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Abstract
With large deployment of wireless sensor networks, anomaly detection for sensor data is becoming increasingly important
in various fields. As a vital data form of sensor data, time series has three main types of anomaly: point anomaly, pattern
anomaly, and sequence anomaly. In production environments, the analysis of pattern anomaly is the most rewarding one.
However, the traditional processing model cloud computing is crippled in front of large amount of widely distributed data.
This paper presents an edge-cloud collaboration architecture for pattern anomaly detection of time series. A task migration
algorithm is developed to alleviate the problem of backlogged detection tasks at edge node. Besides, the detection tasks
related to long-term correlation and short-term correlation in time series are allocated to cloud and edge node, respectively. A
multi-dimensional feature representation scheme is devised to conduct efficient dimension reduction. Two key components
of the feature representation trend identification and feature point extraction are elaborated. Based on the result of feature
representation, pattern anomaly detection is performed with an improved kernel density estimation method. Finally, extensive
experiments are conducted with synthetic data sets and real-world data sets.

Keywords Anomaly detection · Time series · Edge computing · Wireless sensor networks · Feature representation

Introduction

With the innovation and fusion of information technologies
such as IoT (Internet of things), cloud computing, and wire-
less sensor networks, the age of IoE (internet of everything) is
around the corner. In this context, there is a remarkable phe-
nomenon that considerable amount of sensors are deployed
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in various fields, such as environmentalmonitoring [1], smart
manufacturing [2], healthcare [3], and military [4]. Sensors
facilitate the human perception of the external world. It is
able to conduct effective monitoring in a harsh environment
and provide useful information. For a flexible and reconfig-
urable deploymentwhich is able to collect informationwithin
a region of interest, sensors densely located in an area are
organized and managed via wireless links, namely wireless
sensor networks [5].

A sensor, the fundamental component of wireless sen-
sor networks, is often deployed in a harsh and complicated
environment. The commonnegative factors includehigh tem-
perature, high humidity, chemical corrosion, electromagnetic
interference, and radio frequency interference, etc. Besides,
the constrained physical size of a sensor leads to the defi-
ciencies of computational ability, storage space, and power
supply, etc. The above external and internal factors compro-
mise the accuracy and reliability of information given by a
sensor. In other words, the actual data collecting and trans-
mission of wireless sensor networks contain anomaly [6].

The temporal correlation of data in wireless sensor net-
works indicates the characteristics of environmental param-
eter variation. Time series is a vital formof sensor data,which
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is defined as a series of observations with strict sequential
order [7]. Unlike traditional types of sensor data, time series
in wireless sensor networks possesses temporal continuity,
massiveness, and high-dimensionality.

In time series, anomaly indicates the occurrence of abnor-
mal incidents. The abnormal data are defined as the obser-
vations which are distinct from majorities and distant from
others [8]. Considerable amount of research expects to iden-
tify frequent periodical patterns, while neglecting infrequent
anomaly. In fact, abnormal data indicate rare events. As rare
events are special, they probably contain more value than
normal data. Low-quality time series with anomaly requires
intensive identification and cleaning for abnormal data. This
process reduces productivity and increases the cost of data
analysis. Currently, anomaly detection for time series is
widely used in IoT [9,10], health monitoring [11,12], finan-
cial analysis [13,14], and industrial manufacturing [15,16],
etc. The efficient and accurate anomaly detection for time
series in wireless sensor networks is essential to subsequent
information extraction and data mining.

In [17], the authors focused on the prediction of network
failures with machine learning-based anomaly detection
techniques. To address the problem of data transferring and
computing delay for a large network, edge-cloud computing
is introduced to optimize the transferring and comput-
ing duration. This model has two drawbacks: (1) machine
learning-based techniques require model training and train-
ing data, and (2) a detailed procedure for data transferring
is missing. In [18], the authors presented a test methodol-
ogy for the comparison of edge computing architecture and
cloud computing architecture for anomaly detection system.
The experiments are conducted based on the implementa-
tions of deep learning algorithms. The major drawback of
deep learning algorithms is that they usually require high
computational power. The proposed methodology mainly
concentrates on comparisons among deep learning algo-
rithms. The applicability is not wide. In [19], the authors
described an autonomous anomaly analysis framework for
clustered cloud or edge resources. It aims to find out the cause
of a user-aware anomaly in the underlying infrastructure by
Hidden Markova Models. Experiments are just conducted in
clustered cloud computing resources. Edge resources are not
covered. In [20], the authors proposed an intelligence sys-
tem enabled by edge computing to detect network anomaly.
A data-drivenmethod containing four steps is devised to train
a learning model. The learning model is used to identify a
network anomaly. This proposal just employs the so-called
edge intelligence and the discussion about cloud comput-
ing is not involved. In [21], the authors depicted a platform
concept which combines traditional cloud computing and
industrial control empowered by edge computing. Existing
self-contained field devices in several dedicated networks are
transformed to a unified cloud-assisted control scheme with

help of edge devices. For now, the proposed concept does not
contain task migration between edge and cloud or anomaly
detection.

For pattern anomaly detection in time series, our model
proposed in this paper aims to (1) conduct dimension reduc-
tion for the purpose of reducing the amount of computation.
This motivation is realized by our pattern representation
method which contains trend identification and feature point
extraction; (2) perform the allocation of detection tasks to
the cloud and the edge. Pattern anomaly of both long-term
correlation and short-term correlation are handled for sub-
sequent execution of efficient and accurate detection. This
motivation is realized by our task migration algorithm; (3)
carry out pattern anomaly detection based on kernel density
estimation. This motivation is realized by mapping a time
series to a five-dimensional feature space. Thus, the tradi-
tional anomaly detection based on kernel density estimation
which is merely able to handle point anomaly is transformed
to detect pattern anomaly.

The remainder of the paper is organized as follows: the
next section introduces the classification of anomaly in time
series. A comparison is made between cloud-based anomaly
detection and edge-based anomaly detection. Both advan-
tages and disadvantages of the two types are analyzed. The
following section focuses on the existing models for pat-
tern anomaly detection in time series. The most popular
four kinds of feature representation methods are extensively
reviewed. The next section describes our edge-cloud collabo-
ration anomaly detection architecture. Five key components
task migration algorithm, sliding window, trend identifica-
tion, feature representation, and kernel density estimation
are elaborated. In the following section, the proposed model
is evaluated with synthetic data sets and real-world data
sets. The next section presents conclusions and directions
for future research.

Three kinds of anomaly in time series

Anomaly in time series falls into the following three cate-
gories [22].

– Point anomaly [23]: point anomaly refers to a pointwhich
is different fromother points. Point anomaly is also called
outlier.

– Pattern anomaly [24]: pattern anomaly refers to a sig-
nificant difference between a segment pattern and other
segment patterns.

– Sequence anomaly [25]: sequence anomaly refers to the
non-compliance of a subsequence to other subsequences.

Both point anomaly and pattern anomaly are abnor-
mal behaviors appeared in an individual time series, while
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sequence anomaly is abnormal behavior appeared between
sequences. Existing models for anomaly detection of time
series are based on statistics [26,27], distance [28,29],
machine learning [30,31], and artificial intelligence [32,33].

For many practical application scenarios, the demand of
data analysis focuses on the variation of time series dur-
ing a period of time, rather than the variation of individual
data point. In other words, the benefit of analyzing or data
mining for individual point is quite little. While the differ-
ences among segments or subsequences are more valuable.
For instance, the performance of pattern anomaly detection
for hydrologic time series in environmental water quality
monitoring [34] is critical to a timely discovery of abnormal
water-level variation. This might be very useful for disaster
prevention. In [35], the authors pointed out that patterns of
continuous time series might reveal contextual and opera-
tional conditions of a device. Thus, focusing on segments of
time series and identifying a subsequence which is distinct
from other subsequences are more rewarding and urgent.

The above anomaly detection methods store and analyze
data either locally or remotely. The performance of a local
detection approach is limited by constrained resources, such
as computational ability and storage space. As the resources
of a cloud computing platform are virtually unlimited, users
may be inclined to upload data and utilize the super com-
putational power of cloud computing centers to conduct
complicated anomaly detection tasks. However, as increas-
ing volume of sensor data demands more bandwidth, data
transmission exacerbates the communication bottleneck of
cloud computing. Consequently, packet loss and transmis-
sion delay get worse. Then, the real-time requirements of
anomaly detection cannot be fulfilled.

To make up for cloud computing, researchers turn to
introduce edge computing. The operating principle of edge
computing is designed to reduce bandwidth demands and link
cloud computing power to massive sensor data [36]. In [37],
the authors proposed a distributed sensor data anomaly detec-
tion model based on edge computing. The continuity of time
series and the correlation among multi-source sequences are
used to conduct anomaly detection. In [38], the authors pro-
posed a data collecting and cleaning method, where edge
nodes perform an angle-based outlier detection to obtain
training data. The data cleaning model is constructed based
on support vectormachine. In general, edge nodes are subject
to limited storage space in terms of bothRAManddisk. Thus,
it is unable to store large amount of historical data. However,
in most application scenarios, the interplay of observations
and historical values of a time series often exhibits long-
term correlation. Due to the inaccuracy of anomaly detection,
existing approaches based on edge computing fail in identi-
fying anomaly related to long-term correlation in time series.
As possessing sufficient storage space, cloud computing
shows better performance than edge computing in this regard.

Pattern anomaly detection in time series

Pattern anomaly detection based on raw time series

Time series is high-dimensional with complicated structure.
It always contains considerable noise and fluctuates fre-
quently. With the rapid growth of data volume in wireless
sensor networks, traditional method [39,40] which performs
anomaly detection directly on raw time series suffers from
high time complexity and high space complexity.

Thus, for a given time series, the key to enhance accuracy
and validity of anomaly detection is rooted in the following
ideas: how to achieve satisfactory dimension reduction, elim-
inate potential noise, and integrate redundant attributes for
the purpose of preventing high dimension disaster? Mean-
while, the dimension reduction result retains basic features
and main information of the raw time series [41].

Pattern anomaly detectionmethods based on
different feature representations

Feature representation for time series summarizes and
rephrases the whole raw time series. The aim is dimension
reduction and noise filtration. By analyzing the character-
istics of a time series, the raw time series eventually gets
transformed appropriately. A good feature representation
method is able to accurately show the basic shape and vari-
ation trend with as less data as possible. The most popular
four strategies of feature representation for time series are as
follows.

Domain transform

Discrete Fourier transform (DFT) [42]: In [43], a time series
is approximately presented with discrete Fourier transform
in time domain and frequency domain. In specific, the map-
ping from time domain space to frequency domain space
is based on spectral analysis. In [44], the authors extracted
key frequency features with fast Fourier transform and use
approximate entropy to denote the regularity of a time series.
The degree of regularity is used to identify anomaly. In [45],
an adaptive short-time Fourier transform (ASTFT)method is
proposed. Thismethod incorporates analysiswindow into the
traditional discrete Fourier transform. The analysis window
improves computational efficiency of the traditional discrete
fourier transform. However, discrete Fourier transform uti-
lizes sine function to achieve time–frequency transformation.
Thus, there is only frequency domain information. The draw-
backs ofDFT are: (1) as the transformation from time domain
to frequency domain is conducted by mapping a time series
to a group of sinusoidal functions, certain important local
features might be smoothed by discrete fourier transform;
(2) an accurate Fourier coefficient is essential to the perfor-
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mance of anomaly detection. However, the generation of an
accurate Fourier coefficient requires extensive tests. Thus,
excessive computation cost results in a low user acceptance;
(3) discrete Fourier transform exhibits good performance in
a steady time series, while an unsteady time series cannot be
handled gracefully.

Discretewavelet transform (DWT): [46,47]Discrete Fourier
transform only contains frequency domain information.
While discrete wavelet transform is able to simultaneously
analyze time domain information and frequency domain
information. By a wavelet function ϕ(x) which satisfies∫
R ϕ(x)dx , a raw time series can be approximately presented

with a group of shifted and scaled discrete wavelet trans-
form coefficients. In [48], amaximal overlap discretewavelet
transform method is proposed. This method is able to adapt
time series with arbitrary length. Alike discrete Fourier trans-
form, discrete wavelet transform can make analysis on both
time domain and frequency domain at the same time. Thus,
it is faster than discrete Fourier transform. The drawback of
DWT is: an accurate transform coefficient should be deter-
mined and this is a quite expensive process.

Singular value decomposition (SVD) [49,50]

Singular value decomposition is a commonmatrix decompo-
sition method. Based on the eigenvalues and eigenvectors of
a time series, the most representative k-dimensional orthog-
onal vector is extracted. Thus, an n-dimensional raw time
series can be transformed to a k-dimensional orthogonal vec-
tor, where k < n. Singular value decomposition is a powerful
tool for dimension reduction. However, previously obtained
eigenvalues and eigenvectors are inactive for a new time
series. Each data update requires a recalculation of orthogo-
nal vector. This is not suitable for dynamics of time series.

Symbolic discretization [51–53]

Symbolic discretization uses a group of abstract symbols
with time domain characteristics to represent a time series,
namely a raw time series is substituted by a symbol sequence.
In [54], the first symbolic aggregate approximation (SAX)
method is proposed. This method uses piecewise aggre-
gate approximation to achieve dimension reduction for a
time series. Nevertheless, this method is unable to discrim-
inate segments with the same mean value and different
trends. In [55], an extended symbolic aggregate approxima-
tion (ESAX) method is proposed. This method incorporates
max and min points of each segment into the traditional
SAX. In [56], a symbolic aggregate approximation stan-
dard deviation (SAX-SD) method is proposed. This method
incorporates standard deviation into the traditional SAX. A
segment is described based on the standard deviation and

mean value. In [57], an iterative end point fitting method
searches the end points of each segment based on iteration
end point fitting (IEPF) algorithm. This method improves the
precision of pattern representation and achieves dimension
reduction. For an effective discretization, appropriate sym-
bols and similaritymeasurement should bedefined.However,
choosing a suitable discretization algorithm which is able to
match an actual time series is not easy. In addition, the rep-
resentation of a time series by symbolic-based approaches
often miss the trend of the raw time series.

Piecewise linear representation [58,59]

Piecewise linear representation divides a raw time series
into several segments. Each segment is approximately repre-
sented by a linear function. Several line segments constitute
the approximate representation of the raw time series. In
otherwords, the representations of line segments are based on
important points. Compared to the above three kinds ofmeth-
ods, piecewise linear representation possesses small index
dimension and low computational overhead. Moreover, this
type of representation is more friendly to human visual expe-
rience.

Dividing points and number of segments: As piecewise lin-
ear representation uses a group of adjacent line segments
to represent a time series, the degree/granularity of approx-
imation largely depends on the number of segments. The
selections of appropriate dividing points and the number of
segments are two vital factors of piecewise linear representa-
tion. Existing approaches focus on the following two ideas.

– Segment error e: the adjustment of segment error is based
on two indicators. First, the maximum error of an indi-
vidual segment should be greater than a predetermined
threshold. Second, the sum of the maximum errors of all
segments should not exceed a predetermined threshold.

– Number of segments k: an optimal value of k should be
determined by integrating demands such as compression
ratio, computation speed, and searching precision.

Object of division : Piecewise linear representation can be
classified as global representation [60,61] and local repre-
sentation [62,63].

Global representation is based on the whole time series.
By comparing the overall fitting error with a predetermined
threshold, the optimal set of segments are obtained. In gen-
eral, the threshold is determined based on the Euclidean
distance, orthogonal distance, and perpendicular distance
between an observation and a segment.

Local representation focuses on qualified local charac-
teristics of a time series. Based on the selection of dividing
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points, local representation is classified as the following three
types:

– Extremum points [64]: for a segment {xi−1, xi , xi+1} of
a time series X = {x1, x2, . . . , xn}, if (xi−1 ≤ xi |
xi+1 ≤ xi ) is true, namely the observations are mono-
tonically increasing or decreasing at extremum xi , the
raw time series can be approximately represented by the
set of these extremum points. However, the representa-
tion based on extremum points suffers from unfiltered
and trivial information. Noise cannot be effectively elim-
inated.

– Local extremum points [65]: as the above extremum
points approach is unable to eliminate noise, local
extremum points are introduced to handle details related
to noise. For each segment, certain negligible intermedi-
ate observations between themaximumand theminimum
are filtered.However, to achieve an effective approximate
representation of a raw time series, the number, range,
and characteristics of negligible observations should be
prudently selected.

– Important points [66]: important points are the most
influential ones which demonstrate the variation trend
of a time series. Traditionally, the selection of impor-
tant points is conducted by measuring the amplitude
variation between observation xi and its predecessor
xi−1. If the amplitude variation is greater than a pre-
determined threshold, observation xi is identified as an
important point. In specific, if (|(xi − xi−1)/xi−1| ≥
R1 | |(xi − xi−1)| ≥ R2) is true, where R1 and R2 are
application-related values, xi is identified as an impor-
tant point. However, identification rate for certain pivot
points is low.

In [67], the authors integrated sliding window with Piece-
wise Aggregate Approximation (PAA). In this model, a raw
time series is divided to several segments with equal length.
For segment Xi = xi1, xi2, . . . , xi(n−1), xin , we denote the
starting point and the ending point of Xi by x1 and xn , respec-
tively. The values of observation xi j , where 2 ≤ j ≤ n − 1,
are substituted by the mean value 1

n−2

∑n−1
j=2 xi j . In [68],

the authors proposed a temporal correlation diagram model
based on piecewise aggregate approximation. This model
is designed for multi-dimensional time series. Clusters of
time series are obtained based on the degree of correlation.
Anomaly detection can be conducted in three ways: within a
cluster, among clusters, and within a single dimension. How-
ever, substitution with a mean value smooths oscillations of
the raw time series, leading to missing of important points.
The missing of extremum information results in false nega-
tive in anomaly detection.

Based on the idea of piecewise aggregate approximation,
the authors proposed adaptive piecewise constant approxi-
mation (APCA) in [69]. A raw time series is divided into
several segments with unequal lengths based on important
points. The observations in each segment are substituted by a
mean value. The adaptive piecewise constant approximation
is more flexible than the piecewise aggregate approxima-
tion. However, there is no commonly accepted method for
the selection of important points. For different methods, the
obtained important points of the same time series might be
quite different.

In [22], the authors proposed piecewise aggregate pattern
representation (PAPR). A segment of a raw time series is
divided into several areas in amplitude domain. Then, the
segment is modeled by a matrix based on statistical informa-
tion contained in the segment. However, various movement
shapes of a time series cannot be accurately presented.

Edge-cloud collaboration anomaly detection
architecture

Edge-cloud collaboration architecture

When massive data are transmitted to cloud computing cen-
ters for anomaly detection, high bandwidth demands and
large network delay are inevitable. In general, as the physi-
cal resource of an edge device is constrained, it is unsuitable
for the storage of historical data. However, edge comput-
ing is capable of detecting anomaly related to short-term
correlation in time series. Anomaly in this type of time
series is usually caused by noise. As described in the sec-
tion “Introduction”, noise is mainly introduced by external
factors. However, when potential anomaly is caused by inter-
nal factors, the analysis of historical data is mandatory. Thus,
large storage space and powerful computational ability are
required.Anomaly detectionwith edge computing is likely to
let the variation related to historical data slip away. Hence, it
is unable to detect anomaly related to long-term correlation in
time series. As a cloud computing center possesses massive
historical data and excellent computing power, it is capable
of identifying anomaly related to long-term correlation in
time series. In summary, the cloud works on the whole his-
torical data or large part of it. While the edge devices works
only on the most recent of data. The amount of data han-
dled by the edge devices in each process is small. This aims
to accord real-time response which is not easy for the cloud.
For our proposal and experiments in this paper, the number of
data points processed by the edge devices each time is about
103. While the number of data points processed by the cloud
each time is at least 1.5× 107. For anomaly of time series in
wireless sensor networks, a large number of them are related
to short-term correlation. Excessive detection tasks waiting
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Fig. 1 Edge-cloud collaboration anomaly detection model

at resource-constrained edge devices bring about congestion
and degrade the overall performance of the system. It is nec-
essary that certain computational tasks of edge devices are
transferred to a cloud computing center. Thus, a rational task
migration mechanism is needed.

Our edge-cloud collaboration architecture is depicted in
Fig. 1. There are totally four layers: data source, data cen-
ter, edge node, and cloud. The four upper case letters A,
E, M, and R stand for allocation, execution, migration, and
registration, respectively. The data source layer contains var-
ious devices (e.g., equipment in a smart factory). Existing
data types of data source are registered to data center layer.
The data center layer contains several data nodes and a data
manager. These data nodes are used to store data. The data
manager is responsible for allocating data. Namely, data with
long-term correlations are allocated to the cloud, while data
with short-term correlations are allocated to the edge. The
data equalizer in edge node layer conducts a further schedul-
ing procedure to dispatch short-term correlation computation
over the cloud. Certain data are migrated to the cloud. Data
executors in the edge node layer and the cloud layer perform
specific anomaly detection tasks.

Taskmigration

For time series X = {x1, x2, . . . , xn} and the corresponding
autocorrelation function γτ , where τ is the lag order of X , if

lim
n→∞

n∑

τ=−n

|γτ | → ∞ (1)

holds, X is considered to be a time series with long-term
correlation [70]. Data manager in Fig. 1 is responsible for the
allocation of anomaly detection tasks. In specific, an anomaly
detection task related to long-term correlation in time series
is assigned to cloud computing center, while an anomaly
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Fig. 2 Variation of execution timewith the proportion of detection tasks
on edge node

detection task related to short-term correlation in time series
is carried out at edge nodes.

Compared to cloud computing, the resources of edge com-
puting are quite limited. Thus, it is essential to investigate the
relation between the amount of detection tasks for time series
with short-term correlation and the execution time of detec-
tion tasks. We conduct multiple experiments based on our
previousmodel proposed in [71]. In specific, pattern anomaly
detection is performed on 15 edge nodes with respect to ECG
data set in UCR [72]. The proportion of detection tasks allo-
cated to edge nodes is in the range of [20%, 100%]. The
experimental result is shown in Fig. 2.

With the increase of the detection tasks allocated to
edge layer, the average execution time of detection tasks
is monotonously increasing. When considerable amount of
detection tasks are allocated to edge layer, some of them have
to wait. During a given period, the total number of anomaly
detection tasks could be considered as fixed. As more tasks
introducemorewaiting, the overall anomalydetectionperfor-
mance of edge layer is inversely proportional to the number
of task allocated to edge nodes. Thus, a task scheduler is
needed. When there are excessive detection tasks at edge
layer, certain tasks are migrated to remote cloud comput-
ing center. Specifically, the tasks to be migrated are selected
based on estimated queuing time.

Suppose there are n anomaly detection tasks for time
series with short-term correlation at a specific edge node.
These tasks are denoted by set {φ1, φ2, . . . , φn}. An individ-
ual anomaly detection task is defined as

φi = (si , ri , tmaxi, λi ), (2)

where si is the scale of an input time series, ri is the required
resources for detection. In our experiments, si is the length
of input time series, and ri is a normalized value represents
the capacity of CPU and RAM. tmaxi is the maximum accept-
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able delay, and λi denotes the location of anomaly detection.
When φi is processed at edge node, λi = 0. While λi = 1
denotes φi is handled by cloud. Thus, the processing cost for
φi is

Ti =
{ si

rei
+ τ ei , λi = 0

si
rci

+ τ ci , λi = 1
, (3)

where rei is the computing resource edge node could provide,
τ ei is the estimated queuing time for φi to get detected, rci is
the estimated computing resource consumed for migrating
φi from edge layer to cloud, and τ ci is transmission delay
for the migration. In (3), both si

rei
and si

rci
are values treated

as a measure of execution time of the processing procedure.
Thus, the objective function for all detection tasks is

min

(
N∑

i=1

(

λi ? (
si
rci

+ τ ci ) : (
si
rei

+ τ ei )

))

, (4)

where “(conditional expression) ? (expression1) : (expres-
sion2)” is ternary operator which is widely used in pro-
gramming languages. When the result of the conditional
expression is true, invoke expression1.When the result of the
conditional expression is false, invoke expression2. The cal-
culation of the objective function in (4) omits the processing
cost of a task assigned to edge node. when compared to being
processed by cloud, queuing time and resource demands of
a task assigned to edge node are trivial.

For an application scenario containing m edge nodes and
n cloud computing centers, the sets of edge nodes and cloud
computing centers are denoted by N = {n1, n2, . . . , nm} and
C = {c1, c2, . . . , cn}, respectively. The potential anomaly
detection tasks of time series with short-term correlation for
edge node ni are set Ei = {φi1, φi2, . . . , φik, }. The anomaly
detection tasks for m edge nodes are denoted by set E =
{E1, E2, . . . , Em}. The detailed task migration algorithm is
shown in Algorithm 1.

By default, all anomaly detection tasks in set E are allo-
cated to edge nodes. Thus, set S, which denotes the detection
tasks should be migrated to cloud, is initially an empty set.
For each edge node, detection tasks initially allocated to it are
examined by the following rules: (1) if the estimated queuing
time for a detection task is larger than the maximum accept-
able delay, the detection taskwill bemigrated to cloud; (2) for
a detection task whose estimated queuing time is acceptable,
the processing cost for the detection task is further consid-
ered. If processing at edge node costs more than that of cloud
and the estimated computing resource consumed for migrat-
ing the detection task is smaller than themaximumacceptable
delay, it is also migrated to cloud.

Algorithm 1 migration(E)

1: S ← ∅

2: for i = 1 to m do
3: if |Ei | �= ∅ then
4: for j = 1 to |Ei | do
5: if τ ei j > tmaxi j then

6: Ei = Ei \ {
φi j

}

7: S = S ∪ {
φi j

}

8: else
9: if Ti j

∣
∣
λi j=0

> Ti j
∣
∣
λi j=1

&& τ ci j < Tmaxi j then

10: Ei = Ei \ {
φi j

}

11: S = S ∪ {
φi j

}

12: end if
13: end if
14: end for
15: end if
16: end for
17: return S

Fig. 3 Ten trends of variation

Multi-dimensional feature representation

Sliding window

As the processing of massive high-dimensional time series
data is tricky, dimension reduction is necessary to an effi-
cient feature representation. For a raw time series X =
{x1, x2, . . . , xn}, local variation and trends at different loca-
tions might be radically diverse. We devise a sliding window
to extract feature points of the raw time series X . The win-
dow size is determined based on trend variation of a raw time
series. Thus, the sliding window is able to adapt the varia-
tion of data and retain the major characteristics of a raw time
series. In brief, the sliding window keeps enlarging until a
certain trend is enclosed. To facilitate the identification of a
certain trend, we formulate ten trends to accurately reflect
feature points (e.g., extreme points and inflection points)
of a certain trend. For simplicity and generality, these ten
trends are modeled with three key points. Namely, other triv-
ial points are not shown. Here, trivial points refer to points
which do not belong to a given trend. An arbitrary time series
can be decomposed into a series of trends illustrated in Fig. 3.
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Fig. 4 A trend in the Cartesian coordinate system

Table 1 Description of the ten trends

Trend Description

Figure 3(1) da = dm < db

Figure 3(2) da < dm < db && kam − kmb < 0

Figure 3(3) da < dm = db

Figure 3(4) da < dm < db && kam − kmb > 0

Figure 3(5) da = dm > db

Figure 3(6) da > dm > db && |kam | − |kmb| < 0

Figure 3(7) da > dm = db

Figure 3(8) da > dm > db && |kam | − |kmb| > 0

Figure 3(9) da > dm < db

Figure 3(10) da < dm > db

Moreover, as shown in Fig. 4, the Cartesian coordinates of
va , vb, and vm are denoted by (ta, da), (tb, db), and (tm, dm),
respectively.

The ten trends shown in Fig. 3 can be described as the ten
formulas in Table 1, where kxy (x, y ∈ a,m, b) denotes the
slope of line segment vxvy and so forth.

With the enlarging of the sliding window, the number of
data points within the window is increasing. Once the overall
trend of the data points within the sliding window matches
one of the ten trends in Fig. 3, the window stops enlarging.
Thus, a specific window size is obtained. The above process
keeps looping until an input raw time series ends. The criteria
for determining a trend are listed in Table 2. Every time a
specific trend is determined, the three points of the trend are
added to the set of feature points P .

In Table 2, the parameter ε denotes the fluctuation of the
raw time series X . In specific, it is calculated as

ε =
√

1
n

∑n
i=1(xi − μ)2

g
, (5)

where g ∈ [gmin, gmax]. For the raw time series X , there
might exist j pairs of extreme values E = {emin1, emax1,
emin2, emax2, . . . , emin j , emax j

}
. gmin and gmax are deno-

ted as

Table 2 Determination of the ten trends

Trend Condition

Figure 3(1) |vm − vb| > ε || tm − ta + 1 > l

Figure 3(2) vm − va < ε && |vm − vb| > ε

Figure 3(3) vm − va > ε || tb − tm + 1 > l

Figure 3(4) vm − va > ε && |vm − vb| < ε

Figure 3(5) vm − vb > ε || tm − ta + 1 > l

Figure 3(6) |vm − va | < ε && vm − vb > ε

Figure 3(7) |vm − va | > ε || tb − tm + 1 > l

Figure 3(8) |vm − va | > ε && vm − vb < ε

Figure 3(9) |vm − va | > ε && |vm − vb| < ε

Figure 3(10) vm − va > ε && vm − vb < ε

gmin = min
i=1,2,..., j

{emaxi − emini } , (6)

gmax = max
i=1,2,..., j

{emaxi − emini } , (7)

For a given input raw time series X , the numerator in (5)
is a constant. Thus, the value of ε is inversely proportional
to the denominator g. By Table 2, when ε is small, a poten-
tial trend can be identified more accurate than a large ε. In
addition, there are more trends identified for the same raw
time series X . In general, more trends lead to more feature
points. Though more feature points require more amount of
computation, the fitting performance is improved. For sim-
plicity, we prefer g = gmax for our experiments in the section
“Experiments and analysis”.

For the four trends in Fig. 3(1,3,5,7), there is an extra
parameter l listed in Table 2. Take the trend in Fig. 3(1) for
example, tm − a + 1 is the number of data points contained
in the line segment vavm . This value is also considered as the
width of vavm and it is important to the trend determination
and the fitting result. Thus, we introduce the above parameter
l as a threshold of the width of vavm . For the two trends in
Fig. 3(1) and (3), we have

l1 = ε

vb − va
, (8)

l3 = ε

vm − va
. (9)

The value of l largely depends on the value of ε. Thus, the
fitting performance is also largely depending on the value
of ε. The smaller ε is, the smaller the sliding window is.
Meanwhile, the better the fitting performance is. In addition,
the calculation of l for the other two trends in Fig. 3(5) and
(7) is similar to (8) and (9).

For fitting result X , it might contain n trends. To facilitate
the subsequent pattern representation and reduce the amount
of computation, it is further divided into 
√n� segments:
X1, X2, . . . , Xi , . . . , X
√n�. The number of segments is in
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accordance with the number of trends. For each segment Xi ,
the following five features of Xi are considered: mean value,
kurtosis, oscillation, variation coefficient, and trend coeffi-
cient.

Mean value

The mean value of w observations in Xi is

Mi = 1

w

iw∑

k

xk, (10)

where k = (i − 1)w + 1.

Kurtosis

The kurtosis of Xi is a measurement of abruptness or flatness
of peak value compared to normal distribution. In general,
time series with a large kurtosis tends to contain anomaly,
while a small kurtosis indicates that there might be no
anomaly. The kurtosis of Xi can be calculated as

Ki = 1

w

w∑

k=1

δ4k − 3, (11)

where δk denotes the standardized values corresponding to
the standard deviation computed with w as the denominator,
and themagic number 3 is the kurtosis of normal distribution.

Oscillation

Oscillation refers to the periodic fluctuation of time series. It
is an indicator of local variation. In [73], the authors inves-
tigated the identification of electroencephalography (EEG)
oscillations. In [74], the authors proposed an improved
discrete cosine transform (DCT) as a means of feature
extraction. Discrete cosine transform is a type of orthogo-
nal transformation. The basis vector of DCT transformation
matrix works well for the feature description of human voice
signal and image signal. The one-dimensional discrete cosine
transform can be defined as

F(0) = 1√
N

N−1∑

i=0

xi , (12)

F(u) =
√

2

N

N−1∑

i=0

xicos
(2i + 1)uπ

2N
, (13)

where u is the generalized frequency, u = 1, 2, . . . , N − 1.
F(u) is cosine transform coefficient.

Thus, for the oscillation detection in univariate time series,
the degree of oscillation can be formulated as

Oi =
√

1

N
F(0) +

√
2

N

N−1∑

u=1

F(u)cos
(2i + 1)uπ

2N
. (14)

Variation coefficient

Based on (11), when an abrupt peak value appears in a seg-
ment of time series, the probability of anomaly is increasing.
In this case, variation coefficient is used to measure degree of
local abruptness with respect to the whole time series [75].
It can be calculated as

Vi = δi

μ
, (15)

where σi is the standard deviation of segment Xi , μ is the
mean value of the whole time series X .

Trend coefficient

Besides the local variation of time series, the trend variation
of a segment is also of great importance. Here, we employ
the trend variation of i th segment given in [76]

Ti = std(smooth(X)), (16)

where smooth(X) returns the smoothed result of the orig-
inal time series X , and std(·) returns a standard deviation.
For a time series with random trend, a small value of Ti rep-
resents that there is no abrupt peak. While, a large value of
Ti indicates the existence of abrupt peak.

Based on the above five features, segment Xi can be
approximately represented by

Xi = [Mi , Ki , Oi , Vi , Ti ] . (17)

This representation is aimed to retain the major infor-
mation of a raw time series. The abstract description of
basic shape and variation trend of a raw time series not only
facilitate the anomaly detection, but also contribute to the
improvement of accuracy and effectiveness of subsequent
information extraction and data mining.

Pattern anomaly detection based on kernel density
estimation

Traditional anomaly detection based on kernel density esti-
mation is targeted at point anomaly. By mapping a raw
time series to a five-dimensional feature space, traditional
anomaly detection based on kernel density estimation is
transformed to detect pattern anomaly in time series. In short,
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when the local density of a segment is different from its neigh-
borhood, the segment is considered to be a pattern anomaly.

For a raw time series X = {X1, X2, . . . , Xn}, the Gaus-
sian kernel density distribution of i th segment Xi is

f (Xi ) = 1

n

i=1∑

n

1

ω
G(Xi , X j ), (18)

where G(Xi , X j ) is a Gaussian kernel function with width
ω

G(Xi , X j ) = 1√
2π

exp

[

−
∥
∥Xi − X j

∥
∥2

2ω2

]

, (19)

where
∥
∥Xi − X j

∥
∥ denotes the Euclidean distance between

Xi and X j .
To estimate the density distribution near a segment, the k

nearest neighbors of segment Xi are introduced as set

D(Xi ) = {N1(Xi ), N2(Xi ), . . . , Nk(Xi )} , (20)

where Nr (Xi ) is the Gaussian kernel distance between Xi

and its r th nearest neighbor.
Based on (16) and (18), the anomaly score of segment Xi

can be defined as

AS(Xi ) =
∑

X j∈D(Xi )
f (X j )

|D(Xi )| f (Xi )
, (21)

where |D(Xi )| is the actual number of nearest neighbors.
AS(Xi ) > 1 indicates Xi is distant from its densely dis-
tributed neighbors, and thus, Xi is considered to be a pattern
anomaly. On the contrary, AS(Xi ) ≤ 1 stands for Xi is close
to its densely distributed neighbors, hence Xi is considered
to be normal.

For an identified pattern anomaly Xi , the corresponding
data are considered to be abnormal. In general, this segment
of data is not suitable for further analyzing or data mining.
It is possible to try to rectify this segment of data by cer-
tain techniques. However, in this paper, we focuses on the
anomaly detection model and task allocation method. The
rectification of abnormal data involves other techniques and
is not covered by our proposal.

Experiments and analysis

The performance of our model is evaluated based on syn-
thetic data sets and real-world data sets. Moreover, all the
data involved in our experiments are stationary data. Namely,
for integer set Z = {0,±1,±2, . . .}, time series X(t), t ∈ Z

possesses the following three properties.

– E |X(t)|2 < ∞, for all t ∈ Z,
– EX(t) = m, for all t ∈ Z,
– and γx (r , x) = γx (r + t, s + t), for all t ∈ Z,

where γx (·, ·) is the autocovariance function of X(t)

γx (r , s) = Cov(X(r), X(s))

= E [(X(r) − EX(r))(X(s) − EX(s))] , r , s ∈ Z.

(22)

Data sets

Synthetic data set

Based on the experiments conducted in [22], the synthetic
data set is generated by the following stochastic process:

X(t) = sin

(
40π

K
t

)

+ n(t), (23)

Y (t) = X(t) + e1(t) + e2(t), (24)

where t = 1, 2, . . . , 1200, K = 1200. n(t) is a Gaussian
noise with the mean μ = 0 and the standard deviation σ =
0.1.

Two abnormal patterns superposed on X(t) are

e1(t) =
{
n1(t), t ∈ [600, 630]
0, otherwise

, (25)

e2(t) =
{
0.4 · sin ( 40π

K t
)
, t ∈ [800, 830]

0, otherwise
, (26)

where n1(t) ∼ N (0, 0.55). To sum up, time series Y (t)
can be considered as a sinusoidal wave with anomaly in
[600, 630] and [800, 850].

Real-world data sets

To evaluate our model in production environments, we
employ seven real-world data sets: ECG data with the length
of 3571 in UCR [77], air quality data with the length
of 2190 [78], hydrological data of Yellow River with the
length of 4412 [79], individual household electric power
consumption data with the length of 9638 [80], traffic data
with the length of 7250 in the national road database of
Norway [81], temperature data with the length of 16,000,
and video surveillance data contain 21,600 samples from
ZTE intelligent terminal manufacturing workshop in Xi’an,
China. The above seven data sets are denoted as R1, R2, R3,
R4, R5, R6, and R7, respectively.
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Table 3 Average execution time
for three models

Data set Cloud-based (s) Edge-based (s) Edge-cloud collaboration (s)

Y 0.32 0.29 0.27

R1 0.35 0.34 0.31

R2 0.34 0.32 0.29

R3 0.39 0.36 0.30

R4 0.48 0.52 0.39

R5 0.43 0.41 0.37

R6 0.53 0.48 0.42

R7 0.61 0.56 0.44

Experimental parameters and results

In our experiments, we employ 15 edge nodes and 1 cloud
node. The 15 edge nodes are implemented on MSP430 sin-
gle chip computer equipped with nRF905 wireless module.
The cloud node is a HP Z6 G4 workstation with 32 2.3 GHz
cores and 32 GB RAM. In addition, the cloud node runs a
Debian Stretch 9.4.0 [82]. While the 15 MSP430 single chip
computers are installed with an open source operating sys-
tem called FreeRTOS [83]. The MSP430 platform is able to
compute in 25MHz and provide 100KB RAM. For simplic-
ity, rei in (3) is computed based on the available RAM of an
edge node. The specific values of rei are confined in [10, 100],
where 100 denotes that all 100 KB RAM is available. For rci
in (3), it is also computed based on the available RAM of
the cloud node. In our experiments, we consider it as a fixed
value 1.0 × 108.

Since the locations of anomaly detection are different,
the summary of the average execution time for cloud-
based, edge-based, and edge-cloud collaboration detection
models is shown in Table 3. As most data received by
cloud-based model are time series with long-term correla-
tion, the cloud-based model demands more bandwidth than
the other two models. Similarly, the transmission time of
cloud-based model is also more than the other two models.
This contributes to a large execution time. For edge-cloud
collaboration detection model, long-term/short-term related
anomaly, and detailed computational tasks are migrated
properly. Thus, the edge-cloud collaboration model is more
efficient than cloud-based model and edge-based model.

For anomaly detection task of short-term related time
series φi , the relation between computing resource of edge
node rei and average execution time is depicted in Fig. 5. The
data illustrated in Fig. 5 are based on the experimental results
with respect to data sets R1 ∼ R7. As cloud-based model
is irrelevant to the resources of edge node, the run time of
cloud-based model remains unchanged during the resource
variation of edge node. For edge-basedmodel and edge-cloud
collaborationmodel, execution time of a detection task shows
a decreasing trend with the increase of resources of edge
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Fig. 5 Variation of average execution time with available computing
resource of edge node

node. When the resources of edge node are insufficient, the
execution time of edge-based model is more than that of the
other two models. As certain tasks are migrated to remote
cloud computing center, the edge-cloud collaboration model
exhibits the best performance in terms of execution time.

To facilitate the presentation, we call our anomaly detec-
tion method as multiple dimension feature representation
anomaly detection (MDFR-AD). To analyze the relation
between anomaly detection performance and the variation
of k in kernel density estimation, performance metric area
under the curve (AUC) [84] is evaluated with real-world data
set R1. As shown in Fig. 6, three methods are depicted. With
the increase of k, the three AUC curves initially increase
dramatically. In the mid-late stage, the three AUC curves
gradually level out. The performance of MDFR-AD is supe-
rior to the other two types of methods (PAA-based [68,85]
and PLAA-based [67,86]). In particular, a significant perfor-
mance improvement of MDFR-AD appears around k = 5.
Thus, parameter k = 5 is used for subsequent experiments
in this section.

For time seriesY (t), the anomaly detection result obtained
by MDFR-AD is shown in Fig. 7. As shown in Fig. 7a,
the original time series Y (t) is divided to 12 segments with
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Fig. 7 Anomaly detection of Y (t)

equal length. Anomaly can be observed in [600, 630] and
[800, 830]. Accordingly, the anomaly scores of 6th and 8th
feature patterns in Fig. 7b are larger than 1, while the other
10 anomaly scores are smaller than 1. Namely, the positive
detection rate is 100% and the false alarm rate is 0%.

To further investigate the performance of MDFR-AD,
additional experiments are conducted with an extended syn-
thetic data set and seven real-world data sets. As described
in the section “Real-world data sets”, the numbers of data
points contained in the seven real-world data setsR1∼R7are
3571, 2190, 4412, 9638, 7250, 16,000, and 21,600, respec-
tively. The original Y (t) specified by (24) contains 1200 data
points. To make better use of the above real-world data sets,
we extended the length of the original Y (t) specified by (24)
to 2190, which is the length of data set R2. For the other six
real-world data sets, different segments of data points with
the length of 2190 are extracted to conduct multiple experi-
ments for average values. Ye(t) is directly used as a whole, as
well as data set R2. In specific, the extended Y (t) is denoted
as

Ye(t) = Y (t) + ea(t) + ed(t), (27)

where t = 1, 2, . . . , 2190. For t ∈ [1, 1200], the val-
ues of Ye(t) are the same as Y (t). For t ∈ [1201, 2190],
we introduce eight abnormal patterns and three distracters.
Specifically, the eight abnormal patterns are

ea(t)=
{ i+1

20 · sin ( 40π
K t

)
, t ∈ [1200+60(i−1), 1230+60(i−1)] ,

0, otherwise
,

(28)

where i = 1, 2, . . . , 8. The three distracters are

ed(t)=
{
n2(t), t ∈ [1200+60(i−1), 1230+60(i−1)]
0, otherwise

,

(29)

where n2(t) ∼ N (0, 0.1 + i−8
20 ) and i = 8, 9, 10.

By (28) and (29), it is obvious that the above eight abnor-
mal patterns and three distracters are not overlapped with
each other.

The experimental results are illustrated in terms of preci-
sion, recall rate, and F1-measure

P = TP

TP + FP
× 100%, (30)

R = TP

TP + FN
× 100%, (31)

F1 = 2 × PR

P + R
× 100%, (32)

where TP is the rate of correct identification of anomaly, FN
is the rate of missed identification of anomaly, and FP is the
rate of false alarm of anomaly.

As shown in Fig. 8a, the performance of PAA is worse
than PLAA and MDFR-AD. For PLAA and MDFR-AD, the
performance of PLAA is better than that of MDFR-AD for
data sets Y, R1, and R2. On the contrary, the performance of
MDFR-AD is better than that of PLAA for data sets R3, R4,
R5, R6, and R7. As shown in Fig. 8b, the performance of
MDFR-AD is superior to PAA and PLAA. The main reason
is that MDFR-AD is able to fit the raw time series more
accurately than PAA and PLAA. The experimental results of
both precision and recall rate indicate that MDFR-AD and
PLAA are superior to PAA. In addition, the recall rate of
MDFR-AD is far better than PLAA.

The performance of PAA, PLAA, andMDFR-AD, the F1-
Measure scores of the above three methods are depicted in
Fig. 9. As shown in Fig. 9, it is obvious that our proposal
is better than both PAA and PLAA with respect to the eight
data sets in our experiments.
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Fig. 8 Comparison of precision
and recall rate
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Fig. 9 Comparison of F1-measure score

Conclusion and future work

This paper proposed an edge-cloud collaboration architec-
ture for pattern anomaly detection of time series in wireless
sensor networks. A time series with long-term correlation is
allocated to the cloud for anomaly detection. On the con-
trary, a time series with short-term correlation is assigned
to edge node for anomaly detection. In addition, when
considerable anomaly detection tasks are queuing up at
resource-constrained edge nodes, certain tasks which have to
wait for a long time are migrated to the cloud. The proposed
multi-dimensional feature representation is able to perform
an efficient fitting for a raw time series with small amount
of computation. Our sliding window achieves accurate trend
identification and feature point extraction. The fitting result is
used to conduct pattern anomaly detection with an improved
kernel density estimation method. Simulation results show
that ourmodel possesses satisfactory detection efficiency and
quick responsiveness. However, the migration of anomaly
detection task reckons without unknown correlation among
time series in wireless sensor networks. Further development

of our model also deserves testing on more real-world data
sets.
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