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Abstract
Complex fuzzy (CF) sets (CFSs) have a significant role in modelling the problems involving two-dimensional information.
Recently, the extensions of CFSs have gained the attention of researchers studying decision-making methods. The complex
T-spherical fuzzy set (CTSFS) is an extension of the CFSs introduced in the last times. In this paper, we introduce the Dombi
operations on CTSFSs. Based on Dombi operators, we define some aggregation operators, including complex T-spherical
Dombi fuzzy weighted arithmetic averaging (CTSDFWAA) operator, complex T-spherical Dombi fuzzy weighted geometric
averaging (CTSDFWGA)operator, complexT-sphericalDombi fuzzyorderedweighted arithmetic averaging (CTSDFOWAA)
operator, complex T-spherical Dombi fuzzy ordered weighted geometric averaging (CTSDFOWGA) operator, and we obtain
some of their properties. In addition, we develop a multi-criteria decision-making (MCDM) method under the CTSF environ-
ment and present an algorithm for the proposed method. To show the process of the proposed method, we present an example
related to diagnosing the COVID-19. Besides this, we present a sensitivity analysis to reveal the advantages and restrictions
of our method.

Keywords Complex fuzzy set · Spherical fuzzy set · Complex T-spherical fuzzy set · Dombi operators · Decision-making

Introduction

The fuzzy set (FS) theory was inaugurated by Zadeh [1]
in 1965 to handle modelling of some problems containing
uncertain data in real life. Since FS theory is a very useful
tool for modelling uncertainty, it has many applications in
the modelling and solving of the problems in many fields
such as medical science, data mining and clustering. An FS
is characterized by a membership function (MF) μ from a
set of the objects or elements considered in the universe to
the interval [0,1]. In an FS, if the membership degree (MD)
of an element x is μ(x), then its non-membership degree
(NMD) is 1 − μ(x), that is, in the FS, hesitation degree of
an element is “0”. This is one of the limited aspects of FS in
modelling real-life problems. To overcome these limitations,
the intuitionistic FS (IFS) was suggested by Atanassov [2] as
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a generalization of FSs. An IFS is identified by two functions
from a universal set to the interval [0,1] called membership
function (MF) (μ) and non-membership function (NMF) (ν).
The summation of images under these two functions of an
element cannot exceed 1. Therefore, IFS is not an appropri-
ate tool for modeling in the situation μ(x) + ν(x) > 1.
To cope with this restriction, Yager [3,4] introduced the
concept of Pythagorean FS (PyFS) as an extension of IFS
under condition μ2(x) + ν2(x) ≤ 1. However, in the sit-
uation 0.92 + 0.52 = 1.06 > 1, a PyFS is not sufficient
for modelling. To eliminate this type of limitation, Yager
[5] put forward the concept of q-rung orthopair FS in which
μq(x) + νq(x) ≤ 1. The neutral situation is not taken into
account in the set theories we have mentioned so far, but this
situation is important for the representation of human think-
ing. For this, Cuong [6,7] defined the concept of the Picture
FS (PFS). A PFS is a useful tool for expressing howmuch an
object provides a feature or how much a person has shared
an idea because a PFS does a modelling considering cases of
yes, abstention, no, and rejection. A PFS is characterized by
three values from interval [0,1] for each element x belong-
ing to set containing considered elements, calledMD (μ(x)),
abstinence degree (AD) or neutral degree (γ (x)) and, NMD
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(ν(x)) with the condition 0 ≤ μ(x) + γ (x) + ν(x) ≤ 1.
Despite the fact that PFS structure is a useful tool in many
applications such as decision-making (DM) [8–14], simi-
larity measure [15–19], correlation coefficient [20,21], and
clustering [22,23], it is not sufficient in modelling of some
problems because of constrain 0 ≤ μ(x)+γ (x)+ν(x) ≤ 1.
Therefore, the notion of spherical FS (SFS), which is an
extension of PFS, was initiated by Gungogdu and Kahraman
[24,25] and the applications of the SFS to decision-making
was studied on. An SFS has the constrain 0 ≤ μ2(x) +
γ 2(x) + ν2(x) ≤ 1. Kahraman et al. [24] developed a DM
method based on the TOPSIS method under the SF environ-
ment and presented an application of the developed method
in the selection of hospital location. In an SFS, when MD,
NeD and NMD of an element are taken as 0.6, 0.9 and 0.5,
respectively, since 0.62 + 0.92 + 0.52 = 1.42 > 1, condi-
tion 0 ≤ μ2(x) + γ 2(x) + ν2(x) ≤ 1 is not satisfied. To
model such situations, the T-spherical FS (T-SFS) was intro-
duced by Mahmood et al. [26] as an extension of the SFS
under condition X and some applications in medical diag-
nosis and DM problems under T-SF and SF environments
were given by same researchers. After the works of Mah-
mood et al. [26], many researchers have studied applications
of T-SFS and SFS. For example, Ullah et al. [27] proposed
some novel similarity measures including cosine similarity
measures, grey similarity measures, and set theoretic simi-
larity measures for SFS and T-SFSs. Garg et al. [28] defined
some new improved aggregation operators for T-SFSs and
developed a DM approach to solve the multi-attribute DM
(MADM) problems. Ullah et al. [29] introduced the some
ordered weighted aggregation operators and hybrid aggrega-
tion operators of T-SFS andproposed anMADMmethod.Wu
et al. [30] studied divergencemeasure of T-SFSs and gave the
application in pattern recognition.Ullah et al. [31] defined the
concept of interval-valued T-SFSs and their basic operations.
They also described two aggregation operators for interval-
valued T-SF values and developed an MADM method for
problem including evaluating companies to be made an
investment. Liu et al. [32] proposed some novel operational
laws for T-SPFNs and combine power average operator and
with Murihead mean operator. They also developed some
new aggregation operators. Guleria and Bajaj [33] defined
some aggregation operations of T-Spherical fuzzy soft sets.
Quek et al. [34] presented some new operational laws for
T-spherical fuzzy sets and obtain some of their properties.
Then, based on these new operations, they have proposed two
types of Einstein aggregation operators called the Einstein
interactive averaging aggregation operators and the Einstein
interactive geometric aggregation operators. They also put
forward a MADM method based on the defined aggregation
operators. Munir et al. [35] studied on Einstein hybrid aggre-
gation operators under T-SF environment and establish an
MADM by integrating the proposed aggregation operators.

Ullah et al. [36] establish the correlation coefficient formula
for T-SF values and presented an application in clustering.
Also, T-spherical Fuzzy Hamacher Aggregation Operators
were defined Ullah et al. [37]. Furthermore, they put forward
anMADMmethod and gave the application of the method in
a problem including evaluation of the performance of search
and rescue robots. Garg et al. [38] introduced power aggre-
gation operators for the T-spherical fuzzy sets (T-SFSs). Ju
et al. [39] defined the T-SF interaction aggregation opera-
tors and based on these operators they developed TODIM
method under T-SF environment. Chen et al. [40] stud-
ied on some generalized T-Spherical and group-Generalized
fuzzy geometric aggregation operators withMADMmethod.
Associated immediate probability (interactive) geometric
aggregationoperators of forT-spherical fuzzy setswere intro-
duced by Munir et al. [41].

As mentioned above, FS models are important tools for
modelling uncertain and incomplete data. But mentioned FS
models do not suffice to express the periodic information
or two-dimension phenomenon. To cope with this issue, the
concept of complexFS (CFS)was put forward byRamot et al.
[42,43]. The basic idea in the definition given by Ramot is to
extend the range of membership from [0, 1] to the unit circle
in the complex plane. ACFS is characterized bymembership
function μ = reiω where r is called amplitude term and it
takes values from the interval [0,1], andω is called phase term
(periodic term) and it lies in the interval [0, 2π ]. The phase
term has a very important role in defining the CFmodel. This
is what makes the CF sets superior and distinct from other
FS models. In a CFS, the membership value of an element is
specified based on one amplitude term and one phase term.
With this aspect, CFS is not enough to model the nonmem-
bership degree. To avoid this restriction, Alkouri and Salleh
[44] introduced complex intuitionistic FS (CIFS). A CIFS is
identified by MF (μ = reiω) and NMF (ν = keiη) such that
0 ≤ r+k ≤ 1 and0 ≤ ω+η ≤ 2π . Rani andGarg [45] devel-
oped a DM approach based on distance measure between
CIFSs. Also, some researchers studied on aggregation oper-
ator of CIFS and DM methods [46–51]. Additionally, Ullah
et al. [52] introduced the complex PyFS (CPFS) which is
characterized by MF μ = reiω, NeF μ = seiθ , and NMF
ν = keiη under the conditions 0 ≤ r + s + k ≤ 1 and
0 ≤ ω

2π + θ
2π + η

2π ≤ 1 as a generalization of CIFSs. Liu et
al. [53] defined the complex q-ROFS (CqROFS) and studied
on aggregation operator of them.

Akram et al. [54] presented some aggregation operators
under CPF environment based on Hamacher operations and
developed an MCDM method. Liu et al. [55] introduced
CPF power averaging and CPF power geometric opera-
tors under CPFSs environment and constructed an MCDM
method based on the proposed operators. Additionally, the
complex SFS (CSFS) was defined by Akram et al. [56] as a
generalization of CPFS. They also introduced some aggre-
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gation operation based on Dombi t-norm and t-conorm. Ali
et al. [57] defined the concept of complex T-spherical FS
(CTSFS) and their aggregation operators. They also pro-
posed an MADM method in CTSFSs. Akram et al. [58]
defined some aggregation operators of CSFSs and developed
an MCGDM method called CSF-VIKOR. Nasir et al. [59]
introduced the notion of CTSF relations and presented some
applications related to the economy and international trade.

Since aggregation operators (AOs) convert the whole data
into a single value, AOs have a vital importance in DM prob-
lems. Dombi [60] designated Dombi operators with flexible
operational variables. In solving the DM problems, many
researchers used Dombi operations of IFS [61], Pythagorean
fuzzy [62–64], PF [66], bipolar fuzzy [65], spherical fuzzy
[67], complex Pythagorean [68], and CSF [69].

As seen above, the studies on the theoretical aspects of
SFSs, T-SFSs, CSFSs and CTSFSs and their applications
in decision-making based on aggregation operators have
increased rapidly. The following pointsmotivate us to present
this paper:

– CFS and its generalizations have a very important role in
decision-making problems containing two-dimensional
information in real life. A TSFS comprehends a large
amount of information as a generalization of the SFSs.
However, it does not suffice in modelling an issue involv-
ing two-dimensional data. With this aspect, CTSFS has
vital importance. A CTSFS is the generalization of the-
ories like CFS, CIFS, CPFS, CPyFS and CSFS. Until
now, there exists only one work [57] related to aggre-
gation operators of CTSFS in the literature. Therefore,
by considering the advantages of the Dombi operators,
we develop some new aggregation operators based on
Dombi t-norm and t-conorm to use in modelling a prob-
lem involving two-dimensional data.

– Set-theoretical operators are an important tool for mod-
elling some problems, in the literature, there is not any
study related to set-theoretical operations of CTSFS. To
fill this gap in the literature, we define the set-theoretical
operations of CTSFSs.

– In literature, there is only one study related to score and
accuracy functions of CTSFNs and these functions have
some drawbacks, we pointed out these drawbacks and
define novel score and accuracy functions free from spec-
ified drawbacks.

– We see that works related to aggregation operators of
SFS, TSFS and CTSFSs are based on the hypothetical
data in general. In this study, one of our aims is to develop
a decision-makingmethod by considering the advantages
of the Dombi operators and presenting an application
including real data that aims to diagnose COVID-19
patients.

This article is organized as follows: the next section recalls
the required definitions in the following sections as SFS,
TSFS, CTSFSs and Dombi operations. Also, new score and
accuracy functions and set-theoretical operation are defined.
The subsequent section definesDombi operations of complex
T-spherical fuzzy numbers and provides their examples, and
related operations of these operators are obtained for intro-
duced aggregation operators. Then the MCDM method and
its application are presented. Before the final section, sensi-
tivity analyses and discussion related to obtained results from
the application of the proposed method are given. The final
section mentions the conclusions and planned studies.

Preliminaries

This section reminds the definitions of CFS, CIFS, CPyFS,
CPFS, SFS, T-SFS and CTSFSs.

Definition 1 [42] LetX be a nonempty set. A complex fuzzy
set (CFS) � is defined as

F = {(x, α̃F (x)) : x ∈ X},

where α̃F (x) is called membership functions of CFS F and
receive all lying within the unit circle in the complex plane.
Thus, it can be expressed as α̃F (x) = αF (x)ei2π	αF (x), and
it denotes a complex-valued grade of membership of x ∈ X

to (CFS)�. Here i = √−1 and for all x ∈ X, 0 ≤ αF (x) ≤ 1,
and 0 ≤ 	αF (x) ≤ 1.

Definition 2 [44] Let X be a nonempty set. A complex intu-
itionistic fuzzy set (CIFS) I is defined as:

I = {(x, α̃I(x), γ̃I(x)) : x ∈ X},

where α̃I(x) and γ̃I(x) are called membership function and
non-membership function of CIFS I, respectively. They
receive all lying within the unit circle in the complex plane.
Hence, they can be expressed as α̃I(x) = αI(x)ei2π	αI (x),
and γ̃I(x) = γI(x)ei2π	γI (x), where they denote the
complex-valued grades of membership and non-membership
of x ∈ X to CIFS I, respectively. Here i = √−1, for all x ∈
X, 0 ≤ αI(x) + γI(x) ≤ 1, and 0 ≤ 	αI (x) + 	γI (x) ≤ 1.

Definition 3 [52] Let X be a nonempty set. A complex
pythagorean fuzzy set (CPyFS) P is defined as

P = {(x, α̃P, γ̃P(x)) : x ∈ X},

where α̃P(x) and γ̃P(x) are called complex-valued mem-
bership function and non-membership function of CPyFS
P, respectively. They receive all lying within the unit cir-
cle in the complex plane. Thus, they can be expressed as
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α̃P(x) = αP(x)ei2π	αP
(x), and γ̃P(x) = γP(x)ei2π	γP

(x)
,

where they denote the complex-valued grades ofmembership
and non-membership of x ∈ X to CPyFS P, respectively.
Here i = √−1 and for all x ∈ X, 0 ≤ α2

I(x) + γ 2
I (x) ≤ 1,

and 0 ≤ 	 2
αP

(x) + 	 2
γP

(x) ≤ 1 .

Definition 4 [54]LetXbe a nonempty set.A complexpicture
fuzzy set (CPFS) P is defined as

P = {(x, α̃P (x), β̃P (x), γ̃P (x)) : x ∈ X},

where αP (x), βP (x), and γP (x) are called membership, neu-
tral membership, and non-membership function of the CPFS
P , respectively. They receive all lying within the unit cir-
cle in the complex plane. Thus, they can be expressed as
α̃P (x) = αP (x)ei2π	αP (x), β̃P (x) = βP (x)ei2π	βP (x), and
γ̃P (x) = γP (x)ei2π	γP (x), where they denote the complex-
valued grades of membership and non-membership of x ∈ X

to CIFS P , respectively. Here i = √−1, and for all x ∈ X,
0 ≤ αP (x)+βP (x)+γP (x) ≤ 1, and0 ≤ 	αP (x)+	βP (x)+
	γP (x) ≤ 1.

Definition 5 [24,25] Let X be a non-empty set. A spherical
fuzzy set (SFS) A is defined over X as follows:

A =
{(

x, αA(x),

βA(x), γA(x)
)

: 0
≤ α2

A(x) + β2
A(x)

+γ 2
A(x) ≤ 1, x ∈ X

}
.

Here the function αA : X → [0, 1] expressesMF, βA : X →
[0, 1] expresses NeMF, and γA : X → [0, 1] expresses NMF
of the SFS A.

The concept of T-spherical fuzzy set was introduced by
Mahmood et al. [26] as a generalization of the SFSs, as fol-
lows:

Definition 6 [26] Let X be a nonempty set. A T-spherical
fuzzy (TSF) set (TSFS) is defined over X as follows:

T =
{(

x, αT (x), βT (x),

γT (x)
)

: 0 ≤
α
q
T (x) + β

q
T (x)

+γ
q
T (x) ≤ 1, x ∈ X

}
.

Here the function αA : X → [0, 1], βT : X → [0, 1], and
γA : X → [0, 1] express MF, NeMF, and NMF of the TSFS
T , respectively.

Definition 7 [57] Let X be an initial universe different from
empty set. A complex T-spherical fuzzy (CTSF) set (CTSFS)
is defined as follows:

� = {(x, α�(x), β�(x), γ�(x)) : x ∈ X}.

Here α�(x) = α�(x)ei2π	β�(x) , β�(x) = β�(x)ei2π	β�(x) ,
and γ�(x) = γ�(x)ei2π	γ�(x) denote the membership grades
of truth, abstinence, and falsity such that 0 ≤ α

q
�

(x) +
β
q
�

(x)+γ
q
�

(x) ≤ 1 and 0 ≤ 	
q
α�(x) +	

q
β�(x) +	

q
γ�(x) ≤ 1.

Furthermore,

H�(x) = q
√
1 − α�(x)q − β�(x)q − α�(x)q

e
q
√

(1−	
q
α�(x)−	

q
β�(x)−	

q
γ�(x)) expresses the complex hesitancy

grade of x.

For convenience, � = (αke
i2π	αk , βke

i2π	βk , γke
i2π	γk ) is

called complex T-spherical fuzzy number (CTSFN).
Ali et al. [57] defined the score functions for the CTSFNs

by taking absolute value of formula given the following def-
initions.

�(�) = 1

2
|(αq − βq − γ q) + (	αq − 	βq − 	γ q )|

�(�) = 1

2
|(αq + βq + γ q) + (	αq + 	βq + 	γ q )|.

When we consider the CTSFNs (1ei2π1, 0ei2π0, 0ei2π0)
and (0ei2π1, 0ei2π0, 1ei2π1), their score values are 1. So, we
need to use the accuracy function, but their accuracy values
are 1. This is a weak aspect of the proposed score and accu-
racy functions. Therefore, we define the following score and
accuracy functions.

Definition 8 Let � = (αei2π	α , βei2π	β , γ ei2π	γ ) is a
CT SFN . The score function �(�) and accuracy function
�(�) of � are formulated as follows:

�(�) = 1

4

(
2 + (αq − βq − γ q) + (	αq − 	βq − 	γ q )

)

(1)

�(�) = 1

4

(
2 + (αq + βq + γ q) + (	αq + 	βq + 	γ q )

)
.

(2)

Definition 9 Let �1 = (α1e
i2π	α1 , β1e

i2π	β1 , γ1e
i2π	γ1 )

and �2 = (α2e
i2π	α2 , β2e

i2π	β2 , γ2e
i2π	γ2 ) are two

CTSFNs. For the comparison of �1 and �2,

– �1 � �2 (�1 is superior to �2) if �(�1) > �(�2);
– if �(�1) = �(�2), then

– �1 � �2 (�1 is superior to �2) if �(�1) > �(�2);
– �1 ∼ �2 (�1 is equivalent to �2) if �(�1) =

�(�2).
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Definition 10 Let �1 =
{(

x, α1(x)e
i2π	α1 (x), β1(x)

ei2π	β1 (x), γ1(x)e
i2π	γ1 (x)

)
: x ∈ X

}
and

�2 =
{(

x, α2(x)e
i2π	α2(x) , β2(x)e

i2π	β2(x) , γ2(x)e
i2π	γ2(x)

)
:

x ∈ X
}
be any two CTSFSs. Then

1. �1 	 �2 iff α1(x) ≤ α2(x), β1(x) ≤ β2(x), γ1(x) ≥
γ2(x) and 	α1(x) ≤ 	α2(x),	β1(x) ≤ 	β2(x),	γ1(x) ≥
	γ2(x), for all x ∈ X.

2. (�1)
c = {(x, γ1(x)ei2π	γ1(x) , β1(x)e

i2π	β1(x) , α1(x)

ei2π	α1(x) ) : x ∈ X}.
3.

�1 ∪ �2 =
{(

x,max{α1(x), α2(x)}ei2πmax{	α1(x),	α2(x)},

min{β1(x), β2(x)}ei2πmin{	β1(x),	β2(x)},
min{γ1(x), γ2(x)}ei2πmin{	γ1(x),	γ2(x)}

)
:

x ∈ X
}
.

4.

�1 ∩ �2 =
{(

x,min{α1(x), α2(x)}ei2πmin{	α1(x),	α2(x)},

min{β1(x), β2(x)}ei2πmin{	β1(x),	β2(x)},
max{γ1(x), γ2(x)}ei2πmax{	γ1(x),	γ2(x)}

)
:

x ∈ X
}
.

Example 1 Let us considerCTSFSs�1 and�2 over universal
set X = {x1, x2, x3} given as follows:

�1 =
{(

x1, 0.8e
i2π0.81, 0.5ei .2π0.52, 0.9ei2π0.93

)
,

(
x2, 0.7e

i2π0.72, 0.7ei2π0.73, 0.9ei2π0.92
)
,

(
x3, 0.8e

i2π0.82, 0.7ei2π0.71, 0.9ei2π0.91
)}

and

�2 =
{(

x1, 0.9e
i2π0.91, 0.6ei2π0.62, 0.8ei2π0.83

)
,

(
x2, 0.8e

i2π0.81, 0.8ei2π0.82, 0.7ei2π0.72
)
,

(
x3, 0.9e

i2π0.91, 0.8ei2π0.81, 0.7ei .2π0.71
)}

.

Then it is clear that �1 ⊆ �2. Also,

(�1)
c =

{(
x1, 0.9e

i2π0.93, 0.5ei2π0.52, 0.8ei2π0.81
)
,

(
x2, 0.9e

i2π0.92, 0.7ei2π0.73, 0.7ei2π0.72
)
,

(
x3, 0.9e

i2π0.91, 0.7ei2π0.71, 0.8ei2π0.82
)}

,

�1 ∪ �2 =
{(

x1, 0.9e
i2π0.91, 0.5ei2π0.52,

0.8ei2π0.81
)
,

(
x2, 0.8e

i2π0.81, 0.7ei2π0.73, 0.7ei2π0.72
)
,

(
x3, 0.9e

i .2π0.91, 0.7ei .2π0.71, 0.7ei .2π0.71
)}

,

and

�1 ∩ �2 =
{(

x1, 0.8e
i2π0.81, 0.5ei2π0.52, 0.9ei2π0.91

)
,

(
x2, 0.7e

i2π0.72, 0.7ei2π0.73, 0.7ei2π0.71
)
,

(
x3, 0.8e

i2π0.82, 0.9ei2π0.91, 0.9ei2π0.91
)}

.

Dombi operations of complex T-spherical
fuzzy numbers

In this section, we remind the definitions of Dombi t-norm
(TN) and t-conorm (TCN) defined in [60] and we define the
arithmetic operations of CTSFNs usingDombi TN and TCN.

Definition 11 [60] Let f and g be two real numbers. Then
Dombi TN and Dombi TCN are defined by

1

1 +
((1 − g

g

)η + (1 − h

h

)η)
1

η

, η > 0.

Dombi t-conorm [60] is given by:

1 − 1

1 +
(( g

1 − g

)η + ( h

1 − h

)η)
1

η

, η > 0,

respectively.
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Definition 12 LetXbe auniverse and�1 =
(
α1e

i2π	α1 , β1e
i2π	β1 , γ1e

i2π	γ1

)
and�2 =

(
α2e

i2π	α2 , β2e
i2π	β2 , γ2e

i2π	γ2

)

are two CTSFNs on X. Then some Dombi operations between �1 and �2 are given as follows:

1. �1
⊕

�2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎝

q

√
1 − 1

1+
((

(α1)q

1−(α1)q

)η+
(

(α2)q

1−(α2)q

)η) 1η e
i2π

q

√√√√1− 1

1+
(

(	α1 )q

1−(	α1 )q

)η
+(

(
(	α2 )q

1−(	α2 )q

)η) 1η
⎞
⎟⎠ ,

⎛
⎜⎝

q

√
1

1+
((

1−(β1)q

(β1)q

)η+
(
1−(β2)q

(β2)q

)η) 1η e
i2π

q

√√√√
1

1+
( 1−(	β1

)q

(	β1
)q

)η
+(

( 1−(	β2
)q

(	β2
)q

)η) 1η
⎞
⎟⎠ ,

⎛
⎜⎝

q

√
1

1+
((

1−(γ1)q

(γ1)q

)η+
(
1−(γ2)q

(γ2)q

)η) 1η e
i2π

q

√√√√
1

1+
(
1−(	γ1 )q

(	γ1 )q

)η
+(

(
1−(	γ2 )q

(	γ2 )q

)η) 1η
⎞
⎟⎠ ,

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

2. �1
⊗

�2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎝

q

√
1

1+
((

1−(α1)q

(α1)q

)η+
(
1−(α2)q

(α2)q

)η) 1η e
i2π

q

√√√√
1

1+
(
1−(	α1 )q

(	α1 )q

)η
+(

(
1−(	α2 )q

(	α2 )q

)η) 1η
⎞
⎟⎠ ,

⎛
⎜⎝

q

√
1

1+
((

1−(β1)q

(β1)q

)η+
(
1−(β2)q

(β2)q

)η) 1η e
i2π

q

√√√√
1

1+
( 1−(	β1

)q

(	β1
)q

)η
+(

( 1−(	β2
)q

(	β2
)q

)η) 1η
⎞
⎟⎠ ,

⎛
⎜⎝

q

√
1 − 1

1+
((

(γ1)q

1−(γ1)q

)η+
(

(γ2)q

1−(γ2)q

)η) 1η e
i2π

q

√√√√1− 1

1+
(

(	γ1 )q

1−(	γ1 )q

)η
+(

(
(	γ2 )q

1−(	γ2 )q

)η) 1η
⎞
⎟⎠ ,

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

3. τ� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎝

q

√
1 − 1

1+
(
τ
(

(α1)q

1−(α1)q

)η) 1η e
i2π

q

√√√√1− 1

1+
(

τ

(
(	α1 )q

1−(	α1 )q

)η) 1η
⎞
⎟⎠ ,

⎛
⎜⎝

q

√
1

1+
(
τ
(
1−(β1)q

(β1)q

)η) 1η e
(i2π(

q

√√√√
1

1+
(

τ

( 1−(	β1
)q

(	β1
)q

)η) 1η
⎞
⎟⎠ ,

⎛
⎜⎝

q

√
1

1+
(
τ
(
1−(γ1)q

(γ1)q

)η) 1η e
i2π

q

√√√√
1

1+
(

τ

(
1−(	γ1 )q

(	γ1 )q

)η) 1η
⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; τ ≥ 0.

4. �
τ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎝

q

√
1

1+
(
τ
(
1−(α1)q

(α1)q

)η) 1η e
ı2π

q

√√√√
1

1+
(

τ

(
1−(	α1 )q

(	α1 )q

)η) 1η
⎞
⎟⎠ ,

⎛
⎜⎝

q

√
1

1+
(
τ
(
1−(β1)q

(β1)q

)η) 1η e
i2π

q

√√√√
1

1+
(

τ

( 1−(	β1
)q

(	β1
)q

)η) 1η
⎞
⎟⎠ ,

⎛
⎜⎝

q

√
1 − 1

1+
(
τ
(

(γ1)q

1−(γ1)q

)η) 1η e
i2π

q

√√√√1− 1

1+
(

τ

(
(	γ1 )q

1−(	γ1 )q

)η) 1η
⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; τ ≥ 0.
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Example 2 Consider two CTSFNs given by

�1 = (0.8ei2π0.81, 0.5ei2π0.52, 0.9ei2π0.93)

�2 = (0.9ei2π0.91, 0.6ei2π0.62, 0.8ei2π0.83).

Then for η = 1 and q = 6

�1 ⊕ �2 =
(
0.918ei2π0.926, 0.477ei2π0.496, 0.773ei2π0.808

)

�1 ⊗ �2 =
(
0.773ei2π0.784, 0.477ei2π0.496, 0.918ei2π0.942

)

τ� =
(
0.8ei2π0.81, 0.5ei2π0.52, 0.9ei2π0.93

)
, τ = 1

�
τ =

(
0.8ei2π0.81, 0.5ei2π0.52, 0.9ei2π0.93

)
.

Dombi weighted aggregation operators of CTSFNs

In this part, we introduce two operators called complex
T-spherical Dombi fuzzy weighted arithmetic averaging

(CTSDFWAA) operator and complex T-spherical Dombi
fuzzy weighted geometric averaging (CTSDFWGA) opera-
tor. We also obtain some pivotal properties of the introduced
operators.

Complex T-spherical Dombi fuzzy weighted
arithmetic averaging operator

Definition 13 Let X be a universe and �k =
(
αke

i2π	αk ,

βke
i2π	βk , γke

i2π	γk

)
(k = 1, 2, . . . , u) be a set of CTSFNs

with weight vectorW = (W1,W2, . . . ,Wu)
T , whereWk >

0,
∑u

k=1Wk = 1. Then (CTSDFWAA) operator is defined
by a mapping CTSDFWAA : �

u → �, where

CTSDFWAA(�1, �2, . . . , �u) =
u⊕

k=1

Wk�k .

Theorem 1 Let X be a universe and �k =
(
αke

i2π	αk ,

βke
i2π	βk , γke

i2π	γk

)
(k = 1, 2, . . . , u) be a set of CTSFNs

of with weight vector W = (W1,W2, . . . ,Wu)
T , where

W〉 > 0 (k = 1, 2, 3, . . . , u) and
∑u

k=1Wk = 1. Then,
aggregated value of set using CTSDFWAA is a CTSFN
defined as follows:

CTSDFWAA(�1, �2, . . . , �u) =
u⊕

k=1

(Wk�k)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q

√
1 − 1

1+(
∑u

k=1 Wk (
α
q
k

1−α
q
k

)η)
1
η

e

i2π
q

√√√√√
1− 1

1+
(
∑u

k=1Wk

(
(	αk )q

1−(	αk )q

)η) 1
η

,

q

√
1

1+(
∑u

k=1 Wk (
1−β

q
k

β
q
k

)η)
1
η

e

i2π
q

√√√√√
1

1+
(
∑u

k=1Wk

( 1−(	βk
)q

(	βk
)q

)η) 1
η

,

q

√
1

1+(
∑u

k=1 Wk (
1−γ

q
k

γ
q
k

)η)
1
η

e

i2π
q

√√√√√
1

1+
(
∑u

k=1Wk

( 1−(	γk )q

(	γk )q

)η) 1
η

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Proof We can simply prove the theory using the mathemat-
ical induction method. Using Dombi operations of CTSFNs
for u = 2, we have
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CTSDFWAA(�1, �2) = W1�1 ⊕ W2�2

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q

√
1 − 1

1+(W1(
α
q
1

1−α
q
1

)η+W2(
α
q
2

1−α
q
2

)η)
1
η

e

i2π
q

√√√√√
1− 1

1+
(
W1

(
(	α1 )q

1−(	α1 )q

)η
+W2

(
(	α2 )q

1−(	α2 )q

)η) 1
η

,

q

√
1

1+(W1(
β
q
1

1−β
q
1

)η+W2(
β
q
2

1−β
q
2

)η)
1
η

e

i2π
q

√√√√√
1

1+
(
W1

( (	β1
)q

1−(	β1
)q

)η
+W2

( (	β2
)q

1−(	β2
)q

)η) 1
η

,

q

√
1

1+(W1(
γ
q
1

1−γ
q
1

)η+W2(
γ
q
2

1−γ
q
2

)η)
1
η

e

i2π
q

√√√√√
1

1+
(
W1

(
(	γ1 )q

1−(	γ1 )q

)η
+W2

(
(	γ2 )q

1−(	γ2 )q

)η) 1
η

,

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q

√
1 − 1

1+(
∑2

k=1 Wk (
α
q
k

1−α
q
k

)η)
1
η

e

i2π
q

√√√√√
1− 1

1+
(
∑2

k=1Wk

(
(	αk )q

1−(	αk )q

)η) 1
η

,

q

√
1

1+(
∑2

k=1 Wk (
1−β

q
k

β
q
k

)η)
1
η

e

i2π
q

√√√√
1

1+
(
∑2

k=1Wk

( 1−(	βk
)q

(	βk
)q

)η
) 1

η

,

q

√
1

1+(
∑2

k=1 Wk (
1−γ

q
k

γ
q
k

)η)
1
η

e

i2π
q

√√√√√
1

1+
(
∑2

k=1Wk

( 1−(	γk )q

(	γk )q

)η) 1
η

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Assume that the equation holds, when u = σ , i.e.

CT SDFW AA(�1, �2, . . . , �σ ) = W1�1 ⊕ W2�2 ⊕ . . . ⊕ Wσ �σ

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q

√
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∑σ
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α
q
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1−α
q
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1
η

e

i2π
q

√√√√√
1− 1

1+
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(
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)η) 1
η

,

q

√
1
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1−β

q
k

β
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k
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η

e

i2π
q

√√√√√
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1+
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∑σ

k=1Wk

( 1−(	βk
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(	βk
)q

)η) 1
η

,
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√
1
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1−γ
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k
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e

i2π
q

√√√√√
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1+
(
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k=1Wk

( 1−(	γk )q

(	γk )q

)η) 1
η

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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If u = σ + 1, then we have

CTSDFWAA(�1, �2, . . . , �σ ) = W1�1 ⊕ W2�2 ⊕ . . . ⊕ Wσ �σ ⊕ Wσ+1�σ+1

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q

√
1 − 1

1+(
∑σ

k=1 Wk (
α
q
k

1−α
q
k

)η)
1
η

e

i2π
q

√√√√√
1− 1

1+
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∑σ

k=1Wk

(
(	αk )q

1−(	αk )q

)η) 1
η

,

q

√
1

1+(
∑σ

k=1 Wk (
1−β
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k
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k

)η)
1
η

e

i2π
q

√√√√
1

1+
(
∑σ

k=1Wk

( 1−(	βk
)q
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η

,

q

√
1
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q
k

γ
q
k

)η)
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η

e

i2π
q

√√√√√
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1+
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( 1−(	γk )q
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η

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊕
(Wσ+1�σ+1)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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α
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k
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η
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q
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q
k
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q

√√√√
1

1+
(
∑σ

k=1Wk
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η

,

q

√
1
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∑σ
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1−γ

q
k

γ
q
k

)η)
1
η

e

i2π
q

√√√√√
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η

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊕

×

⎛
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1−(	βσ+1
)q

)η) 1
η

,

q

√
1

1+(Wσ+1(
γ
q
σ+1

1−γ
q
σ+1
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1
η

e

i2π
q
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(
Wσ+1
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(	γσ+1 )q
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)η) 1
η

,

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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k=1 Wk (
α
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1−α
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k

)η)
1
η

e

i2π
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1+
(
∑σ+1
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1−(	αk )q
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1+(
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)η)
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η
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√√√√
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1−γ
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)η)
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√√√√√
1

1+
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∑σ+1

k=1 Wk

( 1−(	γk )q

(	γk )q

)η) 1
η

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Hence, the theory 3.1 is true for u = σ +1. Then the equation
is true for all u ∈ N. ��
Example 3 Consider three CTSFNs with weight vectorW =
(0.5, 0.3, 0.2)τ and operational parameter η = 1 and q = 6
given as follows:

�1 =
(
0.8ei2π0.81, 0.5ei2π0.52, 0.9ei2π0.93

)
,

�2 =
(
0.9ei2π0.91, 0.6ei2π0.62, 0.8ei2π0.83

)
,

�3 =
(
0.9ei2π0.91, 0.8ei2π0.81, 0.7ei2π0.71

)
.

Using the CTSDFWAA operator, we can aggregate the three
CTSFNs and find an aggregate value as shown below:

CTSDFWAA

(
�1, �2, �3) =

3⊕
k=1

(Wk�k

)
.

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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η
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e
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1+
(
∑3

k=1Wk

( 1−(	γk )q

(	γk )q

)η) 1
η

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (0.488ei2π0.493, 0.534ei2π0.553, 0.666ei2π0.683).
The values when η �= 1 are shown in Table 1.

Theorem 2 (Idempotency) Let�k =
(
αke

i2π	αk , βke
i2π	βk ,

γke
i2π	γk

)
(k = 1, 2, . . . , u) be a set of CTSFNs such that

�k = �. Then

CTSDFWAA(�1, �2, . . . , �u) = �.

Proof Assume that �k = � for all k = 1, 2, . . . , u. Using
Eq.3, we have

CTSDFWAA(�1, �2, . . . , �u) =
u⊕

k=1

(Wk�k)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q

√
1 − 1

1+(
∑u

k=1 Wk (
α
q
k

1−α
q
k

)η)
1
η

e

i2π
q

√√√√√
1− 1

1+
(
∑u

k=1Wk

(
(	αk )q

1−(	αk )q

)η) 1
η

,

q

√
1

1+(
∑u

k=1 Wk (
1−β

q
k

β
q
k

)η)
1
η

e

i2π
q

√√√√
1

1+
(
∑u

k=1Wk

( 1−(	βk
)q

(	βk
)q

)η
) 1

η

,

q

√
1

1+(
∑u

k=1 Wk (
1−γ

q
k

γ
q
k

)η)
1
η

e

i2π
q

√√√√√
1

1+
(
∑u

k=1Wk

( 1−(	γk )q

(	γk )q

)η) 1
η

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Table 1 When η �= 1

η CTSFNs

2 (0.501ei2π0.506, 0.540ei2π0.561, 0.706ei2π0.720)

3 (0.501ei2π0.512, 0.533ei2π0.554, 0.713ei2π0.725)

4 (0.513ei2π0.518, 0.526ei2π0.548, 0.714ei2π0.726)

5 (0.518ei2π0.524, 0.522ei2π0.543, 0.715ei2π0.726)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q

√
1 − 1

1+((
α
q
k

1−α
q
k

)η)
1
η

e

i2π
q

√√√√√
1− 1

1+
((

(	αk )q

1−(	αk )q

)η) 1
η

,

q

√
1

1+((
1−β

q
k

β
q
k

)η)
1
η

e

i2π
q

√√√√
1

1+
(( 1−(	βk

)q

(	βk
)q

)η
) 1

η

,

q

√
1

1+((
1−γ

q
k

γ
q
k

)η)
1
η

e

i2π
q

√√√√√
1

1+
(( 1−(	γk )q

(	γk )q

)η) 1
η

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q

√
1 − 1

1+(
α
q
k

1−α
q
k

)

e

i2π
q

√
1− 1

1+
(

(	αk )q

1−(	αk )q

)
,

q

√
1

1+(
1−β

q
k

β
q
k

)

e

i2π
q

√√√√
1

1+
( 1−(	βk

)q

(	βk
)q

,

q

√
1

1+(
1−γ

q
k

γ
q
k

)

e

i2π
q

√
1

1+
( 1−(	γk )q

(	γk )q

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(
αei2π	α , βei2π	β , γ ei2π	γ

)

= �.

��

Theorem 3 (Monotonicity) Let �k =
(
αke

i2π	αk ,

βke
i2π	βk , γke

i2π	γk

)
and �

′
k =

(
α′
ke

i2π	α′
k ,

β ′
ke

i2π	β′
k , γ ′

ke
i2π	γ ′

k

)
(k = 1, 2, . . . , u) be two sets of

CTSFNs. If αk ≤ α′
k, βk ≥ β ′

k, γk ≥ γ ′
k , 	αk ≤ 	α′

k
,	βk ≥

	β ′
k
, and 	γk ≥ 	γ ′

k
for all k = 1, 2, . . . , u. Then

CTSDFWAA(�1, �2, . . . , �u)

≤ CTSDFWAA(�′
1, �

′
2, . . . , �

′
u).

Proof Let CTSDFWAA�k =
(
αke

i2π	αk , βke
i2π	βk ,

γke
i2π	γk

)
and

CTSDFWAA �
′
k =

(
α′
ke

i2π	α′
k , β ′

ke
i2π	β′

k , γ ′
ke

i2π	γ ′
k

)
,

k = {1, 2, 3, . . . , u} since α�1 ≤ α
�́1

,
α
q
�1

1−α
q
�1

≤ α
q
�́1

1−α
q
�́1

. We

show first that α ≤ ά. So, we have

(
u∑

k=1

Wk

(
α
q
�1

1 − α
q
�1

)η) 1
η

≤
⎛
⎝

u∑
k=1

Wk

(
α
q
�́1

1 − α
q
�́1

)η
⎞
⎠

1
η

1 +
(

u∑
k=1

Wk

(
α
q
�1

1 − α
q
�1

)η) 1
η

≤ 1 +
⎛
⎝

u∑
k=1

Wk

(
α
q
�́1

1 − α
q
�́1

)η
⎞
⎠

1
η

1

1 +
(∑u

k=1Wk

(
α
q
�1

1−α
q
�1

)η) 1
η

≥ 1

1 +
(
∑u

k=1Wk

(
α
q
�́1

1−α
q
�́1

)η
) 1

η

1 − 1

1 +
(∑u

k=1Wk

(
α
q
�1

1−α
q
�1

)η) 1
η

≤ 1 − 1

1 +
(
∑u

k=1Wk

(
α
q
�́1

1−α
q
�́1

)η
) 1

η

q

√√√√√√
1 − 1

1 +
(∑u

k=1Wk

(
α
q
�1

1−α
q
�1

)η) 1
η

≤
q

√√√√√√√
1 − 1

1 +
(
∑u

k=1Wk

(
α
q
�́1

1−α
q
�́1

)η
) 1

η

.

Hence, α ≤ ά Similarly, it is easy to show that β ≤ β́ ,
γ ≤ γ́ , 	α ≤ 	ά ,	β ≤ 	

β́
,	γ ≤ 	γ́ . Thus, the proof of

the theorem is completed. ��
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Theorem 4 (Boundedness) Let �k =
(
αke

i2π	αk ,

βke
i2π	βk , γke

i2π	γk

)
, (k = 1, 2, 3, . . . , u)a set ofCTSFNs

with �min = min (�1, �2, �3, . . . , �u) and �max =
max (�1, �2, �3, . . . , �u). Then

�min 	 CT SDFW AA (�1, �2, �3, . . . , �u) 	 �max .

Proof Let

�min = min (�1, �2, �3, . . . , �u)

=
(

α−
k e

i2π	−
αk , β−

k e
i2π	−

βk , γ +
k ei2π	+

γk

)

and

�max = max (�1, �2, �3, . . . , �u)

=
(

α+
k e

i2π	+
αk , β−

k e
i2π	−

βk , γ −
k ei2π	−

γk

)
.

Therefore,

min(αk) = α−
k ,min(βk) = β−

k ,min(γk) = γ −
k ,max(αk)

= α+
k ,max(βk) = β+

k ,max(γk) = γ +
k

min(	αk ) = 	−
αk

,min(	βk ) = 	−
βk

,min(	γk )

= 	−
γk

,max(	αk ) = 	+
αk

,max(	βk )

= 	+
βk

,max(	γk ) = 	+
γk

.

The inequality for amplitude term of membership grade
is given as follows:

q

√√√√√1 − 1

1 + (
∑3

k=1Wk(
α

−q
k

1−α
−q
k

)η)
1
η

≤ q

√√√√1 − 1

1 + (
∑3

k=1Wk(
α
q
k

1−α
q
k
)η)

1
η

≤ q

√√√√√1 − 1

1 + (
∑3

k=1Wk(
α

+q
k

1−α
+q
k

)η)
1
η

.

Similarly, the inequality for phase term of membership grade
is given as follows:

q

√√√√√1 − 1

1 +
(∑u

k=1Wk
( (	αk )−q

1−(	αk )−q

)η) 1
η

≤ q

√√√√√1 − 1

1 +
(∑u

k=1Wk
( (	αk )q

1−(	αk )q

)η) 1
η

≤
q

√√√√√1 − 1

1 +
(∑u

k=1Wk
( (	αk )+q

1−(	αk )+q

)η) 1
η

.

In a similar manner, we can get the results for the ampli-
tude and phase terms of abstinence and non-membership
grades. Thus,

�min 	 CTSDFWAA (�1, �2, �3, . . . , �u) 	 �max.

��

Complex T-spherical Dombi fuzzy weighted
geometric averaging operator

Definition 14 Let�k =
(
αke

i2π	αk , βke
i2π	βk , γke

i2π	γk

)

(k = 1, 2, . . . , u) be a set of CTSFNs of with weight vector
W = (W1,W2, . . . ,Wu)

T , where Wk > 0,
∑u

k=1Wk =
1. Then (CTSDFWGA) operator is defined by a mapping
CTSDFWGA: �

u → �, where

CTSDFWGA (�1, �2, . . . , �u) =
u⊗

k=1

�
Wk
k .

Theorem 5 If �k =
(
αke

i2π	αk , βke
i2π	βk , γke

i2π	γk

)

(k = 1, 2, . . . , u) be a set of CTSFNs of with weight vector
W = (W1,W2, . . . ,Wu)

T , whereWk > 0,
∑u

k=1Wk = 1.
Then (CTSDFWGA) operator the clumped value of these
CT SFNs is again a CT SFN. This clumped value can be
obtained by the following formula:
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CTSDFWGA(�1, �2, . . . , �u) =
u⊗

k=1

�
Wk
k

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q

√
1

1+(
∑u

k=1 Wk (
1−α

q
k

α
q
k

)η)
1
η

e

i2π
q

√√√√√
1

1+
(
∑u

k=1Wk

( 1−(	αk )q

(	αk )q

)η) 1
η

,

q

√
1

1+(
∑u

k=1 Wk (
1−β

q
k

β
q
k

)η)
1
η

e

i2π
q

√√√√√
1

1+
(
∑u

k=1Wk

( 1−(	βk
)q

(	βk
)q

)η) 1
η

,

q

√
1 − 1

1+(
∑u

k=1 Wk (
γ
q
k

1−γ
q
k

)η)
1
η

e

i2π
q

√√√√√
1− 1

1+
(
∑u

k=1Wk

(
(	γk )q

1−(	γk )q

)η) 1
η

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Proof The proof can be made by similar way to the proof of
Theorem 9. ��
Example 4 Let us consider three CTSFNs given as follows:

�1 =
(
0.8ei2π0.81, 0.5ei2π0.52, 0.9ei2π0.93

)
,

�2 =
(
0.9ei2π0.91, 0.6ei2π0.62, 0.8ei2π0.83

)
,

�3 =
(
0.9ei2π0.91, 0.8ei2π0.81, 0.7ei2π0.71

)

with the weight vectorW = (0.5, 0.3, 0.2)τ and operational
parameter η = 1 and q = 6. Using the CTSDFWGA opera-
tor, we can aggregate the three CTSFNs and find a clumped
value as given below:

CTSDFWGA(�1, �2, . . . , �u) =
u⊗

k=1

�
Wk
k

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q

√√√√
1

1+
(∑u

k=1 Wk

(
1−α

q
k

α
q
k

)η) 1
η

e

i2π

q

√√√√√√

1

1+

(
∑u

k=1Wk

(
1−(	αk )q

(	αk )q

)η) 1
η

,

q

√√√√
1

1+
(∑u

k=1 Wk

(
1−β

q
k

β
q
k

)η) 1
η

e

i2π

q

√√√√√√

1

1+

(
∑u

k=1Wk

(
1−(	βk

)q

(	βk
)q

)η) 1
η

,

q

√√√√1 − 1

1+
(∑u

k=1 Wk

(
γ
q
k

1−γ
q
k

)η) 1
η

e

i2π

q

√√√√√√
1− 1

1+

(
∑u

k=1Wk

(
(	γk )q

1−(	γk )q

)η) 1
η

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (
0.788ei2π0.801, 0.534ei2π0.553, 0.443ei2π0.461

)
.

The values when η �= 1 are shown in Table 2.

Theorem 6 (Idempotency) Let �k =
(

αke
i2π	αk ,

βke
i2π	βk , γke

i2π	γk

)
(k = 1, 2, . . . , u) be a set of CTSFNs

such that �k = �. Then

CTSDFWGA (�1, �2, . . . , �u) = �.

Proof The proof is similar to the proof of Theorem 2. ��
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Table 2 When η �= 1

η CTSFNs

2
(
0.855ei2π0.869, 0.540ei2π0.561, 0.476ei2π0.505

)

3
(
0.865ei2π0.880, 0.533ei2π0.554, 0.506ei2π0.546

)

4
(
0.864ei2π0.878, 0.526ei2π0.548, 0.535ei2π0.588

)

5
(
0.861ei2π0.875, 0.522ei2π0.543, 0.875ei2π0.629

)

Theorem 7 (Monotonicity) Let �k =
(
αke

i2π	αk ,

βke
i2π	βk , γke

i2π	γk

)
and �

′
k =

(
α′
ke

i2π	α′
k , β ′

k .

e
i2π	β′

k , γ ′
ke

i2π	γ ′
k

)
(k = 1, 2, . . . , u) be two sets of

CTSFNs. If αk ≤ α′
k, βk ≥ β ′

k, γk ≥ γ ′
k , 	αk ≤ 	α′

k
,	βk ≥

	β ′
k
, and 	γk ≥ 	γ ′

k
for all k, then

CTSDFWGA (�1, �2, . . . , �u)

≤ CTSDFWGA
(
�

′
1, �

′
2, . . . , �

′
u

)
.

Proof The proof can be made by the similar way to Theo-
rem 3. ��
Theorem 8 (Boundedness) Let �k =

(
αke

i2π	αk ,

βke
i2π	βk , γke

i2π	γk

)
, (k = 1, 2, 3, . . . , u) be a set of

CTSFNs with �min = min(�1, �2, �3, . . . , �u) and
�max = max(�1, �2, �3, . . . , �u). Then

�min 	 CTSDFWGA (�1, �2, �3, . . . , �u) 	 �max.

Proof The proof can be made by the similar way to proof of
Theorem 4. ��

Dombi ordered weighted aggregation operators of
CTSFNs

In this part, we propose two operators, namely, complex
T-spherical Dombi fuzzy ordered weighted arithmetic aver-
aging (CTSDFOWAA) operator and complex T-spherical
Dombi fuzzyweighted ordered geometric averaging (CTSD-
FOWGA) operator. Moreover, we also discuss some pivotal
properties of these operators.

Complex T-spherical Dombi fuzzy ordered weighted
arithmetic averaging operator

Definition 15 Let�k =
(
αke

i2π	αk , βke
i2π	βk , γke

i2π	γk

)

(k = 1, 2, . . . , u) be a set of CTSFNs of with weight vector
W = (W1,W2, . . . ,Wu)

T , whereWk > 0,
∑u

k=1Wk = 1.
Then (CTSDFOWAA) operator is defined by a mapping

CTSDFOWAA : �
u → �, where

CTSDFOWAA (�1, �2, . . . , �u) =
u⊕

k=1

Wk�σ(k)

and (σ1, σ2, . . . , σu) are the permutations of σ(k) having the
condition |�σ(k−1)| ≥ |�σ(k)| for all (k = 1, 2, . . . , u).

Theorem 9 If �k =
(
αke

i2π	αk , βke
i2π	βk , γke

i2π	γk

)

(k = 1, 2, . . . , u) be a set of CTSFNs of with weight vector
W = (W1,W2, . . . ,Wu)

T , whereW > 0 and
∑u

k=1Wk =
1.

Then aggregated value of set using CTSDFOWAA is a
CTSFN defined as follows:

CTSDFOWAA (�1, �2, . . . , �u) =
u⊕

k=1

(
Wk�σ(k)

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q

√√√√1 − 1

1+
(
∑u

k=1 Wk

(
α
q
σ(k)

1−α
q
σ(k)

)η) 1
η

e

i2π

q

√√√√√√
1− 1

1+

(
∑u

k=1Wk

(
(	ασ(k) )q

1−(	ασ(k) )q

)η) 1
η

,

q

√√√√
1

1+
(
∑u

k=1 Wk

(
1−β

q
σ(k)

β
q
σ(k)

)η) 1
η

e

i2π

q

√√√√√√

1

1+

(
∑u

k=1Wk

(
1−(	βσ(k)

)q

(	βσ(k)
)q

)η) 1
η

,

q

√√√√
1

1+
(
∑u

k=1 Wk

(
1−γ

q
σ(k)

γ
q
σ(k)

)η) 1
η

e

i2π

q

√√√√√√

1

1+

(
∑u

k=1Wk

(
1−(	γσ(k) )q(

	γσ(k)

)q

)η) 1
η

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Example 5 Let us consider three CTSFNs given as follows:

�1 =
(
0.9ei2π0.91, 0.7ei2π0.62, 0.8ei2π0.83

)
,

�2 =
(
0.9ei2π0.91, 0.8ei2π0.81, 0.3ei2π0.50

)
,

�3 =
(
0.8ei2π0.81, 0.5ei2π0.52, 0.4ei2π0.67

)

having the weight vector W = (0.5, 0.3, 0.2)τ with opera-
tional parameter η = 1 and q = 6. Using the CTSDFOWAA
operator, we can aggregate the three CTSFNs. We can find
the values of the score function of this CTSFNs

�(�1) = 0.584,�(�2) = 0.635,�(�3) = 0.604.

Hence, �(�2) ≥ �(�3) ≥ �(�1), we will also find that

�σ1 = �2 =
(
0.9ei2π0.91, 0.8ei2π0.81, 0.3ei2π0.50

)
,

�σ2 = �3 =
(
0.8ei2π0.81, 0.5ei2π0.52, 0.4ei2π0.67

)
,

�σ3 = �1 =
(
0.9ei2π0.91, 0.7ei2π0.62, 0.8ei2π0.83

)
.

CTSDFOWAA (�1, �2, �3) =
3⊕

k=1

(
Wk�σ(k)

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q

√√√√1 − 1

1+
(
∑3

k=1 Wk

(
α
q
σ(k)

1−α
q
σ(k)

)η) 1
η

e

i2π

q

√√√√√√
1− 1

1+

(
∑u

k=1Wk

(
(	ασ(k) )q

1−(	ασ(k) )q

)η) 1
η

,

q

√√√√
1

1+
(
∑3

k=1 Wk

(
1−β

q
σ(k)

β
q
σ(k)

)η) 1
η

e

i2π

q

√√√√√√

1

1+

(
∑3

k=1Wk

(
1−
(

	βσ(k)

)q

(	βσ(k)
)q

)η) 1
η

,

q

√√√√
1

1+
(
∑3

k=1 Wk

(
1−γ

q
σ(k)

γ
q
σ(k)

)η) 1
η

e

i2π

q

√√√√√√

1

1+

(
∑u

k=1Wk

(
1−(	γσ(k) )q(

	γσ(k)

)q

)η) 1
η

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (
0.488ei2π0.493, 0.489ei2π0.508, 0.682ei2π0.696

)
.

Theorem 10 (Idempotency) Let �k =
(

αke
i2π	αk ,

βke
i2π	βk , γke

i2π	γk

)
(k = 1, 2, . . . , u) be a set of CTSFNs

such that �k = �. Then

CTSDFOWAA (�1, �2, . . . , �u) = �.

Theorem 11 (Monotonicity) Let �k =
(
αke

i2π	αk ,

βke
i2π	βk , γke

i2π	γk

)
and �

′
k =

(
α′
ke

i2π	α′
k , β ′

k .

e
i2π	β′

k , γ ′
ke

i2π	γ ′
k

)
(k = 1, 2, . . . , u) be two sets of

CTSFNs. If αk ≤ α′
k, βk ≥ β ′

k, γk ≥ γ ′
k , 	αk ≤ 	α′

k
,	βk ≥

	β ′
k
, and 	γk ≥ 	γ ′

k
for all k. Then

CT SDFOW AA(�1, �2, . . . , �u)

	 CT SDFOW AA(�′
1, �

′
2, . . . , �

′
u).

Theorem 12 (Boundedness) Let �k =
(
αke

i2π	αk ,

βke
i2π	βk , γke

i2π	γk

)
, k = {1, 2, 3, . . . , u}a set ofCTSFNs

with �min = min(�1, �2, �3, . . . , �u) and �max =
max(�1, �2, �3, . . . , �u). Then

�min 	 CT SDFOW AA(�1, �2, �3, . . . , �u) 	 �max .

Complex T-spherical Dombi fuzzy ordered weighted
geometric averaging operator

Definition 16 Let�k =
(
αke

i2π	αk , βke
i2π	βk , γke

i2π	γk

)

(k = 1, 2, . . . , u) be a set of CTSFNs of with weight vector

W = (W1,W2, . . . ,Wu)
T , whereWk > 0,

∑u
k=1Wk = 1.

Then (CTSDFOWGA) operator is defined by a mapping
CT SDFOWGA : �u → �, where

CTSDFOWGA (�1, �2, . . . , �u) =
u⊗

k=1

�
Wk
σ(k)
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and (σ1, σ2, . . . , σu) are the permutations of σ(k) having the
condition |�σ(k−1)| ≥ |�σ(k)| for all (k = 1, 2, . . . , u)

Theorem 13 If �k =
(

αke
i2π	αk , βke

i2π	βk , γke
i2π	γk

)

(k = 1, 2, . . . , u) be a set of CTSFNs of with weight vector
W = (W1,W2, . . . ,Wu)

T , where Wk > 0,
∑u

k=1Wk =
1. Then (CTSDFWGA) operator the clumped value of these
CT SFNs is again a CT SFN. This clumped value can be
obtained by the following formula:

CTSDFOWGA (�1, �2, . . . , �u) =
u⊗

k=1

�
Wk
σ(k)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q

√√√√
1

1+
(
∑u

k=1 Wk

(
1−α

q
σ(k)

α
q
σ(k)

)η) 1
η

e

i2π

q

√√√√√√

1

1+

(
∑u

k=1Wk

(
1−
(
	ασ(k)

)q
(
	ασ(k)

)q

)η) 1
η

,

q

√√√√
1

1+
(
∑u

k=1 Wk

(
1−β

q
σ(k)

β
q
σ(k)

)η) 1
η

e

i2π

q

√√√√√√

1

1+

(
∑u

k=1Wk

(
1−(	βσ(k)

)q

(	βσ(k)
)q

)η) 1
η

,

q

√√√√1 − 1

1+
(
∑u

k=1 Wk

(
γ
q
σ(k)

1−γ
q
σ(k)

)η) 1
η

e

i2π

q

√√√√√√
1− 1

1+

(
∑u

k=1Wk

(
(	γσ(k) )q

1−(	γσ(k) )q

)η) 1
η

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Example 6 Consider CTSFNs given in Example 3.4. Then

CTSDFOWGA (�1, �2, �3) =
3⊗

k=1

�
Wk
σ(k)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q

√√√√
1

1+
(
∑u

k=1 Wk

(
1−α

q
σ(k)

α
q
σ(k)

)η) 1
η

e

i2π

q

√√√√√√

1

1+

(
∑u

k=1Wk

(
1−(	ασ(k) )q

(	ασ(k) )q

)η) 1
η

,

q

√√√√
1

1+
(
∑u

k=1 Wk

(
1−β

q
σ(k)

β
q
σ(k)

)η) 1
η

e

i2π

q

√√√√√√

1

1+

(
∑u

k=1Wk

(
1−(	βσ(k)

)q

(	βσ(k)
)q

)η) 1
η

,

q

√√√√1 − 1

1+
(
∑u

k=1 Wk

(
γ
q
σ(k)

1−γ
q
σ(k)

)η) 1
η

e

i2π

q

√√√√√√
1− 1

1+

(
∑u

k=1Wk

(
(	γσ(k) )q

1−
(
	γσ(k)

)q

)η) 1
η

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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=
(
0.761ei2π0.773, 0.489ei2π0.508, 0.450ei2π0.468

)
.

Theorem 14 (Idempotency) Let �k =
(

αke
i2π	αk ,

βke
i2π	βk , γke

i2π	γk

)
(k = 1, 2, . . . , u) be a set of CTSFNs

such that �k = �. Then

CTSDFOWGA (�1, �2, . . . , �u) = �.

Theorem 15 (Monotonicity) Let �k =
(

αke
i2π	αk ,

βke
i2π	βk , γke

i2π	γk

)
and �

′
k =

(
α′
ke

i2π	α′
k , β ′

ke
i2π	β′

k ,

γ ′
ke

i2π	γ ′
k

)
(k = 1, 2, . . . , u) be two sets of CTSFNs. If

αk ≤ α′
k, βk ≥ β ′

k, γk ≥ γ ′
k , 	αk ≤ 	α′

k
,	βk ≥ 	β ′

k
, and

	γk ≥ 	γ ′
k
for all k. Then

CTSDFOWGA (�1, �2, . . . , �u)

	 CT SDFOWGA
(
�

′
1, �

′
2, . . . , �

′
u

)
.

Theorem 16 (Boundedness) Let �k =
(
αke

i2π	αk ,

βke
i2π	βk , γke

i2π	γk

)
, (k = 1, 2, 3, . . . , u)a set ofCTSFNs

with �min = min (�1, �2, �3, . . . . . . , �u) and �max =
max (�1, �2, �3, . . . , �u). Then

�min 	 CTSDFOWGA (�1, �2, �3, . . . , �u) 	 �max.

MCDMmethod under CTSF environment

In this section, we present an MCDM method under CT SF
environment.

Let κ = {κ1, κ2, . . . , κl} be set of alternatives, ε =
{ε1, ε2, . . . , εs} be a set of criteria. Let us consider W =
(W1,W2, . . . ,Ws) such that W j ∈ (0, 1] and∑s

j=1W j =
1 as the weight vector of the criteria which is determined by
decision-makers. The steps of the MCDM method are given
as follows:

Step 1: The evaluation of the alternative κi according to
criteria ε j performed by decision-maker. It can be written
as ζy j ( j = 1, 2, . . . , s; y = 1, 2, . . . , t). Hence, CTSF-
decision matrix DM = [ζy j ]t×s can be constructed as
follows:

DM = [ζy j ]t×s =

⎛
⎜⎜⎜⎝

ζ11 ζ12 · · · ζ1s
ζ21 ζ22 · · · ζ2s
...

... · · · ...

ζt1 ζt2 · · · ζts

⎞
⎟⎟⎟⎠ .

Here ζy j =
(
αy j ei2π	y j , βy j ei2π	y j , γy j ei2π	y j

)
.

Step 2: Find the aggregated value denoted by Ay (y =
1, 2, 3, . . . , l) using the CT SDFW AA operators.

Step 3: Find the score values, for each Ay y = 1, 2, 3, . . . , l

Step 4: Choose the alternative which has a maximum score
value.

Application

The COVID-19 outbreak first appeared in Wuhan city of
China in December 2019 and spread rapidly all over the
world [70,71]. Until May 5, 2021, 153,790,183 people were
infected with the COVID-19 and 3,218,080 people died [72].
Also, the spread of COVID-19 still continuous. In some
papers, mathematical analysis revealing the spread of such a
deathly disease have been presented [73–75].

In this section, an application of the proposed method
to determine a patient infected by COVID-19 is presented.
In this application, after we discuss by infectious diseases
physician, we determine the criteria as a basic symptoms of
COVID-19. Set of the symptoms is considered as ε = {ε1 =
Fever , ε2 = headache , ε3 = dyspnea , ε4 = cough }.
Also, we consider the five patients p1, p2, p3, p4 and p5. For
each of patients, data measured alongwith 14 days according
to symptoms are given in Tables 3, 4, 5 and 6.

Here we transform data given in tables to CTSFN.Wewill
only explain transforming process of data given in Table 3.
Other transforming of the tables will not be showed.

We establish amplitude terms and phase terms according
to fever degree and days, respectively. First, we classify the
degree of fever for MD (38.6-39.5 ), NeD(37.6-38.5 ), and
NMD (36.5-37.5). Then we assign values from 0.1 to 0.9 for
fever intervals. This is shown in Table 7.

For each of MD, NeD and NMD, we find the arithmetic
mean of the fever values. Then we assign a value from 0.1 to
0.9.
These values are shown in Table 8 and Table 9.

We divide the number of MD, NeD and NMD days by
14 for each patient to obtain the phase terms. For example,
according to Table 3, we see that fever of p1 is in MD for 6
days, in NeD for 5 days and in NMD for 3 days. Then phase
terms for MD, NeD and NMD are 6

14 = 0.43, 5
14 = 0.36,

and 3
14 = 0.21. All of phase terms for patients are shown in

Table 10.
In a similar way, we can obtain all of the CTSF values for

each of the patientswith respect to symptoms using following
classification tables for other symptoms.

Here we use the steps of the proposed method.
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Table 3 Fever values of patients
measured for 14 days

1 2 3 4 5 6 7 8 9

p1 37.80 38.00 38.20 38.60 39.00 39.30 39.50 39.00 38.60

p2 38.10 38.50 38.80 39.10 39.40 40.00 40.10 39.50 39.20

p3 37.50 38.10 38.60 38.20 38.10 38.00 37.70 37.50 37.20

p4 38.20 38.80 39.00 39.60 39.60 40.00 40.20 39.50 39.00

p5 36.80 36.60 37.30 38.00 38.30 38.80 38.10 37.70 37.20

10 11 12 13 14

38.10 37.80 37.50 37.20 37.00

38.70 38.30 38.00 37.70 37.40

37.00 37.40 37.10 36.80 36.60

38.60 38.10 37.70 37.40 37.00

37.20 36.80 36.60 36.90 36.50

Table 4 Headache values of
patients measured for 14 days

1 2 3 4 5 6 7 8 9 10 11 12 13 14

p1 3.7 5.5 5.8 6.2 6.8 7.7 8.2 9.3 9.4 9.5 8.6 7.4 5.6 3.4

p2 9.3 9.2 9.4 8.8 8.7 8.6 9.6 6.8 6.8 6.6 5.6 4.7 3.9 3.6

p3 1.5 2.4 3.2 3.8 6.6 5.8 6.8 6.5 6.9 8.3 9.4 9.6 9.8 8.7

p4 6.7 6.8 6.3 6.6 9.6 9.7 9.5 9.4 9.7 8.9 9.1 6.2 4.3 3.8

p5 3.6 3.7 3.9 5.2 5.8 6.8 6.9 6.9 7.2 8.1 6.9 6.5 5.9 3.8

Table 5 Dyspnea values of
patients measured for 14 days

1 2 3 4 5 6 7 8 9 10 11 12 13 14

p1 2.8 3.3 3.9 4.8 5.9 6.4 6.9 7.9 9.6 9.9 9.7 9.6 6.9 6.4

p2 9.8 9.9 9.5 9.3 8.4 6.9 6.5 6.2 5.6 3.9 3.8 3.5 3.4 3.6

p3 1.9 2.8 3.3 3.8 3.9 6.8 7.9 8.8 9.3 6.9 6.5 5.8 5.3 4.9

p4 9.7 9.2 9.6 6.9 6.5 3.9 6.1 6.9 6.9 9.8 9.9 9.9 9.8 9.9

p5 2.2 2.5 2.7 3.1 3.9 3.8 6.7 5.4 6.9 6.6 6.9 8.9 9.8 9.8

Table 6 Cough values of
patients measured for 14 days

1 2 3 4 5 6 7 8 9 10 11 12 13 14

p1 3.1 3.4 4.8 6.7 8.6 8.2 8.3 6.6 6.2 5.4 3.9 3.5 3.6 3.4

p2 3.9 6.1 6.3 6.8 6.9 8.8 9.7 9.8 9.9 9.8 9.8 9.9 6.9 6.8

p3 2.9 3.6 3.9 5.9 6.1 6.8 6.9 6.9 9.3 9.9 9.7 9.8 9.9 9.8

p4 9.7 9.9 9.6 9.9 9.8 6.9 6.5 6.9 6.9 3.9 3.2 3.1 2.8 2.7

p5 3.8 3.9 5.5 6.7 6.8 6.9 6.7 8.8 7.8 7.9 8.9 9.3 9.8 9.8

Table 7 Classification of
measured fever degrees
according to MD, NeD, and
NMD

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

MD 38.6 38.7 38.8 38.9 39 39.1 39.2 39.3 39.4

NeD 37.7 37.8 37.9 38 38.1 38.2 38.3 38.4 38.5

NMD 36.7 36.8 36.9 37 37.1 37.2 37.3 37.4 37.5
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Table 8 Arithmetic mean (AM)
of fever values for MD, NeD,
and NMD

MD NeD NMD

p1 39.00 37.98 37.23

p2 39.35 38.12 37.40

p3 38.60 38.02 37.14

p4 39.37 38.00 37.20

p5 38.80 38.03 36.88

Table 9 MD, NeD, and NMD
values in [0,1] for patients

MD NeD NMD

p1 0.5 0.4 0.6

p2 0.9 0.5 0.8

p3 0.1 0.4 0.5

p4 0.9 0.4 0.6

p5 0.3 0.4 0.3

Table 10 Phase terms MD NeD NMD

p1 0.43 0.36 0.21

p2 0.57 0.36 0.07

p3 0.07 0.36 0.57

p4 0.64 0.21 0.14

p5 0.07 0.29 0.64

Step 1: DM matrix is constructed by taking into considera-
tion the above data.

DM =

⎡
⎢⎢⎢⎢⎣

(0.5ei2π0.43, 0.4ei2π0.36, 0.6ei2π0.21) (0.5ei2π0.50, 0.7ei2π0.36, 0.8ei2π0.14)
(0.9ei2π0.57, 0.5ei2π0.36, 0.8ei2π0.07) (0.7ei2π0.50, 0.7ei2π0.36, 0.9ei2π0.14)
(0.1ei2π0.07, 0.4ei2π0.36, 0.5ei2π0.57) (0.7ei2π0.36, 0.8ei2π0.36, 0.5ei2π0.29)
(0.9ei2π0.64, 0.8ei2π0.36, 0.6ei2π0.14) (0.8ei2π0.50, 0.7ei2π0.43, 0.9ei2π0.07)
(0.3ei2π0.07, 0.4ei2π0.29, 0.3ei2π0.64) (0.2ei2π0.14, 0.8ei2π0.57, 0.9ei2π0.29)

(0.8ei2π0.36, 0.7ei2π0.43, 0.8ei2π0.21) (0.5ei2π0.21, 0.6ei2π0.36, 0.8ei2π0.43)
(0.8ei2π0.36, 0.8ei2π0.29, 0.9ei2π0.36) (0.8ei2π0.50, 0.9ei2π0.43, 0.9ei2π0.07)
(0.5ei2π0.21, 0.7ei2π0.43, 0.7ei2π0.36) (0.9ei2π0.43, 0.8ei2π0.36, 0.8ei2π0.21)
(0.9ei2π0.57, 0.8ei2π0.36, 0.9ei2π0.07) (0.9ei2π0.36, 0.9ei2π0.29, 0.7ei2π0.36)
(0.8ei2π0.21, 0.8ei2π0.36, 0.7ei2π0.43) (0.6ei2π0.50, 0.8ei2π0.36, 0.9ei2π0.14)

⎤
⎥⎥⎥⎥⎦

Here we consider q = 9.

Step 2: Aggregated values are found for each of the patients
by applyingCT SDFW AA andCT SDFWGA operators to
rows of theMD.

Table 11 Classification of
measured headache degrees
according to MD, NeD, and
NMD

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

MD 7.3 7.6 7.9 8.2 8.5 8.8 9.1 9.4 9.7

NeD 4.3 4.6 4.9 5.2 5.5 5.8 6.1 6.4 6.7

NMD 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7
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Table 12 Obtaining results for
headache using Tables 4 and 11

MD NeD NMD MD NeD NMD MD NeD NMD

p1 8.59 5.98 3.55 p1 0.5 0.7 0.8 p1 0.50 0.36 0.14

p2 9.09 6.10 3.75 p2 0.7 0.7 0.9 p2 0.50 0.36 0.14

p3 9.16 6.52 2.73 p3 0.7 0.8 0.5 p3 0.36 0.36 0.29

p4 9.41 6.15 3.80 p4 0.8 0.7 0.9 p4 0.50 0.43 0.07

p5 7.65 6.36 3.75 p5 0.2 0.8 0.9 p5 0.14 0.57 0.29

AM of headache degrees MD, NeD, and NMD values Phase terms

Table 13 Classification of
measured dyspnea degrees
according to MD, NeD, and
NMD

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

MD 7.3 7.6 7.9 8.2 8.5 8.8 9.1 9.4 9.7

NeD 4.3 4.6 4.9 5.2 5.5 5.8 6.1 6.4 6.7

NMD 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7

Table 14 Obtaining results for
dyspnea using Tables 5 and 13

MD NeD NMD MD NeD NMD MD NeD NMD

p1 9.34 6.22 3.33 p1 0.8 0.7 0.8 p1 0.36 0.43 0.21

p2 9.38 6.30 3.64 p2 0.8 0.8 0.9 p2 0.36 0.29 0.36

p3 8.67 6.03 3.14 p3 0.5 0.7 0.7 p3 0.21 0.43 0.36

p4 9.73 6.66 3.90 p4 0.9 0.9 0.9 p4 0.57 0.36 0.07

p5 9.50 6.50 3.03 p5 0.8 0.8 0.7 p5 0.21 0.36 0.43

AM of dyspnea degrees MD, NeD, and NMD values Phase terms

Table 15 Classification of
measured cough degrees
according to MD, NeD, and
NMD

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

MD 7.3 7.6 7.9 8.2 8.5 8.8 9.1 9.4 9.7

NeD 4.3 4.6 4.9 5.2 5.5 5.8 6.1 6.4 6.7

NMD 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7

Table 16 Obtaining results for
cough using Tables 6 and 15

MD NeD NMD MD NeD NMD MD NeD NMD

p1 8.37 5.94 3.48 p1 0.5 0.6 0.8 p1 0.21 0.36 0.43

p2 9.67 6.63 3.90 p2 0.8 0.9 0.9 p2 0.50 0.43 0.07

p3 9.73 6.52 3.47 p3 0.9 0.8 0.8 p3 0.43 0.36 0.21

p4 9.78 6.80 3.14 p4 0.9 0.9 0.7 p4 0.36 0.29 0.36

p5 8.90 6.52 3.85 p5 0.6 0.8 0.9 p5 0.50 0.36 0.14

AM of cough degree MD, NeD, and NMD values Phase terms

Table 17 CTSFSs obtained using CTSDFWAA and CTSDFWGA

CT SDFW AA CT SDFWGA

p1 (0.709ei2π0.429, 0.448ei2π0.368, 0.655ei2π0.174) (0.520ei2π0.256, 0.448ei2π0.368, 0.769ei2π0.359)

p2 (0.752ei2π0.524, 0.559ei2π0.319, 0.851ei2π0.076) (0.790ei2π0.405, 0.559ei2π0.319, 0.880ei2π0.312)

p3 (0.788ei2π0.364, 0.449ei2π0.368, 0.538ei2π0.254) (0.112ei2π0.080, 0.449ei2π0.368, 0.704ei2π0.509)

p4 (0.875ei2π0.424, 0.449ei2π0.239, 0.849ei2π0.299) (0.875ei2π0.424, 0.449ei2π0.239, 0.849ei2π0.299)

p5 (0.711ei2π0.418, 0.449ei2π0.315, 0.337ei2π0.171) (0.245ei2π0.080, 0.449ei2π0.315, 0.831ei2π0.574)

123



Complex & Intelligent Systems (2021) 7:2711–2734 2731

Table 18 Score values for
CTSDFWAA values

η = 1 η = 2 η = 3 η = 4 η = 5 η = 6 η = 7 η = 8 η = 9 η = 10

P1 0.505 0.515 0.510 0.523 0.524 0.525 0.526 0.527 0.527 0.528

P2 0.460 0.475 0.483 0.488 0.490 0.492 0.493 0.494 0.495 0.496

P3 0.528 0.554 0.567 0.574 0.578 0.581 0.583 0.585 0.586 0.587

P4 0.559 0.576 0.583 0.587 0.589 0.591 0.592 0.593 0.594 0.594

P5 0.511 0.520 0.524 0.526 0.527 0.528 0.529 0.530 0.530 0.531

Table 19 Score values for
CTSDFWGA values

η = 1 η = 2 η = 3 η = 4 η = 5 η = 6 η = 7 η = 8 η = 9 η = 10

P1 0.477 0.473 0.471 0.470 0.469 0.469 0.469 0.468 0.468 0.468

P2 0.449 0.436 0.429 0.425 0.422 0.420 0.419 0.418 0.418 0.417

P3 0.489 0.482 0.478 0.475 0.473 0.472 0.471 0.470 0.470 0.469

P4 0.518 0.490 0.474 0.464 0.459 0.455 0.452 0.450 0.448 0.447

P5 0.451 0.429 0.420 0.414 0.411 0.409 0.408 0.407 0.406 0.405

Step 3: Using Eq. 1, score values of the aggregated values
are obtained as follows:

SVs according to
CTSDFWAA op.

SVs according to
CTSDFWGA op.

p1 0.505 0.447
p2 0.460 0.449
p3 0.528 0.489
p4 0.559 0.518
p5 0.511 0.451

Step 4: According to Table 4.1, p4 is suffer fromCOVID-19.

Sensitivity analyses and discussion

In this section, we compute the score values of the patients
according toCTSDFWAAandCTSDFWGAvalues for “η =
1, 2, . . . , 10”.

According to Tables 18 and 19, we see that for η =
1, 2, . . . , 10, results obtained using CTSDFWAA operator
match by medical results. By results, P4 was infected by
COVID-19. For η = 1, 2 results from both operators are con-
sistent. For η = 3, 4, . . . , 10 according to results obtained
using CTSDFWGA operator P3 was infected by COVID-19.
Also, this matches the medical results made by a medical
doctor. In this study, we consider only four symptoms. How-
ever, the epidemic of the COVID-19 continue all over the
worlds and medical researchers encounter some new symp-
toms of COVID-19. Here we give a simple example to show
the trueness of the proposed method, this is a restriction of
our study. We think that this study may be a reference point

for researchers who want to study clustering and medical
diagnosis with large data.

Conclusion

In this paper, weakness of score and accuracy function
defined by Ali et al. [57] was pointed out and new score and
accuracy functions were defined for CTSFNs. Set theoretical
operations was introduced and some aggregation operators
based on Dombi t-norms and t-conorms were defined under
CTSF environment with their examples. Also, some proper-
ties of the proposed aggregation operators were investigated.
Furthermore, an MCDM method was developed based on
proposed aggregation operators and score function. More-
over, an application of the developed method, including
determining the COVID-19, was presented by transforming
the real data to CTSF data.We see that obtained resultsmatch
real results. We also pointed out some restrictions and their
reasons. In future, our targets are to study other aggrega-
tion operators such as Hamacher and Bonferroni, similarity
measures, distance measures and decision-making methods
based on TOPSIS, VIKOR, AHP, etc. By transferring the
algorithm of the proposed method to the computer program,
our analysis for a limited number of patients can be made
under big data and by considering more parameters. We
hope that this study will provide a useful perspective for
researchers working on decision-making.
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