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Abstract
Machine learning (ML) has been recognized as a feasible and reliable technique for the modeling of multi-parametric datasets. 
In real applications, there are different relationships with various complexities between sets of inputs and their corresponding 
outputs. As a result, various models have been developed with different levels of complexity in the input–output relationships. 
The group method of data handling (GMDH) employs a family of inductive algorithms for computer-based mathematical 
modeling grounded on a combination of quadratic and higher neurons in a certain number of variable layers. In this method, 
a vector of input features is mapped to the expected response by creating a multistage nonlinear pattern. Usually, each neuron 
of the GMDH is considered a quadratic partial function. In this paper, the basic structure of the GMDH technique is adapted 
by changing the partial functions to enhance the complexity modeling ability. To accomplish this, popular ML models that 
have shown reasonable function approximation performance, such as support vector regression and random forest, are used, 
and the basic polynomial functions in the GMDH are replaced by these ML models. The regression feasibility and validity 
of the ML-based GMDH models are confirmed by computer simulation.

Keywords Group method of data handling · Machine learning · ML-based group method of data handling

Introduction

The group method of data handling (GMDH) was first intro-
duced by Ivakhnenko as a proper approach for detecting non-
linear systems [1]. The GMDH approach employs a family 
of inductive algorithms for the computer-based mathemati-
cal modeling of multiparameter datasets. This method uses 
fully automatic parametric and structural optimization. The 
GMDH is a combination of quadratic and higher neurons in 
a certain number of variable layers that map a vector of input 
features to the expected response by creating a multistage 
nonlinear pattern; it is mainly based on decomposition and 
dominance. In every layer of this network, a different subset 
of possible combinations in each neuron among the existing 
features is mapped to the expected response using polyno-
mial functions [2, 3]. Based on the accuracy achieved for 

each combination, some weaker combinations are removed 
in favor of stronger ones. In other words, different layers of 
the network are configured by reducing the mapping error 
from the input feature space to the expected response. Like 
real structures in nature, the GMDH creates a complex com-
bination of relatively simple structures, and each section is 
adjusted by an evolutionary approach.

GMDH algorithms are characterized by a reasoning 
method in which sorting is performed on polynomial mod-
els that gradually increase in complexity to select the best 
solution via a specified external criterion. In the basic struc-
ture proposed by Ivakhnenko, polynomial mapping func-
tions (mostly quadratic functions) are used in each GMDH 
neuron and fitted by the least-squares method. A more 
complex model is configured for mapping from the input 
space to the output space by multilayer combinations of 
mapping created by relatively simple polynomial functions. 
Since it was first developed, several improvements have 
been proposed for the GMDH. For example, Ohtani et al. 
[4] used the M-apoptosis concept to propose a neuro-fuzzy 
GMDH. Kondo [5] changed the basic GMDH structure and 
replaced the mechanism for using the output of the neuron 
in the next layer with backpropagation (BP) and feedback 
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structures to the input layer. Elattar et al. [6] combined 
GMDH and local regression to develop a generalized locally 
weighted GMDH. Moreover, Zhang et al. [7] developed the 
diversity-GMDH (D-GMDH) model by using the diver-
sity concept in the GMDH to improve the noise-immunity 
ability. Shahsavar et al. [8] changed the GMDH structure 
and added initial inputs to the input binary combinations in 
the next layers to propose a generalized GMDH structure 
for modeling thermal conductivity. Band et al. [9] added a 
sigmoid transfer function to the basic polynomial function 
of the GMDH method, introduced a neural network-based 
GMDH (GMDH-NN), and tested it for voltage regulation. 
Zounemat-Kermani and Mahdavi-Meymand [10] developed 
the GMDH-FA by the automatic tuning of the GMDH with 
the silkworm moth algorithm and employed it for the aera-
tion modeling of spillways.

Some studies have combined GMDH with other meth-
ods for improving its accuracy. For example, reference [11] 
predicted bridge pier scour depth under debris flow effects 
by combining the Adaptive Nero-Fuzzy Inference System 
(ANFIS) and GMDH and constructing FN-GMDH. Refer-
ence [12], proposed a GMDH-based hybrid model to fore-
cast the container throughput. Considering the complexity 
of forecasting nonlinear subseries, the proposed model 
adopts three nonlinear single models—namely, support 
vector regression (SVR), BP neural network, and genetic 
programming (GP), to predict the nonlinear subseries. Then, 
the model establishes selective combination forecasting by 
the GMDH neural network on the nonlinear subseries and 
obtains its combination forecasting results. Finally, the pre-
dictions of the two parts are integrated to obtain the forecast-
ing results of the original container throughput time series. 
In reference [13], the GMDH network was developed using 
a gene-expression programming (GEP) algorithm. In this 
study, GEP was performed in each GMDH neuron instead of 
the polynomial quadratic neuron. Effective parameters on the 
three-dimensional scour rates include sediment size, pipeline 
geometry, and wave characteristics upstream of the pipeline. 
Four dimensionless parameters were considered input vari-
ables by means of the dimensional analysis technique. Fur-
thermore, scour rates along the pipeline, the vertical scour 
rate, and scour rates to the left and right of the pipeline are 
determined as output parameters. Reference [14] combined 
GMDH with ANFIS to combine their abilities in forecast-
ing ultimate pile bearing capacity. In this study, uncertainty 
in the data is handled using ANFIS, and the complexity of 
the input–output relationship is considered using GMDH. 
In addition, Particle Swarm Optimization (PSO) was used 
to determine the parameters of these methods. Reference 
[15] developed a novel hybrid intelligent model for solv-
ing engineering problems using a new combination of the 
GMDH algorithm. In this study, the conventional structure 
of GMDH is combined with new polynomial functions to 

form a new version of the GMDH algorithm by combin-
ing fuzzy logic theory, GMDH, and a gravitational search 
algorithm (GSA). The developed model was leveraged to 
predict rock tensile strength based on experimental datasets. 
In this method, simple polynomial functions are replaced 
with fuzzy if–then rules, which are constructed using Gauss-
ian membership functions, and GSA is used for determining 
parameters of Gaussian membership functions.

In reference [17], the authors designed a special classi-
fier ensemble selection approach called GMDH-PSVM. The 
presented work proposed taking advantage of GMDH-NN to 
further increase the classification performance of SVM. One 
weakness of the symmetric regularity criterion of GMDH-
NN is that if one of the input attributes has a relatively large 
range, it may overcome the other attributes. Thus, authors 
first define a standardized symmetric regularity criterion 
(SSRC) to evaluate and select the candidate models and 
optimize a classifier ensemble selection approach. Sec-
ond, they define a novel structure of the initial model of 
GMDH-NN, which is from the posterior probability out-
puts of SVMs. These probabilistic outputs were generated 
from the improved version of Platt’s probabilistic outputs. 
Third, in real classification tasks, different classifiers usu-
ally have different classification advantages. Reference [18] 
proposed a novel hybrid wavelet time series decomposer 
and GMDH-extreme learning machine (ELM) ensemble 
method called Wavelet-GMDH-ELM (WGE) for workload 
forecasting, which predicts and ensembles workload in dif-
ferent time–frequency scales. In [19], GMDH and Genetic 
Algorithm (GA) were integrated to optimize the ability of 
GMDH. The efficiency and effectiveness of the GMDH net-
work structure were optimized by the GA, enabling each 
neuron to search for its optimum connections set from the 
previous layer. With this proposed model, monitoring data, 
including the shield performance database, disc cutter con-
sumption, geological conditions, and operational parameters, 
could be analyzed.

Following the aforementioned works, this study aims to 
enhance the ability of GMDH to handle more complex rela-
tionships between inputs and outputs, which has not been 
considered before. Considering the reasonable results of 
ML models in different regression and pattern recognition 
applications [20–30], it is valuable for us to study whether 
the combination of ML models and GMDH leads to better 
performance. A modified version of the GMDH is proposed, 
in which the basic polynomial functions are replaced by ML 
models. Given the ability of ML models to establish linear 
and nonlinear mapping, these methods replace the polyno-
mial functions for the mapping from the inputs to the output 
in each GMDH neuron. Accordingly, the ML-based GMDH 
aims to find an optimal approximation in the spanned space 
by layers that consist of neurons in the ML models. Tests 
confirm the feasibility and validity of the proposed model 
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in approximation tasks. The main contributions of this paper 
are as follows:

1. Improving the accuracy of the GMDH model in forecast-
ing more complex relationships.

2. Replacing conventional polynomial functions with ML 
models to handle complexities in the datasets.

The rest of this paper is organized as follows: the GMDH 
mechanism is presented in Sect. 2. The ML-based GMDH 
is introduced in Sect. 3. The simulation experiments are dis-
cussed in Sect. 4, and finally, concluding remarks are pre-
sented in Sect. 5.

Group method of data handling (GMDH)

The GMDH is a nature-inspired learning method that 
approximates the relationship of inputs and the output by a 
nonlinear mapping composed of successive layers of neu-
rons using polynomial transfer functions. A basic explana-
tion for the mapping problem is to identify a function ( f̂  ) 
as an alternative for a latent utility function ( f  ) to predict ŷ 
from the input X =

(
x1, x2, x3,… , xn

)
 to be as close to the 

expected output ( y ) as possible. To this end, M observations, 
including the multivariable unit–single variable output, are 
considered as follows [1–3, 10, 31]:

The GMDH network is trained by the input vector X for 
predicting the ŷ values:

The main issue is to determine a GMDH model to ensure 
the minimization of the squares of the difference between 
the predicted and expected values, as in the following [10]:

The detailed representation of the Volterra functional 
series may represent the relationship between the inputs and 
the output by referring to the Kolmogorov–Gabor polyno-
mial. The output is as follows [1, 2, 31]:

(1)yi = f
(
xi1, xi2, xi3,… , xin

)
, (i = 1, 2, 3,…M).

(2)⌢

yi =
⌢

f
(
xi1, xi2, xi3,… , xin

)
, (i = 1, 2, 3,…M).

(3)
M∑
i=1

[
⌢

f
(
xi1, xi2, xi3,… , xin

)
− yi

]2
⇒ min .

(4)

y = f (x1,… , xn) = a0 +

n∑
i=1

aixi +

n∑
i=1

n∑
j=1

aijxixj

+

n∑
i=1

n∑
j=1

n∑
k=1

aijxixjxk +⋯ ,

where, a0 , ai , and aij are coefficients of polynomial func-
tions. The complete form of mapping the modeling in each 
neuron is simplified by the output obtained from the partial 
polynomial functions with two variables as inputs (neurons) 
[1], as shown in the following equation:

In this approach, a recursive polynomial function is 
applied to the neurons connected to the network to develop 
the standard relationship between the input and the out-
put in Eq. 4. The ai coefficients in Eq. 5 are calculated by 
regression to reduce the difference between the observed 
output ( ̂y ) and the expected output (y) for each pair of 
inputs ( xp, xq ). In other words, a tree set of polynomial 
functions in Eq. 5 is developed in which its coefficients are 
calculated by the least-squares method. The coefficients of 
each polynomial function (Gpq) are determined to apply 
the optimal fitting for the output that corresponds to the 
input–output pair in the dataset [2, 31] as follows:

To avoid overfitting, 70%–80% (Ptrain) of the total of 
M observations is used practically for fitting by the least-
squares method, and the rest are used as a validation set 
for evaluating the approximation error. In other words, 
Eq. 7 is minimized by the least-squares method, and the 
value calculated by Eq. 8 is considered the error criterion 
for each neuron [3]:

In the standard GMDH, all the possible binary combi-
nations of the n input variables are considered for creating 
the regression polynomial in Eq. 5 to find the best fitting 
variables using independent observations 

(
yi, i ∈ Train

)
 

and the least-squares method. Hence, 
(
n

2

)
=

n(n−2)

2
 neu-

rons  ex i s t  in  t he  f i r s t  GMDH layer  us ing {
(yi, xip, xiq); i ∈ Train

}
 observations [2, 3, 19], as shown 

in the following:

(5)

⌢

y = Gpq(xp, xq)

= a0 + a1xp + a2xq + a3xpxq + a4x
2
p
+ a5x

2
q
.

(6)MSE =

∑M

i=1

�
yi − Gpq(xip, xiq)

�2
M

⇒ min .

(7)

MSEtrain =

∑
i∈Train

�
yi − Gpq(xip, xiq)

�2

M
, ⇒ min

Train = (Ptrain ∗ M) number of observations selected randomly.

(8)

MSEvalidation =

∑
i∈Validation

�
yi − Gpq(xip, xiq)

�2

M
,

Validation = ((1 − Ptrain) ∗ M) number of observations selected randomly.
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where,p, q ∈ {i = 1, 2,… n} . The matrix factorization rela-
tions are respectively obtained by Eqs. 10–14 by adding the 
quadratic sub-equations using Eq. 5 for each row of the M 
three-member sets (yi, xip, xiq),:

The parameters are obtained as follows, using the least-
squares method and the above equations:

The result gives a in Eq.  5 for all three values of 
(yi, xip, xiq) of the dataset. This process is repeated for all 
the neurons in the following layers, which are specified by 
the internal linkage of the GMDH network [1, 3].

To prevent computational overburden, some neurons in 
each layer of the GMDH are excluded by a natural selec-
tion mechanism. By comparing the sum of squares of the 
fitting errors for each neuron with a threshold, some neu-
rons and their outputs are excluded from the network. The 
threshold is calculated from the following equation [10]:

where I represents the lth layer; Tl is the threshold value; and 
MSEvalidation

min
l

 and MSEvalidation
max
l

 show the minimum and 
maximum mean square errors (MSEs) of the fitting among 
neurons of each layer, respectively; and α is the selection 
leverage and a regulatory parameter of the GMDH network. 
The other regulatory parameters include the number of lay-
ers and the maximum allowable number of neurons in each 
layer (another variable for controlling the model complex-
ity) that controls the GMDH complexity. Figure 1 shows 
the structure of a hypothetical GMDH network with three 
middle layers and four inputs [32].

In the next section, the developed ML-based GMDH 
is presented.

(9)

⎡⎢⎢⎢⎣

x1p x1q ⋮ y1
x2p x2q ⋮ y2
⋯ ⋯ ⋯ ⋯

xMp xMq ⋮ yM

⎤⎥⎥⎥⎦
,

(10)Aa = Y ,

(11)a = {a0, a1, a2, a3, a4, a5},

(12)Y = {y1, y2, y3, ..., y5}
T ,

(13)A =

⎡
⎢⎢⎢⎢⎣

1 x1p x1q x1px1q x2
1p

x2
2p

1 x2p x2q x2px2q x2
2p

x2
2p

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

1 xMp xMq xMpxMq x2
Mp

x2
Mp

⎤
⎥⎥⎥⎥⎦
.

(14)a = (ATA)−1ATY .

(15)Tl = �MSEvalidation
min
l

+(1 − �)MSEvalidation
max
l

,

Machine learning‑based group method 
of data handling (ML‑based GMDH)

As mentioned in Sect. 2, in each neuron of the GMDH, a 
polynomial function is fitted between two (or more) inputs 
and outputs. In the ML-based GMDH models, the partial 
polynomial functions in the GMDH model are replaced by 
the ML models. In other words, while preserving the origi-
nal GMDH structure, the function used for mapping the 
input pair (xip, xjq), i = 1, 2, ...,M , to ( yi, i = 1, 2, ...,M ) is 
made more complex than the basic function to model more 
complex mappings. In cases where there are complex pat-
terns between the input and output pairs, the use of ML 
models provides GMDH building blocks with more precise 
approximations.

Unlike the basic GMDH structure in which the a values 
in Eq. 5 are obtained by solving Eq. 15, in each neuron of 
the ML-based GMDH, the ML model is trained once by 
observations to determine a list of weights and ML param-
eters. The approximation error for validation observations 
was calculated by evaluating the outputs of the ML model. 
Each partial function (neuron) in the ML-based GMDH is 
considered a black box, and like the basic GMDH structure, 
the outputs of neurons in each layer are considered inputs to 
the next layer. The mean square error of validation observa-
tions in each neuron of the ML-based GMDH is calculated 
from the following equation:

(16)

MSEvalidation =

∑
i∈Validation

�
yi −MLpq(xip, xiq)

�2

M
,

Validation = ((1 − Ptrain) ∗ M) number of observations selected randomly,

Fig. 1  GMDH with three layers and four inputs [19]
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where ,  MLpq  i s  t he  t ra ined  ML model  on {
(yi, xip, xiq); i ∈ Train

}
 observations. Like the basic GMDH 

model and the selection mechanism of neurons in each layer, 
in ML-based GMDH, the neurons in each layer were selected 
and excluded based on the MSE values obtained from ana-
lyzing the trained ML models using Eq. 15. Figure 2 displays 
the ML-based GMDH model with four input variables; two 
middle layers; and multilayer perceptron (MLP) [33] partial 
functions of the ML model, with a middle layer containing 
three neurons.

Various ML models can be used as partial functions in 
ML-based GMDH. The four conventional models of MLP, 
SVR [34], random forest (RF) [35], and ELM [36] are con-
sidered alternatives to be used as partial functions in this 
case.

The following hyperparameters in the ML-based GMDH 
models should be tuned:

1. The selection leverage (α) that determines the selection 
threshold of neurons in each layer.

2. The number of network layers (N-layer).
3. The maximum allowable number of neurons in each 

layer (Max-Neurons).
4. The type of ML model as the partial function (among 

MLP, SVR, RF, and ELM).

5. The percentage of observations used for training  (Ptrain).

In the next section, the simulation results and compari-
sons with other ML models are presented.

Simulation experiment

The performance of the ML-based GMDH model was vali-
dated by the five following simulation experiments: a six-
dimensional non-polynomial function and four real-world 
datasets in the UCI repository1—namely, household electric 
power consumption approximation, air-quality approxima-
tion, Hungarian chickenpox, and Seoul bike sharing demand. 
For comparison, the results of the GMDH and ML-based 
GMDH models are presented separately. The parameters α, 
N-layer, Max-Neurons, and Ptrain are the same in both the 
GMDH and ML-based GMDH models and are determined 
by the commonly used cross-validation method [37]. The 
results are listed in Table 1.

The evaluation metrics used for comparing the results 
were the correlation coefficient (R), root mean square error 

Fig. 2  ML-based GMDH model 
with four input variables, two 
middle layers, and MLP partial 
functions
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(RMSE), mean of absolute errors (MAE), and standard 
deviation of the absolute errors (STD errors), as follows:

Approximation of a six‑dimensional non‑polynomial 
function

In this experiment, a six-dimensional non-polynomial func-
tion was approximated as follows [38]:

where,x1,x2 ∈ [1, 5] , x3 ∈ [0, 4] , x4 ∈ [0, 0.6] , x5 ∈ [0, 1] , and 
x6 ∈ [0, 1.2] . Of the total data points, 80% (72,000) were 
considered for training and the rest (18,000) for testing the 
network. Figure 3 compares the expected values of func-
tion f with the GMDH and ML-based GMDH outputs (using 
different types of partial ML). As can be seen in Fig. 3, the 
different types of ML-based GMDH models presented 
closer approximations to real values compared with the 
basic GMDH. For more comparative information, Table 2 
provides a detailed comparison between the basic GMDH 
model and different types of ML-based GMDH models in 
terms of the evaluation metrics. Table 2 shows that the ML-
based GMDH models dominate the basic GMDH in terms 
of all the evaluation metrics. Overall, the RMSE metric is 
improved 25%, 18%, 28%, and 27% by MLP-based GMDH, 
SVR-based GMDH, RF-based GMDH, and ELM-based 
GMDH, respectively. In terms of the MAE metric, 16%, 

(17)MSEtrain =
1

M

√√√√ M∑
i=1

(
yi −

⌢

yi

)2

,

(18)MAE =
1

M

M∑
i=1

||||yi −
⌢

yi
||||,

(19)STD errors =

M∑
i=1

√
(yi −MAE)

M − 1
,

(20)R =

∑M

i=1

�
yi − yi

��
⌢

yi −
⌢

yi

�

∑M

i=1

�
yi − yi

�2
∗
∑M

i=1

�
⌢

yi −
⌢

yi

�2
.

(21)f (x1, x2, x3, x4, x5, x6) = x
1
+ x0.5

2
+ x3x4 + 2e2(x5−x6),

10%, 19%, and 18% improvements resulted from the MLP-
based GMDH, SVR-based GMDH, RF-based GMDH, and 
ELM-based GMDH, respectively.

In addition, 42%, 35%, 44%, and 63% improvements 
are returned by MLP-based GMDH, SVR-based GMDH, 
RF-based GMDH, and ELM-based GMDH, respectively, 
in terms of the R metric. Regarding the STD error metric, 
38%, 29%, 41%, and 39% improvements are shown by MLP-
based GMDH, SVR-based GMDH, RF-based GMDH, and 
ELM-based GMDH, respectively. It can be concluded that 
different types of ML-based GMDH models provide bet-
ter results in approximating the considered six-dimensional 
non-polynomial function compared with the conventional 
GMDH.

Approximation of household electric power 
consumption

In this task, individual household electric power consump-
tion was approximated. This archive2 contained 2,075,259 
measurements gathered in a house located in Sceaux, France 
(7 km from Paris), from December 2006 to November 2010 
(47 months). Of all the observations, 80% (179,209) were 
considered for training and the rest (716,835) for testing the 
network. Table 3 lists the evaluation metrics calculated for 
the predictions made by the basic GMDH model and the 
various ML-based GMDH models.

According to the results presented in Table 3, the ML-
based GMDH models outperformed the basic GMDH model 
in approximating the household electric power consumption 
pattern in terms of all evaluation metrics. In addition, as 
illustrated in Fig. 4. ELM-based GMDH as an ML-based 
GMDH performed much better than the basic GMDH 
method in terms of the RMSE, MAE, and STD error metrics. 
Even the MLP-based GMDH method with the weakest per-
formance among ML-based GMDH models exhibited good 
improvement over the base model in terms of all metrics.

Approximation of air quality

In this task, the PM2.5 concentration at Shunyi Railway Sta-
tion in China was approximated. The dataset3 used for this 
purpose included the concentrations of pollutants recorded 
at 12 different railway stations in China from March 1, 2013, 
to February 28, 2017. Shunyi Station was randomly selected 
for this evaluation, and its PM2.5 concentration data were 
used. Of 34,151 observations (after preprocessing), 80% 

Table 1  Similar parameters in the GMDH and ML-based GMDH 
models

Parameters  ∝ N-layer Max-Neurons Ptrain (versus validation)

Values 0.6 4 15 0.7

2 https:// archi ve. ics. uci. edu/ ml/ datas ets/ Indiv idual+ house hold+ elect 
ric+ power+ consu mption.
3 https:// archi ve. ics. uci. edu/ ml/ datas ets/ Beiji ng+ Multi- Site+ Air- 
Quali ty+ Data.

https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
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(27,314) were considered for training and 20% (6828) for 
testing the network. Table 4 shows the calculated evaluation 
metrics for the predictions made by the basic GMDH model 
and the various ML-based GMDH models.

According to the results, the ML-based GMDH models 
outperformed the basic GMDH model in approximating the 
PM2.5 concentration. As shown in Fig. 5 (for greater clarity, 
the R values are multiplied by 10), all ML-based GMDH 

Fig. 3  Results of the GMDH and ML-based GMDH models on a six-dimensional non-polynomial function

Table 2  Results of the GMDH and ML-based GMDH models on a 
six-dimensional non-polynomial function

Models Evaluation metrics

RMSE MAE R STD errors

GMDH 2.3281 1.7169 0.5562 1.5725
MLP-based GMDH 1.7259 1.4256 0.7942 0.9730
SVR-based GMDH 1.8991 1.5425 0.7521 1.1078
RF-based GMDH 1.6597 1.3836 0.8059 0.9168
ELM-based GMDH 1.6932 1.4049 0.9103 0.9452

Table 3  Results of the GMDH and ML-based GMDH models on 
household electric power consumption

Models Evaluation metrics

RMSE MAE R STD errors

GMDH 251.7513 67.8127 0.0230 242.4639
MLP-based GMDH 24.0462 12.8974 0.9567 20.2962
SVR-based GMDH 21.8306 11.0218 0.9644 18.8454
RF-based GMDH 23.1304 11.9765 0.9500 19.8475
ELM-based GMDH 72.0025 70.6634 0.2048 73.4728
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performed much better than the basic GMDH method did 
in terms of R, RMSE, MAE, and STD error metrics. The 
extent of the improvement I the ML-based GMDH is clear 
in approximating the PM2.5 concentration.

Approximation of Hungarian chickenpox

In this task, a spatiotemporal dataset of weekly chickenpox 
cases from Hungary is approximated. This dataset4 consists 
of a county-level adjacency matrix and a time series of the 
county-level reported cases between 2005 and 2015. Of the 
520 observations (after preprocessing), 80% (416) were con-
sidered for training and 20% (104) for testing the network. 
Table 5 shows the calculated evaluation metrics for the pre-
dictions made by the basic GMDH model and the various 
ML-based GMDH models.

According to the results, the ML-based GMDH models 
outperformed the basic GMDH model in approximating 
chickenpox.

In addition, as observed in Fig. 6 (for greater clarity, the R 
values are multiplied by 10), MLP-based GMDH, RF-based 
GMDH, and ELM-based GMDH exhibited weaker perfor-
mance compared with the basic GMDH method in terms of 
RMSE and MAE metrics. Regarding the STD error metric, 
the basic GMDH method performed better than the other 
methods did. Only the MLP-based GMDH method presented 
better results in the RMSE and MAE metrics compared 
with the basic GMDH method. Overall, in approximating 
chickenpox, ML-based GMDH did not show considerable 
improvement in relation to the basic GMDH method. This 
matter may have arisen either because the complexity in this 
dataset was negligible/minimal or more observations may 
have produced a different result.

Approximation of bike‑sharing demand

In the next task, the Seoul bike sharing demand was approxi-
mated. The dataset5 contained a count of public bikes rented 
at each hour in the Seoul bike-sharing system with the cor-
responding weather data and holiday information. Currently, 
rental bikes are available in many urban centers for the 
enhancement of mobility comfort. It is important to make 
rental bikes available and accessible to the public at the right 
time because this will lessen users’ waiting time. Eventu-
ally, providing the city with a stable supply of rental bikes 

Fig. 4  Visual comparison of the GMDH and ML-based GMDH models on household electric power consumption

Table 4  Results of the GMDH and ML-based GMDH models for air 
quality

Models Evaluation metrics

RMSE MAE R STD errors

GMDH 109.3188 76.6839 0.5669 77.9170
MLP-based GMDH 22.8959 12.9696 0.9603 18.8696
SVR-based GMDH 109.7428 99.3764 0.7025 46.5632
RF-based GMDH 73.6905 14.0540 0.8624 56.2902
ELM-based GMDH 93.3028 65.2028 0.7616 66.7433

5 https:// archi ve. ics. uci. edu/ ml/ datas ets/ Seoul+ Bike+ Shari ng+ 
Demand

4 https:// archi ve. ics. uci. edu/ ml/ datas ets/ Hunga rian+ Chick enpox+ 
Cases

https://archive.ics.uci.edu/ml/datasets/Seoul+Bike+Sharing+Demand
https://archive.ics.uci.edu/ml/datasets/Seoul+Bike+Sharing+Demand
https://archive.ics.uci.edu/ml/datasets/Hungarian+Chickenpox+Cases
https://archive.ics.uci.edu/ml/datasets/Hungarian+Chickenpox+Cases
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becomes a major concern. The crucial part is the prediction 
of the bike count required at each hour for the stable supply 
of rental bikes. The dataset contains weather information 

(temperature, humidity, wind speed, visibility, dew point, 
solar radiation, snowfall, rainfall), the number of bikes 
rented per hour, and date information. Of the 8760 observa-
tions (after preprocessing), 80% (7008) were considered for 
training and 20% (1752) for testing the network. Table 6 
shows the calculated evaluation metrics for the predictions 
made by the basic GMDH model and the various ML-based 
GMDH models.

According to the results, the ML-based GMDH models 
outperformed the basic GMDH model in approximating the 
bike-sharing demand. For comparing results in a graphical 
shape, evaluation metrics calculated for each method are 
depicted in Fig. 7 as a bar chart.

As shown in Fig. 7 (for greater clarity, the R values are 
multiplied by 10), all ML-based GMDH performed much 
better than the basic GMDH method did in terms of the 
R, RMSE, MAE, and STD error metrics. The extent of the 

improvement made by ML-based GMDH is clear in approxi-
mating the bike-sharing demand.

To validate the significant difference between the 
results obtained by all the methods, we applied a Wilcoxon 
signed-rank test to four evaluation metrics—RMSE, MAE, 
R, and STD error. The obtained results are presented in 
Table 7 in terms of p values.

From the results in Table 7 and the obtained p values, 
the null hypotheses are rejected and all differences are 
significant. In other words, all ML-based GMDH mod-
els showed significantly better results in approximating 
the power consumption, PM2.5 concentration, and bike-
sharing demand compared with the conventional GMDH 
model. Only in approximating Hungarian chickenpox did 
the ML-based GMDH models fail to show better results 
in all evaluation metrics. Regarding the number of obser-
vations in this dataset, the performance of ML-based 
GMDH models—with their complexities related to the 
basic GMDH model—may have been affected by under-
fitting. This is suggested because the ML-based GMDH 
models showed significantly better results in three cases 
with a greater number of observations.

Conclusion

The approximation capability of the GMDH model was 
improved by combining it with conventional ML models—
namely, SVR, RF, MLP, and ELM. To this end, the basic 
partial functions (polynomial) in the GMDH model, which 
are used as transfer functions in neurons, were replaced by 
ML models. Given the GMDH mechanism and the role 
of the polynomial partial functions in this method, the 
ML models were considered black boxes in the sequential 

Fig. 5  Visual comparison of the GMDH and ML-based GMDH models on approximating the PM2.5 concentration

Table 5  Results of the GMDH and ML-based GMDH models for 
approximating chickenpox

Models Evaluation metrics

RMSE MAE R STD errors

GMDH 87.2324 56.2312 0.9310 33.1112
MLP-based GMDH 93.4312 67.3642 0.9411 35.1324
SVR-based GMDH 84.4158 50.9764 0.9220 39.2314
RF-based GMDH 90.1212 63.1030 0.9568 42.1234
ELM-based GMDH 96.5672 69.8091 0.8901 51.1233
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structure of the GMDH to approximate the relationship 
between the input and output pairs. The simulation results 
on a non-polynomial function and four real-world datasets 
confirmed the better performance of the ML-based GDMH 
models compared with the GMDH model in terms of the 
RMSE, MAE, R, and STD error. In the proposed ML-based 
GMDH model, in each neuron, an ML model is trained 
between two (or more) inputs and targets. This mechanism 
may be time-consuming in cases with many inputs and 
observations. This matter can be addressed by incorporat-
ing information theory-based methods and feature selection 
approaches into the models in future work.

Fig. 6  Visual comparison of the GMDH and ML-based GMDH models on approximating chickenpox

Table 6  Results of the GMDH and ML-based GMDH models bike-
sharing demand

Models Evaluation metrics

RMSE MAE R STD Errors

GMDH 53.1576 42.1134 0.7852 17.5543
MLP-based GMDH 24.4465 34.8752 0.8912 12.2314
SVR-based GMDH 21.3356 29.1735 0.9014 9.5327
RF-based GMDH 27.9872 32. 5140 0.9143 11.1432
ELM-based GMDH 31.1097 34.8202 0.9324 13.1432
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Fig. 7  Visual comparison of the GMDH and ML-based GMDH models on approximating bike sharing demand
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