
Vol.:(0123456789)1 3

Complex & Intelligent Systems (2021) 7:2797–2818 
https://doi.org/10.1007/s40747-021-00457-z

SURVEY AND STATE OF THE ART

Remote sensing techniques: mapping and monitoring of mangrove 
ecosystem—a review

Khushbu Maurya1   · Seema Mahajan1 · Nilima Chaube2

Received: 10 December 2020 / Accepted: 3 July 2021 / Published online: 17 July 2021 
© The Author(s) 2021

Abstract
Mangrove forests are considered to be the most productive ecosystem yet vanishing rapidly over the world. They are mostly 
found in the intertidal zone and sheltered by the seacoast. Mangroves have potential socio-economic benefits such as pro-
tecting the shoreline from storm and soil erosion, flood and flow control, acting as a carbon sink, provides a fertile breeding 
ground for marine species and fauna. It also acts as a source of income by providing various forest products. Restoration 
and conservation of mangrove forests remain a big challenge due to the large and inaccessible areas covered by mangroves 
forests which makes field assessment difficult and time-consuming. Remote sensing along with various digital image clas-
sification approaches seem to be promising in providing better and accurate results in mapping and monitoring the mangroves 
ecosystem. This review paper aims to provide a comprehensive summary of the work undertaken, and addresses various 
remote sensing techniques applied for mapping and monitoring of the mangrove ecosystem, and summarize their potential 
and limitation. For that various digital image classification techniques are analyzed and compared based on the type of 
image used with its spectral resolution, spatial resolution, and other related image features along with the accuracy of the 
classification to derive specific class information related to mangroves. The digital image classification techniques used for 
mangrove mapping and monitoring in various studies can be classified into pixel-based, object-based, and knowledge-based 
classifiers. The various satellite image data analyzed are ranged from light detection and ranging (LiDAR), hyperspectral 
and multispectral optical imagery, synthetic aperture radar (SAR), and aerial imagery. Supervised state of the art machine 
learning/deep machine learning algorithms which use both pixel-based and object-based approaches and can be combined 
with the knowledge-based approach are widely used for classification purpose, due to the recent development and evolution 
in these techniques. There is a huge future scope to study the performance of these classification techniques in combination 
with various high spatial and spectral resolution optical imageries, SAR and LiDAR, and also with multi-sensor, multireso-
lution, and temporal data.
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Introduction

Mangroves are a varied group of salt-tolerant plant com-
munities of tropical and subtropical intertidal areas of the 
globe and act as a natural barrier towards ocean dynamics 
alongside the shoreline. It occurs especially between latitude 
24.0 N and 38.0 S. The total mangroves cover within the 

world is 15 million ha which is 1% of the tropical forests of 
the globe spread over 123 countries and territories within 
the tropical and sub-tropical areas and they are found to be 
rapidly vanishing in many areas.

The mangrove ecosystem has incredible relevance eco-
logically and economically. Therefore, it is an urgent need 
for conservation and restoration of the mangrove ecosys-
tem with up-to-date information, planning, and manage-
ment for it. Typical mangrove habitats may temporarily 
be submerged due to tides and many times they are found 
to be located in remote regions. So, the traditional way 
of field surveys and monitoring methods are time and 
cost-consuming. In the view of the scenario, time and 
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cost-effective mangroves mapping approaches are required 
which can be made available through remote sensing.

Remote sensing is an efficient method of mapping and 
monitoring mangroves, due to their visible spectral and 
spatial signatures which are effortlessly detectable on the 
satellite images. The mangrove forest covers prolonged 
over a large area and inaccessible for field surveys can be 
assessed through remote sensing techniques. Satellite data 
analysis along with the geographical information system 
(GIS) is the handiest manner of regularly monitoring the 
mangrove ecosystem. Furthermore, the application of dif-
ferent classification approaches on remote sensing data 
acquired through various sensors is useful to extract vari-
ous parameters of the mangrove ecosystem, such as Tree 
height, canopy height, above-ground biomass, species 
structure and types, health of mangroves, leaf area index, 
leaf chlorophyll content, etc.

With the evolution of satellite imageries and various 
classification techniques, there is huge scope for the avail-
ability of various datasets along with a variety of spectral 
and spatial characteristics. Which needs different treat-
ment in the context of classifying and extracting differ-
ent mangroves-related parameters. Therefore, the choice 
classification approach to extract data from the available 
satellite image data plays a major role in the evaluation 
of the mangrove ecosystem. Each classification technique 
has its characteristics and can be used for a variety of tasks 
while applying to the mangrove ecosystem for mapping, 
monitoring, and parameters extraction. In this review, we 
are focusing on how classification techniques play their 
role while applying on and combining them with vari-
ous types of satellite images and sensors to monitor the 
mangrove ecosystem and to extract parameters. This study 
aims to find the best possible combination of classifica-
tion technique, type of image used, and type of sensor 
used to perform various tasks such as LULC mapping, 
Change Detection, mangroves biophysical and biochemi-
cal parameter extraction and assessment, mangroves health 
assessment, mangroves spectral signature identification 
and species discrimination.

There are plenty of research papers available from vari-
ous geographical locations all over the globe and have used 
a variety of satellite images along with different sensors and 
classification techniques to map and monitor the mangrove 
ecosystem and to extract or estimate the mangrove-related 
parameters. Here we have studied few key studies among 
them based on the classification approach used to perform 
specific tasks, to find the best possible combination of clas-
sification approach, type of image used, type of sensor used, 
and the task performed. Based on this the present study 
summarizes the above key studies, keeping in mind that 
the resultant possible combination can be useful for future 
research to decide,

	 I.	 With the availability of specific satellite image 
data and sensors, which is the best possible classi-
fication approach or the combination classification 
approaches to perform a specific task related to man-
groves.

	 II.	 In contrast, suppose specific tasks such as mangroves-
related parameters extraction need to be carried out 
then which is the best possible combination of clas-
sification technique along with satellite image data 
and sensor as per the availability of dataset for that 
geographical location.

The main objective of this review is to:

	 I.	 Compare the various classification techniques applied 
for mapping and monitoring of mangroves along with 
the satellite image used and sensor used.

	 II.	 Identify the best combination of classifiers, sensors, 
and the type of satellite image used to perform vari-
ous tasks on mangroves while mapping, monitoring, 
and extracting mangroves parameters.

	 III.	 Identify the limitation and gaps of current studies for 
future scope.

Background of the study

Remote sensing is the technique of observing objects from 
a distant place without being in direct contact with the 
object [58]. It is a procedure of observing the physical char-
acteristics of an area by measuring reflected and emitted 
radiation at a distance mostly by satellite. There are vari-
ous approaches to measure the extent of energy reflected, 
absorbed, and images with appropriate spatial and spectral 
resolution. A wide variety of spectral information extraction 
techniques are also available and vary based on the type of 
data and the use of data.

The mangroves communities are mainly differentiated 
by their textural and spectral characteristics of the canopy 
and leaves [59]. These features have a structural appear-
ance, considered to be homogeneous or heterogeneous 
which depends upon several factors, such as the com-
position of species, pattern distribution, height, growth 
density. Mangroves mapping, monitoring, and parameter 
extraction play a major role in obtaining necessary infor-
mation on geomorphic and environmental conditions [60]. 
However, there are certain challenges in assessing man-
groves are needed to be resolved by using remotes sensing, 
such as mangroves are found to be nearby coastal regions, 
so difficult for field access and sometimes submerged in 
water, furthermore it is difficult to identify individual trees 
if their canopies are smaller than the resolution of the 
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image if they are found in mixed communities and if they 
are dense that is species are closely related with identical 
spectral reflectance.

Remote sensing image analysis is a very important but 
challenging task however, digital image classification pro-
vides a variety of approaches for an image analysis that 
can be used in combination to extract and analyze vari-
ous spectral, spatial, and textural features. The general-
ized flow model for mangrove mapping and monitoring 
is shown in Fig. 1. Here we are mainly focused on clas-
sification and the main goal of digital image classifica-
tion is to label the pixels with meaningful information of 
the real world by processing remote sensing image data. 
These classification approaches analyze the image and 
place each pixel into a specific category, which is used 
to derive information of various land features or to group 

related features and to create a vegetation map, land use 
land cover (LULC) map. The classification accuracy of 
any classification approach is based mainly on:

1.	 Spatial and spectral features of image:
	   Based on spectral and spatial features the classifica-

tion approaches are categorized into main two categories 
which are:

(a)	 Pixel-based classifiers (classification based on 
spectral signature and reflectance characteristics)

	   A pixel-based classification is a traditional 
approach where each pixel is analyzed based on its 
spectral characteristics and reflectance. The pixel 
is a basic measure for satellite images so these 
methods aim to analyze the pixel values in an 
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Fig. 1   A generalized flow model for mangrove mapping and monitoring using various digital image classification approaches and remote sens-
ing image data
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image to assign every image pixel to a class based 
on its spectral characteristic, which is in general 
known as spectral pattern recognition. The main 
objective is these methods is to assign all pixels 
in the image to classify land cover classes such as 
land, water, forest. The number and type of classes 
assigned may vary as per the classification method 
used.

	   The pixel-based techniques work by defining a feature 
space that classifies pixels to various classes by creat-
ing a scatter plot of spectral values for two bands at a 
time for all pixel values. Although the features space of 
an image can have several dimensions, considering one 
band for each dimension while classifying an image. It is 
difficult to view all bands together at a time, so possible 
combinations are two bands plotted separately.

(b)	 Object-based classifiers(Multiresolution segmentation 
to delineate the object)

	   In contrast to pixel-based classification which is 
solely based on the spectral characteristics of a pixel, 
Object-based classification uses both spectral and 
spatial information for classification purposes. In this 
method set of pixels analyzed based on similar spectral 
characteristics are called objects. The spectral charac-
teristics of an object can vary from size, shape, and tex-
ture and to the context of the neighboring pixel value. 
Object-based classification methods were considered 
to be newer as compare to traditional pixel-based clas-
sification techniques.

	   The main goal of this classification to replicate tra-
ditional visual interpretation which is done by humans. 
This technique first applies segmentation to an image 
which broke the image into different objects and then 
based on features different objects can be classified. 
Each object segment contains multiple pixels and is 
identical to real-world features. Various parameters are 
taken into consideration while doing the classification 
process. The most important is the object scale which 
corresponds to the numbers of pixels that need to be 
there in a single group to be differentiated by segment 
or object.

2.	 Type of learning:
	   Both methods can further be classified in unsuper-

vised Classification and Supervised Classification based 
on the learning technique used for training. Learning 
technique defines the relationship between the data and 
the information classes and can be categorized as fol-
lows:

(a)	 Supervised classification
	   In this classification, learning happens through 

analyzing the pixel information in small sets, 

which can be selected through human analysts 
with prior knowledge or based on the map data. 
These techniques learn through various character-
istics of an object and classify various Land cover 
classes for remote sensing images.

	   The classification significantly relies on domain 
knowledge or the expertise of an analyst through 
which the relationship between different data and 
classes can be established.

	   The resultant classification can further be vali-
dated through field or ground truth data and the 
classification accuracy can be evaluated.

(b)	 Unsupervised classification
	   Unsupervised classification is helpful when the 

prior knowledge of field data is unavailable or in 
absence of an experienced analyst. In this method, 
data can be analyzed by clustering a similar set 
of data based on some statistical or mathemati-
cal relationship. Therefore, this method is ideally 
knowns as learning without a teacher.

	   To identify various classes clustering algo-
rithms are used to analyze the relationship 
between different data and classes in the unavail-
ability of training data.

	   In most cases, unsupervised classification is 
mainly used do a preliminary analysis of data 
before applying supervised classification

	   Supervised classification algorithms outperform 
unsupervised classification when good quality and 
amount of training data are available.

	   The classification accuracy relies on spec-
tral, spatial, and textural features extracted from 
the image data along with the type of learning 
used. Therefore, it is needed to study various 
digital image classification approaches applied 
on past studies of the mangrove ecosystem, that 
will be helpful in the future to select the appro-
priate combination of a classification technique 
and type image data with sensor to be applied on 
mangroves to perform a specific task related to 
mangroves mapping monitoring and parameters 
extraction.

	   The digital image classification techniques for 
mangroves are based on direct object delineation 
i.e. object-oriented, by analyzing pixel character-
istics i.e., pixel-based or subpixel-based, and by 
providing explicit rules along with ancillary data 
i.e., knowledge-based is categorized and shown 
in Fig. 2 along with supervised and unsupervised 
learning. Each classification technique targets dif-
ferently on the spatial and spectral characteristics 
of the image to classify the exact object and based 
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on these characteristics of data provided classifi-
cation accuracy may differ.

	   In the present study, the various classification 
approaches used for mangrove ecosystem map-
ping, monitoring, and extracting mangroves-
related parameters are studied and analyzed 
considering pixel-based classification, knowledge-
based and object-based classification provided 
with supervised and unsupervised learning for 
the training dataset. Along with that, each clas-
sification approach is studied based on the type 
of image and sensor used and the task performed 
along with the accuracy of the task performed. 
Digital image classification approaches for the 
mangrove ecosystem using remote sensing.

	   There are a significantly large number of 
research studies available that have used various 
classification approaches for mangroves mapping, 
monitoring, and parameters extraction. This sec-
tion reviews key studies on mangroves mapping 

approaches based on digital image classification 
techniques along with various remotely sensed 
image and sensor data used. Furthermore, the 
hybrid techniques using multiple classification 
approaches together and using multi-sensor data 
are also studied and analyzed. The main goal is 
to find the best possible combination of a classi-
fication approach to perform a specific task while 
using it with various types of satellite images and 
sensors and vice versa. Here we also focus on the 
advantages, disadvantages, and comparison of dif-
ferent classification techniques.

Pixel‑based unsupervised classifiers

In the following subsections, pixel-based classification tech-
niques used for mangroves mapping and parameter extrac-
tion are explored through various studies.

(a)	 Vegetation Index-based techniques (Vegetation Indices)
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Fig. 2   Digital image classification approaches for the mangrove ecosystem using remote sensing
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	   Index-based techniques are based on various vegeta-
tion indices obtained from the remotely sensed image. 
These techniques provide an effective classification 
for vegetation cover and can differentiate vegetation 
from other land cover classes. There is a significant 
amount of research study available for mangroves in 
which these techniques are used, few key studies are 
mentioned in Table 1. The various research shows that 
these techniques are compatible with different satellite 
images and sensors such as multispectral and hyper-
spectral images, as these can be combined with other 
digital image classification techniques for improved 
performance.

	   One of the most favored vegetation monitoring tech-
niques, including mangroves forests, is the Normalized 
Difference Vegetation Index (NDVI) [13]. Vegetation 
indices (VI) are a highly used method for estimating 
land cover variations among different vegetation. hence 
useful for mangroves too. Furthermore, High spatial 
resolution imagery can directly delineate vegetation 
attributes. The key studies for mangroves using this 
approach are listed in Table 1. All these vegetation 
indices are based on a mathematical expression which 
is various spectral combinations, sensors, platforms, 

and resolutions used, therefore each one is used for a 
specific purpose and should carefully be decided based 
on the application requirement with appropriate valida-
tion tools and ground truth data.

Advantages:

•	 Calculation of simple vegetation indices combining 
NIR and infrared band can significantly improve the 
detection of green vegetation which can be used to 
classify mangroves area from Non-mangroves area.

•	 Each VI has its specific expression of green vegeta-
tion which can be used to extract various biophysical 
parameters of mangroves such as leaf chlorophyll 
concentration (CC) [34], nitrogen concentration. 
Furthermore, these parameters can be analyzed and 
used for the health assessment of mangroves.

•	 The narrow-band vegetation index is also used to 
predict nitrogen concentrations outperformed by 
multivariate analyses [35]

•	 One of the most widely used methods for Land cov-
ers land use mapping.

•	 Can be combined with other supervised and unsuper-
vised approaches for better accuracy and validation 
purpose.

Table 1   Vegetation Index based techniques

Technique used Sensor Type of image used Task Performance Location Year Ref. no.

Narrow-band 
vegetation indices 
and Multivariate 
analyses

Hyperspectral data 
HyMap

Hyperspectral Foliar nitrogen 
concentration

The lowest 
RMSE of 
0.14%, vs. 
0.25% dry 
matter

Mahakam delta of 
East Kalimantan, 
Indonesia

2013 [35]

Vegetation Indices, 
Leave One Out 
Cross Validation 
(LOOCV)

Landsat-8 OLI Multispectral Leaf chlorophyll (RMSE) = 15 
μg cm−2, and 
R2 = 0.703

Yucatan Peninsula, 
Mexico

2015 [34]

Vegetation Indices IRS LISS III Multispectral Land Use Cover 
Classification 
(LULC), man-
groves map gen-
eration manually

91.70% Gujarat,
India

2014 [9]

Vegetation Index 
(NDVI)

Landsat 8 OLI,
Sentinel-2,
SPOT-5,
WorldView-2

Multispectral mangroves Species 
Identification and 
Classification

64%,
78%,
75%,
93%

Mexican Pacific 2017 [43]

Vegetation Indices AVIRIS-NG, Sen-
tinel-2

Hyperspectral, 
Multispectral

Leaf area index and 
stress conditions 
for mangroves

≈ 94% Sundarban 2019 [65]

Discriminant Nor-
malized Vegeta-
tion Index (DNVI)

AVIRIS-NG, Sen-
tinel-2

Hyperspectral, 
Multispectral

Health Assessment 74%-stressed, Sundarban 2020 [66]

New mangrove 
vegetation index 
(MVI)

Sentinel-2 Multispectral Mangrove /non-
mangroves cover 
discrimination, 
statistical analysis

92% Philippines,
Japan

2020 [67]
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Limitations:

•	 In the context of mangroves, the choice of specific 
Vegetation Indices needs to be made with caution 
by comprehensively considering and analyzing the 
advantages and limitations of existing Vegetation 
Indices and then combine them to be applied in a 
specific environment.

•	 Each vegetation index has its expression of identi-
fying green vegetation, therefore suited for specific 
purpose and application along with the platform and 
sensor used.

	   There is huge scope to develop new vegetation indi-
ces for mangrove ecosystem which can find the prob-
ability of mangroves in a given area or can directly 
separate mangroves vegetation from other vegetation 
with the Multispectral and hyperspectral remote sens-
ing. Also, it is needed to develop vegetation indices that 
can work on extracting various mangroves’ biophysical 
parameters to broaden the research area.

(b)	 K Means classifier
	   The studies for mangrove ecosystem which 

show the use of K means classification mainly 
aims to classify land covers. Although the tech-
nique can be combined with other supervised 
algorithms and knowledge-based classifiers to 
perform a specific mangroves-related task such as 
mangroves species discrimination, canopy height 
estimation, forest structure analysis while using 
various sensors, and remote sensing images. From 
that few key studies are mentioned in Table 2. K 
means is an unsupervised classification algorithm 

that uses minimized mean distance within a clus-
ter. The mean distance is calculated using the sum 
of the square method between each pixel value 
along with its assigned center. It is quite similar 
to ISODATA unsupervised classification but dif-
fers in terms that it is sensitive to the initial value. 
This algorithm best performs with images that 
have some variance which is not always possible 
for remote sensing images.

Advantages:

•	 Can be used for initial geographical studies of 
mangroves area when the ground truth data is not 
available for validation.

•	 Compatible with various optical imageries, SAR 
images, and LIDAR and sensors used, to classify 
land covers and land use for mangroves and forest 
structure analysis.

•	 Can be combined with other supervised and 
knowledge-based techniques to perform a specific 
task related to mangroves and also provides bet-
ter accuracy while used in combination with other 
techniques.

Limitations:

•	 As this technique is based on minimized min dis-
tance, it is very much sensitive to the initial value 
assigned for a class, if value contains a mixed 
pixel which can be possible for mangroves if they 
are densely combined with other species, then the 
classification accuracy is poor and for that reason 
need to be combined with techniques which can 

Table 2   K means classifier

Technique used Sensor Type of image used Task Performance (%) Location Year Ref. no.

K-means cluster 
analysis

Hyperspectral Hyperspectral Mangroves Species 
Identification and 
Classification

55–74 Sundarbans, Indian 2013 [45]

K Means, JM-SAM 
algorithm,

Hyperspectral 
EO-1 Hype-
rion

Hyperspectral Land Use Cover Clas-
sification (LULC), 
mangroves Species 
Identification and 
Classification

66–88.5 Pichavaram, Muthu-
pet, and Bhitar-
kanika

2014 [28]

K-means classifica-
tions,

Fully Constrained 
Linear Spectral 
Unmixing (FCLSU)

Pleiades-1A,
LIDAR

Multispectral Mangroves forest 
structure analysis,

Canopy height esti-
mation,

78 Indian, Atlantic, and 
Pacific oceans

2019 [2]

K-Means Using HSV
Color Feature

Landsat ETM Multispectral Land Use Cover Clas-
sification (LULC)

87–94 Dongzhaigang 
Mangrove Nature 
Reserve, china

2020 [68]
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deal with mixed pixel problem such as subpixel 
classifier.

•	 If used alone only suitable for initial analysis of 
geographical location as being an unsupervised 
algorithm.

•	 The results need to be validated through ground 
truth data, map data, or by the supervised algo-
rithm.

	   Overall K Means classification is a very sim-
ple technique for unsupervised classification 
purposes, in the future, the performance of this 
technique with a combination of other techniques 
can be analyzed and studied for the mangrove eco-
system for the various tasks (Table 3).

(c)	 ISODATA classifier
	   Iterative Self Organizing Data Analysis 

Technique Algorithm (ISODATA) is an 
unsupervised classification algorithm that is 
mainly a generalization of the K Means algo-

rithm. Here classes are iteratively divided 
and merged based on the user-defined 
threshold value. Here each pixel is assigned 
a class by measuring the Euclidean distance 
between cluster centers. The working of the 
ISODATA algorithm is quite similar to the 
k-means algorithm. The only difference is, 
k-means classifier needs advance knowledge 
for the number of classes, and ISODATA 
allows the different number of classes.

	   Various research studies for mangroves 
show the use of the ISODATA classifier 
for preliminary analysis of the geographi-
cal area to study land cover classes. Table 3 
summarizes the key studies using the ISO-
DATA classifier for mangroves mapping and 
monitoring. This algorithm is mostly used 
when required training data is not available 
for mangroves or the field access is not pos-
sible. ISODATA is mainly used for Land Use 
Cover Classification (LULC) and change 

Table 3   ISODATA classifier

Technique used Sensor Type of image used Task Performance Location Year Ref. no.

Unsupervised ISO-
DATA classifier

Quick Bird,
IKONOS

Multispectral mangroves Species 
Identification

and Classification,
tree height,
diameter at breast 

height (DBH), leaf 
area index

78% Guinea, West Africa 2010 [44]

Unsupervised ISO-
DATA classifier

Landsat Multispectral Land Use Cover 
Classification 
(LULC)

0.966 Philippines 2011 [32]

Unsupervised ISO-
DATA classifier

Landsat
Enhanced
Thematic
Mapper Plus 

(ETM +),
ICESat/
GLAS
SRTM

Multispectral, SAR Land Use Cover 
Classification 
(LULC), Canopy 
height estimation, 
AGB

0.83 Mauritania, Mada-
gascar,

Atlantic
the coast of Western 

Africa,

2013 [26]

Unsupervised ISO-
DATA classifier

Landsat 8 Multispectral Land Use Cover 
Classification 
(LULC)

64–88% Philippines 2018 [23]

Unsupervised ISO-
DATA classifier

World View, 
TanDEM-X high-
resolution imagery 
(SAR)

Multispectral, SAR Land Use Cover 
Classification 
(LULC), man-
groves Species 
Identification and 
Classification, 
Canopy height 
estimation

89.33 Sundarban 2019 [6]

Unsupervised ISO-
DATA classifier

Landsat 8 OLI and 
Landsat 5

Multispectral Change Manage-
ment, mangroves 
degradation

77–81% Pahang River, 
Pahang state, 
Malaysia

2019 [29]
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management, although while combined the 
same with Digital Elevation Model and other 
related models provide good results for man-
groves canopy height estimation, tree height 
estimation, and above-ground biomass cal-
culation.

Advantages:

•	 Can be used for preliminary studies of man-
groves area when the ground truth data is not 
available as the algorithm does not require a 
training class for classification [23].

•	 Provide improved performance as compared to 
K means in most of the cases.

•	 Compatible with various optical imageries, 
SAR images, and LIDAR and sensors used, 
to classify land covers and land use for man-
groves and forest structure analysis.

•	 Can be combined with other supervised and 
knowledge-based techniques to perform a spe-
cific task related to mangroves and also pro-
vides better accuracy while used in combina-
tion with other techniques.

Limitations:

•	 The results need to be validated through ground 
truth data, map data, or by the supervised algo-
rithm.

•	 If used alone only suitable for initial analysis of 
geographical location as being an unsupervised 
algorithm.

	   ISODATA classification is simply a modi-
fication of K Means classification and per-
forms better than K Means in most cases, in 
the future the performance of this technique 
with the combination of other techniques can 
be analyzed and studied for the mangrove 
ecosystem for the various tasks.

Subpixel classification

As the pixel is a basic measure for satellite image and so 
pixel-based classification is easy to implement but there 
are few limitations of this technique, one is information 
from nearby pixels are not used to form a class, which 
leads to misclassification and second is this technique does 
not provide satisfactory results with mixed pixels. The 
pixel is considered to be the smallest spatial area for clas-
sification, most of the classification algorithms perform 
classification considering each pixel contains homogene-
ous data and also belongs to a single class. But in reality, 

a pixel may contain values for multiple classes, are known 
to be mixed pixels. A mixed pixel problem can be solved 
by the subpixel classifier which is a technique to identify 
multiple classes in a single pixel.

Sometimes mangroves are closely related to other veg-
etation and canopy gaps are too small in this case a pixel 
may contain a value of more than one class, which leads 
to a mixed pixel problem. Due to this the pixel which con-
tains more than one class shows a significant variation in 
terms of spectral brightness, hence averaged pixel value 
does not represent an accurate class, which results in mis-
classification or it may degrade the accuracy of classifi-
cation. The mixed pixel problem is a big concern while 
classifying mangroves-related parameters. Few key studies 
to solve mixed pixel problem using subpixel classification 
is mentioned in Table 4.

Many techniques are implemented to unmix the spec-
tral information within a pixel. Some of the common 
techniques are Spectral unmixing and Fuzzy classifica-
tion. Sub-pixel classification is used to identify the pro-
portions of the different land cover classes within a pixel 
while Fuzzy classification allows pixels to be a part of 
multiple classes by calculating a degree of membership 
for each class. Pixel unmixing can be supervised or unsu-
pervised and linear or nonlinear. In the supervised case, 
end-member signatures are known, but the estimation of 
their abundances is required. In the unsupervised case, 
both the number of end-members and their signatures need 
to be estimated before abundance estimation.

Subpixel Classification significantly solves mixed 
pixel problems by identifying different material within 
the single-pixel using linear spectral unmixing and gives 
fraction images of each land cover class so that homoge-
neous species of mangroves can be classified well [46]. 
This method provides good results in identifying and clas-
sifying mangroves species and also results satisfactory for 
mangroves health assessment. But in [20] Spectral Angle 
Mapper (SAM) and Object-Based Image Analysis (OBIA) 
outperform this method significantly.

Advantages:

•	 Can be used to discriminate mangroves having homo-
geneous species.

•	 Can be used to distinguish mangroves from other spe-
cies while canopy gaps are too small.

•	 Can separate multiple classes within a pixel which can 
be further useful in mangroves health assessment.

•	 Can be useful with the sensors having higher spectral 
resolution but coarser spatial resolution which may lead 
to mixed pixel problem.
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Limitations:

•	 The limitation of this method is the number of classes 
cannot exceed the number of input bands.

•	 Object-based classification may outperform this tech-
nique as works on an object of interest rather than pixel 
value.

Pixel‑based/object based supervised classification 
techniques (machine learning/deep learning based 
algorithms)

Recent development in artificial intelligence, Image pro-
cessing, and computer vision resulted in advanced machine 
learning and deep algorithms which falls into the category 
of pixel-based/object-based supervised classification. With 
the development of machine learning algorithms, many new 
classification models have been produced and provide more 
choices for the classifications of remote sensing images. The 
various mangroves research studies show most of these are 
compatible with multispectral, hyperspectral, and Synthetic 
Aperture Radar (SAR) images along with different sensors 
and can be used to perform different mangroves classifica-
tion tasks. Although each algorithm has its suitability and 
advantages when applied to the mangrove ecosystem.

Supervised classification is mostly based on implicit 
rules and includes neural networks, machine learning, and 
deep learning approaches for classification. Various studies 
on mangroves found which use artificial neural networks 

(ANN), decision tree (DT), K nearest neighbor (KNN), max-
imum likelihood classifier (MLC), support vector machine 
(SVM), random forest (RF), and rotation of forest (RoF) 
algorithms for classification purpose. From which MLC is 
parametric while all others are non-parametric. These algo-
rithms provide satisfactory results in identifying mangroves 
species as well as mangroves-related parameters when used 
in combination with textural and spectral features. Few key 
studies based on these algorithms are summarized in Table 5 
and observations from each algorithm are mentioned below.

Artificial neural network (ANN)

ANN uses multilayer feedforward networks and various 
backpropagation algorithms for self-learning of features, 
various deep learning approaches can also be combined with 
ANN for training purposes. As ANN can learn the features 
by itself, the studies show the use of these algorithms to 
extract various mangroves-related parameters, species dis-
crimination as well as it can be used for change management.

For mangroves species discrimination it is very difficult 
to design hand-crafted features as they are having varying 
structures, that is where we need the classification approach 
which can derive features by itself and no need to input the 
features. Deep learning neural networks such as convolu-
tional neural networks (CNNs) can solve this problem, the 
only limitation is the training needs large training data to 
train the network. Although this limitation can be tackled 

Table 4   Subpixel classifier

Technique used Sensor Type of image used Task Performance Location Year Ref. no.

Linear spectral 
unmixing (LSU),

Object-based image 
classifier (OBIA),

Spectral Angle Map-
per (SAM)

Hyperspectral 
CASI-2

Hyperspectral Mangroves Species 
Identification and 
Classification

LSU-56%
SAM-69%
OBIA-76%

Southeast Queens-
land, Australia

2011 [20]

Subpixel Classifica-
tion/

Constrained and 
unconstrained 
Linear spectral 
unmixing (LSU)

Hyperspectral Hype-
rion

Hyperspectral mangroves Species 
Identification and 
Classification

68% Sundarbans Delta, 
India

2013 [46]

Pixel-based methods 
Linear spectral 
unmixing (LSU)

Hyperspectral 
CASI-2

Hyperspectral mangroves Species 
Identification and 
Classification, 
Health Assessment

90% Mexico 2014 [10]

Linear Spectral 
Unmixing

EO-1 Hyperion Hyperspectral Change Detection of 
mangroves Species

80% Henry island,
Sunderban Deltaic 

region of West 
Bengal, India

2018 [61]

Fully constrained 
linear spectral 
unmixing, K means

LIDAR, Pleiades-1A Multispectral mangroves Species 
Identification and 
Classification

78% Indian, Atlantic, and 
Pacific oceans

2019 [62]
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by Small patched CNNs as mentioned in [15]. Also, the 
study has recorded the highest accuracy of SVM 98.81% 
when combined with this deep learning-based convolutional 
neural network (CNN) and gray level co-occurrence matrix 
(GLCM) with World view two sensors.

ANN are yet evolving with the recent developments in 
deep learning and computer vision-based technologies, so 
there is a huge scope of applying these approaches for the 
mangroves studies future along with the supervised machine 
learning techniques for self-learning of features, which can 
provide more accurate results for the classification.

Decision tree

This classification technique performs well by selecting 
object features while providing an optical segmentation 
scale. This characteristic of a decision tree is helpful in the 
discrimination of mangroves species which shows satisfac-
tory results in most of the cases. The formation of a decision 
tree plot is useful to learn how the classification is done 
step by step and how each object’s features and values are 
correlated at each node. The only limitation of this clas-
sification technique is that DT is sensitive to segmentation 
scale change. Due to this the performance of classification 
when applied to complex mangroves species or mixed man-
groves species. Studies also reported DT sometimes overfit 
the model while training which can lead to misclassification 
and reduces accuracy.

k‑Nearest neighbor (k‑NN)

This classification technique is a distance-based, non-para-
metric model, here the k nearest pixels are analyzed to form 
a class having similar features. Due to that, this choice of 
k value plays a major role in this classification. Classifica-
tion accuracy may vary based on the k value. k-NN pro-
vides better results in identifying mangroves species, health 
assessment, and individual tree crown delineation while used 
along with other classifiers such as Object-based classifier 
and Support Vector Machine [12, 40]. The accuracy of clas-
sification also depends on the training data provided and 
most of the studies show that the higher the training data, 
the higher the accuracy.

Maximum likelihood classifier (MLC)

The maximum likelihood classifier is one of the most popu-
lar methods of classification in remote sensing and is also 
widely used for mangroves studies although that does not 
prove it to be the best method. MLC is also a distance-based Ta
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method that uses Euclidean distance to calculate pixel likeli-
hood. The pixel likelihood is defined by the probability of 
a pixel belonging to a class. Due to this, the method fails to 
separate mixed classes of vegetation classes. mangroves with 
mixed species and with closely related canopy gaps cannot 
be accurately classified by this method. Also, MLC requires 
a sufficient amount of ground truth data for validation, which 
sometimes difficult with dense mangroves forest area and 
when the part of the area is submerged in the ocean. One of 
the major limitations of MLC for mangroves classification 
is distribution, When the distribution of the population does 
not follow the normal distribution, the maximum likelihood 
method cannot be applied. Although the classification tech-
niques can be combined with other classifiers to gain improve 
results for a task like mangroves species discrimination along 
with high spatial and spectral resolution image data (Table 5).

Support vector machine (SVM)

In contrast to the decision, tree SVM seems to be stable with 
scale variation and is also works by selecting object features 
for the classification purpose. Various studies show that this 
algorithm works well even if having limited training data as 
compare to other algorithms. SVM can also be used for man-
groves species discrimination as well as mangroves health 
assessment. SVM also shows good performance on mixed 
mangroves species over decision tree classification as it is 
having the capability to locate optimal separating hyperplane 
with high dimensional features. Although it seems to have 
more advantages as compared to other algorithms, SVM has 
few limitations on the selection of key parameters which 
are mainly called kernel function and penalty parameter. 
If these values are too small then classification results in 
overfitting. In contrast, if the values are too large there may 
problem of underfitting or over smoothing. Most of the time 
researchers have determined these values on a trial-and-error 
basis. After Maximum Likelihood Classifier(MLC), Sup-
port vector machine is the most widely used algorithm for 
mangroves studies, it provides good results in textural–spec-
tral feature-based species classification, health assessment, 
change management, and land cover mapping [14, 15, 16, 
18, 19, 21, 38, 41, 55].

Random forest (RF) and rotation of forest 
(RoF)

RF is an ensemble classifier and stable to the segmentation 
scale variation, unlike DT. RF seems to be powerful while 
selecting object features and can handle high-dimensional 
data. Although various studies show as compare to the other 
machine learning algorithms, RF is sensitive to the size of 

training data and sampling. It shows higher accuracy over a 
larger training dataset. RF can work well with mixed man-
grove species when used with an object-based approach. RF 
is recommended from the studies for the mangrove species 
discrimination along with high spatial resolution data.

The limitation of RF can be solved by the Rotation of the 
forest algorithm which works similarly but performs better with 
the use of small decision trees for relatively smaller training 
data. This method also generates ensembles based on feature 
extraction and then the feature set is divided into k subsets and 
Principal Component Analysis (PCA) is applied to each k sub-
set. All PCA may represent various information related to data, 
application of rotation over k components forms a new feature 
set which in result improve the accuracy of classification.

ANN, RF, RoF, and DT individually and in combination 
with other algorithms are used to assess biophysical param-
eters of mangroves such as leaf nitrogen concentration, Leaf 
Area Index (LAI), leaf chlorophyll concentration [36, 52]. 
These algorithms also provide good results in estimating 
Above Ground Biomass(AGB), mangroves health assess-
ment, individual tree crown delineation, and canopy height 
estimation and species identification [4, 12, 18, 40, 51–53]. 
Random forest (RF) with sentinel 2 provides the highest 
accuracy of 98% in estimating tree height and Above Ground 
Biomass (AGB) in [4].

Unsupervised object‑based classification

When applied to the mangrove ecosystem, Pixel-based 
analysis is a simple method across the sensors but some-
times unable to delineate Individual tree crowns and Can-
opy gaps which are having multiple pixels and produce 
correlation with objects to be detected by sensors. In these 
cases, most of the time pixel is not a unit of interest, and 
therefore object-based classification is used. This creates 
meaningful objects by doing segmentation of images and 
grouping pixels with similar spectral and spatial character-
istics. These segmented objects are further used for analy-
sis through which spectral and spatial information related 
to mangroves features can be extracted. Later based on the 
feature set classes can be generated. These approaches are 
mainly classified into object-oriented classification and Geo-
graphical Object-based image analysis (GEOBIA). These 
techniques are useful for Individual tree crown delineation, 
species discrimination, change management, and time-series 
data analysis. Table 6 shows some key studies based on these 
two classification techniques.

Advantages:

•	 Can work well with mixed pixel, so easily differentiate 
between canopy gaps, and can be used for individual tree 
crown delineation for mangroves.
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•	 Work directly to analyze a set of neighboring pixels as an 
object in contrast with traditional pixel-based approaches 
that work on individual or sub-pixel values.

•	 Compatible with a variety of sensors and images but pro-
vide better performance over high spatial and spectral 
resolution data such as Hyperspectral images.

Limitations:

•	 Performance of classification may get degraded with low 
spectral or spatial resolution data.

•	 Provide better performance in combination with other 
supervised classification techniques.

Knowledge‑based classification

The Knowledge-based classification approach is very helpful 
when the spectral characteristics are not enough to identify 
classes, that is when explicit rules and other types of data 
are needed to be included in the classification in form of 
required knowledge. The knowledge can be acquired from 
ancillary data in addition to spectral information, which is 
geographic map data, thematic maps, and Digital Elevation 
Model (DEM) with elevation, slope angle, explosion details, 
etc. these details can be used to establish the relationship 
between classes and ancillary data.

Knowledge-based classification is an analysis based on 
explicit rules to extract knowledge from a given input. In 
this classification approach, first image segmentation is 
performed by using object-oriented classification. The next 
image is divided into consequential pixel groups called seg-
ments. To describe each class, a set of knowledge-based 
classification rules based on spectral, spatial, contextual, and 
textural characteristics are defined by the user. Lastly cho-
sen classifier assigns each segment to the appropriate class 
by using a set of rules defined earlier. This method is used 
for mangroves studies along with digital elevation model 
(DEM), digital surface model (DSM), spectral angle map-
per (SAM), and gray level co-occurrence matrix (GLCM) 
individually or in combination with other classification 
approaches as shown in Table 7. This model significantly 
reduces error due to misclassified data and hence improves 
accuracy.

The performance of knowledge-based classification is 
solely based on the relationship between class and ancillary 
data, based on that the classification proceeds for further 
decision making. Therefore, this method is only applied or 
useful when the relationship between the classes of image 
and ancillary data.

Advantages:

•	 Very helpful in assessing mangrove-related parameters 
such as canopy height estimation, tree height, and diam-

eter estimation, above-ground biomass estimation using 
DEM.

•	 Compatible with a variety of sensors and images espe-
cially SAR, LIDAR, and hyperspectral and provide better 
performance over high spatial resolution data.

•	 When combined with state-of-the-art machine learning 
and deep learning techniques provides improved results 
on training data.

Limitations:

•	 Performance of classification is mainly dependent on 
related class and ancillary data, if the relationship is 
not formed properly performance of classification is not 
accurate.

•	 Availability of ancillary data and, also classification 
needs handcrafted explicit rules whose accuracy depends 
on the experience and expertise of analysts.

Summary of mangroves mapping methods 
using remote sensing

While the traditional mangrove mapping techniques are 
complex, time-consuming, and struggled to assess various 
parameters of the mangrove ecosystem, the digital classi-
fication approaches show satisfactory results by analyzing 
their spectral, spatial, and textural characteristics for the 
various parameters such as species structure, spatial distri-
bution, canopy density, gaps between canopies, tree height 
and diameter, leaf pigments and disturbance. The choice of 
satellite image and sensor plays a major role in digital image 
classification to get better spatial, spectral, and textural char-
acteristics of an image. Based on that we have summarized 
some of the recommendations from past studies as men-
tioned in Table 8, mainly for various tasks that need to be 
performed on mangroves while mapping, monitoring, and 
parameter extraction.

From the observations of past studies, it can be sum-
marized that low and medium-resolution imageries with 
unsupervised pixel-based vegetation indices, K means and 
ISODATA work well for initial studies mainly for land 
cover land use classification and change management. 
Optical imagery, SAR, and LIDAR data are most widely 
used in mangroves classification approaches. Studies have 
concluded that multispectral data can cover larger areas 
and used for land cover land use classification and change 
management. Although hyperspectral data with high spatial 
resolution provides higher accuracy in the classification of 
mangroves it can cover a limited area. So, for smaller areas, 
hyperspectral data becomes a better option than multispec-
tral imagery. Further studies can be done with supervised 
techniques for mangrove biophysical parameters extraction 
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and species classification. Pixel-based supervised machine 
learning and deep learning-based recent techniques provide 
high accuracy for mangrove species discrimination by iden-
tifying spectral signatures of species with high spatial and 
spectral resolution data. Most of the past studies have a suc-
cessful classification for true mangrove species but there 
are very limited studies for the classification of associate 
species. So there huge future scope to apply classification 
approaches on mixed mangrove species and to analyze their 
performance.

Although object-based supervised machine learning 
techniques in some cases outperformed pixel-based tech-
niques especially when the hyperspectral image was used. 
The feature set is most important in machine learning tech-
niques, so when enough features can not be extracted from 
image data, ancillary data to form explicit rules become 
handy with knowledge-based classification. Deep learning 
algorithms can learn the features by themselves and uses 
artificial neural network algorithms for training data such 

as backpropagation. From various past studies, it can be 
concluded that state-of-the-art machine learning and deep 
learning-based classification approaches seem promising 
for the study of the mangrove ecosystem with recent devel-
opments in pattern recognition and computer vision-based 
technologies.

Summary and recommendation of various classification 
techniques to perform a specific mangroves-related task are 
given in Table 8 with the type of image used and sensor data 
requirement to serve as future directions in mangrove map-
ping and monitoring.

Table 8   Summary and recommendation of classification approach

The task to be performed Digital image classification approach Remote sensing imagery Recommendation

Land Use Cover Classification 
(LULC)

Change Management
mangroves /Non-mangroves Clas-

sification
mangroves Mapping and Monitoring

Unsupervised Classification
ISODATA​
K Means
Vegetation Indices
Object-Based Image Analysis 

(GEOBIA)

Multispectral
Hyperspectral
SAR
Aerial photograph

When preliminary analysis of the area 
is needed for initial studies

Field access is difficult and no suf-
ficient training data available

Data fusion and integration with 
Multi-temporal, multi-sensor, and 
multi-resolution data

Hyperspectral for small area
Multispectral for large area

Spectral Signature Identification
Species Discrimination
Health Assessment
mangroves Biophysical parameters 

estimation:
Leaf chlorophyll
Leaf Area Index
Foliar nitrogen concentration

Pixel-based /Object based Supervised 
Machine Learning / Deep Learning 
Algorithms

Knowledge-based classifier for tex-
ture and feature extraction

Object-Based Image Analysis 
(GEOBIA)

Hyperspectral
SAR
LIDAR

High spatial resolution and spectral 
resolution

Data fusion and integration with multi-
sensor and multi-resolution data

Individual Crown Delineation
Canopy height estimation
Tree Diameter and height Estimation
Above Ground Biomass Estimation

Object-Based Image Analysis (GEO-
BIA),

Pixel-based/ Object based supervised 
Machine learning Algorithms/ 
Deep learning Algorithms

Knowledge-based classifier
Digital Surface Model (DSM),
Digital Elevation Model (DEM)
Digital Terrain Model (DTM)
Digital Canopy Model (DCM)
LiDAR-derived Canopy height 

model (CHM)
ICESat GLAS‐derived canopy height

SAR
Hyperspectral
LiDAR

Data fusion and integration with multi-
sensor and multi-resolution data of 
SAR and hyperspectral

High spatial and spectral resolution 
data

Mixed Pixel Problem Sub Pixel Classification
Object-based Classification
Knowledge-based classification

Multispectral
SAR
Aerial photographs
Hyperspectral
LIDAR

High spatial and spectral resolution 
data
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Challenges and future trends in mangroves 
mapping using remote sensing and digital 
image classification

While mapping and monitoring the mangrove ecosystem 
with remote sensing the distribution of mangrove forest, 
the area covered, canopy structure, species distribution, and 
geographical location plays a major role. Remote sensing 
is mainly to find the spectral signatures of an object from 
its reflectance characteristics. The reflectance data collected 
from the signal is the mixture of various components of land 
classes which need to be classified by appropriate classifi-
cation to get accurate data for that reasons remote sensing 
seems to be challenging with various mangrove forest struc-
ture, species, and various parameters.

The availability of remote sensing data for a specific loca-
tion and a specific period is very challenging. It is difficult 
to have recent data in the context of satellite images as they 
take time to collect and to be available for end-user. For 
change management and long-term analysis of mangrove 
forests, several years of data are needed which sometimes 
not possible with the single sensor data. There may be dif-
ferent data set available for different periods from different 
sensors. Now each sensor varies in its spectral and spatial 
resolution characteristics which need different treatments 
while applying a classification approach which is one of the 
challenging tasks to have uniform classification to maintain 
accuracy. The use of multi-sensor data during change analy-
sis and management shows difficulties in the date of acquisi-
tion of images and image processing. The major problem is 
with the classification of maps from different time points, 
which sometimes leads to the unavailability of data at that 
time point in the past generates inaccurate results.

Low to medium spectral resolution image such as multi-
spectral is tend have mixed pixel value for single-pixel which 
leads to miss classification of data and degrades the perfor-
mance of classification, therefore mangroves mapping with 
low to medium spatial resolution sensors such as Landsat 
is difficult and need extra efforts to work on mixed pixels. 
The spectral resolution also plays a big role while choosing 
a sensor for classification because sometimes the number of 
bands in the sensor limits the differentiation of mangroves 
species especially when the species are mixed with other 
species having similar characteristics. The high spatial res-
olution data can efficiently classify mangrove species and 
parameters such as hyperspectral and LIDAR, although the 
cost of the data acquisition and large storage requirement 
is quite challenging, Furthermore, it can only be applicable 
for the small areas and the areas for which data is available. 
Therefore, it suggested using a combination of multi-reso-
lution, multisource data, or multi-fusion data to improve the 
performance of classification mainly for mangrove species 

discrimination, mangroves biophysical parameter analysis, 
and AGB and carbon stock assessment.

The tidal influence on mangrove area is also a big chal-
lenge as it changes the spectral signature of mangroves and 
its effect on canopy height is not fully explored through most 
of the past studies that need more research. The big tidal 
fluctuation is going to affect the various parameters of man-
groves while assessing through remote sensing. Therefore, 
knowledge of these variations should be acknowledged and 
applied in classification through explicit rules for accurate 
classification. This knowledge will be helpful to analyze 
long-term changes in mangrove forests, their causes, and 
more accurate estimates of above-ground biomass and car-
bon stock.

Pixel-based and object-based machine learning tech-
niques are seemed to be very effective and promising in 
mangrove species discrimination and extracting parameters 
such as leaf area index (LAI), tree height, and leaf pigments 
while used with high spatial resolution optical images such 
as hyperspectral. Although the disadvantage of optical 
imageries can overcome by the SAR and LIDAR with data 
fusion and integration and which would the better choice 
for analyzing mangrove biophysical parameters and AGB.

The choice of remote sensing data with the classifica-
tion approach plays a major role, several recommendations 
for the combination are already mentioned in Table 8. The 
future scope of machine learning-based classification is very 
high with the evolution in artificial intelligence and com-
puter vision for pattern recognition. Furthermore, novel clas-
sification techniques based on machine learning also need 
to be taken into the consideration for future studies. Deep 
learning techniques are very efficient in identifying spectral 
bands, therefore accurately classify mangrove species with 
high-resolution data. Thus, future studies should focus on 
the choice and development of novel mangrove mapping and 
monitoring approaches for the mangrove ecosystem.

Conclusion

The mangrove ecosystem is necessary to coastal commu-
nities, however, Mangroves are considered as threatened 
species all over the globe due to various reasons. There-
fore, restoration and conservation of mangroves species are 
very much important. Mangroves forest covers a massive 
area and sometimes inaccessible that makes field access a 
demanding task. This problem can be solved using remote 
sensing techniques as they provide alternate for mapping 
and monitoring mangroves and their changes using various 
classification techniques and a variety of satellite image data 
and sensors. The present study highlighted significant contri-
butions of remote sensing with various datasets and numer-
ous digital image classification techniques applied to the 
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mangrove ecosystem their potential advantages limitations. 
The study also focused on analyzing various digital image 
classification approaches, their performance with remote 
sensing image data and sensors. Based on that future rec-
ommendations are also suggested in Table 8 for mapping 
and monitoring of mangrove ecosystem.

The study concluded that the spectral, spatial, and textural 
characteristics of an image play a major role in classification. 
Hyperspectral imagery provides high spatial resolution data 
and spectral signatures improved the accuracy of the clas-
sification and given better results to discriminate between 
mangroves species for the small scale areas. Furthermore, 
it had also shown good results mixed-species when used 
with nonparametric machine learning-based classifica-
tion techniques. It has also shown improved results while 
studying various biophysical parameters. Medium spatial 
resolution information, like the Landsat time-series, are the 
foremost widely-used for observation of mangrove ecosys-
tem on larger scales. SAR and LIDAR performed very well 
in estimating tree height, canopy height, and above-ground 
biomass for mangroves and overcome the disadvantages 
of optical imagery in classification. SAR data has also the 
advantage of day and night acquisition.

The current study concludes that the choice of classifica-
tion approach plays a major role in mapping, monitoring, 
and mangroves biophysical parameters extraction. High pre-
cision mapping results can be obtained by hyperspectral, 
SAR, and LIDAR datasets. Also, the integration of multi-
resolution and multi-source image data such as SAR, optical, 
and LiDAR will be the future scope for the mangrove eco-
system mapping and monitoring to overcome the limitation 
of individual sensors and to improve the observation accu-
racy. Furthermore, the advancement in image processing 
techniques, using pattern recognition and computer vision 
seems to be promising for the future, especially in machine 
learning, and deep learning-based classifications for man-
groves. Moreover, these techniques are expected to provide 
improved results in the future with novel approaches.
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