case of landslide treatment schemes

In the construction of a city, the excavation projects will
greatly affect the stability of the landslide and threaten the
construction of infrastructures and safety of people’s lives
and property. Therefore, it is very important that treatment
issues of the relative landslides. This section applies the
proposed MAGDM method to a selection case of landslide
treatment schemes as a MAGDM example to illustrate its
applicability and validity under the environment of SIVHN-
MVSs.

Some construction company wants to choose the best
landslide treatment scheme from six potential treatment
schemes/alternatives: the scheme K1 (the scheme retaining
walls, mortar rubble masonry pavements and surface water
treatment), the scheme K2 (grid beams, surface-drainage
works and monitoring system), the scheme K3 (anchor anti-
slide pile, cut-off drain treatment andmonitoring system), the
schemeK4 (anchor anti-slide piles, cantilever piles and slope
protection), the scheme K5 (anti-slide piles, retaining walls
and cut-off drain treatment), and the scheme K6 (reduce-

loading works, anti-slide piles and surface-drainage works),
which are denoted by a set of themK � {K1,K2,K3,K4,K5,
K6}. Then, they must satisfy four requirements/attributes:
the treatment cost (L1), the difficulty of construction (L2),
the technical risk (L3), and the environmental impact (L4).
Regarding the importance of the attributes, their weight vec-
tor is specified as ω � (0.3,0.22,0.25,0.23).

In this selection case of landslide treatment schemes,
three experts/decision-makers are requested to satisfacto-
rily evaluate each alternative over the four attributes by
their truth, falsity and indeterminacy judgments. Thus,
each expert/decision-maker gives fuzzy values/interval-
valued fuzzy values of the truth, falsity, and indeter-
minacy in the evaluation process, and then the evalua-
tion values of the three experts/decision-makers can form
the truth, falsity and indeterminacy sequences with the
different and/or same fuzzy values and interval-valued
fuzzy values to be expressed as the evaluation informa-
tion of the SIVHNMVEs hi j � 〈

T Si j , I Si j , FSi j
〉 �〈

(α1
i j , α2

i j , α3
i j ), (β

1
i j , β2

i j , β3
i j ), (γ

1
i j , γ 2

i j , γ 3
i j )
〉
for i � 1, 2,

…, 6; j � 1, 2, 3, 4, where αk
i j , βk

i j , γ k
i j ∈ [0, 1] or αk

i j , βk
i j ,

γ k
i j ⊆ [0, 1] for k � 1, 2, 3. Thus, all the evaluated SIVH-
NMVEs can be constructed as their decision matrix D, as
shown in Table 1.

In thisMAGDMproblem, the proposedMAGDMmethod
is applied to the selection case of landslide treatment schemes
under the environment of SIVHNMVSs. Then, its decision
process is detailed below:

Step 1: Based on Eqs. (9)–(14), we can convert SIVHN-
MVEs in Table 1 into CIVNEs, which are constructed as the
CIVNE matrix R in Table 2.

Step 2: Based on the CIVNE matrix R, we give an ideal
CIVNS R∗ � {r∗

1 , r
∗
2 , ..., r∗

s } composed of ideal CIVNEs r∗
j

(j � 1, 2, …, n) by the following ideal solution:
R* � {< ([0.7333, 0.8], [0.9423, 1]), ([0.1333, 0.1667],

[0.9, 0.9423]), ([0.1, 0.1333], [0.8472, 0.9])> ,< ([0.7333,
0.8333], [0.9423, 1]), ([0.1667, 0.2], [0.9, 0.9423]), ([0.1,
0.1333], [0.9, 0.9423])> ,< ([0.7667, 0.8333], [0.9423,
0.9423]), ([0.1667, 0.2], [0.9, 0.9423]), ([0.1, 0.1667],
[0.8845, 0.9423])> ,< ([0.7667, 0.8333], [0.9423, 1]),
([0.1333, 0.2], [0.7918, 0.9]), ([0.1333, 0.2], [0.8472,
0.9])>} .

Step 3: Using Eqs. (19) or (20), the weighted correlation
coefficient values between Ri (i � 1, 2, …, 6) and R* for Ki

are obtained as follows:
NW1(R1, R*) � 0.9930, NW1(R2, R*) � 0.9947, NW1(R3,

R*) � 0.9924, NW1(R4, R*) � 0.9776, NW1(R5, R*) �
0.9792, and NW1(R6, R*) � 0.9738.

Or NW2(R1, R*) � 0.5546, NW2(R2, R*) � 0.5481,
NW2(R3, R*) � 0.5317, NW2(R4, R*) � 0.5151, NW2(R5,
R*) � 0.4997, and NW2(R6, R*) � 0.5146.
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Table 1 The decision matrix D of SIVHNMVEs

Treatment scheme L1 L1 L1 L1

K1 < (0.8, 0.7, [0.7, 0.9]), (0.2,
0.1, [0.1, 0.3]), (0.1, [0.1,
0.2], [0.1, 0.2])>

< (0.7, 0.6, [0.7, 0.8]), (0.2,
[0.2, 0.3], [0.1, 0.3]), (0.1,
0.1, [0.1, 0.2])>

< (0.8, 0.7, [0.8, 0.9]), (0.3,
0.2, [0.1, 0.2]), (0.2, 0.1,
[0.1, 0.2])>

< (0.8, 0.8, [0.7, 0.9]), (0.2,
[0.1, 0.2], [0.1, 0.2]), (0.2,
[0.1, 0.3], [0.1, 0.2])>

K2 < (0.7, 0.7, [0.7, 0.8]), (0.2,
0.1, [0.2, 0.3]), (0.1, 0.1,
[0.1, 0.2])>

< (0.8, [0.7, 0.9], [0.7, 0.8]),
(0.2, 0.1, [0.2, 0.3]), (0.2,
[0.2, 0.3], [0.1, 0.2])>

< (0.8, 0.7, [0.7, 0.8]), (0.2,
0.2, [0.2, 0.3]), (0.1, [0.2,
0.3], [0.2, 0.3])>

< (0.8, 0.8, [0.7, 0.8]), (0.2,
0.1, [0.2, 0.4]), (0.1, [0.3,
0.4], [0.2, 0.3])>

K3 < (0.6, 0.6, [0.6, 0.7]), (0.2,
0.1, [0.1, 0.2]), (0.2, [0.1,
0.2], [0.1, 0.2])>

< (0.8, 0.7, [0.6, 0.8]), (0.2,
0.1, [0.2, 0.3]), (0.1, [0.1,
0.3], [0.1, 0.2])>

< (0.8, [0.7, 0.9], [0.7, 0.8]),
(0.2, 0.1, [0.2, 0.3]), (0.2,
0.1, [0.2, 0.3])>

< (0.8, 0.7, [0.6, 0.7]), (0.2,
[0.1, 0.3], [0.1, 0.2]), (0.2,
[0.2, 0.3], [0.1, 0.2])>

K4 < (0.7, 0.6, [0.6, 0.8]), (0.2,
0.1, [0.2, 0.3]), (0.1, [0.3,
0.4], [0.2, 0.3])>

< (0.8, [0.7, 0.8], [0.7, 0.8]),
(0.2, 0.2, [0.2, 0.3]), (0.2,
0.1, [0.2, 0.3])>

< (0.7, 0.6, [0.6, 0.8]), (0.2,
[0.2, 0.3], [0.1, 0.2]), (0.1,
[0.1, 0.2], [0.1, 0.2])>

< (0.7, [0.7, 0.8], [0.6, 0.7]),
(0.2, 0.2, [0.1, 0.2]), (0.2,
[0.2, 0.3], [0.1, 0.2])>

K5 < (0.7, 0.6, [0.7, 0.8]), (0.3,
0.2, [0.1, 0.2]), (0.3, 0.2,
[0.1, 0.2])>

< (0.7, 0.7, [0.7, 0.8]), (0.3,
0.2, [0.2, 0.4]), (0.2, [0.2,
0.3], [0.1, 0.2])>

< (0.7, 0.6, [0.6, 0.8]), (0.2,
0.1, [0.2, 0.3]), (0.3, 0.2,
[0.2, 0.3])>

< (0.7, 0.5, [0.6, 0.7]), (0.2,
0.1, [0.3, 0.4]), (0.2, 0.2,
[0.2, 0.3])>

K6 < (0.7, 0.7, [0.6, 0.7]), (0.2,
0.1, [0.2, 0.3]), (0.3, 0.1,
[0.1, 0.2])>

< (0.7, 0.6, [0.7, 0.8]), (0.2,
0.1, [0.2, 0.3]), (0.2, [0.2,
0.3], [0.1, 0.2])>

< (0.7, [0.6, 0.8], [0.6, 0.7]),
(0.3, 0.2, [0.3, 0.4]), (0.2,
0.2, [0.1, 0.2])>

< (0.8, 0.6, [0.7, 0.9]), (0.2,
0.1, [0.3, 0.5]), (0.2, [0.1,
0.2], [0.1, 0.2])>

Table 2 The CIVNE matrix R

L1 L2 L3 L4

R1 < ([0.7333, 0.8], [0.9, 0.9423]),
([0.1333, 0.2], [0.9, 0.9423]),
([0.1, 0.1667], [0.9423,1])>

< ([0.6667, 0.7], [0.9, 0.9423]),
([0.1667, 0.2667], [0.9423,
0.9423]), ([0.1, 0.1333],
[0.9423, 1])>

< ([0.7667, 0.8], [0.9, 0.9423]),
([0.2, 0.2333], [0.9, 0.9423]),
([0.1333, 0.1667], [0.9423,
0.9423])>

< ([0.7667, 0.8333], [0.9423,
0.9423]), ([0.1333, 0.2],
[0.9423, 1]), ([0.1333,
0.2333], [0.9423, 0.9423])>

R2 < ([0.7, 0.7333], [0.9423, 1]),
([0.1667, 0.2], [0.9, 0.9423]),
([0.1, 0.1333], [0.9423, 1])>

< ([0.7333, 0.8333], [0.9423,
0.9423]), ([0.1667, 0.2], [0.9,
0.9423]), ([0.1667, 0.2333],
[0.9423, 0.9423])>

< ([0.7333, 0.7667], [0.9423,
0.9423]), ([0.2, 0.2333],
[0.9423, 1]), ([0.1667,
0.2333], [0.8845, 0.9423])>

< ([0.7667, 0.8], [0.9423, 1]),
([0.1667, 0.2333], [0.8472,
0.9423]), ([0.2, 0.2667],
[0.8472, 0.9])>

R3 < ([0.6, 0.6333], [0.9423, 1]),
([0.1333, 0.1667], [0.9423,
0.9423]), ([0.1333, 0.2],
[0.9423, 1])>

< ([0.7, 0.7667], [0.9, 0.9423]),
([0.1667, 0.2], [0.9, 0.9423]),
([0.1,0.2], [0.9, 1])>

< ([0.7333, 0.8333], [0.9423,
0.9423]), ([0.1667, 0.2], [0.9,
0.9423]), ([0.1667, 0.2], [0.9,
0.9423])>

< ([0.7, 0.7333], [0.9, 0.9423]),
([0.1333, 0.2333], [0.9423,
0.9423]), ([0.1667 0.2333],
[0.9423, 0.9423])>

R4 < ([0.6333, 0.7], [0.9, 0.9423]),
([0.1667, 0.2], [0.9, 0.9423]),
([0.2, 0.2667], [0.8472,
0.9])>

< ([0.7333, 0.8], [0.9423, 1]),
([0.2, 0.2333], ([0.9423, 1]),
([0.1667 0.2], [0.9, 0.9423])>

< ([0.6333, 0.7], [0.9, 0.9423]),
([0.1667, 0.2333], [0.9423,
0.9423]), ([0.1, 0.1667],
[0.9423, 1])>

< ([0.6667, 0.7333], [0.9423,
0.9423]), ([0.1667, 0.2],
[0.9423, 1]), ([0.1667,
0.2333], [0.9423, 0.9423])>

R5 < ([0.6667, 0.7], [0.9, 0.9423]),
([0.2, 0.2333], [0.9, 0.9423]),
([0.2, 0.2333], [0.9,
0.9423])>

< ([0.7, 0.7333], [0.9423, 1]),
([0.2333, 0.3], [0.9, 0.9423]),
([0.1667, 0.2333], [0.9423,
0.9423])>

< ([0.6333, 0.7], [0.9, 0.9423]),
([0.1667, 0.2], [0.9, 0.9423]),
([0.2333, 0.2667], [0.9423,
0.9423])>

< ([0.6, 0.6333], [0.8845, 0.9]),
([0.2, 0.2333], [0.8472, 0.9]),
([0.2, 0.2333], [0.9423, 1])>

R6 < ([0.6667, 0.7], [0.9423, 1]),
([0.1667, 0.2], [0.9, 0.9423]),
([0.1667, 0.2], [0.8845,
0.9])>

< ([0.6667, 0.7], [0.9, 0.9423]),
([0.1667, 0.2], [0.9, 0.9423]),
([0.1667, 0.2333], [0.9423,
0.9423])>

< ([0.6333, 0.7333], [0.9423,
0.9423]), ([0.2667, 0.3], [0.9,
0.9423]), ([0.1667, 0.2],
[0.9423, 1])>

< ([0.7, 0.7667], [0.8472, 0.9]),
([0.2, 0.2667], [0.7918, 0.9]),
([0.1333, 0.2], [0.9423, 1])>

Step 4: The ranking order of the six alternatives is K2

>K1 >K3 >K5 >K4 >K6 or K1 >K2 >K3 >K4 >K6

>K5. Although the different weighted correlation coeffi-
cients cause the ranking difference of the alternatives, the
best scheme is K1 or K2, which depends on the decision-
makers’ preference selection or the actual requirement.

Comparison with existingMAGDMmethod based
on the correlation coefficients of CSVNSs

Under the application environments of SIVHNMVSs and
SVNMVSs, this section compares our newMAGDMmethod
with existing MAGDM method [24] to show the superiority
of the new method over the existing method.
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Table 3 Characteristic comparison between our new method and the existing method

Method Evaluation information Transformed information Correlation coefficient Application environment

Existing method [24] SVNMVE CSVNE Correlation coefficient of
CSVNSs

SVNMVS

Our new method SIVHNMVE CIVNE Multiplication of two
correlation coefficients of
IVNSs and NCSs (CIVNSs)

SIVHNMVS, SVNMVS,
IVNMVS

Table 4 The decision matrix D’ of SVNMVEs

Treatment scheme L1 L1 L1 L1

K1 < (0.8, 0.8, 0.7), (0.2, 0.2,
0.1), (0.15, 0.15, 0.1)>

< (0.75, 0.7, 0.6), (0.25, 0.2,
0.2), (0.15, 0.1, 0.1)>

< (0.85, 0.8, 0.7), (0.3, 0.2,
0.15), (0.2, 0.15, 0.1)>

< (0.8, 0.8, 0.8), (0.2, 0.15,
0.15), (0.2, 0.2, 0.15)>

K2 < (0.75, 0.7, 0.7), (0.25, 0.2,
0.1), (0.15, 0.1, 0.1)>

< (0.8, 0.8, 0.75), (0.25, 0.2,
0.1), (0.25, 0.2, 0.15)>

< (0.8, 0.75, 0.7), (0.25, 0.2,
0.2), (0.25, 0.25, 0.1)>

< (0.8, 0.8, 0.75), (0.3, 0.2,
0.1), (0.35, 0.25, 0.1)>

K3 < (0.65, 0.6, 0.6), (0.2, 0.15,
0.1), (0.2, 0.15, 0.15)>

< (0.8, 0.7, 0.7), (0.25, 0.2,
0.1), (0.2, 0.15, 0.1)>

< (0.8, 0.8, 0.75), (0.25, 0.2,
0.1), (0.25, 0.2, 0.1)>

< (0.8, 0.7, 0.65), (0.2, 0.2,
0.15), (0.25, 0.2, 0.15)>

K4 < (0.7, 0.7, 0.6), (0.25, 0.2,
0.1), (0.35, 0.25, 0.1)>

< (0.8, 0.75, 0.75), (0.25,
0.2, 0.2), (0.25, 0.2, 0.1)>

< (0.7, 0.7, 0.6), (0.25, 0.2,
0.15), (0.15, 0.15, 0.1)>

< (0.75, 0.7, 0.65), (0.2, 0.2,
0.15), (0.25, 0.2, 0.15)>

K5 < (0.75, 0.7, 0.6), (0.3, 0.2,
0.15), (0.3, 0.2, 0.15)>

< (0.75, 0.7, 0.7), (0.3, 0.3,
0.2), (0.25, 0.2, 0.15)>

< (0.7, 0.7, 0.6), (0.25, 0.2,
0.1), (0.3, 0.25, 0.2)>

< (0.7, 0.65, 0.5), (0.35, 0.2,
0.1), (0.25, 0.2, 0.2)>

K6 < (0.7, 0.7, 0.65), (0.25, 0.2,
0.1), (0.3, 0.15, 0.1)>

< (0.75, 0.7, 0.6), (0.25, 0.2,
0.1), (0.25, 0.2, 0.15)>

< (0.7, 0.7, 0.65), (0.35, 0.3,
0.2), (0.2, 0.2, 0.15)>

< (0.8, 0.8, 0.6), (0.4, 0.2,
0.1), (0.2, 0.15, 0.15)>

Table 5 The CSVNE matrix R’

L1 L2 L3 L4

R1’ < (0.7667, 0.9423), (0.1667,
0.9423), (0.1333, 0.9711)>

< (0.6833, 0.9236), (0.2167,
0.9711), (0.1167, 0.9711)>

< (0.7833, 0.9236), (0.2167,
0.9236), (0.1500, 0.9500)>

< (0.8000, 1.0000), (0.1667,
0.9711), (0.1833, 0.9711)>

R2’ < (0.7167, 0.9711), (0.1833,
0.9236), (0.1167, 0.9711)>

< (0.7833, 0.9711), (0.1833,
0.9236), (0.2000, 0.9500)>

< (0.7500, 0.9500), (0.2167,
0.9711), (0.2000, 0.9134)>

< (0.7833, 0.9711), (0.2000,
0.9000), (0.2333, 0.8742)>

R3’ < (0.6167, 0.9711), (0.1500,
0.9500), (0.1667, 0.9711)>

< (0.7333, 0.9423), (0.1833,
0.9236), (0.1500, 0.9500)>

< (0.7833, 0.9711), (0.1833,
0.9236), (0.1833, 0.9236)>

< (0.7167, 0.9236), (0.1833,
0.9711), (0.2000, 0.9500)>

R4’ < (0.6667, 0.9423), (0.1833,
0.9236), (0.2333, 0.8742)>

< (0.7667, 0.9711), (0.2167,
0.9711), (0.1833, 0.9236)>

< (0.6667, 0.9423), (0.2000,
0.9500), (0.1333, 0.9711)>

< (0.7000, 0.9500), (0.1833,
0.9711), (0.2000, 0.9500)>

R5’ < (0.6833, 0.9236), (0.2167,
0.9236), (0.2167, 0.9236)>

< (0.7167, 0.9711), (0.2667,
0.9423), (0.2000, 0.9500)>

< (0.6667, 0.9423), (0.1833,
0.9236), (0.2500, 0.9500)>

< (0.6167, 0.8959), (0.2167,
0.8742), (0.2167, 0.9711)>

R6’ < (0.6833, 0.9711), (0.1833,
0.9236), (0.1833, 0.8959)>

< (0.6833, 0.9236), (0.1833,
0.9236), (0.2000, 0.9500)>

< (0.6833, 0.9711), (0.2833,
0.9236), (0.1833, 0.9711)>

< (0.7333, 0.8845), (0.2333,
0.8472), (0.1667, 0.9711)>

Table 6 All decision results of our new method and the existing method

Method Weighted correlation coefficient value Ranking The best one

Existing method using Eq. (1) [24] 0.9981, 0.9986, 0.9971, 0.9968, 0.9953,
0.9969

K2 >K1 >K3 >K6 >K4 >K5 K2

Existing method using Eq. (2) [24] 0.9753, 0.9851, 0.9901, 0.9950, 0.9855,
0.9887

K4 >K3 >K6 >K5 >K2 >K1 K4

Our new method using Eq. (19) 0.9930, 0.9947, 0.9924, 0.9776, 0.9792,
0.9738

K2 >K1 >K3 >K5 >K4 >K6 K2

Our new method using Eq. (20) 0.5546, 0.5481, 0.5317, 0.5151, 0.4997,
0.5146

K1 >K2 >K3 >K4 >K6 >K5 K1
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First, the characteristic comparison between our new
method and the existing method [24] is indicated in Table
3.

From the comparative results of Table 3, we see that
our new method contains much more information (SIVH-
NMVSs, SVNMVSs, IVNMVSs) than the existing method
when handling MAGDM problems in the environment of
SIVHNMVSs. Furthermore, the expression forms of the
correlation coefficients of CSVNSs and CIVNSs are differ-
ent. Then, our new method uses SIVHNMVE information
to carry out neutrosophic MAGDM problems, while the
existingmethod [24] only uses SVNMVE information to per-
form neutrosophic MAGDM problems. Clearly, the existing
method [24] is only a special case of our newmethod. There-
fore, our newmethod is more extensive and more useful than
the existing method [24].

Since the existing MAGDM method based on the cor-
relation coefficients of CSVNSs [24] cannot deal with the
selection problem of landslide treatment schemes under the
environment of SIVHNMVSs, we can convert SIVHNMVEs
into SVNMVEs by taking the average values of IVFVs in the
decision matrix D as their special case to conveniently apply
the existing MAGDM method [24] to the selection problem
of landslide treatment schemes in the setting of SVNMVSs.
In this case, the decision matrix D of SIVHNMVEs in Table
1 is reduced to the decision matrix D’ of SVNMVEs in
Table 4. Therefore, the existing MAGDM method [24] can
be applied to the special case to select the best landslide treat-
ment scheme under the environment of SVNMVSs. Thus, its
decision process is detailed below:

By Eqs. (3)–(8) [24], we converse SVNMVEs into
CSVNEs, then the CSVNE matrix R’ are shown in Table
5.

From Table 5, we obtain the ideal solution R’* �
{<(0.7667, 0.9711), (0.1500, 0.9236), (0.1167, 0.8742)>,
<(0.7833, 0.9711), (0.1833, 0.9236), (0.1167, 0.9236)>,
<(0.7833, 0.9711), (0.1833, 0.9236), (0.1333, 0.9134)>,
<(0.7833, 0.9711), (0.1833, 0.8472), (0.1667, 0.8742)>}.

By Eqs. (1) and (2), the values of the weighted correlation
coefficients between Ri’ (i� 1, 2,…, 6) and R’* are obtained
in the special case, and then all decision results of our new
MAGDMmethod and the existingMAGDMmethod [24] are
shown in Table 6 for the convenient comparison.

In Table 6, there is the same best scheme K2 correspond-
ing to the weighted correlation coefficients of Eq. (1) and
Eq. (19), then the best ones K1 and K4 reflect the differ-
ence regarding the weighted correlation coefficients of Eq.
(20) and Eq. (2). However, there is also the ranking differ-
ence between our newmethod and the existing method under
different information environments. Therefore, the differ-
ent evaluation information of SIVHNMVSs and SVNMVSs
can impact on the ranking order of alternatives in the selec-
tion case of landslide treatment schemes. Since the existing

method [24] only contains the information of SVNMVSs
without the interval-valued fuzzy information, it is only a spe-
cial case of our newmethod when SIVHNMVSs are reduced
to SVNMVSs. Obviously, our new method is broader and
more useful than the existing method in terms of decision-
making capability.

Generally, our newmethod reflects the following new con-
tributions:

1. The proposed SIVHNMVS can resolve the expres-
sion problem of the single- and interval-valued hybrid
neutrosophic multi-valued information which existing
SVNMVS cannot do.

2. The proposed correlation coefficients of CIVNSs provide
necessary modeling tools for handling MAGDM prob-
lems in the SIVHNMVS setting.

3. Our new MAGDM method is more extensive and more
useful than the existing MAGDM method [24] in the
decision-making capability.

4. The new techniques show the superiorities of the hybrid
neutrosophic multi-valued information expression, cor-
relation coefficients, and MAGDM method over the
existing techniques in the SVNMVS setting.

Conclusion

Due to the lack of single- and interval-valued hybrid neu-
trosophic (multi-valued) information expression, correlation
coefficients, and decision-making methods in existing neu-
trosophic theories and decision-making applications, this
study first proposed SIVHNMVS to solve the hybrid infor-
mation expression problem of both SVNMVS and IVN-
MVS. Then, we introduced a transformation method that
converts SIVHNMVSs into CIVNSs based on the aver-
age value and consistency degree of the truth, falsity and
indeterminacy sequences to reasonably simplify the hybrid
information expression and operation problems of different
lengths/information types of the truth, falsity and indeter-
minacy sequences in the setting of SIVHNMVSs. Next,
the proposed correlation coefficients of CIVNSs provided
necessary modeling tools for performing MAGDM prob-
lems with SIVHNMVSs. The developed MAGDM method
resolved single- and interval-valued hybrid neutrosophic
multi-valued decision-making problems. At last, a selec-
tion case of landslide treatment schemes and comparison
with existing method were given to indicate the applicabil-
ity and validity of the new method. Furthermore, our new
techniques not only overcome the drawbacks of the existing
techniques, but also are more extensive and more useful than
the existing techniques when performing MAGDM prob-
lems in the setting of SIVHNMVSs. Moreover, the new
techniques demonstrated the outstanding superiorities of the
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hybrid information expression, the correlation coefficients
of CIVNSs, and the developed MAGDM method over the
existing techniques.

However, the new contributions of this study will be fur-
ther extended to other areas, such as clustering analysis
and evaluation of slope risk/stability, risk assessment and
investment analysis of engineering projects, evaluation of
high-speed rail system in China [26] under the environment
of SIVHNMVSs.

Furthermore, existing Pythagorean fuzzy sets [27, 28]
or hesitant fuzzy linguistic sets [29] also cannot express
the hybrid information of both single-valued Pythagorean
fuzzy sets and interval-valued Pythagorean fuzzy sets or both
hesitant fuzzy linguistic sets and uncertain hesitant fuzzy lin-
guistic sets. Hence, the new techniques in this study will be
also extended to the Pythagorean fuzzy set or hesitant fuzzy
linguistic set as a future research direction.
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