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Abstract
In this paper, an improvedgenerative adversarial network (GAN) is proposed for the crackdetectionproblem in electromagnetic
nondestructive testing (NDT). To enhance the contrast ratio of the generated image, two additional regulation terms are
introduced in the loss function of the underlying GAN. By applying an appropriate threshold to the segmentation of the
generated image, the real crack areas and the fake crack areas (which are affected by the noises) are accurately distinguished.
Experiments are carried out to show the superiority of the improved GAN over the original one on crack detection tasks,
where a real-world NDT dataset is exploited that consists of magnetic optical images obtained using the electromagnetic NDT
technique.

Keywords Crack detection · Generative adversarial networks · Image segmentation · Image processing · Electromagnetic
nondestructive testing

Introduction

The past few decades have witnessed a great deal of research
attention devoted to crack detection on industrial compo-
nents such as the undercarriage of the plane and the bogie
of the train. In general, most of the traditional crack detec-
tion methods are based on destructive testing which may
cause secondary defects. The performance of the destructive
testing methods is unsatisfactory especially when detect-
ing the subsurface cracks that could grow in a persistent
yet imperceptible way. To effectively detect both the sur-
face and subsurface cracks, the nondestructive testing (NDT)
techniques have been successfully applied to a variety of
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industries such as aerospace, mechanical engineering, and
transportation [44,51].

Recently, a large number of NDT methods have been
developed using various testing methods (e.g. the ultrasonic
testing, the laser shearography testing and the electromag-
netic testing methods). Owing to their fast detection speed
andhighdetection accuracy, electromagnetic testingmethods
have attracted particular research attention among the afore-
mentioned testing methods. Typical electromagnetic testing
methods include the pulsed eddy current array method [49],
the pulsed eddy current thermography imaging method [11],
and the magnetic optical imaging (MOI) method [7]. Up to
now, electromagnetic testingmethods have beenwidely stud-
ied and employed in a variety of practical systems [6,10].
For instance, the pulsed eddy current thermography imag-
ing method has been employed in [6] to detect the surface
crack for carbon fiber reinforced plastic material. In [10], the
MOI method has been applied to detect both the surface and
subsurface cracks in aircraft skins.

In electromagnetic NDT, the magnetic field of the crack
area is different from that of the non-crack area. It should
be mentioned that the magnetic field of the specimen mainly
includes four parts, which are the magnetic field produced
by the exciting circuit, the induced magnetic field (produced
by the eddy current), the magnetic domain, and the magne-
tizing field (produced by the rust in the material and some
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other factors). In this context, the obtained electromagnetic
NDT images contain the real cracks and noises. To accurately
detect the cracks in the electromagneticNDT images, a seem-
ingly natural idea is to apply image segmentation methods to
segment the cracks [8,23,43].

As a powerful image processing technique, image seg-
mentation has been widely utilized in many real-world
applications, e.g. crack detection, fault diagnosis, medical
imaging, and face recognition [45,48]. Among the popular
image segmentation techniques, the threshold-based image
segmentation technique has been widely used owing to its
simplicity, fast processing speed and relatively small storage
space. It is difficult to segment the cracks using traditional
threshold-based image processing methods because of the
influence of the noises in the electromagnetic images [5].
In recent years, a large number of machine learning algo-
rithms have been developed and successfully exploited in
a variety of research areas such as object detection, path
planning, recommender system and image processing [1–
3,8,9,16,22,23,29–31,40,43,53]. Due to their strong abilities
in feature extraction, deep learning techniques (which are a
powerful family of machine learning algorithms) have been
successfully applied to NDT [4]. Although deep learning
algorithms have achieved a great success in NDT, the per-
formance of the deep learning algorithms is highly related to
the quantity and quality of the training data. To be specific,
a large amount of data is required for training an effective
deep learning model.

In deep learning, generative adversarial networks (GANs)
have received enormous attention from various computer sci-
ence communities (e.g. computer vision, signal processing,
and image processing) because of their strong abilities in data
generation [32,39,41]. In recent years, GANs have shown
competitive performance in crack detection and fault diag-
nosis, see in [12,13,38]. In [13], a deep convolutional GAN
has been utilized to automatically detect the cracks in fabrics.
An improved least-square GAN has been put forward in [38]
for rail crack detection. In [12], the GAN-based method has
been developed for detecting the subsurface cracks in the
steel material. Notice that most current GAN-based crack
detection methods have been applied to detect the cracks on
natural optical images.

In the context of electromagnetic crack detection, there
appear to be two challenging issues: (1) the obtained electro-
magnetic image is not natural optical image, and the contrast
ratio of the electromagnetic image is low, which makes it
difficult to accurately distinguish the real cracks and noises;
and (2) the actual position of the crack is hard to be identi-
fied. In this paper, it would make practical sense to develop
an advanced GAN for crack detection of the electromagnetic
images so as to: (1) reduce the influence of the noises in elec-
tromagnetic images; and (2) enhance the contrast ratio of the
electromagnetic images for image segmentation.

Motivated by the above discussions, in this paper, we
endeavor to propose an improved GAN-based crack detec-
tion method to handle the electromagnetic NDT crack
detection problem. The main contributions of this paper are
highlighted as follows: (1) a GAN-based method is put for-
ward for crack detection of the magnetic optical images
for the first time; (2) a novel loss function of the GAN is
designed to reconstruct the magnetic optical images, where
the designed penalty terms are introduced in the loss func-
tion to enhance the contrast ratio of the images; and (3) the
proposed GAN-based crack detection method is successfully
applied to a real-world NDT dataset with promising results.

The rest of this paper is organized as follows. The
background of electromagnetic NDT is introduced in “Back-
ground of electromagnetic NDT”. In “The improved gener-
ative adversarial network”, the proposed GAN-based image
reconstruction method is discussed. Experiment results and
discussions are presented in “Experiment results”. Finally,
conclusions are drawn in “Conclusion”.

Background of electromagnetic NDT

Mechanism of electromagnetic NDT

In electromagnetic NDT, the crack information of the con-
ductive specimen is highly related to the magnetic field
induced by the eddy current. The process of the electromag-
netic testing approach is shown in Fig. 1. It is known that
the path of the eddy current will be changed due to the exist-
ing of cracks in the specimen, which leads to the change of
the distribution and magnitude of the induced magnetic field
“B2” as shown in Fig. 1.

It should be pointed out that the magnitude of the mag-
netic field at the edge of the crack area is bigger than that at
other areas. In the electromagneticNDT images, the areawith
bigger pixel values can be recognized as the crack area with
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I1: Exciting current
I2: Eddy current
B1: Exciting magnetic field
B2: Induced magnetic field
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Fig. 1 The schematic diagram of the electromagnetic testing method
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Fig. 3 The eddy current thermography method for detecting the mag-
netic field

high probability. The diagram of the magnetic field around
the crack area is shown in Fig. 2.

In recent years, many electromagnetic-based imaging
NDT methods (e.g. the magnetic optical imaging (MOI)
method and the eddy current pulsed thermography method)
have been proposed due to the rapid development of sensors
for detecting the electromagnetic signal. As a popular elec-
tromagnetic NDT technique, the eddy current thermography
method uses multiple probes to detect the magnetic field,
which is shown in Fig. 3.

Characteristics of the electromagnetic images

The characteristics of electromagnetic NDT images are sum-
marized as follows:

(1) The amount of data is small. In the experimental situa-
tion, the NDTmethods are employed to detect the cracks
in the specimens. Although the detection accuracy of the
NDT method is satisfactory, the computational cost of
the NDTmethod is high and the cost of the NDTmethod
is expensive. As a result, the number of the obtained elec-
tromagnetic images is limited.

(2) The shape of the cracks is unpredictable. Generally, the
magnetic field of the specimen is affected by various
factors (including the magnetic field produced by the
exciting circuit and the induced magnetic field). In this

Noise

Crack

Fake crack Real edge

The determinate region of crack
The similar grayscales

Specimen

Fig. 4 The influence of the noise in crack detection

context, the detected magnetic field of the specimen is
different between two separate NDT tests, which leads
to the variation of the crack shape.

(3) The existence of noise in electromagnetic images affect
the performance of crack detection. In electromagnetic
NDT, noises would lead to the so-called “fake crack”
areas. It is difficult to distinguish the real crack area and
the “fake crack” area because the pixel values of themag-
netic field of the real crack and “fake crack” areas are very
similar. The influence of the noise in crack detection is
shown in Fig. 4.

According to the characteristics of electromagnetic images,
it is challenging to employ traditional image segmentation
methods to accurately distinguish the crack area and the
“fake crack” area. Therefore, it is of practical importance to
deploy an advanced image segmentation method. Owing to
their strong abilities in feature extraction and data generation,
GANs have shown competitive performance in crack detec-
tion.Motivated by the above discussions, a novelGAN-based
method is developed in this paper to reconstruct the electro-
magnetic image for image segmentation so as to detect the
cracks.

The improved generative adversarial
network

In this section, the framework of the improved GAN and
the developed GAN-based crack detection approach are pre-
sented. The designed loss function of the improved GAN is
also introduced.

The proposed GAN-based approach

The original GAN consists of two competing networks: a
generator and a discriminator. The generator aims to gen-
erate fake samples as real as possible. The purpose of the
discriminator is to distinguish the real samples and the gen-
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Fig. 5 The structure of the GAN
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Fig. 6 The framework of the developed GAN-based crack detection
method

erated fake samples. The framework of the original GAN is
shown in Fig. 5.

In the original GAN, the input of the generator is random
noise, and the input of the discriminator includes two parts
(which are the output of the generator and the real data). In
this paper, the training data of the GAN includes the elec-
tromagnetic images (which is also called as the reference
images) and the preprocessed images.

The framework of the proposed GAN-based crack detec-
tion approach is depicted in Fig. 6. In this paper, each
electromagnetic image is divided into a number of images
with a smaller size than that of the raw image, which con-
tributes to the improvement of the learning process of the
GAN. The output images of the generator are then combined
together to reconstruct the electromagnetic image.

Themodified loss function of the GAN

In the proposed GAN-based crack detection method, we aim
to apply the improved GAN to (1) distinguish the crack area
and “fake crack” area; and (2) reduce the influence of noises.

To achieve the aforementioned two objectives, a new loss
function is put forward where two designed penalty terms
are added in the loss function to enhance the contrast ratio of
the generated image.

The relationship between the training image and the gen-
erated output image is shown as follows:

X = G(I ) (1)

where G(·) stands for the generator, I denotes the training
image, and X represents the output image of the generator.

The training process of aGANcan be treated as aminimax
two-player game. The loss function of the original GAN for
image processing is shown as follows:

La = ES∼Pt [log D(S)] + EI∼Pc [log(1 − D(G(I )))] (2)

where Pc is the pixel value distribution of the training image;
Pt is the pixel value distribution of the real image; S is the
input of the discriminator; G(·) represents the generator and
D(·) is the discriminator. The pixel value of the output image
obtained by the generator is in the range of (0, 1).

To enhance the contrast ratio of the reconstructed electro-
magnetic images, two designed penalty terms are introduced
in the loss function of the GAN. By employing the penalty
terms, the noise in the raw electromagnetic images is
removed, which contributes to the crack detection. The loss
function of the improved GAN is shown as follows:

Li = La + EI∼Pc

[
λ1‖1 − I‖F‖G(I )‖F + λ2

‖I‖F
‖G(I )‖F

]

(3)

where λ1 and λ2 are penalty factors; ‖ · ‖F is the Frobe-

nius norm defined by ‖A‖F =
√∑

i, j A
2
i, j ; EI∼Pc [‖1 −

I‖F‖G(I )‖F ] is utilized to shrink the points with small pixel
values; and

EI∼Pc

[ ‖I‖F
‖G(I )‖F

]

is designed to enlarge the points with large pixel values.
The purpose of the improved GAN is to solve the follow-

ing minimax problem

min
G

max
D

Li

where the training process of such improved GAN is
described in Fig. 7. It should be pointed out that the gen-
erator is trained once at each iteration in this work.
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Fig. 7 The flowchart of the algorithm G: generator of GAN; D: dis-
criminator of GAN

Experiment results

In this paper, the proposed GAN-basedmethod is pre-trained
to deal with the magnetic optical images which are captured
through the MOI test. In this section, the hardware of the
MOI test is discussed, and data preprocessing is presented.
In addition, experiment results are presented to demonstrate
the superiority of the proposed GAN-based crack detection
method.

Experiment setup

Served as a popularNDT technique, theMOIdetectionmech-
anism includes an optical system and an excitation system.
The hardware of the MOI detection mechanism is depicted
in Fig. 8.

In the MOI test, the crack information is influenced by
the magnetic field. The optical system is utilized to detect
the magnetic field that is distributed on the surface of the
specimen. The polarizing films, i.e., the polarizer and the
analyzer, are the most important components of the optical
system. The polarizer is used to produce the polarized laser
light, and the analyzer is utilized to filter the polarized light
(which is rotated after interacting with the magnetic field).
The charge-coupled device camera is adopted to record the

Fig. 8 Hardware of the MOI detection mechanism

Fig. 9 The specimens used in the experiment

polarized light which contains themagnetic field information
(especially the magnetic field induced by the crack). In our
experiment, the specimens include two ferromagnetic thin
plates. The ferromagnetic thin plate with the “Z” shape crack
is utilized for the training process, and the other specimen
with a scratch crack (1 mm width and 0.2 mm depth) is used
for the testing process. The specimens are shown in Fig. 9.

Data preprocessing

As a challenge in deep learning, a large amount of data
is required for training satisfactory deep neural networks.
Unfortunately, it is difficult to produce a large number of
electromagnetic images for crack detection due to the high
cost of the electromagnetic NDT technique. In this paper,
data preprocessing is employed to produce effective training
data.
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Fig. 10 The process of producing training images for GANs

The procedure of data preprocessing is given as below:

(1) Initialization: Select the reference imageswhich contains
crack, fake crack and background areas. Then, normal-
ize the selected images (with the size of M rows and N
columns).

(2) Vectorization: Convert each normalized image into a sep-
arate one column vector.

(3) Training image selection: Randomly select m · n (m <

M, n < N ) elements from an arbitrary vector obtained
in (2). Then, convert them ·n elements to am by nmatrix
as a training image.

(4) Repeat (3) till a number of training images are obtained.

The process of the training image selection is shown in
Fig. 10.

The purpose of the training image selection is to choose
effective electromagnetic images that include the crack area,
the non-crack area and the “fake crack” area. Moreover, the
size of the training images is reduced by comparing with that
of the electromagnetic images,which improves the efficiency
of the training process. Notice that the selected electromag-
netic images need to be binarized so as to obtain the ground
truth information. The preprocessed images are also called
as the real images in this paper for training the GANs. Par-
ticularly, the electromagnetic images are also preprocessed
according to experiment experience and details can be seen
in [7].

To sum up, a pair of training images of the GAN consist of
one reference image and the corresponding real image. Then,
the training images are cropped into images with a smaller
size comparing with that of the raw images. As shown in
Fig. 11, an MOI image (which is also known as a reference
image) is obtained using the electromagneticNDT technique.

Sampling

Reference image Labeled image

Training images Real images

Fig. 11 The method of sampling training data

Fig. 12 The testing process

The MOI image is then binarized to obtain the real image,
where the pixel value of the crack area is 1 and the pixel value
of other area is 0.

In the testing process, the testing images are prepro-
cessed into the same size as the training images. To be
specific, the testing images are divided into sub-images
to feed the generator. The output images of the generator
are then spliced together so as to obtain the reconstructed
images. The strategy of the testing process is depicted in
Fig. 12.

The pre-training technique is widely used in deep learn-
ing to enhance the generalization ability of the deep neural
networks [15]. To improve the feature learning and gen-
eralization abilities of the GAN, an auto-encoder (AE)
is employed to pre-train the generator. In addition, the
pre-training process contributes to a faster convergence
for the GAN training process than the standard training
process.
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Fig. 13 The training data of the discriminator G: generator of GAN;
D: discriminator of GAN

Results and analysis

The magnetic optical images are preprocessed by extracting
the circle area that is only covered by the laser. The training
data of the discriminator is displayed in Fig. 13.

The size of the rawmagnetic optical image is 1761×1833.
In this paper, 60,000 training images are generated with the
size of 7 × 7 based on the aforementioned preprocessing
method. The labels of the pixels in the training images are
obtained according to [7]. Each training image and its cor-
responding real image form a pair of training data. In the
improved GAN, the “ReLU” function is chosen as the activa-
tion function of the hidden layers, and the “Sigmoid” function
is utilized as the activation function of the output layers. The
batch size is set to be 100. The hyperparameters λ1 and λ2 are
set up to be 0.8 and 0.2 according to experiment experience.

The testing data is the magnetic optical image of the spec-
imen with the scratch crack. The testing image is displayed
in Fig. 14. In Fig. 14, the sub-figures (a), (b), and (c) rep-
resent the magnetic optical image, the normalized image,
and the image processed using the “Sigmoid” function with
(b) as the input, respectively. The sub-figures (d), (e), and
(f) denote the pixel value distributions of (a), (b), and (c),
respectively. It should be pointed out that the crack area also
include noise, which is called as the “fuzzy area” as shown
in (d). In the “fuzzy area”, there are a large number of points
with high pixel values even when the image is processed
using different image processing methods and their results
are shown in (e) and (f). As such, it is difficult to choose a
suitable threshold to segment themagnetic optical images for

Fig. 14 aMagnetic optical image; b normalized a; c processed b with
the “Sigmoid” function; d pixel distribution of a; e pixel distribution of
b; f pixel distribution of c

crack detection. Furthermore, the tail of pixel distribution in
images (d), (e), and (f) is high and sharp, which leads to a big
value as the threshold. Therefore, the performance of crack
detection using such a big value as a threshold is poor.

To eliminate the noise and identify the crack area accu-
rately, the improved GAN-based method is developed to
reconstruct the magnetic optical images. The designed loss
function enhances the contrast ratio of the magnetic optical
images in the training process. In Fig. 15, the reconstructed
images are displayed. In Fig. 15a, b are output images of the
generator trained using the loss function (2), and image (c)
represents the output image of the generator trained using the
designed loss function (3). In Fig. 15d–f are the binary images
(using the threshold of 0.6) of (a), (b), and (c), respectively.

It can be seen in Fig. 15 that (a) and (b) are generated using
two GANs (with different hidden layer numbers) trained by
using the same loss function (2). Figure 15c is generated
using the proposed GAN with the designed loss function. It
can be seen that noise exists in both the reconstructed images
and the binary images, which affects the crack detection. In
(c), the noise is largely reduced using the proposed improved
GAN. The contrast ratio of the reconstructed image (c) is
high, which indicates that the proposed GAN-based method
performs better than the traditional GAN-based methods.

In Fig. 16, the pixel distribution of reconstructed images
(a), (b), and (c) inFig. 15 are displayed.Comparing the curves
of “result 1” and “result 2” in Fig. 16 with that of (d), (e),
and (f) in Fig. 14, the pixel distribution becomes smooth,
especially in the tail of the curves. In addition, the changing
rates of the curves of “result 1” and “result 2” are big in the
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Fig. 15 aResult 1 using loss function (2); b result 2 using loss function
(2); c result using loss function (3); d the binarization of image a using
the threshold 0.6; e the binarization of image b using the threshold 0.6;
f the binarization of image c using the threshold 0.6
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Fig. 16 The pixel distributions of reconstructed image

middle area, and small in the end area, which indicates that
the pixels are easy to be classified.

As shown in the curves “result 1” and “result 2”, the num-
ber of pixels in the uncertain area is still huge so that the
dynamic range of the threshold-selection is big which may
lead to the low crack identification accuracy. Using the loss
function (3) to train the GAN, the distribution of the pixel
value is sharp in the uncertain area and smooth in the end. In
this case, there are very few pixels in the uncertain areawhich
makes it easier to find an appropriate threshold, as shown in
Fig. 16. To summarize, the GAN trained using the proposed
loss function contributes to a better image segmentation than
that of the original loss function.

To comprehensively evaluate the performance of the
improved GAN-based crack detection method, a single pixel
point is utilized as a training image.The corresponding exper-
iment results are shown in Fig. 17.

It can be seen in Fig. 17 that the reconstructed image (a)
and its binary image (b) show that the noise is reduced and
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Fig. 17 The result using 1 × 1 sampled image

Fig. 18 Crack extraction using the reconstructed image

the performance of the image segmentation is satisfactory.
Figure 17c presents that the pixels are classified appropriately
because most of the pixel value of the points approach to 0
(as shown by the black area) or 1 (as shown by the white
area of the image). The distribution curve of image (a) is
almost vertical in the uncertain area by comparing with that
of binary image (b), which indicates that the performance of
the reconstructing process is satisfactory.

According to previous research on the magnetic optical
images [36,37], it is simple to extract the crack area depend-
ing on the reconstructed image as shown in Fig. 18. In
particular, the shape/contour of the crack is identified, and
the location of the crack in the specimen is detected, which
contributes to the fault diagnosis and maintenance of equip-
ment.
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Conclusion

In electromagnetic NDT, crack detection depends on the
features of the imaging mechanism instead of the geomet-
ric features (such as the shape and length of the crack). In
this paper, an improved GAN-based crack detection method
has been proposed for electromagnetic NDT by analyz-
ing the magnetic optical images. Data preprocessing has
been employed to improve the generalization ability of the
improved GAN, which overcomes the problem of lacking
training images. Two designed penalty terms have been intro-
duced in the loss function to enhance the contrast ratio of
the reconstructed images and reduce the noises in the MOI
images. Experiment results have shown that the improved
GAN outperforms the standard GAN for reconstructing the
magnetic optical images, and the developed GAN-based
crack detection method has demonstrated satisfactory per-
formance in detecting the cracks in magnetic optical images.
In the future, we aim to (1) employ our proposed GAN-
based crack detection for otherNDTmethods such as thermal
imagery detection, ultrasound detection and X-ray imaging
detection; (2) deploy evolutionary computation methods to
optimize the parameter selection in the GAN-based crack
detection system [24–27]; (3) employ signal processing and
state estimation methods to investigate the stability of the
NDT process [17,19–21,28,34,35,42,46,54]; and (4) design
an advanced control strategy to improve the detection accu-
racy and detection rate of the GAN-based crack detection
system [14,18,33,47,50,52,55,56].
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