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Abstract

Complex fuzzy (CF) sets (CFSs) have a significant role in modelling the problems involving two-dimensional information.
Recently, the extensions of CFSs have gained the attention of researchers studying decision-making methods. The complex
T-spherical fuzzy set (CTSFS) is an extension of the CFSs introduced in the last times. In this paper, we introduce the Dombi
operations on CTSFSs. Based on Dombi operators, we define some aggregation operators, including complex T-spherical
Dombi fuzzy weighted arithmetic averaging (CTSDFWAA) operator, complex T-spherical Dombi fuzzy weighted geometric
averaging (CTSDFWGA) operator, complex T-spherical Dombi fuzzy ordered weighted arithmetic averaging (CTSDFOWAA)
operator, complex T-spherical Dombi fuzzy ordered weighted geometric averaging (CTSDFOWGA) operator, and we obtain
some of their properties. In addition, we develop a multi-criteria decision-making (MCDM) method under the CTSF environ-
ment and present an algorithm for the proposed method. To show the process of the proposed method, we present an example
related to diagnosing the COVID-19. Besides this, we present a sensitivity analysis to reveal the advantages and restrictions
of our method.
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Introduction

The fuzzy set (FS) theory was inaugurated by Zadeh [1]
in 1965 to handle modelling of some problems containing
uncertain data in real life. Since FS theory is a very useful
tool for modelling uncertainty, it has many applications in
the modelling and solving of the problems in many fields
such as medical science, data mining and clustering. An FS
is characterized by a membership function (MF) p from a
set of the objects or elements considered in the universe to
the interval [0,1]. In an FS, if the membership degree (MD)
of an element x is (x), then its non-membership degree
(NMD) is 1 — u(x), that is, in the FS, hesitation degree of
an element is “0”. This is one of the limited aspects of FS in
modelling real-life problems. To overcome these limitations,
the intuitionistic FS (IFS) was suggested by Atanassov [2] as
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a generalization of FSs. An IFS is identified by two functions
from a universal set to the interval [0,1] called membership
function (MF) (1) and non-membership function (NMF) (v).
The summation of images under these two functions of an
element cannot exceed 1. Therefore, IFS is not an appropri-
ate tool for modeling in the situation p(x) 4+ v(x) > 1.
To cope with this restriction, Yager [3,4] introduced the
concept of Pythagorean FS (PyFS) as an extension of IFS
under condition Mz(x) + v2(x) < 1. However, in the sit-
uation 0.9> 4+ 0.5 = 1.06 > 1, a PyFS is not sufficient
for modelling. To eliminate this type of limitation, Yager
[5] put forward the concept of g-rung orthopair FS in which
n?(x) + v?(x) < 1. The neutral situation is not taken into
account in the set theories we have mentioned so far, but this
situation is important for the representation of human think-
ing. For this, Cuong [6,7] defined the concept of the Picture
FS (PFS). A PFS is a useful tool for expressing how much an
object provides a feature or how much a person has shared
an idea because a PFS does a modelling considering cases of
yes, abstention, no, and rejection. A PFS is characterized by
three values from interval [0,1] for each element x belong-
ing to set containing considered elements, called MD (i (x)),
abstinence degree (AD) or neutral degree (y (x)) and, NMD
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(v(x)) with the condition 0 < u(x) + y(x) + v(x) < 1.
Despite the fact that PFS structure is a useful tool in many
applications such as decision-making (DM) [8-14], simi-
larity measure [15-19], correlation coefficient [20,21], and
clustering [22,23], it is not sufficient in modelling of some
problems because of constrain 0 < p(x)+y(x)+v(x) < 1.
Therefore, the notion of spherical FS (SFS), which is an
extension of PFS, was initiated by Gungogdu and Kahraman
[24,25] and the applications of the SFS to decision-making
was studied on. An SFS has the constrain 0 < ,uz(x) +
yz(x) + v23(x) < 1. Kahraman et al. [24] developed a DM
method based on the TOPSIS method under the SF environ-
ment and presented an application of the developed method
in the selection of hospital location. In an SFS, when MD,
NeD and NMD of an element are taken as 0.6, 0.9 and 0.5,
respectively, since 0.62 +0.92 +0.52 = 1.42 > 1, condi-
tion 0 < u?(x) + y2(x) + v3(x) < 1 is not satisfied. To
model such situations, the T-spherical FS (T-SFS) was intro-
duced by Mahmood et al. [26] as an extension of the SFS
under condition X and some applications in medical diag-
nosis and DM problems under T-SF and SF environments
were given by same researchers. After the works of Mah-
mood et al. [26], many researchers have studied applications
of T-SFS and SFS. For example, Ullah et al. [27] proposed
some novel similarity measures including cosine similarity
measures, grey similarity measures, and set theoretic simi-
larity measures for SFS and T-SFSs. Garg et al. [28] defined
some new improved aggregation operators for T-SFSs and
developed a DM approach to solve the multi-attribute DM
(MADM) problems. Ullah et al. [29] introduced the some
ordered weighted aggregation operators and hybrid aggrega-
tion operators of T-SFS and proposed an MADM method. Wu
etal. [30] studied divergence measure of T-SFSs and gave the
application in pattern recognition. Ullah et al. [31] defined the
concept of interval-valued T-SFSs and their basic operations.
They also described two aggregation operators for interval-
valued T-SF values and developed an MADM method for
problem including evaluating companies to be made an
investment. Liu et al. [32] proposed some novel operational
laws for T-SPFN’s and combine power average operator and
with Murihead mean operator. They also developed some
new aggregation operators. Guleria and Bajaj [33] defined
some aggregation operations of T-Spherical fuzzy soft sets.
Quek et al. [34] presented some new operational laws for
T-spherical fuzzy sets and obtain some of their properties.
Then, based on these new operations, they have proposed two
types of Einstein aggregation operators called the Einstein
interactive averaging aggregation operators and the Einstein
interactive geometric aggregation operators. They also put
forward a MADM method based on the defined aggregation
operators. Munir et al. [35] studied on Einstein hybrid aggre-
gation operators under T-SF environment and establish an
MADM by integrating the proposed aggregation operators.
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Ullah et al. [36] establish the correlation coefficient formula
for T-SF values and presented an application in clustering.
Also, T-spherical Fuzzy Hamacher Aggregation Operators
were defined Ullah et al. [37]. Furthermore, they put forward
an MADM method and gave the application of the method in
a problem including evaluation of the performance of search
and rescue robots. Garg et al. [38] introduced power aggre-
gation operators for the T-spherical fuzzy sets (T-SFSs). Ju
et al. [39] defined the T-SF interaction aggregation opera-
tors and based on these operators they developed TODIM
method under T-SF environment. Chen et al. [40] stud-
ied on some generalized T-Spherical and group-Generalized
fuzzy geometric aggregation operators with MADM method.
Associated immediate probability (interactive) geometric
aggregation operators of for T-spherical fuzzy sets were intro-
duced by Munir et al. [41].

As mentioned above, FS models are important tools for
modelling uncertain and incomplete data. But mentioned FS
models do not suffice to express the periodic information
or two-dimension phenomenon. To cope with this issue, the
concept of complex FS (CFS) was put forward by Ramot et al.
[42,43]. The basic idea in the definition given by Ramot is to
extend the range of membership from [0, 1] to the unit circle
in the complex plane. A CFS is characterized by membership
function ;1 = re'® where r is called amplitude term and it
takes values from the interval [0,1], and w is called phase term
(periodic term) and it lies in the interval [0, 27 ]. The phase
term has a very important role in defining the CF model. This
is what makes the CF sets superior and distinct from other
FS models. In a CFS, the membership value of an element is
specified based on one amplitude term and one phase term.
With this aspect, CFS is not enough to model the nonmem-
bership degree. To avoid this restriction, Alkouri and Salleh
[44] introduced complex intuitionistic FS (CIFS). A CIFS is
identified by MF (i = re'®) and NMF (v = ke'") such that
0 <r+k < land0 < w+n < 27.Raniand Garg [45] devel-
oped a DM approach based on distance measure between
CIFSs. Also, some researchers studied on aggregation oper-
ator of CIFS and DM methods [46-51]. Additionally, Ullah
et al. [52] introduced the complex PyFS (CPFS) which is
characterized by MF p = re'®, NeF n = se'? and NMF
v = ke'" under the conditions 0 < r +s +k < 1 and
0<5>+ % + % < 1 as a generalization of CIFSs. Liu et
al. [53] defined the complex q-ROFS (CqROFS) and studied
on aggregation operator of them.

Akram et al. [54] presented some aggregation operators
under CPF environment based on Hamacher operations and
developed an MCDM method. Liu et al. [55] introduced
CPF power averaging and CPF power geometric opera-
tors under CPFSs environment and constructed an MCDM
method based on the proposed operators. Additionally, the
complex SFS (CSFS) was defined by Akram et al. [56] as a
generalization of CPFS. They also introduced some aggre-
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gation operation based on Dombi t-norm and t-conorm. Ali
et al. [57] defined the concept of complex T-spherical FS
(CTSES) and their aggregation operators. They also pro-
posed an MADM method in CTSFSs. Akram et al. [58]
defined some aggregation operators of CSFSs and developed
an MCGDM method called CSF-VIKOR. Nasir et al. [59]
introduced the notion of CTSF relations and presented some
applications related to the economy and international trade.

Since aggregation operators (AOs) convert the whole data
into a single value, AOs have a vital importance in DM prob-
lems. Dombi [60] designated Dombi operators with flexible
operational variables. In solving the DM problems, many
researchers used Dombi operations of IFS [61], Pythagorean
fuzzy [62-64], PF [66], bipolar fuzzy [65], spherical fuzzy
[67], complex Pythagorean [68], and CSF [69].

As seen above, the studies on the theoretical aspects of
SFSs, T-SFSs, CSFSs and CTSFSs and their applications
in decision-making based on aggregation operators have
increased rapidly. The following points motivate us to present
this paper:

— CFS and its generalizations have a very important role in
decision-making problems containing two-dimensional
information in real life. A TSFS comprehends a large
amount of information as a generalization of the SFSs.
However, it does not suffice in modelling an issue involv-
ing two-dimensional data. With this aspect, CTSFS has
vital importance. A CTSES is the generalization of the-
ories like CFS, CIFS, CPFS, CPyFS and CSFS. Until
now, there exists only one work [57] related to aggre-
gation operators of CTSFS in the literature. Therefore,
by considering the advantages of the Dombi operators,
we develop some new aggregation operators based on
Dombi t-norm and t-conorm to use in modelling a prob-
lem involving two-dimensional data.

— Set-theoretical operators are an important tool for mod-
elling some problems, in the literature, there is not any
study related to set-theoretical operations of CTSFS. To
fill this gap in the literature, we define the set-theoretical
operations of CTSFSs.

— In literature, there is only one study related to score and
accuracy functions of CTSFNs and these functions have
some drawbacks, we pointed out these drawbacks and
define novel score and accuracy functions free from spec-
ified drawbacks.

— We see that works related to aggregation operators of
SES, TSFES and CTSFSs are based on the hypothetical
data in general. In this study, one of our aims is to develop
a decision-making method by considering the advantages
of the Dombi operators and presenting an application
including real data that aims to diagnose COVID-19
patients.

This article is organized as follows: the next section recalls
the required definitions in the following sections as SFS,
TSFS, CTSFSs and Dombi operations. Also, new score and
accuracy functions and set-theoretical operation are defined.
The subsequent section defines Dombi operations of complex
T-spherical fuzzy numbers and provides their examples, and
related operations of these operators are obtained for intro-
duced aggregation operators. Then the MCDM method and
its application are presented. Before the final section, sensi-
tivity analyses and discussion related to obtained results from
the application of the proposed method are given. The final
section mentions the conclusions and planned studies.

Preliminaries

This section reminds the definitions of CFS, CIFS, CPyFS,
CPEFES, SFS, T-SFS and CTSFSs.

Definition 1 [42] Let X be a nonempty set. A complex fuzzy
set (CFS) J is defined as

F={@ar@®):reX,

where &£ (r) is called membership functions of CFS F and
receive all lying within the unit circle in the complex plane.
Thus, it can be expressed as @£ (r) = a}-(;)eiznw“f ® and
it denotes a complex-valued grade of membership of r € X
to (CFS) 3. Herei = «/—1 andforally € X,0 < ar(r) < 1,
and 0 < @y, (p) < 1.

Definition 2 [44] Let X be a nonempty set. A complex intu-
itionistic fuzzy set (CIFS) 7 is defined as:

= {@az@®,yz@®): :r e X},

where a7 (r) and p7(x) are called membership function and
non-membership function of CIFS Z, respectively. They
receive all lying within the unit circle in the complex plane.
Hence, they can be expressed as @7 (x) = az(p)e' " 7«z®,
and 7(r) = pr@e?™ @z ®  where they denote the
complex-valued grades of membership and non-membership
of r € X to CIFS Z, respectively. Here i = «/—1, forall t €
%0 <az@® + 7@ < 1,and 0 < woy () + @, (1) < 1.

Definition 3 [52] Let X be a nonempty set. A complex
pythagorean fuzzy set (CPyFS) ‘3 is defined as

B ={E ap, yp@) :re X},

where a3 (r) and yp(x) are called complex-valued mem-
bership function and non-membership function of CPyFS
P, respectively. They receive all lying within the unit cir-
cle in the complex plane. Thus, they can be expressed as
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i27'rwm¥3 (1) i2m Dy (x)

ap () = agp (e ,and yp(r) = yp@e
where they denote the complex-valued grades of membership
and non-membership of r € X to CPyFS ‘I3, respectively.
Herei = /=T and forally € X,0 < a2(x) + y7(x) < 1,
and 0 < g, (1) + @, () < 1.

Definition 4 [54] Let X be anonempty set. A complex picture
fuzzy set (CPFS) P is defined as

P ={@ap@), Br@), 7p@) : 1 € X},

where ap (1), Bp(¢), and yp () are called membership, neu-
tral membership, and non-membership function of the CPFS
P, respectively. They receive all lying within the unit cir-
cle in the complex plane. Thus, they can be expressed as

ap() = ap@e PO, fp) = pp(®)e PP, and
7@ = yp@)e PP ®  where they denote the complex-
valued grades of membership and non-membership of r € X
to CIFS P, respectively. Here i = +/—1, and for all t € X,
0<ap@+Bp@®+yr@) < l,and0 < @y, (1) +@g, O+
Dyp (@ <L

Definition 5 [24,25] Let X be a non-empty set. A spherical
fuzzy set (SFS) A is defined over X as follows:

A= {(; aA(x),

BAG). A®)) 0
< @ ® + B4 ®
+yi < lre 36}
Here the functiona 4 : X — [0, 1] expresses MF, B4 : X —
[0, 1] expresses NeMF,and y 4 : X — [0, 1] expresses NMF
of the SFS A.
The concept of T-spherical fuzzy set was introduced by

Mahmood et al. [26] as a generalization of the SFSs, as fol-
lows:

Definition 6 [26] Let X be a nonempty set. A T-spherical
fuzzy (TSF) set (TSFS) is defined over X as follows:

T = l(z: a7 (), Br(®),
VT(F)) 0=

ol (@) + ()
+ri@ <lre 36}
Here the function @ 4 : X — [0, 1], B7 : X — [0, 1], and

vA 1 X — [0, 1] express MF, NeMF, and NMF of the TSFS
T, respectively.
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Definition 7 [57] Let X be an initial universe different from
empty set. A complex T-spherical fuzzy (CTSF) set (CTSES)
is defined as follows:

F={@ar@,Br®,yr@®):reX}

Here oy (1) = af e, () = Br (7P,
and yy (r) = yr @©)e' ™7 © denote the membership grades
of truth, abstinence, and falsity such that 0 < a?f ) +
q q q q q
Br@+yr@ =land0 =, o, +@g ) +@y, ) =1
Furthermore,

@ =1 —oar@©7—Br®7 —ar ()¢

a/(1—w! —w! —w! ) .
e ‘/ “r® TAr® TvE® expresses the complex hesitancy
grade of 1.

For convenience, f = (axe' 7% | Bre' 7 Pk e 70 is
called complex T-spherical fuzzy number (CTSFN).

Ali et al. [57] defined the score functions for the CTSFNs
by taking absolute value of formula given the following def-
initions.

1
Q) = El(aq =BT =y + (Bas — wps — wya)|

1
O(F) = Sl + BT+ ) + (@as + @ps + @ya)l.

When we consider the CTSFNs (1271, 0¢1270 ()¢i270)
and (0271 0270 11271y their score values are 1. So, we
need to use the accuracy function, but their accuracy values
are 1. This is a weak aspect of the proposed score and accu-
racy functions. Therefore, we define the following score and
accuracy functions.

Definition 8 Let / = (ae'>™ P« Be®TPF 1el?TPY) is a
CTSFN. The score function Q(f) and accuracy function
O(F) of F are formulated as follows:

1
Q)= Z(2+ (@ = 1 — y?) + (was — wpa — ww))
(H
1 q q q
O(F) = 7 (24 @ + 87+ v + (@as + g0 + 0)).
(2
Definition9 Let | = (a2, 12761, 1€/ 277n)

and Fo = (e P2, Bre' 5 16" P1) are two
CTSFNs. For the comparison of F | and F 5,

— 1 >=F2(Fissuperiorto f2)if Q(F 1) > Q(F2);
— if Q(F 1) = Q(f 2), then

— F1 > F2 (Fyis superior to F 2) if 5(F 1) > U(F2);
— F1 ~ F2 (F1 is equivalent to F ) if O(F ) =
O(F 2).
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Definition 10 Let /4 H(x a1 (e ® g (x)

ei2nwﬁl (F) ) Vl (;)el.2ﬂwy1 (X)> : I € x} and
Fa= {(F ar (e By (1)e! T TIO, yy (zc)eiz”wyz(“)

reX } be any two CTSFSs. Then

L Fi 2 Faiff og(p) < aa(x), Bi(x) < Ba(p), vi(x)
Y2(0) and @o (1) < Tar (1), PB1(x) = D) Pyi(x)
Wy, (), forall ¢ € X.

2. (F1)° = {@n@e™ ™o, Bi@e o, o (x)
TTNwY 1 x e X).

IV 1V

FrU 2 = { (v max{en @), a@)e 27w o),
min{B1 (¢), Ba(x)}e 27 Min@p1 0 Ppr 00}

min{y1 (1), y2 ()} >N 0 70))

xe%}.

Fi0 = | (5 minfen @, ax@)e 2070 mow),
min{B1(p). f(x)}e' >N T2,

max{y; (r), y2(r)}e > M@ (”’%(I)}) :

;ex}.

Example 1 Letus consider CTSFSs /| and f ; over universal
set X = {r1, 12, r3} given as follows:

Fi1= {(;1 0.8¢/270-81 () 5,i-2w0.52 0‘96i2n0.93)
(Zfz, 076127072 () 74i270.73, 0.961'2710.92)’

(13, 08627082 07127071 0,9¢727091) |

and

Fo= {(;1’ 0.9¢/27091 () 6i270.62. 0_88i2n0.83>’
(Zﬂz, 0.8¢/27081 () g,i270.82. 0'761'2;10‘72)’

(;3 0.9¢i27091 () g,i27081 O.7ei.2n0.71)}'

Then it is clear that F | C F . Also,

(F )¢ = {(xl’0.98i2n0.93’ 0.5¢/270-52 0.88i2n0.81),
(:fz, 096127092 7,i270.73 0‘761'2710.72)’
(F& 0.9¢/27091 07127071, o.8e"2”°'82> }
FlUF, = {(m’ogeizno.m’ 0.5¢127052,
0.86i2n0.81>,

(?3 0.9¢127091 () 7,i270.71 ) 7ei.2n0471)}
and

FinFa={ (6108627081, 05672702 0,920 )
(?2, 076127072 () 7¢i270.73 0'761'2710‘71)’

(53, 0.8¢/27052,0.9¢/27091 09127051 |

Dombi operations of complex T-spherical
fuzzy numbers

In this section, we remind the definitions of Dombi t-norm
(TN) and t-conorm (TCN) defined in [60] and we define the
arithmetic operations of CTSFNs using Dombi TN and TCN.

Definition 11 [60] Let f and g be two real numbers. Then
Dombi TN and Dombi TCN are defined by

1

T n > 0.
T8y A=Ay
(A ()
Dombi t-conorm [60] is given by:
1
1-— T n >0,
e () ()
1—g 1—nh
respectively.
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Definition 12 Let X beauniverseand f | = (aleiz”w"l , B1e' TRy 2T )and Fo= (azei2”w“2, Bre' 2T Th y2ei2”w1’2)

are two CTSFNs on X. Then some Dombi operations between F | and F ; are given as follows:

1. -1 F2=

2. F1Q®F2=

AT

1

1
) () )
w, 1—(wp )1 . 1=(@p,)9 \ 1\ 7
1 e l+( (m‘gl)q ) +(( (Wﬁz)q ) )
T
% )+ ()
iznq 1wy )4 '71 1—(@yy )4\ %
1 e l+( (w'yl)lq ) +(( (wy;q ) )
T
% () (o))
izn‘i 1—(waq )4\ I 1—(wan)4 \7 %
1 —e ]+( (mal)lq ) +(( (zrr()(z%q ) )
q, _ _ 1
() ()
i L (Sos )y I(HH’W")")%
1 e o) T\,
() ()

i2r | 1—
? 1+(
e

1

(wal )4

(w(xz )4

(w14

) ))

(w7

3

S N 1 @)1 \1\ 7
1 — 1 ¢ H’(F(uyyl)q) +((17(mm>4) ) ,
q 1
/ () () )
. 1
lZﬂﬂl—H»(r( (wozl)q )n)%
1 _ 1 le lf(wul)q
q 1
1+(r(£525) )"
. 1
(lZ?T(q 1 ((1_“17/31)(1)7])%
3.1 = 1 e AT . |sr=0
qj _ 1
(e (52"
. 1
ey
1 . 1+ (Wyl)q
1
[ e’
1
e, ( 1—(%)‘!)”)%
1 e (e @ )7 ,
sty
. 1
Ty
4. F7 = 1 Lo N TV . |st=o0
q _ 1
+(r(587)")"
. 1
zZniJl—H—(r( (ry; )4 )’7)%
1— 1 e 1=(@y )7
q 1+(T(1£y(ly)lq)q)n)ﬁ

,
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Example 2 Consider two CTSFNs given by Complex T-spherical Dombi fuzzy weighted
arithmetic averaging operator

Fl — (0.8€i2ﬂ0'81 0.56i2ﬂ0.52 0.9ei27T0.93)

Fo = (0.9¢27091 (.6¢/27062 () 8i270-83y Definition 13 Let X be a universe and F; = (oekeiz”w“k,

Thenforn=1andg =6

Fl1®&F, = (0.9186i2n0.926 0.477¢1270.496 0.77361'2710.808)
F = (O.Sei2n0.81’ 0.5¢1270-52, 0'9ei2n0.93) =1

[T = <O.86i2n0.81 0.5¢1270.52 0'961'2710.93)'

Dombi weighted aggregation operators of CTSFNs

In this part, we introduce two operators called complex
T-spherical Dombi fuzzy weighted arithmetic averaging

u
CTSDFWAA(F 1. F 2. ... Fu) = @OV 1)
k=1

Bre! i yken”w”k) (k=1,2,...,u)beasetof CTSFNs
with weight vector W = Wi, Wh, ..., W,)T, where W, >

0, > ¢_; Wk = 1. Then (CTSDFWAA) operator is defined
by a mapping CTSDFWAA : F* — [, where

u
CTSDFWAA(F 1. F 2. ... Fu) = D Wik «.
k=1

Theorem 1 Let X be a universe and F = (akeiznw“k,

el TH ykeﬂ’myk) (k=1,2,...,u)beaset of CTSFNs
of with weight vector W = OV, W, ..., W,)T, where
W> >0k =1,2,3,...,u) and > j_; Wk = 1. Then,
aggregated value of set using CTSDFWAA is a CTSFN
defined as follows:

1

1
q - ol 1
10K Wa(Em T
k

27 |1- .
q (@o )4\ m
1+<Zzzlwk(lf(wak)q) )

e

1

= 1 e
-1 1
REG Wuﬁ—?w

k

i2m
a 1-(w, )
1+(ZZ:1 Wk( @ )T

Sl

")

’

i2m 1

1 e
_,4 1
1 Wi (e

"

q 1—(wy, )
u k
‘*(Zk=1 Wk( @y )

=

")

(CTSDFWAA) operator and complex T-spherical Dombi
fuzzy weighted geometric averaging (CTSDFWGA) opera-
tor. We also obtain some pivotal properties of the introduced
operators.

Proof We can simply prove the theory using the mathemat-
ical induction method. Using Dombi operations of CTSFNs
for u = 2, we have
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CTSDFWAA(F 1, F2) = WiF1 @ WhaF2

i2n |1- L ;
a (@) \1 @ay)? \1\7
1 — 1 B 1+<W1(]_(w] )q) +W2(1—(wa2)‘1)
1 ’
MGy )”+W2( )n)n
2w 1 T
q @p )9 \n (@p,) n)ﬁ
1+l w +W
— 1 e ( 1(1 (wﬁl)q) 2(17(@32)4)
YRRV q)"+Wz< *32 ww
i2mw 1 i
q @y \" (@4 \1\7
1 . 1+<W1(1—(my1)4) W2 (1 (myz)q)
1 ’
1+(W1(7)”+W2( )”)"

=

(@ay )1\

1— i Zk () )
L
Y (i Wiy w

1
l (@py M n
— \/ 1 J Zk 1 Wk (wﬁk)q )’7)

i
H‘(Zk 1Wk( )'7)'7

=S|

17(w},k)q n

1 Zkl k @y )T )
1
)")ﬁ

H‘(Zk 1 Wk(

Assume that the equation holds, when u = o, i.e.

CTSDFWAA(F1,F2,....Fo)=WIFI1®WF2®... ®WyFo

27 |1— 1

1
q (mak)q n\"
1 1+<Z;cr:1 Wk(l—(wak)q) )
\q/l — e )

1
H‘(Zk 1Wk( )?7)77

i2m 1 T

q 5 l—(zzrﬁk)q AN

- 1 . ]+(Zk=lwk( (g7 ) )

1 )

1+(Zk 1Wk( )'))U
i2w 1

T
q 1—(ay )4\ 1) 7
\/ ; . 1+<ZZ:1Wk( @y )

T
4+ 7 |Wk( )")”

il UoJl Al .
bes Shenas Q) Springer
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If u = o + 1, then we have

CTSDFWAA(F 1, F2, ...,

i2m | 1- 1 .
(@ay )4 \" n
1-— 1 e H(Zzzlwk(l’wak)q) )
1 ,
Y (7 Wiy w
2w 11 5 v i
q —\PB n
1+ 2 Wi (St )
= 1 ( k=1 (g, )9
. lg \ k s
1+ 1Wk( )’7)"
i2m L :
q 1=(@y )2 \1\ 7
1 e 1+(ZL' i @y )T )
q o Ly L
1+ 70— Wk(yT)n)”
k
2w |1- ! ;
q (@a)? \" ki
1 — 1 e l+(ZZ:ka(I—(wak)q) )
1
Y (0 Wy ekl
i2m 1 T
a @) YT
(2 i (i)
= 1 ( k=1 (wg, )1
\ e Pr ,
1+ 7= 1Wk( )”)W
2w 1 T
q I—(wy, )\ \ T
i ”(Zg:lw"( ) )
e
1
YRERoy A 1Wk< )nw
i2m | 1- 1 :
(@a, )7 \1\7
1 i p ”(W”“(lfwiaﬂﬂ)
_ — -
Y 1+ Wo i1 (=25 m 7
a+1
2w 1 T
(g +l)q n\ 7
X 1 e ”(W"“('-Wzﬁﬁ")
q 1 ’
I+Wop1 (5 ““ ma
a+1
i2m L .
q @yg? |1 m
: . 1+<W(7+1 (1,(0,(; +1)q)
q 1 b
q| Y, ES
T+ Wo 1 (2 )m 7
1*V0+1
i2n | 1- L .
q (@a)d \N\ 7
+1 74
i 1*(22—1 Wk(l—(zzra )q) )
1 - 1 e k
Y P Wiy mﬁ
i2m : T
I-(@g ) \7
_ 1 ez ()
= : 7
Y 1+(Z"“Wk( £y
2w 1 ]
1- AVAN
1 (o ()
k
e
1
Y 1+<Z°“Wk< oy

Fo)=WIF1®WaF 2® ... WoF 6 ®Woti1F o+1

@(WU+IF0+1)

V 4

/
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3
CTSDFWAA (Fl, Fa.F3)= @(Wka) :
k=1
i2m | 1- 1
q u (way )1 n
- i e 1+<Zk:1Wk(W) )
Y 1+(Ch 1Wk( )m
i2n 1. i
— (o, AW
_ 0 7 |+(Z;§=1Wk($) )n
q T e k]
1+(Zk 1Wk( )'))77
2w ! 1
q 1—(wy, )9 \1\ 7
1 1+(Zi:1Wk( (wykylfq ) )
AT e
1+(Z/\ 1Wk( )'7)77

1
n

’

Hence, the theory 3.1 is true for u = o + 1. Then the equation
is true for all u € IN. O

Example 3 Consider three CTSFNs with weight vector W =
(0.5,0.3,0.2)" and operational parameter n = 1 and ¢ = 6
given as follows:

Fi= (O.SeiZnO.Sl 0.5¢1270-52 0.981'2710.93)
Fo= (0'961'27:0.91 0.6¢/27062, O'Sei2n0.83)’

Fi= (0_981'2710.91 0.8¢127081 0_7ei2n0.71>_

u
CTSDFWAA(F 1. F 2. ... Fu) = D Wik ©)

— (0.488€i2n0'493 0_53461'2710.553 0.666€i2n0'683).
The values when n # 1 are shown in Table 1.

Theorem 2 (Idempotency) Let F = (akeﬂ” Do Brel T

Yre )(k=1,2,...,
Fr=F.Then

i2nwy,

u) be a set of CTSFNs such that

CTSDFWAA(F1,F2,....Fu) =F

Proof Assume that f; = f forallk =1,2,...,
Eq.3, we have

u. Using

k=1
i2m | 1- L T
- I re ﬁ (o (5)")
\q/ +(Tk= 1Wk( )”)ﬁ
i2m 11_(w T
_ \/ ; ~ 1+<2;;:1Wk($)n)n |
IR0 3 1Wk( )'7)”
i2m L T
—, el
\/1+(ZZ |Wk( )’7)”

’

Using the CTSDFWAA operator, we can aggregate the three
CTSFNs and find an aggregate value as shown below:

P4
y

Pielase cllolayao
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Table1 Whenn # 1 Proof Let CTSDFWAAF; = (akeﬂmak,,skeﬂwﬂk,
n CTSFNs

ykeiz”ka) and

i2710.506 i2770.561 2770.720
2 (0.5016127030%, 0.540¢270361, 0.706¢270720) / | rwy . oy o
3 (0.501(312710.5]27 0.5336"2”0'554, 0.713612”0'725) CTSDFWAA Fk = Olké' k., ﬁke k, yke k),
4 (0.51361'2710.5]8’ 0.526€i2”0'548, 0.71461'2770.726) . az , O{Z,l
5 (05186270524 () 52001270543 () 715,270.726) k={1,2,3,...,u}sincear, <ap, 1—af, = 1_a;’,l - We
show first that @ < &. So, we have
u q AN
o
F
27 |1- I . k=1 o
q (@ay)d \1\ T
| 1 . ”((1—(wﬁkﬂ) ) u qF T\ #
- o 1 ’ 1
|G = ZWk<1_aq )
% k=1 Fi
2w I 1 ” i
q - wﬂk )ﬁ u q n E
4 n o
= 1 <( (@p, )T F
q 1-p4 1 € & ’ 1+ Z Wi 1 lt/
1+<<T,,k)ﬂ>n k=1 o
i2m ! T u ol AN
q 1—(@y )4 \1\ " F1
1 l+<( (’Z’ng(q ) ) =i+ ZWk (1 ol )
I it = '
v 1
27 fl-——— L p N
q (o, )1 a
- —L—e ) 1+ (Zz‘l M (15‘2 ) >
q ay ’ 1
I+ N )
i2r | ——L = T
1—(wg, )7 q n\ n
9| B a’,
= ;e +( (wﬂk)q 1 =+ ZZ:I Wk (1_231/ )
Y 1+<ﬁ) ’ Fi
B 1 1
. 1 —
l i2m p 1+(1—(wykq)q Olq,r n %
w- u
— 5T e @n T+ { i Wi | =t
4 (T o
e 1
_ (aei2nwu’ IBeian,g’ J/ei2nwy) <Il- B ; %
F
:F 1 + ZZ=1 Wk(l—o{}], )
F1
1
[m} | — 1
q ol N\ 7
ez (%)
Theorem 3 (Monotonicity) Let F; = (akeﬂ”w"k, '
; : i2nw 1
Bre' T, Vkelznw"k> and F) = (0‘1231 " < |1- X
(2. / i2. / q aq, n\ n
,312@1 ﬂwﬁk"y]éel nwyk> k = 1,2,...,u) be two sets of 1+ (ZZ—] Wi (1 F{; ) )
- — .
CTSFNs. If ax < o, Bk = B> Vk = Vj» Doy < Ty, Ty = Fi
@y and @y, > wyléforallk =1,2,...,u. Then
Hence, @ < « Similarly, it is easy to show that 8 < ,3 s
CTSDFWAA(f 1, F2, ..., Fu) Y <V, 0 < w4wp < wgw, < wy. Thus, the proof of
< CTSDFWAA(F |, Fh, ..., F}). the theorem is completed. O
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Theorem 4 (Boundedness) Let Fjp = (akeizﬂ Dy

Bre T Phe ykeiZ”wV’(>, (k=1,2,3,...,u)asetof CTSFNs
with Fpin = min(F1,F2,F3,...,Fy) and Fpax =
max (F1,F2,F3, ..., Fu). Then

Fmin XCTSDFWAA(F1.F2,F3, ..., Fu) 2 F max-

Proof Let
Fomin=min(F1,F2,F3,...,Fu)

_ <ak—ei2nwa_k’ ﬂk_ei2nwﬁ;’ yk.:,_eian;I;)
and

Fmax =max (F1,F2,F3,...,Fu)

+ 2nw) ,— 2nw,  _ 2nw,
<ake O‘k,ﬂke ﬁk,yke k).

Therefore,

min(ay) = o, min(B) = B, min(y) =y, max(e)
= o;",max(B) = B, max(ye) = v

min(wy,) = Dy min(wg,) = wﬂ_k, min(wy,)

= wﬁ, max(wy,) = wa"'k,

— T _ ot
=g, max(wy,) = @y,

max(wg,)

The inequality for amplitude term of membership grade
is given as follows:

1
q - 3 o 1
L+ (S WGy
—a;
1
=y - 3 ol 1
1+ (Zk:l Wk(lffxz)n)”
1
=, 1-— ; T T
1 (Dl WG

Lisllase cllad .
bes Shenas Q) Springer

Similarly, the inequality for phase term of membership grade
is given as follows:

1
|17 @)™ \\u
Dy ny\n
1+ (ZZ:I Wk(1_(wkak)—q) )
1
= q - ( ) 1
Wy n\n
1+ (ZZ:] Wk(l—(zzrkak)‘i) )
1
=, 1 - o %
u «
\ 1+( k=1 Wk(l_(wkak)ﬁ) )

In a similar manner, we can get the results for the ampli-
tude and phase terms of abstinence and non-membership
grades. Thus,

Fmin5CTSDFWAA(FI,F%F%-HsFu)meaXo

Complex T-spherical Dombi fuzzy weighted
geometric averaging operator

Definition 14 Let/f ; = (akei27rwak s ﬂkeﬂﬂwﬁk s yk6i2nwyk>
(k=1,2,...,u) be aset of CTSFNs of with weight vector
W = Wi, Wa, ..., W,)T, where Wy > 0, Y {_, Wi =
1. Then (CTSDFWGA) operator is defined by a mapping
CTSDFWGA: F* — F, where

u
CTSDFWGA (F 1, F2,...,Fu) = ®FZW-
k=1

Theorem5 If [ = (akeiz”wak,ﬁkeﬂ”wﬂk, ykeiZ”ka)
(k =1,2,...,u) be a set of CTSFNs of with weight vector
W= Wi, Wa, ..., W)T, where Wy > 0, 3 {_ Wi = 1.
Then (CTSDFWGA) operator the clumped value of these
CTSFNs is again a CTSFN. This clumped value can be
obtained by the following formula:
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CTSDFWGA(F 1, Fa, ...

u
’FM)=®F]){/VI(
k=1

1

)

2w T
q 1= (@ )4\ "
]*'(ZZ:ka( (ma:lfq ) )
1 e
1+(Z§é 1 m
i2 1 T
q lf(zzrﬁ AV AN
= H(Z%:‘W"( (wﬂk];q ) )
e
7 1
\/1+<Z§$ RUNE k)ﬂ)'v

)

1

(WVk )

1
(k= 1Wk(

i2r | 1—
4 u
1+ Zk:l Wk(
e

i
)”)W

‘1

-

1—(wy, )q

==

q

")

Proof The proof can be made by similar way to the proof of
O

Theorem 9.
Example 4 Let us consider three CTSFNs given as follows:
Fl= (O'Sei2n0.817 0.5¢1270-52 0'961'2710‘93) ’
Fo= (0.961‘2710.91’ 0.6¢/27062 O_Seizno.ss) ’

Fi= (0'961'2;10.91 0.8¢1270:81 0'761'2:10.71)

— (0.7888i2n0'801 0.53461'2710.553 0.44361'271’0.461).
The values when n # 1 are shown in Table 2.

(akeﬂnwak .

ﬁkeﬂ”wﬁk’ ykeiZ”ka) (k=1,2,...,u)beasetof CTSFNs
such that i = F . Then

Theorem 6 (Idempotency) Let [y

CTSDFWGA (F1,F2, ..., Fu) =F
with the weight vector W = (0.5, 0.3, 0.2)" and operational  Proof The proof is similar to the proof of Theorem 2. O
parameter = 1 and ¢ = 6. Using the CTSDFWGA opera-
tor, we can aggregate the three CTSFNs and find a clumped
value as given below:
u
CTSDEWGA(F 1. F 2. ... Fu) = Q) 1
k=1
i2m 1 T
1—(wy )1 "\’
e (22))
T€ )
j— ™N T
e
i2m ! 1
1—(wg, )4
= 1 ‘1 H(Zzzlwk(@ﬁf)k") )
T€ )
_g4\"\ 7
(o))
Py
i2m | 1- ! ;
q "\
" @)
1 - ! e H<Z’”Wk("":’k”<”> )
q u J,I? n %
(zm())
///7/
zﬂmﬁﬁ @ Springer
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Table2 When n # 1

n CTSFNs

2 (0.8556i2”0‘869, 0.540¢i270-561 , 0.476€i2”0‘505)
3 (0.865€i2”0'880, 0.533€i2”0'554, 0.506€i2”0'546)
4 (0.864€i2ﬂ0'878, 0.526ei2”0'548, 0.53561'2770.588)
5 (0.86l€i2”0'875, 0.52261'27'[0.543’ O.875€i2”0'629)

_ elanak .

Theorem 7 (Monotonicity) Let [y

(a
, i27'[wa/ ,
(ake k, ﬂk.

1,2,...,u) be two sets of

>

i2nwg i2nw /
Bre k, Ve Vk) and [,

2rw.

Vk) (k
CTSFNs. If ax < o, Bk = Brs Vk = Vi Doy < Dy Dy
oy, and @y, > @, for all k, then

k k

2mw g
e Pk, yle

CTSDFWGA (f 1, F 2, F u)
< CTSDFWGA (F', F5,....F}).

Proof The proof can be made by the similar way to Theo-
rem 3. O

Theorem 8 (Boundedness) Let [y (akeiz”wak,

1,2,3,...,u) be a set of

ﬂkeiznwﬂk , Vk€i2nwyk>, (k

CTSFNs with F pin = min(F1,F2,F3,...,Fy) and
Fmax =max(F1,F2,F3,...,Fy). Then
F min 5CTSDFWGA(FIyFZyFS,---,Fu) = F max-

Proof The proof can be made by the similar way to proof of
Theorem 4. O

u

Dombi ordered weighted aggregation operators of
CTSFNs

In this part, we propose two operators, namely, complex
T-spherical Dombi fuzzy ordered weighted arithmetic aver-
aging (CTSDFOWAA) operator and complex T-spherical
Dombi fuzzy weighted ordered geometric averaging (CTSD-
FOWGA) operator. Moreover, we also discuss some pivotal
properties of these operators.

Complex T-spherical Dombi fuzzy ordered weighted
arithmetic averaging operator

Definition 15 Let/ ; = (axe>™ @, Bre'> b |y e 2™ ™n

(k=1,2,...,u) be a set of CTSFNs of with weight vector

W= Wi, Wa, ..., W), where Wy > 0, > {_, Wi = 1.

Then (CTSDFOWAA) operator is defined by a mapping
CTSDFOWAA : f* — [, where

u
CTSDFOWAA (F 1, F 2. ... Fu) = D WiF o)
k=1

and (o1, 02, ..., 0y,) are the permutations of ¢ (k) having the
condition |F 5 k—1)| = |F oyl forall (k =1,2,...,u).

Theorem9 If F (akeiz”wak , Bee' Tt ykeiz”’”yk)
(k=1,2,...,u) be a set of CTSFNs of with weight vector
W= Wi, Wa, ..., W), where W > 0and 3 _ Wi =
1.

Then aggregated value of set using CTSDFOWAA is a
CTSFN defined as follows:

CTSDFOWAA (F 1. F 2. ... Fu) = P Wil o)
k=1
i2m | 1- ! :
( ( (g, )4 "\’
S | e )”> )
11— 0 e o k)
4 u % ) 7
| Xt Wie| 7o
o (k)
i2m 1

= 1

q 1-p4 "
1+<22=. Wi (Tq:)k) ) )
o

==

n
q =@ 1)
| e wy | e
e ( = ( @)

i2m 1

Sl

q -4\
1+ "W Yo (k)
= Yo )

AN
q 1—(w )
l+(zngk( y(r(k)q ) )
1 e (“’Vrr(k))

1

Diglae cllod a0
KACST aiuéillg roglel)

@ Springer
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Example 5 Let us consider three CTSFNs given as follows: Theorem 11 (Monotonicity) Let Fj = (Otk i2nwak’
i : zana/

r= (0.981‘2710.9170.7ei2n0.6270.8ei2n0.83)’ Bre' b Vkelznw”‘) and Fj = (0‘ k, By

Fo= (0.9612710.91 0.8¢i270:81 0'361‘2710.50)

Fi= (0_8ei2n0.81 0.5¢i270.52 0_461'2710.67)

having the weight vector YW = (0.5, 0.3, 0.2)" with opera-
tional parameter n = 1 and ¢ = 6. Using the CTSDFOWAA
operator, we can aggregate the three CTSFNs. We can find
the values of the score function of this CTSFNs

Q(F1) =0.584, Q(F2) =0.635, Q(F 3) = 0.604.
Hence, Q(f2) > Q(F3) > Q(F 1), we will also find that
Fol=Fo)= (0.981'2710.91 0.8¢i270:81 O.3ei2n0.50>

For=1F3= (O gei2T081 () 5,i270.52 () 461'2710.67)
o2 — = . s Ul , U. s

Foz=F) = (0'961'2:10.91’ 0.7¢/27062 0'861'27[0.83).

3
CTSDFOWAA (F 1. F 2. F 3) = @) Wi o))
k=1

2rw.

i2m zzrﬁ;{ "

/
) yke

e ) (k 1,2,...,u) be two sets of

CTSFNs. If ax < o, B = By, v = ¥ By < @y, Dpy =
wg, and wy, > w,, for all k. Then
k k

CTSDFOWAA(F1,F2,...,Fuy)
< CTSDFOWAA(F|, Fh,....[).

Theorem 12 (Boundedness) Let [ = (akeﬂ”wak,
Bl 2T ykei2”w7k>, k=1{1,2,3,...,u}asetof CTSFNs
with Fpin = min(F1,F2,F3,...,Fy) and F e =
max(F1,F2,F3,...,Fy). Then

Fmin 2 CTSDFOWAA(F 1, F2,F3,.... Fu) 2 F max-

Complex T-spherical Dombi fuzzy ordered weighted
geometric averaging operator

Definition 16 Let/f ; = akeiznw"‘k , ﬂkeﬂﬂwﬁk , yk6i2nwyk
(k=1,2,...,u) be aset of CTSFNs of with weight vector

1

i2r | 1—

1

1+<Z}3=1 Wi (1

q
%5 (k)
q
Yok

))

1+<2,’$=1 Wk(

(moto (k) )4
=@y )7

)

i2m

1

q
‘*(221 Wk<
e

=S|

Bo (k)

(7))

q
l_(mﬁd(k))

1
1

(?U;;U<k))‘1

s

1

i2m
]+<ZZ=1 Wk(

1

()

TE¢
n

O‘(k)
o(l\)

=@y y)?

)
)

(’% (k) )

— (0_48861'2710.493 0.489€i2n0'508 0.682€i2n0'696) .
(akeﬂnwak

u) be a set of CTSFNs

Theorem 10 (Idempotency) Let Fy

,Bkeﬂnwﬂk’ ykeizﬂwyk) k=1,2,...,
such that [ = F. Then

CTSDFOWAA (F1,F2,....,Fu) =F.

=W, Wa, ..., WM)T, where Wy > 0, ZZ:] Wi = 1.
Then (CTSDFOWGA) operator is defined by a mapping
CTSDFOWGA : F, — F, where

CTSDFOWGA (F 1, F 2, ..

®Fa<k)

Disllase cllol auao
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and (01, 02, ...

condition | 5k—1)| = |F oyl forall (k =1,2,...,u)

, 0) are the permutations of o (k) having the

Theorem 13 If /4 (akeiznw”k, Bre T, ykei2”wyk>

(k =1,2,...,u) be a set of CTSFNs of with weight vector
W = OV, Wa, ..., W), where W, > 0, Yok Wk =
1. Then (CTSDFWGA) operator the clumped value of these
CTSFNs is again a CTSFN. This clumped value can be

CTSDFOWGA (F 1, F2, ..

®F<r<k)

obtained by the following formula:

1

2w T
g\ "™\ 7
1— (g
1+(Z%1Wk<<< "(132 > )
1 e T () ,
q j— n
Zk 1 Wi a(k)
a(k)
2w 1 I
N
1—(&7/3 X )4
1+(ZZ1 Wk<(w/S o ))q
= 1 e o (k)
N ’
q - "
+{ 2kt Wi qn(k)
ﬁa(k)
i2m | 1- 1 :
( )4 7"
Yo (k)
(e 22
T < = @)
1-— T e
9 J(k) ) )n

CTSDFOWGA (F 1, F 2, F3) = ®Fa(k)

Example 6 Consider CTSFNs given in Example 3.4. Then

k=1
i2w ! ;
1
g . =@ayg)? ) )
- L 2o Wi ey T
T€ )
la " 7
ZA 1 Wi 5()
k)
2w 1 T
N\ 7
q 1—(wg_ )
B 1 1+<ZZ=1 Wi ( @ dk(k;q*
= . e o (k) ,
_ﬁq(k) T\ 7
I+ io s Wa -
Bo (k)
i2m | 1- L :
N
(wy, )
1— 1 e (v )
q 20 N
L+ {20k Wi l(r(q)
Yo (k)

,
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= (0_76161'2710.773 0.489,1270.508 0.450ei2n0.468)_

Theorem 14 (Idempotency) Let [ = (akeizﬂw“k,

ﬂkeiznwﬂk’ ykeiZ”ka> (k=1,2,...,u)beasetof CTSFNs
such that i = F. Then

CTSDFOWGA (F1,F2,...,Fy) =F.
Theorem 15 (Monotonicity) Let Fy = (akeﬂﬂwak’
,Bkeﬂ”wﬁk, )/keiznwyk) and F;( _ (al,(eﬂﬂwal/(’ ﬁ]ieﬂnwﬂ;(’

2rw.

vie Vk) (k = 1,2,...,u) be two sets of CTSFNs. If

ak < o, B = B Vk = Vi Doy < Wy, Wpy = W, and
wy, > @y, forall k. Then

CTSDFOWGA (F 1, F 2, ... Fu)
< CTSDFOWGA (F\, Fh,....F}).

Theorem 16 (Boundedness) Let [ = (Olké‘iznw“k’
ﬂkeiZTrwﬁk’ ykei2nwyk>, (k=1,2,3,...,u)asetof CTSFNs
with Fin = min(F 1, F2, F3,...... JFu) and Fmax =
max (F1,F2,F3,...,Fu). Then

F min < CTSDEOWGA (F 1, F 2, F 3, oo F ) < F max.

MCDM method under CTSF environment

In this section, we present an MCDM method under CT S F
environment.

Let k = {ki1,k2,...,k;} be set of alternatives, ¢ =
{€1,€2,..., €} be a set of criteria. Let us consider W =
W1, Wh, ..., W) such that W; € (0, 1] and ijl W; =

1 as the weight vector of the criteria which is determined by
decision-makers. The steps of the MCDM method are given
as follows:

Step 1: The evaluation of the alternative k; according to
criteria €; performed by decision-maker. It can be written
as §y;i(j = 1,2,...,s;y = 1,2,...,1). Hence, CTSF-

decision matrix DM = [¢;]ixs can be constructed as
follows:
& Gz - Gis

01 & e O
DM = [{yj]txs = . . .

i1 G2 o G

Here é‘yj — <ayj612nw).j’ ’Byjeﬂnw).j, yyjeﬂnwyj).

Step 2: Find the aggregated value denoted by A, (y =
1,2,3,...,1) using the CTSDFW A A operators.

Step 3: Find the score values, for each Ayy =1,2,3,...,1

Step 4: Choose the alternative which has a maximum score
value.

Application

The COVID-19 outbreak first appeared in Wuhan city of
China in December 2019 and spread rapidly all over the
world [70,71]. Until May 5, 2021, 153,790,183 people were
infected with the COVID-19 and 3,218,080 people died [72].
Also, the spread of COVID-19 still continuous. In some
papers, mathematical analysis revealing the spread of such a
deathly disease have been presented [73—75].

In this section, an application of the proposed method

to determine a patient infected by COVID-19 is presented.
In this application, after we discuss by infectious diseases
physician, we determine the criteria as a basic symptoms of
COVID-19. Set of the symptoms is considered as € = {€; =
Fever ,e; = headache ,e3 = dyspnea,es = cough }.
Also, we consider the five patients py, p», p3, p4 and ps. For
each of patients, data measured along with 14 days according
to symptoms are given in Tables 3, 4, 5 and 6.

Here we transform data given in tables to CTSFN. We will
only explain transforming process of data given in Table 3.
Other transforming of the tables will not be showed.

We establish amplitude terms and phase terms according
to fever degree and days, respectively. First, we classify the
degree of fever for MD (38.6-39.5 ), NeD(37.6-38.5 ), and
NMD (36.5-37.5). Then we assign values from 0.1 to 0.9 for
fever intervals. This is shown in Table 7.

For each of MD, NeD and NMD, we find the arithmetic
mean of the fever values. Then we assign a value from 0.1 to
0.9.

These values are shown in Table 8 and Table 9.

We divide the number of MD, NeD and NMD days by
14 for each patient to obtain the phase terms. For example,
according to Table 3, we see that fever of p; is in MD for 6
days, in NeD for 5 days and in NMD for 3 days. Then phase
terms for MD, NeD and NMD are % = 043, % = 0.36,
and % = 0.21. All of phase terms for patients are shown in
Table 10.

In a similar way, we can obtain all of the CTSF values for
each of the patients with respect to symptoms using following
classification tables for other symptoms.

Here we use the steps of the proposed method.
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Table 3 Fever values of patients

measured for 14 days

Table 4 Headache values of
patients measured for 14 days

Table 5 Dyspnea values of
patients measured for 14 days

Table 6 Cough values of
patients measured for 14 days

Table 7 Classification of
measured fever degrees
according to MD, NeD, and
NMD

Liglhte cllod ayao .
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1 2 3 4 5 6 7 8 9

P1 37.80 38.00 38.20 38.60 39.00 39.30 39.50 39.00 38.60
)2 38.10 38.50 38.80 39.10 39.40 40.00 40.10 39.50 39.20
D3 37.50 38.10 38.60 38.20 38.10 38.00 37.70 37.50 37.20
D4 38.20 38.80 39.00 39.60 39.60 40.00 40.20 39.50 39.00
Ds 36.80 36.60 37.30 38.00 38.30 38.80 38.10 37.70 37.20
10 11 12 13 14
38.10 37.80 37.50 37.20 37.00
38.70 38.30 38.00 37.70 37.40
37.00 37.40 37.10 36.80 36.60
38.60 38.10 37.70 37.40 37.00
37.20 36.80 36.60 36.90 36.50

1 2 3 4 5 6 7 8 9 10 11 12 13 14
D1 37 55 58 62 68 77 82 93 94 95 86 74 56 34
pp 93 92 94 88 87 86 96 68 68 66 56 47 39 36
D3 15 24 32 38 66 58 68 65 69 83 94 96 98 87
ps 67 68 63 66 96 97 95 94 97 89 91 62 43 38
Ds 36 37 39 52 58 68 69 69 72 81 69 65 59 38

1 2 3 4 5 6 7 8 9 10 11 12 13 14
P1 28 33 39 48 59 64 69 79 96 99 97 96 69 64
P2 98 99 95 93 84 69 65 62 56 39 38 35 34 36
p3 19 28 33 38 39 68 79 88 93 69 65 58 53 49
ps 97 92 96 69 65 39 6.1 69 69 98 99 99 98 99
Ds 22 25 27 31 39 38 67 54 69 66 69 89 98 98

1 2 3 4 5 6 7 8 9 10 11 12 13 14
D1 3.1 34 48 67 86 82 83 66 62 54 39 35 36 34
)2 39 6.1 63 68 69 88 97 98 99 98 98 99 69 638
D3 29 36 39 59 6.1 68 69 69 93 99 97 98 99 98
ps 97 99 96 99 98 69 65 69 69 39 32 31 28 27
Ds 38 39 55 67 68 69 67 88 78 79 89 93 98 98

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

MD 38.6 38.7 38.8 38.9 39 39.1 39.2 39.3 39.4
NeD 37.7 37.8 37.9 38 38.1 38.2 38.3 38.4 38.5
NMD 36.7 36.8 36.9 37 37.1 37.2 373 37.4 37.5
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Table 8 Arithmetic mean (AM)
of fever values for MD, NeD,
and NMD

Table9 MD, NeD, and NMD
values in [0,1] for patients

Table 10 Phase terms

MD NeD NMD
1 39.00 37.98 37.23
P 39.35 38.12 37.40
P3 38.60 38.02 37.14
P4 39.37 38.00 37.20
s 38.80 38.03 36.88
MD NeD NMD
P 0.5 0.4 0.6
P 0.9 0.5 0.8
3 0.1 0.4 0.5
P4 0.9 0.4 0.6
s 0.3 0.4 0.3
MD NeD NMD
i 0.43 0.36 0.21
) 0.57 0.36 0.07
P 0.07 0.36 0.57
Pa 0.64 0.21 0.14
Ps 0.07 0.29 0.64

Step 1: DM matrix is constructed by taking into considera-

tion the above data.

(0'561'2710.437 0.461'2710.36’ 0.6€i2n0'21) (0.56i27{0‘50’ 0'761'2710.36’ O.8€i2n0'14)
(0.96’:27{0'57, 0.56{2n0.36’ 0.861:271'0.07) (0.76112710.50’ O.7€’:2n0'36, 0.961:271'0.14)
DM = (0 16{2”0'07, 0.46{2”0'36, 0.56{27{0'57) (0.76{27[0'36, 0.86{27{0'36, 0.56{27{0'29)
(0.9612”0'64, 0.8612”0'36, 0.66‘12”0'14) (O.SelZTrO.SO7 0.7812770'43, 0.9812770'07)
(0.361'2710.077 0.4_61'2710.297 0.361'2710.64) (0.261'2710.147 0.861'2710.577 0.9ei2n0.29)

(0.8€i2n0'36 , 0.761'27{0.43 , 0.8€i2n0'21 ) (0.56127[021 ; 0.66i2n0'36, 0.86i2n0'43)
(0.8€i2ﬂ0‘36 , 0.8€i2ﬂ0‘29 , 0.9€i2ﬂ0‘36) (0.8€i2n0'50 , 0.9€i2ﬂ0‘43 , 0.9€i2ﬂ0'07)
(O.Sei27r0.21 , 0.761'27{0.43 , 0.761'27{0.36) (0.961'27{0.43’ 0.8€i2n0'36, 0.8€i2ﬂ0'21)
(0‘961'2710‘57 , O_Sei2ﬂ0436 , 0‘96i2710‘07) (0'961'271().36’ 0'961'27'(().29’ 0'761'271().36)
(O‘Sei2ﬂ0.21 , 0.86i2ﬂ0'36, 0‘7ei2710.43) (0.6€i2n0'50, 0.86i2ﬂ0'36, 0.9€i2ﬂ0'14)

Table 11 Classification of
measured headache degrees
according to MD, NeD, and
NMD

Here we consider g = 9.

Step 2: Aggregated values are found for each of the patients
by applying CTSDFW AA and CT SDFW G A operators to

rows of the MD.
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
MD 7.3 7.6 79 8.2 8.5 8.8 9.1 94 9.7
NeD 4.3 4.6 4.9 52 55 5.8 6.1 6.4 6.7
NMD 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7
P4

[ 4
|4
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Table 12 Obtaining results for
headache using Tables 4 and 11

Table 13 Classification of
measured dyspnea degrees
according to MD, NeD, and
NMD

Table 14 Obtaining results for
dyspnea using Tables 5 and 13

Table 15 Classification of
measured cough degrees
according to MD, NeD, and
NMD

Table 16 Obtaining results for
cough using Tables 6 and 15

Table 17 CTSFSs obtained using CTSDFWAA and CTSDFWGA

MD NeD NMD MD NeD NMD MD NeD NMD
p1 859 598 355 p1 05 07 08 p1 050 036 0.14
p2 9.09 6.10 3.75 pp 07 07 09 p2 050 036 0.14
p3 9.16 652 273 p3 07 08 05 p3 036 036 0.29
ps 941 6.15 3.80 ps 08 0.7 09 ps 050 043 0.07
ps 1.65 636 3.75 ps 02 08 09 ps 0.14 057 0.29
AM of headache degrees MD, NeD, and NMD values Phase terms
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
MD 7.3 7.6 79 8.2 8.5 8.8 9.1 9.4 9.7
NeD 4.3 4.6 49 52 5.5 5.8 6.1 6.4 6.7
NMD 1.3 1.6 1.9 22 2.5 2.8 3.1 34 3.7
MD NeD NMD MD NeD NMD MD NeD NMD
p1 934 622 333 p1 08 07 08 p1 036 043 0.21
p2 938 630 3.64 p» 08 08 09 p> 036 029 036
p3 8.67 603 3.14 p3 05 07 07 p3 021 043 036
ps 973 6.66 3.90 ps 09 09 09 ps 057 036 0.07
ps 950 650 3.03 ps 08 08 0.7 ps 021 036 043
AM of dyspnea degrees MD, NeD, and NMD values Phase terms
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
MD 7.3 7.6 7.9 8.2 8.5 8.8 9.1 9.4 9.7
NeD 43 4.6 4.9 52 55 5.8 6.1 6.4 6.7
NMD 1.3 1.6 1.9 22 25 2.8 3.1 34 3.7
MD NeD NMD MD NeD NMD MD NeD NMD
p1 837 594 348 p1 05 06 08 p1 021 036 043
p2»  9.67 6.63 3.90 pp 08 09 09 p> 050 043 0.07
p3 973 652 347 p3 09 08 0.8 p3 043 036 021
ps 978 680 3.14 ps 09 09 07 ps 036 029 0.36
ps 890 652 3.85 ps 0.6 08 0.9 ps 050 036 0.14

AM of cough degree

MD, NeD, and NMD values

Phase terms

CTSDFWAA CTSDFWGA
i (0.709¢7270429 () 4481270368 () 65501270.174y (0.520¢7270-256 () 4481270368 () 76941270359
” (0.752¢1270-524 () 550,i270.319 () 85141270076 (0.790¢1270-405 () 5501270319 () 8801270312y
P3 (0.788¢1270-364 () 4491270368 () 5381270254y (0.112¢7270-080 () 449,i270.368 () 7041270509
P4 (0.875¢i270424 () 4491270239 () 849,i270.299) (0.875¢i270424 () 4491270239 () 849,i270.299)
Ps (0.711¢i270418 (0 4491270315 () 337,i270.171y (0.245¢1270-080 () 4491270315 () 831,i270.574)
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Table 18 Score values for

CTSDFEWAA values n=1 =2 n=3 m=4 w=5 n=6 n=7 n=8 n=9 n=10
Pl 0505 0515 0510 0523 0524 0525 0526 0527 0527 0.528
P, 0460 0475 0483 0488 0490 0492 0493 0494 0495  0.496
Py 0528 0554 0567 0574 0578 0581 0583 0585 058  0.587
Py 0559 0576 0583 0587 0589 0591  0.592 0593 0594  0.594
Ps 0511 0520 0524 0526 0527 0528 0529 0530 0530 0531
Pl 0477 0473 0471 0470 0469 0469 0469 0468 0468  0.468
P, 0449 0436 0429 0425 0422 0420 0419 0418 0418 0417
Py 0489 0482 0478 0475 0473 0472 0471 0470 0470  0.469
Pr 0518 0490 0474 0464 0459 0455 0452 0450 0448 0447
Ps 0451 0429 0420 0414 0411 0409 0408 0407 0406  0.405

Step 3: Using Eq. 1, score values of the aggregated values
are obtained as follows:

SVs according to SVs according to

CTSDFWAA op. CTSDFWGA op.
» 0.505 0.447
Py 0.460 0.449
s 0.528 0.489
P4 0.559 0.518
s 0.511 0.451

Step 4: According to Table 4.1, p4 is suffer from COVID-19.

Sensitivity analyses and discussion

In this section, we compute the score values of the patients
according to CTSDFWAA and CTSDFWGA values for “n =
1,2,...,10".

According to Tables 18 and 19, we see that for n =
1,2,..., 10, results obtained using CTSDFWAA operator
match by medical results. By results, P4 was infected by
COVID-19. For n = 1, 2 results from both operators are con-
sistent. For n = 3,4, ..., 10 according to results obtained
using CTSDFWGA operator Pz was infected by COVID-19.
Also, this matches the medical results made by a medical
doctor. In this study, we consider only four symptoms. How-
ever, the epidemic of the COVID-19 continue all over the
worlds and medical researchers encounter some new symp-
toms of COVID-19. Here we give a simple example to show
the trueness of the proposed method, this is a restriction of
our study. We think that this study may be a reference point

for researchers who want to study clustering and medical
diagnosis with large data.

Conclusion

In this paper, weakness of score and accuracy function
defined by Ali et al. [57] was pointed out and new score and
accuracy functions were defined for CTSFNs. Set theoretical
operations was introduced and some aggregation operators
based on Dombi t-norms and t-conorms were defined under
CTSF environment with their examples. Also, some proper-
ties of the proposed aggregation operators were investigated.
Furthermore, an MCDM method was developed based on
proposed aggregation operators and score function. More-
over, an application of the developed method, including
determining the COVID-19, was presented by transforming
the real data to CTSF data. We see that obtained results match
real results. We also pointed out some restrictions and their
reasons. In future, our targets are to study other aggrega-
tion operators such as Hamacher and Bonferroni, similarity
measures, distance measures and decision-making methods
based on TOPSIS, VIKOR, AHP, etc. By transferring the
algorithm of the proposed method to the computer program,
our analysis for a limited number of patients can be made
under big data and by considering more parameters. We
hope that this study will provide a useful perspective for
researchers working on decision-making.

Acknowledgements We thank Dr. Ahmed Qasim Al-Rawi who the
manager of Heet hospital in Al-Anbar, Iraq, and Dr. Omer Moayed Al-
Bayati who is a doctor in Al Mahmoodia hospital in Baghdad for real
data and information. In this study, we got patients’ permissions and
attached the signed documents that allow the use of patient data.

Lisllase cllal .
bes Shens ) Springer



2732 Complex & Intelligent Systems (2021) 7:2711-2734
Declarations 16. Wei G, Gao H (2018) The generalized Dice similarity measures for
picture fuzzy sets and their applications. Informatica 29(1):107—
124
Conflict of interest The authors declare no conflict of interest. 17. Wei G (2018) Some similarity measures for picture fuzzy sets and
their applications. Iran J Fuzzy Syst 15(1):77-89
Open Access This article is licensed under a Creative Commons 18. Rafiq M, Ashraf S, Abdullah S, Mahmood T, Muhammad S (2019)
Attribution 4.0 International License, which permits use, sharing, adap- The cosine similarity measures of spherical fuzzy sets and their
tation, distribution and reproduction in any medium or format, as applications in decision making. J Intell Fuzzy Syst 36(6):6059-
long as you give appropriate credit to the original author(s) and the 6073
source, provide a link to the Creative Commons licence, and indi- 19 Thao NX (2020) Similarity measures of picture fuzzy sets based
cate if changes were made. The images or other third party material on entropy and their application in MCDM. Pattern Anal Appl
in this article are included in the article’s Creative Commons licence, 23(3):1203-1213
unless indicated otherwise in a credit line to the material. If material ~ 20- Singh P (2015) Correlation coefficients for picture fuzzy sets. J
is not included in the article’s Creative Commons licence and your Intell Fuzzy Syst 28(2):591-604
intended use is not permitted by statutory regulation or exceeds the ~ 21. Ganie AH, Singh S, Bhatia PK (2020) Some new correlation coeffi-
permitted use, you will need to obtain permission directly from the copy- cients of picture fuzzy sets with applications. Neural Comput Appl
right holder. To view a copy of this licence, visit http://creativecomm 32:12609-12625
ons.org/licenses/by/4.01. 22. Son LH (2016) Generalized picture distance measure and applica-
tions to picture fuzzy clustering. Appl Soft Comput 46(C):284-295
23. Hao ND, Son LH, Thong PH (2016) Some improvements of fuzzy
clustering algorithms using picture fuzzy sets and applications for
geographic data clustering. VNU J Sci Comput Sci Commun Eng
32(3):32-38
24. Giindogdu FK, Kahraman C (2019) Spherical fuzzy sets and spher-
References ical fuzzy TOPSIS method. J Intell Fuzzy Syst 36(1):337-352
25. Giindogdu FK, Kahraman C (2019) Spherical fuzzy sets and deci-
1. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338-353 sion making applications. In: Kahraman C, Cebi S, Cevik Onar S,
2. Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst Oztaysi B, Tolga A, Sari I (eds) Intelligent and fuzzy techniques in
20(1):87-96 big data analytics and decision making. INFUS 2019. Advances in
3. Yager RR (2013) Pythagorean fuzzy subsets. IEEE 2013:57-61 Intelligent Systems and Computing, p 1029. Springer, Cham
4. Yager RR (2013) Pythagorean membership grades in multi-criteria 26. Mahmood T, Ullah K, Khan Q, Jan N (2019) An approach toward
decision making. IEEE Trans Fuzzy Syst 22(4):958-965 decision-making and medical diagnosis problems using the concept
5. Yager RR (2017) Generalized orthopair fuzzy sets. IEEE Trans of spherical fuzzy sets. Neural Comput Appl 31:7041-7053
Fuzzy Syst 25:1222-1230 27. Ullah K, Mahmood T, Jan N (2018) Similarity Measures for T-
6. Cuong BC (2013) Picture fuzzy sets-First results, Part 1. In: Spherical Fuzzy Sets with Applications in Pattern Recognition.
Seminar Neuro-Fuzzy Systems with Applications; Institute of Symmetry 10(6):193
Mathematics, Vietnam Academy of Science and Technology: 28. Garg H, Munir M, Ullah K, Mahmood T, Jan N (2018) Algorithm
Hanoi, Vietnam (2013) for T-spherical fuzzy multi-attribute decision making based on
7. Cuong BC (2013) Picture fuzzy sets-First results, Part 2. In: improved interactive aggregation operators. Symmetry 10(12):670
Seminar Neuro-Fuzzy Systems with Applications; Institute of 29. Ullah K, Mahmood T, Jan N, Ali Z (2018) A note on geometric
Mathematics, Vietnam Academy of Science and Technology: aggregation operators in T-spherical fuzzy environment and their
Hanoi, Vietnam (2013) applications in multi-attribute decision making. J Eng Appl Sci
8. Garg H (2017) Some picture fuzzy aggregation operators and 37(2):75-86
their applications to multicriteria decision-making. Arab J Sci Eng 30. Wu M, Chen T, Fan J (2020) Divergence measure of T-spherical
42(12):5275-5290 fuzzy sets and its applications in pattern recognition. IEEE Access
9. Peng X, DaiJ (2017) Algorithm for picture fuzzy multiple attribute 8:10208-10221
decision-making based on new distance measure. Int J Uncertain 31. Ullah K, Hassan N, Mahmood T, Jan N, Hassan M (2019) Evalua-
Quantif 7(2):177-187 tion of investment policy based on multi-attribute decision-making
10. Wei G (2017) Picture fuzzy aggregation operators and their appli- using interval valued T-spherical fuzzy aggregation operators.
cation to multiple attribute decision making. J Intell Fuzzy Syst Symmetry 11(3):357
33(2):713-724 32. Liu P, Khan Q, Mahmood T, Hassan N (2019) T-spherical fuzzy
11. Wei G (2018) TODIM method for picture fuzzy multiple attribute power muirhead mean operator based on novel operational laws and
decision making. Informatica 29:555-566 their application in multi-attribute group decision making. IEEE
12. Cao G (2020) A multi-criteria picture fuzzy decision-making model Access 7:22613-22632
for green supplier selection based on fractional programming. Int 33. Guleria A, Bajaj RK (2019) T-spherical fuzzy soft sets and its
J Comput Commun Control 15(1):1-14 aggregation operators with application in decision making. Sci Iran.
13. Joshi R (2020) A novel decision-making method using r-norm con- https://doi.org/10.24200/SCI.2019.53027.3018
ceptand VIKOR approach under picture fuzzy environment. Expert 34. Quek SG, Selvachandran G, Munir M, Mahmood T, Ullah K, Son
Syst Appl 147:113228 LH, Thong PH, Kumar R, Priyadarshini I (2019) Multi-attribute
14. Tian C, Peng J, Zhang W, Zhang S, Wang J (2020) Tourism multi-perception decision-making based on generalized t-spherical
environmental impact assessment based on improved AHP and fuzzy weighted aggregation operators on neutrosophic sets. Math-
picture fuzzy PROMETHEE II methods. Technol Econ Dev Econ ematics 7:780
26(2):355-378 35. Munir M, Kalsoom H, Ullah K, Mahmood T, Chu YM (2020)
15. Wei G (2017) Some cosine similarity measures for picture fuzzy T-spherical fuzzy Einstein hybrid aggregation operators and their

sets and their applications to strategic decision making. Informatica

28(3):547-564

Lisllase cllad .
bes Shenas Q) Springer

applications in multi-attribute decision making problems. Symme-
try 12(3):365


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.24200/SCI.2019.53027.3018

Complex & Intelligent Systems (2021) 7:2711-2734

2733

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Ullah K, Garg H, Mahmood T, Jan N, Ali Z (2020) Correla-
tion coefficients for T-spherical fuzzy sets and their applications
in clustering and multi-attribute decision making. Soft Comput
24(3):1647-1659

Ullah K, Mahmood T, Garg H (2020) Evaluation of the perfor-
mance of search and rescue robots using t-spherical fuzzy hamacher
aggregation operators. Int J Fuzzy Syst 22(2):570-582

Garg H, Ullah K, Mahmood T, Hassan N, Jan N (2021) T-spherical
fuzzy power aggregation operators and their applications in multi-
attribute decision making. J Ambient Intell Hum Comput. https://
doi.org/10.1007/s12652-020-02600-z

Ju Y, Liang Y, Lu C, Dong P, Gonzalez EDS, Wang A (2021) T-
spherical fuzzy TODIM method for multi-criteria group decision-
making problem with incomplete weight information. Soft Comput
25(4):2981-3001

Chen Y, Munir M, Mahmood T, Hussain A, Zeng S (2021)some
generalized t-spherical and group-generalized fuzzy geometric
aggregation operators with application in MADM problems. J Math
2021

Munir M, Mahmood T (2021) Hussain A (2021) Algorithm for
T-spherical fuzzy MADM based on associated immediate proba-
bility interactive geometric aggregation operators. Artif Intell Rev.
https://doi.org/10.1007/s10462-021-09959- 1

Ramot D, Milo R, Fiedman M, Kandel A (2002) Complex fuzzy
sets. [EEE Trans Fuzzy Syst 10(2):171-186

Ramot D, Friedman M, Langholz G, Kandel A (2003) Complex
fuzzy logic. IEEE Trans Fuzzy Syst 11(4):450-461

Alkouri A, Salleh A (2012) Complex intuitionistic fuzzy sets. In:
International conference on fundamental and applied sciences, AIP
conference proceedings, vol 1482, pp 464-470

Rani D, Garg H (2017) Distance measures between the complex
intuitionistic fuzzy sets and their applications to the decision-
making process. Int J Uncertainty Quant 7:5

Rani D, Garg H (2018) Complex intuitionistic fuzzy power aggre-
gation operators and their applications in multicriteria decision-
making. Expert Syst 35(6):12325

Garg H, Rani D (2019) Some generalized complex intuitionistic
fuzzy aggregation operators and their application to multicriteria
decision-making process. Arab J Sci Eng 44(3):2679-2698

Garg H, Rani D (2019) Novel aggregation operators and ranking
method for complex intuitionistic fuzzy sets and their applications
to decision-making process. Artif Intell Rev 2019:1-26

Garg H, Rani D (2019) Exponential, logarithmic and compensative
generalized aggregation operators under complex intuitionistic
fuzzy environment. Group Decis Negot 28(5):991-1050

Garg H, Rani D (2019) Multi-criteria decision making method
based on Bonferroni mean aggregation operators of complex intu-
itionistic fuzzy numbers. J Ind Manag Optim. https://doi.org/10.
3934/jimo.2020069

Garg H, Rani D (2020) Generalized geometric aggregation opera-
tors based on t-norm operations for complex intuitionistic fuzzy
sets and their application to decision-making. Cogn Comput
12:679-698

Ullah K, Mahmood T, Ali Z, Jan N (2019) On some distance mea-
sures of complex Pythagorean fuzzy sets and their applications in
pattern recognition. Complex Intell Syst 6:15-27

Liu P, Mahmood T, Ali Z (2020) Complex q-Rung orthopair
fuzzy aggregation operators and their applications in multi-attribute
group decision making. Information 11(5):2-28. https://doi.org/
10.3390/info11010005

Akram M, Bashir A, Garg H (2020) Decision-making model under
complex picture fuzzy Hamacher aggregation operators. Comput
Appl Math 39(3):1-38

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

Liu P, Akram M, Bashir A (2021) Extensions of power aggrega-
tion operators for decision making based on complex picture fuzzy
knowledge. J Intell Fuzzy Syst 40(1):1107-1128

Akram M, Garg H, Zahid K (2020) Extensions of ELECTRE-I
and TOPSIS methods for group decision-making under complex
Pythagorean fuzzy environment. Iran J Fuzzy Syst 17(5):147-164
Ali Z, Mahmood T, Yang MS (2020) Complex T-spherical fuzzy
aggregation operators with application to multi-attribute decision
making. Symmetry 12(8):1311

Akram M, Kahraman C, Zahid K (2021) Group decision-making
based on complex spherical fuzzy VIKOR approach. Knowl-Based
Syst 216:106793

Nasir A, Jan N, Yang MS, Khan SU (2021) Complex T-spherical
fuzzy relations with their applications in economic relationships
and international trades. IEEE Access. https://doi.org/10.1109/
ACCESS.2021.3074557

Dombi J (1982) A general class of fuzzy operators, the De Morgan
class of fuzzy operators and fuzziness measures induced by fuzzy
operators. Fuzzy Sets Syst 8(2):149-163

Liu P, Liu J, Chen SM (2018) Some intuitionistic fuzzy Dombi
Bonferroni mean operators and their application to multi-attribute
group decision making. J Oper Res Soc 69(1):1-24

Akram M, Dudek WA, Dar JM (2019) Pythagorean Dombi fuzzy
aggregation operators with application in multicriteria decision-
making. Int J Intell Syst 34(11):3000-3019

Waseem N, Akram M, Alcantud JCR (2019) Multiattribute
decision-making based on m-polar fuzzy Hamacher aggregation
operators. Symmetry 11(12):1498

Shahzadi G, Akram M, Al-Kenani AN (2020) Decision mak-
ing approach under Pythagorean fuzzy Yager weighted operators.
Mathematics 8(1):70

Jana C, Pal M, Wang JQ (2019) Bipolar fuzzy Dombi aggregation
opeartors and its application in multiple-attribute decision-making
process. J Ambient Intell Hum Comput 10:3533-3549

Jana C, Senapati T, Pal M, Yager RR (2019) Picture fuzzy Dombi
aggregation operators; application to MADM process. Appl Soft
Comput 74:99-109

Ashraf S, Abdullah S, Mahmood T (2020) Spherical fuzzy Dombi
aggregation operators and their application in group decision mak-
ing problems. J] Ambient Intell Hum Comput 11:2731-2749
Akram M, Khan A (2020) Complex Pythagorean Dombi fuzzy
graphs for decision making. Granul Comput. https://doi.org/10.
1007/s41066-020-00223-5

Akram M, Khan A, Karaaslan F (2021) Complex spherical Dombi
fuzzy aggregation operators for decision-making. J Multiple-
valued Logic Soft Comput (Accepted)

Wu Y-c, Chen C-s, Chan Y-j (2020) The outbreak of COVID-19:
an overview. J Chin Med Assoc 83(3):217-220

Rafig M, Macias-Diaz JE, Raza A, Ahmed N (2021) Design of a
nonlinear model for the propagation of COVID-19 and its efficient
nonstandard computational implementation. Appl Math Model
89:1835-1846

Center for systems science and engineering at Johns Hop-
kins university, COVID-19 dashboard, (2020) https:/
gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/
bda7594740fd40299423467b48e9ect6

Shatanawi W, Raza A, Arif MS, Abodayeh K, Rafiq M, Bibi M
(2020) Design of nonstandard computational method for stochas-
tic susceptible-infected-treated-recovered dynamics of coronavirus
model. Adv Differ Equ 1:505. https://doi.org/10.1186/s13662-
020-02960-y

Lisllase cllal .
bes Shens ) Springer


https://doi.org/10.1007/s12652-020-02600-z
https://doi.org/10.1007/s12652-020-02600-z
https://doi.org/10.1007/s10462-021-09959-1
https://doi.org/10.3934/jimo.2020069
https://doi.org/10.3934/jimo.2020069
https://doi.org/10.3390/info11010005
https://doi.org/10.3390/info11010005
https://doi.org/10.1109/ACCESS.2021.3074557
https://doi.org/10.1109/ACCESS.2021.3074557
https://doi.org/10.1007/s41066-020-00223-5
https://doi.org/10.1007/s41066-020-00223-5
https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
https://doi.org/10.1186/s13662-020-02960-y
https://doi.org/10.1186/s13662-020-02960-y

2734 Complex & Intelligent Systems (2021) 7:2711-2734

74. Macias-DiazJE,Raza A, Ahmed N (2021) RafigM (2021) Analysis Publisher’s Note Springer Nature remains neutral with regard to juris-
of a nonstandard computer method to simulate a nonlinear stochas- dictional claims in published maps and institutional affiliations.
tic epidemiological model of coronavirus-like diseases. Comput
Methods Programs Biomed. https://doi.org/10.1016/j.cmpb.2021.
106054
75. Akgiil A, Ahmed N, Ali Raza, Igbal Z, Rafiq M, Baleanu D, Aziz-
ur Rehman M (2021) New applications related to Covid-19. Result
Phys 20:103663

Lisllase cllad .
bes Shenas Q) Springer


https://doi.org/10.1016/j.cmpb.2021.106054
https://doi.org/10.1016/j.cmpb.2021.106054

	Complex T-spherical fuzzy Dombi aggregation operators and their applications in multiple-criteria decision-making 
	Abstract
	Introduction
	Preliminaries
	Dombi operations of complex T-spherical fuzzy numbers
	Dombi weighted aggregation operators of CTSFNs
	Complex T-spherical Dombi fuzzy weighted arithmetic averaging operator
	Complex T-spherical Dombi fuzzy weighted geometric averaging operator
	Dombi ordered weighted aggregation operators of CTSFNs
	Complex T-spherical Dombi fuzzy ordered weighted arithmetic averaging operator
	Complex T-spherical Dombi fuzzy ordered weighted geometric averaging operator

	MCDM method under CTSF environment
	Application

	Sensitivity analyses and discussion
	Conclusion
	Acknowledgements
	References




