
Complex & Intelligent Systems (2021) 7:2855–2869
https://doi.org/10.1007/s40747-021-00463-1

ORIG INAL ART ICLE

HatchEnsemble: an efficient and practical uncertainty quantification
method for deep neural networks

Yufeng Xia1 · Jun Zhang2,3 · Tingsong Jiang3 · Zhiqiang Gong3 ·Wen Yao3 · Ling Feng2

Received: 23 April 2021 / Accepted: 3 July 2021 / Published online: 21 July 2021
© The Author(s) 2021

Abstract
Quantifying predictive uncertainty in deep neural networks is a challenging and yet unsolved problem. Existing quantification
approaches can be categorized into two lines. Bayesian methods provide a complete uncertainty quantification theory but are
often not scalable to large-scale models. Along another line, non-Bayesian methods have good scalability and can quantify
uncertainty with high quality. The most remarkable idea in this line is Deep Ensemble, but it is limited in practice due to its
expensive computational cost. Thus, we proposeHatchEnsemble to improve the efficiency and practicality of Deep Ensemble.
The main idea is to use function-preserving transformations, ensuring HatchNets to inherit the knowledge learned by a single
model called SeedNet. This process is called hatching, and HatchNet can be obtained by continuously widening the SeedNet.
Based on our method, two different hatches are proposed, respectively, for ensembling the same and different architecture
networks. To ensure the diversity of models, we also add random noises to parameters during hatching. Experiments on both
clean and corrupted datasets show that HatchEnsemble can give a competitive prediction performance and better-calibrated
uncertainty quantification in a shorter time compared with baselines.

Keywords Ensemble learning · Deep neural networks · Non-Bayesian method · Uncertainty quantification

Introduction

Deep neural networks (DNNs) have achieved the most
advanced performance in various machine learning tasks [1]
and are becoming more and more popular in the fields of

B Wen Yao
wendy0782@126.com

Yufeng Xia
xiayufeng15@outlook.com

Jun Zhang
mcgrady150318@163.com

Tingsong Jiang
tingsong@pku.edu.cn

Zhiqiang Gong
gongzhiqiang13@nudt.edu.cn

Ling Feng
fengling@tsinghua.edu.cn

1 College of Aerospace Science and Engineering, National
University of Defense Technology, Changsha 410073, China

2 Department of Computer Science and Technology, Tsinghua
University, Beijing 100084, China

3 National Innovation Institute of Defense Technology, Chinese
Academy of Military Science, Beijing 100000, China

computer vision [2], speech recognition [3], natural language
processing [4], and bioinformatics [5]. Despite the excellent
prediction performance, DNNs have difficulty in quantify-
ing the uncertainty of their prediction. Recent studies have
shown thatDNNs are overconfident in their prediction results
and produce miscalibrated softmax output probabilities for
classification [6]. Moreover, they may make wrong and con-
fident prediction for out-of-distribution samples that differ
significantly from the training data distribution [7]. From
self-driving cars to automatic medical diagnostics, uncer-
tainty quantification has become an urgent need for many
real-world applications, making it critical to equip DNNs
with the ability to understand unknown information.

The existing neural network uncertainty quantification
methods can be divided into two categories. The first cat-
egory is based on Bayesian neural networks (BNNs) [8,9].
BNNs quantify predictive uncertainty by making the model
parameters obey a probability distribution rather than using
point estimates. Although BNNs provide a set of theoretical
methods for uncertainty quantification, it is usually difficult
to infer the true posteriors of the parameters.Moreover, spec-
ifying parameter priors for BNNs is challenging because the
parameters of DNNs are huge in size.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-021-00463-1&domain=pdf
http://orcid.org/0000-0001-5224-9834

2856 Complex & Intelligent Systems (2021) 7:2855–2869

Fig. 1 Process comparison between standard Deep Ensemble (left) and
HatchEnsemble (right)

Another category is based on non-Bayesian approaches
and several methods have been proposed for uncertainty
quantification. The most prominent idea in this category is
model ensembling [10], which trains multiple DNNs with
different initializations and uses all the prediction results
for uncertainty estimation. Lakshminarayanan et al. [10]
showed that Deep Ensemble gives reliable predictive uncer-
tainty while remaining scalable and straightforward. Ovadia
et al. [11] presented a large-scale evaluation of different
methods for quantifying predictive uncertainty under dataset
shift across different data modalities and architectures. They
found Deep Ensemble seems to perform the best across most
of the metrics and be more robust to dataset shift than other
methods such as MC-Dropout [12] and temperature scaling
[13].

However, the standard Deep Ensemble is limited in prac-
tice due to its computational costs, which increase linearly
with the ensemble size. Each ensemble member needs an
independent training process,which is time-consumingwhen
the size of the model or dataset is large. A single neural
network may take several days to train on some high-
performance hardware, where the time cost is unacceptable
[14–16]. In this paper, we propose HatchEnsemble, which
solves the above problem and quantifies uncertainty with
high quality. The process of the standard Deep Ensemble
method and our method are shown in Fig. 1.

Summary of contributions. Our contribution in this paper
is threefold.

– We propose an efficient and practical ensemble method
called HatchEnsemble for ensembling neural networks.

By reusing parameters in the smaller-sized SeedNet and
transferring the knowledge it learned to HatchNets, the
convergence speed of the HatchNets can be accelerated.
Our method improves efficiency while retaining compa-
rable result quality.

– Based on our method, we propose two kinds of hatches,
which not only allowus to ensemble networks of the same
architecture, but also allow us to ensemble networks with
different widths.

– We propose a series of tasks for evaluating the quality of
the predictive uncertainty, in termsof calibration in super-
vised learning problems. We show that our method (i)
significantly outperforms MC-Dropout and (ii) matches
Deep Ensemble but more faster.

Related work

In this section, we describe some related work about uncer-
tainty quantification methods for deep neural networks,
mainly divided into Bayesian neural networks and non-
Bayesian neural networks.

Uncertainty quantificationmethod based on
Bayesian neural networks

In recent years, there have been many related works devoted
to making deep neural networks contain probability charac-
teristics to predict uncertainty. A large part of these works are
based on Bayesian theory [17]. First, assume that the neural
network parameters obey a certain prior distribution and then
train the neural network through training data to calculate the
posterior distribution on the parameters. Using this posterior
distribution to quantify the uncertainty of the prediction. It is
almost impossible to accurately infer the true posterior dis-
tribution through the Bayesian formula for models with large
parameters such as neural networks. So a series of approx-
imate inference methods are produced, including Laplace
approximation [18], Markov Chain Monte Carlo (MCMC)
[19], as well as recent works on variational Bayesian meth-
ods [20,21] and expectation propagation [22].

A key element that can affect the performance of BNNs is
the choice of the prior distribution. The most common prior
distribution to use is the independent Gaussian distribution,
which can only give limited and even biased information for
uncertainty. And because the Bayesianmethod involves sam-
pling from the distribution, BNNs are more difficult to train,
and the calculation is relatively slow. The experiment results
in Ref. [11] also prove that BNNs are difficult to get to work
on larger datasets such as ImageNet and other architectures
such as LSTMs. Therefore, we are more inclined to study
uncertainty quantification methods based on non-Bayesian
theory.

123

Complex & Intelligent Systems (2021) 7:2855–2869 2857

Uncertainty quantificationmethod based on
non-Bayesian neural networks

Several non-Bayesian methods have also been proposed for
uncertainty quantification. Gal et al. [12] proposed a sim-
ple non-Bayesian uncertainty quantification method called
Monte-Carlo Dropout (MC-Dropout). By enabling dropout
[23] in training and testing phases and making multiple for-
ward passes through the network using the same input, one
can easily estimate predictive uncertainty. Many works have
used this method in recent years for its practicality. Some
works [12,24,25] also tried to explain this method from the
perspective of Bayesian theory.

Another non-Bayesian uncertainty quantification method
is Deep Ensemble [10] mentioned in the previous section.
More recently,Ovadia et al. [11] benchmarked existingmeth-
ods for uncertainty modeling on a broad range of datasets
and architectures and observed that ensembles tend to out-
perform variational Bayesian neural networks in terms of
both accuracy and uncertainty. Gustafsson et al. [26] applied
their proposed framework and provided the first properly
extensive and conclusive comparison of ensembling andMC-
Dropout, the results of which demonstrated that ensembling
consistently provides more reliable and practically useful
uncertainty estimation.

Recently, many works have been devoted to improving
Deep Ensemble. Wen et al. [27] proposed BatchEnsemble
by defining each weight matrix to be the Hadamard product
of a shared weight among all ensemble members and a rank-
one matrix per member. Lee et al. [28] proposed TreeNets
and Asif et al. [29] used knowledge distillation to reduce
model parameters. Snapshot Ensembles [30] use cyclic learn-
ing rate strategy to save models that converge to multiple
local minima within a training period and then use them for
ensembling. But most of these studies cannot support ensem-
bling neural networks of different architectures, and only a
small part considers the impact of the diversity of models.
The focus of most existing methods is to improve the pre-
diction performance of the model, and only a few of them
are studying ensembling methods from the perspective of
uncertainty quantification.

Method

Aiming at the problem of the high computational consump-
tion of the Deep Ensemble, this part will introduce how our
method solves this problem in detail. We first define two
parts of our method: SeedNet and HatchNet in “Definition:
SeedNet and HatchNet” section. Then in “Training pro-
cedure of HatchEnsemble” section, the Hatch method and
the entire training process of HatchEnsemble are introduced.
Two different hatchmethods derived fromourmethodwill be

described in “Two different Hatch methods” section. Finally,
we describe how to increase the diversity between models in
“Improving diversity via adding noises to parameters” sec-
tion.

Definition: SeedNet and HatchNet

As shown in step 1 and step 3 of Fig. 2, SeedNet is a single
network and can be seen as the foundation of HatchNets.
HatchNets can be seen as the growth of a SeedNet. For a
fully connected neural network, hatching means increasing
the number of neurons in the same layer. For a convolutional
neural network, hatching means increasing the number of
channels in one layer.

Suppose a training dataset D consists of N i.i.d. samples
D = {(xn, yn)}Nn=1. A SeedNet is represented by a function
y = f (x; θ) where θ is the parameters of the network, x is
the input to the network, and y is the output of the network.
Our hatch operation is to choose a new set of parameters θ ′

i
for HatchNets y = hi (x; θ ′

i) such that

∀x ∈ D, f (x; θ) = hi (x; θ ′
i)

(i = 1, 2, ..., M) (1)

whereM represents the number ofHatchNets; in otherwords,
it also represents the number of ensemble members.

We call this process hatch, which means that different
HatchNets are extended from the SeedNet.

Training procedure of HatchEnsemble

Training Step 1: Training the SeedNet.As shown in step 1
of Fig. 2, first, choose a standard basic neural network archi-
tecture as the SeedNet. On the one hand, the standard basic
neural network structure is reusable, which is convenient for
reusing and modification, increasing the practicability of the
method proposed in this paper. On the other hand, using
the standard basic neural network architecture as the Seed-
Net can facilitate comparison with the baseline proposed by
other researchers. Then, train it with the entire data set until
convergence. This allows the SeedNet to learn a good core
representation of the data.

Training Step 2: Hatching ensemble networks. Once the
selected SeedNet is trainedwell, the next step is to use a series
of function-preserving transformations to generate Hatch-
Nets which are wider than the SeedNet. Function-preserving
transformations mean to make some minor transformations
based on preserving the neural networks function mapping
relationship. It can ensure the knowledge learned by SeedNet
is retained, and widening operation can ensure the diversity
between HatchNets.

123

2858 Complex & Intelligent Systems (2021) 7:2855–2869

Fig. 2 HatchEnsemble trains an ensemble of neural networks by first training the SeedNet and transferring the function to the HatchNets. The
ensemble networks are then further trained converging significantly faster than training individually

There are two methods to achieve Eq. 1: Network Mor-
phism [31] derives sufficient and necessary conditions.When
these conditions are met, the network will expand while
maintaining its functions and provides an algorithm to solve
these conditions. Net2Net, the other method, increases the
capacity of a given network by adding an identification layer
or keeping existing weights [32].

In HatchEnsemble, we adopt the second approach. Sup-
pose that both layer i and layer i + 1 are fully connected
layers. To widen layer i , we need to replace the input-side
weight matrix W (i) for layer i and the output-side weight
matrix W (i+1) for layer i + 1. If layer i has m inputs and
n outputs, and layer i + 1 has n inputs and p outputs, then
W (i) ∈ R

m×n and W (i+1) ∈ R
n×p. Hatching allows us to

replace layer i that originally had only n outputs with a layer
that has q outputs, with q > n.

First, we need a random mapping function g, which ran-
domly expands the list of ordinal numbers of n neurons
{1, 2, · · · , n} to q neurons {1, 2, · · · , q}, that satisfies

g(j) =
{
j j ≤ n
random sample from {1, 2, · · · n} j > n

(2)

Through the mapping function g(j), the first n items of the
newly generated list are directly copied from the original list,
and the nth to the qth items of the newly generated list are
randomly selected from the original list.

Then, based on the random mapping function g, the new
weight matrices U (i) and U (i+1) of these layers after the
implementation of the hatch operation are given in the fol-
lowing form:

U (i)
k, j = W (i)

k,g(j),U
(i+1)
j,h = 1

|{x | g(x) = g(j)}|W
(i+1)
g(j),h

(3)

Algorithm 1: Pseudocode of the training procedure for
our method
Input:
The number of HatchNets M , the architecture of the SeedNet
Output:
M different HatchNets

1 Initialize the SeedNet randomly
2 Use all dataset and appropriate loss function to train the SeedNet
to convergence and then save it

3 for m = 1 : M do
4 Reuse the SeedNet and perform hatch operation on it to get

the HatchNet m and its initial parameters θm
5 Use all dataset and appropriate loss function to train the

HatchNet m to convergence and then save it
6 end
7 Return M different HatchNets.

Here, the first n columns of W (i) are copied directly into
U (i). Columns n + 1 to q of U (i) are created through a ran-
dom strategy as defined in g. Each column of W (i) is copied
potentially many times. Because of this randomness, even
neural networks with the same architecture and hatching can
make their initial parameters different. Forweights inU (i+1),
wemust account for the replication by dividing the weight by
replication factor given by 1

|{x |g(x)=g(j)}| , similar to the oper-
ation on the output neurons inDropout [23], to ensure that the
output expectation is consistent with the original network.

Hatching is a process with low computational cost [31],
which is negligible compared to training or testing neural net-
works, which also dramatically reduces the time-consuming
of the entire pipeline.

Training Step 3: Training the HatchNets. Compared with
initializing from scratch and training to convergence, the
speed of further training of the HatchNets to convergence
is significantly improved. The reason is that these ensemble
networks’ initialization parameters are derived fromSeedNet

123

Complex & Intelligent Systems (2021) 7:2855–2869 2859

Fig. 3 Two different hatch processes. If the network structures of
HatchNets are the same, we call this process HatchEns A; and if the
network structures of HatchNets are different, we call this process
HatchEns B

rather than random initialization parameters. The SeedNet
has already converged in its own parameter space, so the
ensemble networks only need to continue to explore a small
part of the parameter space. Experiments have also confirmed
that HatchNets can converge to local minimums with fewer
epochs.

So far, the necessary training process is over.We can sum-
marize it as Algorithm 1.

Two different Hatchmethods

The ensemble method we propose can be divided into
HatchEnsemble A and HatchEnsemble B according to
whether the ensemblemodel’s architectures are the same.We
show it in Fig. 3. “A” represents that the model architectures
transformed from the SeedNet are the same; that is, the way
of widening is the same. Since the newly added parameters
are randomly copied from the existing parameters, this oper-
ation can still ensure the models’ diversity. “B” represents

Fig. 4 t-SNE visualization results on the final hidden features of each
individual network. The input is the test set of CIFAR-10

that the model architectures transformed from the SeedNet
are different; that is, the way of widening is different. Since
the number and value of the new parameters are different,
this operation can also ensure the diversity of models.

Improving diversity via adding noises to parameters

In our method, the newly added neuron parameters or the
newly added channel are randomly copied from the existing
parameters. Due to the randomness of replication, the initial
parameters of different HatchNets are different, increasing
the diversity among them. To further amplify this advantage,
we add Gaussian noise to the copied parameters so that the
diversity between the HatchNets is amplified. This breaks
symmetry after hatching, and it is a standard technique to
create diversity when training ensemble networks. Further,
adding noise forces the HatchNets to be in a different part of
the hypothesis space from their SeedNet.

After training by the HatchEnsemble method, each net-
work’s prediction will tend to be more diverse and further
leads to different feature distributions and decision domains
as shown in Fig. 4. Figure 4 shows the t-SNE visualization
results on each network’s final hidden features in four meth-
ods. Different colors represent different categories. We can
see that the final prediction results of multiple neural net-
works obtained byMC-Dropoutmethod are very similar. The
color distribution is roughly the same,whichmeans the diver-
sity is low. The color distribution of our proposed method is
more random, which represents the diversity is better.

Experiments

In this section, we show the superiority of our proposed
method by several experiments. We use these experiments
to answer the following questions:

123

2860 Complex & Intelligent Systems (2021) 7:2855–2869

Q1. How accurate are the predictions, and how reliable
are the uncertainty estimates of HatchEnsemble under
clean datasets compared to other baselines?

Q2. How accurate are the predictions, and how reliable are
the uncertainty estimates of HatchEnsemble under cor-
ruptional datasets compared to other baselines?

Q3. How efficient of HatchEnsemble compared with Deep
Ens?

Q4. How diverse of neural networks in the HatchEnsemble?
Q5. How does the number of ensembles affect the perfor-

mance of HatchEnsemble?

Preparation

Dataset

MNIST and FashionMNIST datasets consist of 70000 28×
28grayscale images in 10 classes,with 6000 images per class.
There are 60000 training images and 10000 test images.

CIFAR10 dataset consists of 60000 32×32 color images
in 10 classes, with 6000 images per class. There are 50000
training images and 10000 test images.

TinyImageNet dataset consists of 120000 64 × 64 color
images in 200 classes, with 600 images per class. There are
100000 training images, 10000 test images and 10000 vali-
dation images.

CIFAR10-C and TinyImageNet-C datasets consist of
19 diverse corruption types applied to validation images of
CIFAR10 and TinyImageNet. The corruptions are drawn
from four main categories—noise, blur, weather, and dig-
ital. Each corruption type has five levels of severity since
corruption can manifest itself at varying intensities. Fig-
ure 5 gives an example of the five different severity levels
for shot noise. We test networks with CIFAR10-C and
TinyImageNet-C images in our experiments, but networks
should not be trained on CIFAR10-C and TinyImageNet-C.
Networks should be trained on datasets such as CIFAR10 and
TinyImageNet. Overall, the CIFAR10-C and TinyImageNet-
C datasets consist of 95 corruptions, and all are applied to
CIFAR10 and TinyImageNet validation images for testing a
pre-existing network.

Experiment setting

In this part, we will explain our experimental setup in detail.
Our experiments are mainly divided into five tasks:

– Task1 evaluates LeNet [33] on MNIST. Model param-
eters were trained for 20 epochs. The basic LeNet
architecture applies 2 convolutional layers (5 × 5 ker-
nels of 6 and 16 filters respectively) followed by three
fully-connected layers with two hidden layer of 128 and
64 activations.

– Task2 evaluates LeNet [33] on FashionMNIST. Model
parameters were trained for 40 epochs. The basic lenet
architecture is the same as Task1.

– Task3 evaluates VGG-11 [34] on CIFAR10. Model
parameters were trained for 200 epochs. Training inputs
were randomly distorted using horizontal flips and ran-
dom crops preceded by 4-pixel padding as described in
[14].

– Task4 evaluates ResNet-18 [14] on CIFAR10. Model
parameters were trained for 200 epochs. Data augmenta-
tion operation is the same as Task3.

– Task5 evaluatesResNet-18 [14] onTinyImageNet.Model
parameters were trained for 200 epochs.

For stochastic methods like MC-Dropout, we averaged
256 sample predictions to yield a predictive distribution,
and dropout was applied before the final layer with p =
0.1/0.2/0.5. The size of the ensemble model (including the
traditional Deep Ens and the ensemble method we proposed)
was 5.

For all tasks, we use stochastic gradient descent with
a mini-batch size of 128 for MNIST, FashionMNIST and
CIFAR10 and a mini-batch size of 200 for TinyImageNet.
All weights are initialized by sampling from a standard nor-
mal distribution. Training data are randomly shuffled before
every training epoch. The initial learning rate is set to 0.01
for MNIST and FashionMNIST, 0.1 for CIFAR10 and Tiny-
ImageNet, respectively, and is divided by 10 at 45%, 67.5%
and 90% of the total number of training epochs. To train the
hatched neural networks, we change the above learning rate
to half of the original to fine-tune the newly added parame-
ters.

In consideration of extracting more features of the input
image and enhancing the model’s representation ability, our
method’s widening operation is applied to several layers
close to the input in all models. Hatch Ens A ensembles the
same model architectures and Hatch Ens B ensembles the
different model architectures.

All experiments were run on the same server, using 4
NVIDIA TITAN RTX GPUs.

Metrics

In addition to metrics that do not rely on predicted uncer-
tainty, such as classification accuracy ↑ (The arrow behind
the metric represents which direction is better.), we propose
three metrics to measure the quality of predicted uncertainty.

Negative Log Likelihood(NLL) ↓ is a standard measure of
a probabilistic model’s quality [35] and commonly used to
evaluate the quality of model uncertainty. In deep learning, it
is also called cross-entropy loss function [1]. Given a prob-
abilistic model π (Y | X) and n samples, NLL is defined as:

123

Complex & Intelligent Systems (2021) 7:2855–2869 2861

Fig. 5 Examples of CIFAR10 images corrupted by shot noise, at severities of 0 (uncorrupted image) through 5 (maximum corruption included in
CIFAR10-C)

NLL = −
n∑

i=1

log (π (yi | xi)) (4)

Brier Score(BS) ↓ is a proper score function that measures
the accuracy of probabilistic predictions [36]. The drawback
of the Brier score is insensitive to predicted probabilities
associated with in/frequent events. It is obtained by calculat-
ing themean square error of the true label yi and the predicted
probability pi . The smaller the Brier score, the better the cal-
ibration effect. That is,

BS = 1

N

N∑
i=1

(yi − pi)
2 (5)

Expected Calibration Error(ECE) ↓ measures the cor-
respondence between predicted probabilities and empirical
accuracy [37]. To calculate ECE, we group model predic-
tions into S interval bins based on the predictive confidence
(each bin has size 1

S). Let Bs denote the set of samples
whose predictive probability falls into the interval

(s−1
S , s

S

]
for s ∈ {1, . . . S}. Let acc(Bs) and conf(Bs) be the averaged
accuracy and averaged confidence of the examples in the bin
Bs . The ECE can be defined as the following:

ECE =
S∑

s=1

|Bs |
n

|acc (Bs) − conf (Bs)| , (6)

where n is the number of samples.

Baselines

We compare our methods (i) Hatch Ens A: ensemble Hatch-
Nets of the same architecture and (ii)Hatch Ens B: ensemble
HatchNets of the different architectures, to (a) Vanilla:
maximum softmax probability of single model [38], (b)MC-
Dropout: Monte-Carlo Dropout with rate p [12], (c) Deep
Ens: Ensembles of M networks trained independently on the
entire dataset using random initialization (we set M = 5 in
experiments below) [10].

Performance of HatchEnsemble under clean
datasets

In this part, we focus on Question 1. In the two methods we
propose, the model architectures are broadened according to
the following rules:

(i) LeNet: (a) Hatch Ens A(5): the number of channels
in the first two layers of five models are all changed
from {1/3-6-16} to {1/3-9-19} (1/3 represent the input
channels of mnist and cifar10, respectively). (b) Hatch
Ens B(5): the number of channels in the first two lay-
ers of five models are changed from {1/3-6-16} to
{1/3-7-17}, {1/3-8-18}, {1/3-9-19}, {1/3-10-20}, {1/3-
11-21}, respectively.

(ii) VGG-11: (a) Hatch Ens A(5): the number of channels
in the first two layers of five models are all changed
from {3-64-128} to {3-70-134}. (b) Hatch Ens B(5):
the number of channels in the first two layers of five
models are changed from {3-64-128} to {3-66-130},
{3-68-132}, {3-70-134}, {3-72-136} and {3-74-138},
respectively.

(iii) ResNet-18: (a)Hatch Ens A(5): the number of channels
in the first two BasicBlocks of first block of five models
are all changed from {64} to {70}. (b) Hatch Ens B(5):
the number of channels in the two BasicBlocks of first
block of five models are changed from {64} to {66},
{68}, {70}, {72} and {74}, respectively.

The reason for marking the first two results with the best
performance for each metric in Table 1 is that we do not
necessarily need our proposed method to surpass Deep Ens
on all tasks completely. What we expect is that the effect
is comparable to Deep Ens. From the colored numbers in
Table 1, we can see that the two proposed methods have
good performance. On the tasks where Deep Ens achieve the
best performance, the methods we proposed follow closely
behind and are only slightly worse. Our proposed method
can surpass it to get the best performance on the tasks where
Deep Ens failed to achieve the best performance. This proves
that our methods are effective.

123

2862 Complex & Intelligent Systems (2021) 7:2855–2869

Table 1 Comparison over MNIST, Fashion MNIST, CIFAR-10 and TinyImageNet with LeNet, VGG-11 and ResNet-18 models

The red numbers represent each task’s optimal value, and the blue numbers represent each task’s suboptimal value

Performance of HatchEnsemble under corrupted
datasets

In this part, we focus on Question 2. The current neural
networks are too confident about their prediction results, pro-
posed and confirmed in Ref. [6]. This feature can lead to two
bad results. The first is that the neural network will produce
a very confident result for data that it has never seen before,
even if it is wrong. The second is that if the neural network is
too confident about its output, it will think that everything is
sure, which will lead to low quality of the estimated uncer-
tainty that cannot be used as a basis for decision-making.
Therefore, it is essential to evaluate the model’s calibration
metrics on out-of-distribution samples for uncertainty esti-
mation.

Figures 6 and 7 summarize the acc, nll, bs and ece for
CIFAR10-C and TinyImageNet-C in Task4 and Task5 across
all 95 combinations of corruptions and intensities from Ref.
[39]. We show the mean on the test set for each method
and summarize the results on each intensity of shift with
a box plot. Each box shows the quartiles summarizing the
results across all 19 types of shift, while the error bars indi-
cate the min and max across different shift types. A similar
measurement can be found inRef. [11].We find that all meth-
ods improve upon the single model. But MC-Dropout is still
much worse than the explicit ensemble methods. This is also
the reason why a lot of work recently started to point out
the problems of MC-Dropout [40]. Although it is simple and
easy to use, the effect is mediocre.

123

Complex & Intelligent Systems (2021) 7:2855–2869 2863

Fig. 6 Uncertaintymetrics under distributional shift: a detailed comparison of accuracy, brier score, negative log likelihood and expected calibration
error under all types of corruptions on CIFAR10 with Task4

Comparing the three explicit ensemble methods, we find
the mean of four metrics is similar for all ensemble methods,
whereas the twomethodswe proposed showmore robustness
than Deep Ens as it typically leads to smaller minimums. In
Fig. 6, the greater the noise intensity, the more pronounced
the advantage. In Fig. 7, the advantage of the ECE is unde-
niable. This advantage is not only reflected in the accuracy

of prediction but also the calibration of uncertainty. In the
internal comparison of the two methods we proposed, Hatch
Ens A is slightly better than Hatch Ens B. From another
perspective, the length of our proposed method’s box dia-
grams is shorter, reflecting that our ensemble method is
not so sensitive to various types of noise and has good
robustness.

123

2864 Complex & Intelligent Systems (2021) 7:2855–2869

Fig. 7 Uncertaintymetrics under distributional shift: a detailed comparison of accuracy, brier score, negative log likelihood and expected calibration
error under all types of corruptions on TinyImageNet with Task5

Table 2 Computational costs on
CIFAR10 on VGG-11 and
ResNet-18

Vanilla Deep Ens Hatch Ens A Hatch Ens B

VGG-11(size=5) 1 5.25 3.7 3.79

ResNet-18(size=5) 1 5.24 4.17 4.05

ResNet-18(size=10) 1 10.15 7.41 6.97

Numbers under each method are relative to vanilla neural network. Numbers in () are the ensemble size

123

Complex & Intelligent Systems (2021) 7:2855–2869 2865

Fig. 8 Convergence contrast of Deep Ensemble and Hatch Ensemble. Each curve represents the convergence of the corresponding model in the
corresponding method. The ensmeble size here is 5

Fig. 9 HatchEnsemble trains ensemble networks significantly faster
after having trained the SeedNet (shown in black)

Reducing training time cost

In this part, we focus on Question 3. In order to analyze
the convergence of hatching more intuitively, we have drawn
the convergence curve of the two methods when the ensem-
ble size is 5. As shown in Fig. 8, because our method has
learned the prior knowledge of SeedNet, when HatchNets
are widened and then trained again, the convergence speed
will be much faster. Moreover, they will reach the conver-
gence value of each model in the standard Deep Ensemble
earlier. This is the main reason for the high efficiency of
HatchEnsemble.

Whether it is Deep Ens or Hatch Ens, all time consump-
tion is spent on training the model. The size of the model is
almost the same, and there are no additional algorithms, so
the time consumed by each epoch of the two methods is the
same. Sowe can equate the training epochs to time consump-
tion. To better understand the time cost of the entire training
process and how our method saves time, Fig. 9 provides the

time breakdown per ensemble network. Because the exper-
imental environment is the same, we count the number of
training epochs instead of directly counting the training time.
We show this with ensembling of VGG-11 and ResNet-18
onCIFAR10 and compareHatch Enswith individual training
approaches Deep Ens. While other approaches spend signif-
icant time training each network, Hatch Ens can train these
networks very quickly after having trained the core SeedNet
(the black part in the stacked bar in Fig. 9). Although our
method needs to train one more model, it generally takes
less time. We observe a similar time breakdown across all
tasks in our experiments.

Specifically, for Hatch Ens, when the test accuracy on
the validation set reaches the level of Deep Ens, we stop
training and record the epoch at this time. We find that
our proposed method reduces the time required to achieve
the same effect as Deep Ens. Moreover, in the performance
evaluation of “Performance of HatchEnsemble under clean
datasets” and “Performance of HatchEnsemble under cor-
rupted datasets” sections, our method is the same as Deep
Ens and even better than it on some tasks. The combination
of the two shows that our method has advantages in time and
does not decrease in performance. Figure 9 shows that the
two methods we proposed reduce about a complete training
cycle in our experimental setting. From another perspective,
our method trains sixmodels faster than training five individ-
ual models by one entire training cycle. As shown in Table 2,
we use the multiple relationship to show the advantage in
time cost. And with the increase in ensemble size, the advan-
tage in time cost will be magnified. This means that the more
expensive the Deep Ensemble is, the more obvious the effi-
ciency of HatchEnsemble will be improved.

123

2866 Complex & Intelligent Systems (2021) 7:2855–2869

Fig. 10 Using Jensen–Shannon Divergence (JSD) to characterize the diversity of ResNet-18 models on CIFAR10 under the four methods

Diversity of model predictions

In this part, we focus on Question 4. We analyze how
HatchEnsemble produces diverse ensembles compared with
Deep Ensemble [10] and MC-Dropout [12].

Our goal is to observe how different training processes
affect the degree of correlation between each ensemblemodel
member. MC-Dropout can be seen as an implicit ensemble
method here. To do this, we train each of the five models
in Task4 under Deep Ens, MC-Dropout, Hatch Ens A, and
Hatch Ens B. Letting Yi j be the softmax output of the correct
model on test sample j using model i , so we can think of it as
a probability distribution, we then estimate Jensen-Shannon
Divergence (JSD) between Yi j and Yi ′ j for each i , i ′ and j .
To get an average value for a model, instead of one for each
test example, we then average across all test examples, i.e.

JSD (Yi ,Yi ′) = 1

n

n∑
j=1

JSD
(
Yi j ,Yi ′ j

)
(7)

where JSD
(
Yi j ,Yi ′ j

)
can be specifically defined as

JSD(Yi j‖Yi ′ j) = 1

2
KL(Yi j‖Yi j + Yi ′ j

2
)

+1

2
KL(Yi ′ j‖Yi j + Yi ′ j

2
) (8)

The reason why not directly choose to use KL diver-
gence to measure the distance between distributions is that
KL divergence is not symmetrical, resulting in two different
values for the same two models. So we choose its vari-
ant Jensen–Shannon Divergence to measure the diversity
between models.

Figure 10 shows the results. The value corresponding
to the i th row and i ′th column in each picture means the
JSD of model i and model i ′. Because JSD is symmetrical,
the matrices in the figure are all symmetrical. Their Mean
Jensen–Shannon Divergences (Mean-JSD) andMax Jensen–
Shannon Divergences (Max-JSD) are shown in Table 3. The
formula of Mean-JSD and Max-JSD are defined as follows:

Mean-JSD = 1

10

4∑
i=1

5∑
i ′=i+1

JSD (Yi ,Yi ′) (9)

Max-JSD = Max (JSD (Yi ,Yi ′)) (10)

As shown in Table 3, the diversity of Deep Ens is the best
because the value in its matrix is the largest, followed by
Hatch Ens B, then Hatch Ens A, and finally MC-Dropout.
In MC-Dropout, the bigger the value of p, the greater the

123

Complex & Intelligent Systems (2021) 7:2855–2869 2867

Table 3 Using Mean Jensen–Shannon Divergence (Mean-JSD) and
Max Jensen–Shannon Divergence (Max-JSD) to characterize the diver-
sity of models under the four methods in Fig. 10

Mean-JSD Max-JSD

Deep Ensemble 0.01950 0.02067

Hatch Ens B 0.01880 0.01952

Hatch Ens A 0.01859 0.01974

MC-Dropout(p=0.5) 0.00275 0.00322

MC-Dropout(p=0.2) 0.00121 0.00184

MC-Dropout(p=0.1) 0.00078 0.00134

diversity betweenmodels. Although themethodwe proposed
does not surpass Deep Ens in terms of diversity, they are not
much different, and Hatch Ens A and Hatch Ens B are only
slightly behind it. Combining the performance and time cost
mentioned in the previous section, our method can achieve
a good performance (equal or exceed) in a shorter period of
time, and the diversity of models does not decrease much.
On the whole, the practicality of our method exceeds the
baseline.

The influence of ensemble size on prediction
performance and uncertainty quality

In this part, we focus on Question 5. To get the influence
of ensemble size on prediction performance and uncertainty
quality, we change the ensemble size from 1 to 10 in Task4.

In the two methods we propose, the ResNet-18 architec-
tures are broadened according to the following rules: (a)Ours
A: the number of channels in the first two BasicBlocks of first
block of five models are all changed from {64} to {70}. (b)
Ours B: the number of channels in the two BasicBlocks of
first block of five models are changed from {64} to {65}-
{74}. If we want to ensemble M models, then take the first
M from this model sequence for testing.

It can be seen from Table 4 that with the increase in the
number of an ensemble, the accuracy and the quality of pre-
dictive uncertainty of the three methods have significantly
improved. Lobacheva et al. [41] interpret this phenomenon
as the power law in deep ensemble. Although our methods
are still slightly worse than Deep Ens, they can compensate
for this disadvantage by ensembling more models than Deep
Ens without requiring more time consumption. From Table 2
we can calculate that the results marked with the same color
in Table 4 take the same time. For example, the time cost of
training 4models byDeep Ens, 5models byHatch EnsA and
6 models by Hatch Ens B is the same and the result obtained
by ensembling 6 models under Hatch Ens B is better than the
result obtained by ensembling 4 models under Deep Ens.

In general, when the application requirements are high
efficiency, our method can be well applied; when the appli-
cation requirements are high performance, our method can
also achieve the goal by ensemblingmoremodels in the same
time as Deep Ensemble.

Conclusions and future work

We proposed an ensemble method named HatchEnsemble
for quantifying uncertainty in deep neural networks. Our
method can quantify the uncertainty with good quality more
efficiently compared with existing non-Bayesian ensemble
methods. The core intuition behind HatchEnsemble is to
reduce the number of epochs needed to train an ensemble
by using the knowledge learned by SeedNet and training for
it once. Through comprehensive experiments, we demon-
strate that HatchEnsemble can give competitive predictive
accuracy with well-calibrated uncertainty in a shorter time
compared with Deep Ensemble.

There are several avenues for future work. One of them
is how to use NAS technology to search for possible hatch
methods automatically. Diversity is another problem wor-
thy of being studied in ensemble learning, for it is strongly

Table 4 Results on ResNet-18 over CIFAR-10: Three ensemble methods lead to higher classification accuracy and better predictive uncertainty as
evidenced by lower NLL, BS and ECE during the ensemble size M increasing

The numbers marked with the same color mean that it takes the same time to get the results

123

2868 Complex & Intelligent Systems (2021) 7:2855–2869

related to the performance of ensemble. Finally, reducing the
memory costs while retaining the same performance under
dataset shift would also be a key challenge.

Acknowledgements This work was supported in part by the National
Natural Science Foundation of China (No.11725211, 52005505, 6200
1502) and the Postgraduate Scientific Research Innovation Project of
Hunan Province (CX20200006).

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature
521(7553):436–444

2. Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classifi-
cation with deep convolutional neural networks. Commun ACM
60(6):84–90

3. Hinton G, Deng L, Yu D, Dahl GE, Ar Mohamed, Jaitly N, Senior
A, Vanhoucke V, Nguyen P, Sainath TN et al (2012) Deep neural
networks for acoustic modeling in speech recognition: the shared
views of four research groups. IEEE Signal ProcessMag 29(6):82–
97

4. Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient esti-
mation of word representations in vector space. arXiv preprint
arXiv:1301.3781

5. Alipanahi B, Delong A, Weirauch MT, Frey BJ (2015) Predicting
the sequence specificities of dna-and rna-binding proteins by deep
learning. Nat Biotechnol 33(8):831–838

6. Guo C, Pleiss G, Sun Y, Weinberger KQ (2017) On calibration of
modern neural networks. arXiv preprint arXiv:1706.0459

7. Nguyen A, Yosinski J, Clune J (2015) Deep neural networks
are easily fooled: High confidence predictions for unrecognizable
images. In: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp 427–436

8. Denker JS, LeCun Y (1991) Transforming neural-net output levels
to probability distributions. In: Advances in neural information
processing systems, pp 853–859

9. MacKay DJ (1992) A practical bayesian framework for backprop-
agation networks. Neural Comput 4(3):448–472

10. Lakshminarayanan B, Pritzel A, Blundell C (2017) Simple and
scalable predictive uncertainty estimation using deep ensembles.
Adv Neural Inf Process Syst 30:6402–6413

11. Ovadia Y, Fertig E, Ren J, Nado Z, Sculley D, Nowozin S, Dillon J,
Lakshminarayanan B, Snoek J (2019) Can you trust your model’s

uncertainty? evaluating predictive uncertainty under dataset shift.
In: Advances in neural information processing systems, pp 13991–
14002

12. Gal Y, Ghahramani Z (2016) Dropout as a bayesian approximation:
Representing model uncertainty in deep learning. In: International
conference on machine learning, pp 1050–1059

13. Platt J et al (1999) Probabilistic outputs for support vectormachines
and comparisons to regularized likelihood methods. Adv Large
Margin Classif 10(3):61–74

14. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for
image recognition. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp 770–778

15. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017)
Densely connected convolutional networks. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp
4700–4708

16. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan
D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolu-
tions. In: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp 1–9

17. Bernardo JM, Smith AF (2009) Bayesian theory, vol 405. Wiley,
Hoboken

18. MacKay DJ (1992) Bayesian methods for adaptive models. PhD
thesis, California Institute of Technology

19. Neal RM (2012) Bayesian learning for neural networks, vol 118.
Springer Science & Business Media, Berlin

20. Blundell C, Cornebise J, Kavukcuoglu K, Wierstra D (2015)
Weight uncertainty in neural networks. arXiv preprint
arXiv:1505.05424

21. Graves A (2011) Practical variational inference for neural net-
works. Adv Neural Inf Process Syst 24:2348–2356

22. Li Y, Hernández-Lobato JM, Turner RE (2015) Stochastic expec-
tation propagation. In: Advances in neural information processing
systems, pp 2323–2331

23. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov
R (2014) Dropout: a simple way to prevent neural networks from
overfitting. J Mach Learn Res 15(1):1929–1958

24. KingmaDP, Salimans T,WellingM (2015) Variational dropout and
the local reparameterization trick. In: Advances in neural informa-
tion processing systems, pp 2575–2583

25. Maeda Si (2014) A bayesian encourages dropout. arXiv preprint
arXiv:1412.7003

26. Gustafsson FK,DanelljanM, SchonTB (2020) Evaluating scalable
bayesian deep learning methods for robust computer vision. In:
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition workshops, pp 318–319

27. Wen Y, Tran D, Ba J (2020) Batchensemble: an alternative
approach to efficient ensemble and lifelong learning. arXiv preprint
arXiv:2002.06715

28. Lee S, Purushwalkam S, Cogswell M, Crandall D, Batra D (2015)
Why m heads are better than one: Training a diverse ensemble of
deep networks. arXiv preprint arXiv:1511.06314

29. Asif U, Tang J, Harrer S (2019) Ensemble knowledge distilla-
tion for learning improved and efficient networks. arXiv preprint
arXiv:1909.08097

30. Huang G, Li Y, Pleiss G, Liu Z, Hopcroft JE, Weinberger KQ
(2017) Snapshot ensembles: Train 1, get m for free. arXiv preprint
arXiv:1704.00109

31. Wei T, Wang C, Rui Y, Chen CW (2016) Network morphism. In:
International conference on machine learning, pp 564–572

32. ChenT,Goodfellow I, Shlens J (2015)Net2net: Accelerating learn-
ing via knowledge transfer. arXiv preprint arXiv:1511.05641

33. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based
learning applied to document recognition. Proc IEEE86(11):2278–
2324

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1706.0459
http://arxiv.org/abs/1505.05424
http://arxiv.org/abs/1412.7003
http://arxiv.org/abs/2002.06715
http://arxiv.org/abs/1511.06314
http://arxiv.org/abs/1909.08097
http://arxiv.org/abs/1704.00109
http://arxiv.org/abs/1511.05641

Complex & Intelligent Systems (2021) 7:2855–2869 2869

34. Simonyan K, Zisserman A (2014) Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556

35. Hastie T, Tibshirani R, Friedman J (2009) The elements of sta-
tistical learning: data mining, inference, and prediction. Springer
Science & Business Media, Berlin

36. Brier GW (1950) Verification of forecasts expressed in terms of
probability. Mon Weather Rev 78(1):1–3

37. Naeini MP, Cooper G, Hauskrecht M (2015) Obtaining well cali-
brated probabilities using bayesian binning. In: Proceedings of the
AAAI conference on artificial intelligence, vol 29

38. Hendrycks D, Gimpel K (2016) A baseline for detecting misclas-
sified and out-of-distribution examples in neural networks. arXiv
preprint arXiv:1610.02136

39. Hendrycks D, Dietterich T (2019) Benchmarking neural net-
work robustness to common corruptions and perturbations. arXiv
preprint arXiv:1903.12261

40. Verdoja F, Kyrki V (2020) Notes on the behavior of mc dropout.
arXiv preprint arXiv:2008.02627

41. LobachevaE,ChirkovaN,KodryanM,VetrovDP (2020)On power
laws in deep ensembles. Adv Neural Inf Process Syst 33:2375–
2385

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1610.02136
http://arxiv.org/abs/1903.12261
http://arxiv.org/abs/2008.02627

	HatchEnsemble: an efficient and practical uncertainty quantification method for deep neural networks
	Abstract
	Introduction
	Related work
	Uncertainty quantification method based on Bayesian neural networks
	Uncertainty quantification method based on non-Bayesian neural networks

	Method
	Definition: SeedNet and HatchNet
	Training procedure of HatchEnsemble
	Two different Hatch methods
	Improving diversity via adding noises to parameters

	Experiments
	Preparation
	Dataset
	Experiment setting
	Metrics
	Baselines

	Performance of HatchEnsemble under clean datasets
	Performance of HatchEnsemble under corrupted datasets
	Reducing training time cost
	Diversity of model predictions
	The influence of ensemble size on prediction performance and uncertainty quality

	Conclusions and future work
	Acknowledgements
	References

