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Abstract
In this paper, the complement of max product of two intuitionistic fuzzy graphs is defined. The degree of a vertex in the 
complement of max product of intuitionistic fuzzy graph is studied. Some results on complement of max product of two 
regular intuitionistic fuzzy graphs are stated and proved. Finally, we provide an application of intuitionistic fuzzy graphs in 
school determination using normalized Hamming distance.
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Introduction

Graph theory has been considered to play an important role 
when it comes to its application in dealing with real-life 
situations. The fuzzy graph theory has its own significance 
as application of fuzzy set theory has no limits. In 1975, 
Rosenfeld [9] introduced the concept of fuzzy graphs. Yeh 
and Bang [22] also introduced fuzzy graphs independently. 
Fuzzy graphs are useful to represent relationships which deal 
with uncertainty and it differs greatly from classical graphs. 
It has numerous applications to problems in computer sci-
ence, electrical engineering, system analysis, operations 
research, economics, networking routing, transportation, 
etc. After Rosenfeld [9], the fuzzy graph theory increases 
with its various types of branches, such as fuzzy tolerance 
graph [13], fuzzy threshold graph [12], bipolar fuzzy graphs 
[7, 8], balanced interval-valued fuzzy graphs [4, 6], fuzzy 
planar graphs [11], etc. Also, several works have been done 
on fuzzy graphs by Samanta and Pal [14].

Atanassov [1, 2] developed the concept of intuitionistic 
fuzzy set (IFS) as an extension of fuzzy set that [23] deals 

with uncertain situations in a better way as its structure is 
not limited to membership grades only. The concept of intui-
tionistic fuzzy sets is a better tool to use due to its diverse 
structure describing membership as well as non-membership 
grades of an element. The theory of intuitionistic fuzzy sets 
has been remarkably used in some areas so far. Shannon 
and Atanassov [15] introduced the concept of intuitionis-
tic fuzzy graphs in 1994. Parvathi and Karunambigai [5] 
gave a definition for intuitionistic fuzzy graph as a special 
case of intuitionistic fuzzy graphs defined by Shannon and 
Atanassov [16]. Sankar Sahoo and Madhumangal Pal [10] 
defined three types of products, namely direct product, semi-
strong product, and strong product. Yaqoob et al. [21] dis-
cussed the four basic operations, namely Cartesian product, 
composition, union, and join of complex intuitionistic fuzzy 
graphs. Yahya Mohamed and Mohamed Ali [19, 20] defined 
modular and max product on intuitionistic fuzzy graph. In 
this paper, the complement of max product of two intuition-
istic fuzzy graphs and the degree of a vertex in the comple-
ment of this product are studied under regularity conditions. 
The max product of intuitionistic fuzzy graphs is applied to 
solve the decision-making problem in school determination. 
The research paper is organized as follows: “Introduction” 
presents the literature review of fuzzy graphs and intuitionis-
tic fuzzy graphs. In “Preliminaries”, we have provided some 
basic concepts of intuitionistic fuzzy graphs. The definition 
of complement of max product on two intuitionistic fuzzy 
graphs and its degree are given in “Complement of max 
product of intuitionistic fuzzy graphs”. In “Applications of 
max product of intuitionistic fuzzy graphs in school deter-
mination”, we studied an application of intuitionistic fuzzy 
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graphs in school determination using normalized hamming 
distance. This distance function was used to measure the 
distance between each student and each school. The schools 
in which each of the students has been enrolled were deter-
mined using normalized hamming distance function based 
on examination that is performed for transition to high 
school education. The result is determined by calculating 
the smallest distance between each student and each school. 
In “Conclusion”, we conclude present studies and recom-
mendations for future studies.

Preliminaries

Throughout this paper, assume that G∗ = (V ,E) is a crisp 
graph and G is an intuitionistic fuzzy graph, where V  is a 
non-empty vertex set and E is an edge set.

Definition 2.1  [5] An intuitionistic fuzzy graph is of the form 
G =

((

�1, �2

)

,
(

�1,�2

))

 on G∗ = (V ,E) and

1.	 V =
{

x1, x2, ..., xn
}

 , such that �1 ∶ V → [0, 1] and 
�2 ∶ V → [0, 1] denote the degree of membership and 
non-membership of the element xi ∈ V  respectively, 
such that 0 ≤ �1

(

xi
)

+ �2

(

xi
)

≤ 1  for all xi ∈ V  
(i = 1, 2, 3, … , n).

2.	 �1 ∶ V × V → [0, 1] and �2 ∶ V × V → [0, 1] , where 
�1

(

xi, xj
)

 and �2

(

xi, xj
)

 denote the degree of membership 
and degree of non-membership values of the edge 

(

xi, xj
)

 , 
respectively, such that �1

(

xi, xj
)

≤ �1

(

xi
)

∧ �1

(

xj
)

 and 
�2

(

xi, xj
)

≤ �2

(

xi
)

∨ �2

(

xj
)

 ; 0 ≤ �
1

(

xixj
)

+ �
2

(

xixj
)

≤ 1 , 
for every edge 

(

xi, xj
)

.

For notational convenience, instead of representing an 
edge as (x, y) , we denote this simply by xy.

Definition 2.2  [5] An intuitionistic fuzzy graph 
G =

((

�1, �2

)

,
(

�1,�2

))

 is called strong intuitionistic  
fuzzy graph if  �1

(

xixj
)

= �1

(

xi
)

∧ �1

(

xj
)

 and �
2

(

xixj
)

= �
2

(

xi
)

∨ �
2

(

xj
)

, ∀ xixj ∈ E, i ≠ j.

Definition 2.3  [5] An intuitionistic fuzzy graph 
G =

((

�1, �2

)

,
(

�1,�2

))

 is called complete intuitionistic  
fuzzy graph if  �1

(

xixj
)

= �1

(

xi
)

∧ �1

(

xj
)

 and �
2

(

xixj
)

= �
2

(

xi
)

∨ �
2

(

xj
)

, ∀ xi, xj ∈ V  , i ≠ j.

Definition 2.4  [3] Let G =
((

�1, �2

)

,
(

�1,�2

))

 be an intui-
tionistic fuzzy graph, and then, the order of G is defined to 
be O(G) =

(

O
�1
(G),O

�2
(G)

)

 where O
�1
(G) =

∑

x∈V �1(x) and 
O

�2
(G) =

∑

x∈V �2(x).

Definition 2.5  [3] Let G =
((

�1, �2

)

,
(

�1,�2

))

 be an intui-
tionistic fuzzy graph, then the size of G is defined to be 

S(G) =
(

S
�1
(G), S

�2
(G)

)

 where S
�1
(G) =

∑

xy∈E �1(xy) and 
S
�2
(G) =

∑

xy∈E �2(xy).

Definition 2.6  [5] The complement of an intuitionistic fuzzy 
graph G = (V ,E) is an intuitionistic fuzzy graph 
Ḡ =

(

(

𝜎1, 𝜎2

)

,
(

𝜇1,𝜇2

)

)

 , where 
(

�1, �2

)

=
(

�1, �2

)

 and 
(

𝜇1,𝜇2

)

=
(

𝜇̄1, 𝜇̄2

)

 , where 𝜇̄
1
(xy) = 𝜎

1
(x) ∧ 𝜎

1
(y) − 𝜇

1
(xy) 

and 𝜇̄
2
(xy) = 𝜎

2
(x) ∨ 𝜎

2
(y) − 𝜇

2
(xy) , ∀xy ∈ E.

Definition 2.7   [5]  Let  G =
((

�1, �2

)

,
(

�1,�2

))

 be 
an intuitionistic fuzzy graph. The degree of a ver-
tex x in G is denoted by dG(x) =

(

dG
1
(x), dG

2
(x)

)

 and 
defined by dG

1
(x) =

∑

x≠y �
G
1
(xy) =

∑

(x,y)∈E �
G
1
(xy) and 

dG
2
(x) =

∑

x≠y �
G
2
(xy) =

∑

(x,y)∈E �
G
2
(xy) , where dG

1
(x) is 

the sum of membership grades of the edges incident to the 
vertex x and dG

2
(x) is the sum of non-membership grades of 

the edges incident to the vertex x.

Definition 2.8  [19] An intuitionistic fuzzy graph 
G =

((

�1, �2

)

,
(

�1,�2

))

 is called regular intuitionistic 
fuzzy graph if dG(x) =

(

dG
1
(x), dG

2
(x)

)

=
(

k1, k2
)

 for all 
x ∈ V  , where k1 and k2 are constants.

Definition 2.9  [20] Let G1 ∶
((

�
G1

1
, �

G1

2

)

,

(

�
G1

1
,�

G1

2

))

 and 

G2 ∶
((

�
G2

1
, �

G2

2

)

,

(

�
G2

1
,�

G2

2

))

 be two intuitionistic fuzzy 
graphs. The max product of two intuitionistic fuzzy graph 
G1 and G2 is denoted by G1 ×m G2 =

(

V1 ×m V2,E1 ×m E2

)

 , 
E1 ×m E2 = {

(

x1, y1
)(

x1, y2
)

∕ x1 = x2, y1y2 ∈ E2 or

y
1
= y

2
, x

1
x
2
∈ E

1
 }  by  �

G
1
×mG2

1

(

x
1
, y

1

)

= �
G

1

1

(

x
1

)

∨�
G

2

1

(

y
1

)

, �
G

1
×mG2

2

(

x
1
, y

1

)

= �
G

1

2

(

x
1

)

∧ �
G

2

2

(

y
1

)

 , for all 
(

u1, v1
)

∈ V1 × V2 and

Example 2.1  Let G∗
1
=
(

V1,E1

)

 and G∗
2
=
(

V2,E2

)

 be two 
crisp graphs, such that V

1
=

{

u
1
, u

2
, u

3

}

, V
2
=

{

v
1
, v

2

}

,

E
1
=

{

u
1
u
3
, u

2
u
3

}

, E
2
=

{

v
1
v
2

}

 . Consider two intuition-
istic fuzzy graphs G1 =

((

�
G1

1
, �

G1

2

)

,

(

�
G1

1
,�

G1

2

))

 and 

G2 =
((

�
G2

1
, �

G2

2

)

,

(

�
G2

1
,�

G2

2

))

 and G1 ×m G2 as follows 
(Tables 1, 2):

(1)

�
G1×mG2

1

((

x1, y1
)(

x2, y2
))

=

{

�
G1

1

(

x1
)

∨ �
G2

1

(

y1y2
)

if x1 = x2, y1y2 ∈ E2

�
G1

1

(

x1x2
)

∨ �
G2

1

(

y1
)

if y1 = y2, x1x2 ∈ E1

}

(2)

�
G1×mG2

2

((

x1, y1
)(

x2, y2
))

=

{

�
G1

2

(

x1
)

∧ �
G2

2

(

y1y2
)

if x1 = x2, y1y2 ∈ E

�
G1

2

(

x1x2
)

∧ �
G2

2

(

y1
)

if y1 = y2, x1x2 ∈ E1

}
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Theorem  2.1  [20] If G1 ∶
((

�
G1

1
, �

G1

2

)

,

(

�
G1

1
,�

G1

2

))

 and 

G2 ∶
((

�
G2

1
, �

G2

2

)

,

(

�
G2

1
,�

G2

2

))

 are two intuitionistic fuzzy 
graphs. Then, G1 ×m G2 is also an intuitionistic fuzzy graph.

Theorem  2.2  [20] If G1 ∶
((

�
G1

1
, �

G1

2

)

,

(

�
G1

1
,�

G1

2

))

 and 

G2 ∶
((

�
G2

1
, �

G2

2

)

,

(

�
G2

1
,�

G2

2

))

 are two strong intuitionistic 
fuzzy graphs. Then, G1 ×m G2 is also a strong intuitionistic 
fuzzy graph.

Theorem 2.3  [20] If G1 and G2 are two complete intuitionis-
tic fuzzy graphs, then G1 ×m G2 is not a complete intuition-
istic fuzzy graph.

Theorem 2.4  [20] If G1 and G2 are two connected intuition-
istic fuzzy graph, then G1 ×m G2 is also a connected intui-
tionistic fuzzy graph.

Complement of max product of intuitionistic 
fuzzy graphs

Definition 3.1  The complement of max product of two intui-
tionistic fuzzy graphs G1 =

((

�
G1

1
, �

G1

2

)

,

(

�
G1

1
,�

G1

2

))

 and 

G2 =
((

�
G2

1
, �

G2

2

)

,

(

�
G2

1
,�

G2

2

))

 is an intuitionistic fuzzy 
graphs G

1
×m G

2
=

((

�
G

1

1
×m �

G
2

1

)(

�
G

1

2
×m �

G
2

2

)

,

(

�
G

1

1
×m �

G
2

1

)(

�
G

1

2
×m �

G
2

2

))

 
on G∗ = (V ,E) and V1 ×m V2 = V1 ×m V2 and E

1
×m E

2
=

⎧

⎪

⎨

⎪

⎩

�

x1, y1
��

x2, y2
�

|

x1 = x2, y1y2 ∈ E2 (or)y1 = y2, x1x2 ∈ E1 (or)

x1x2 ∈ E1, y1y2 ∉ E2 (or) x1x2 ∉ E1, y1y2 ∈ E2 (or)

x1x2 ∈ E1, y1y2 ∈ E2 (or) x1x2 ∉ E1, y1y2 ∉ E2

⎫

⎪

⎬

⎪

⎭

(

�
G1

1
×m �

G2

1

)

(

x1, y1
)

=
(

�
G1

1
×m �

G2

1

)

(

x1, y1
)

= �
G1

1

(

x1
)

∨ �
G2

1

(

y1
) , 

(

�
G1

2
×m �

G2

2

)

(

x1, y1
)

=
(

�
G1

2
×m �

G2

2

)

(

x1, y1
)

= �
G1

2

(

x1
)

∧ �
G2

2

(

y1
) , 

where x1 ∈ V1 and y1 ∈ V2.

(3)

�

�
G1

1
×m �

G2

1

�

��

x1, y1
�

,
�

x2, y2
��

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�

�
G1

1
×m �

G2

1

�

�

x1, y1
�

∧
�

�
G1

1
×m �

G2

1

�

�

x2, y2
�

−
�

�
G1

1
×m �

G2

1

�

��

x1, y1
�

,
�

x2, y2
��

if x1 = x2, y1y2 ∈ E2
�

�
G1

1
×m �

G2

1

�

�

x1, y1
�

∧
�

�
G1

1
×m �

G2

1

�

�

x2, y2
�

−
�

�
G1

1
×m �

G2

1

�

��

x1, y1
�

,
�

x2, y2
��

�

�
G1

1
×m �

G2

1

�

�

x1, y1
�

∧
�

�
G1

1
×m �

G2

1

�

�

x2, y2
�

if y1 = y2, x1x2 ∈ E1

otherwise

(4)

�

�
G1

2
×m �

G2

2

�

��

x1, y1
�

,
�

x2, y2
��

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�

�
G1

2
×m �

G2

2

�

�

x1, y1
�

∨
�

�
G1

2
×m �

G2

2

�

�

x2, y2
�

−
�

�
G1

2
×m �

G2

2

�

��

x1, y1
�

,
�

x2, y2
��

if x1 = x2, y1y2 ∈ E2
�

�
G1

2
×m �

G2

2

�

�

x1, y1
�

∨
�

�
G1

2
×m �

G2

2

�

�

x2, y2
�

−
�

�
G1

2
×m �

G2

2

�

��

x1, y1
�

,
�

x2, y2
��

if y1 = y2, x1x2 ∈ E1
�

�
G1

1
×m �

G2

1

�

�

x1, y1
�

∨
�

�
G1

1
×m �

G2

1

�

�

x2, y2
�

otherwise

.

Table 1   Vertex set of G
1
×m G

2 V
1
×m V

2
u
1
v
1

u
2
v
1

u
3
v
1

u
1
v
2

u
2
v
2

u
3
v
2

�
G

1

1
×m �

G
2

1

0.6 0.5 0.6 0.6 0.5 0.6

�
G

1

2
×m �

G
2

2

0.3 0.5 0.3 0.2 0.2 0.2

Table 2   Edge set of G
1
×m G

2 E
1
×m E

2
u
1
v
1
, u

3
v
1

u
2
v
1
, u

3
v
1

u
3
v
1
, u

3
v
2

u
1
v
2
, u

3
v
2

u
2
v
2
, u

3
v
2

u
2
v
2
, u

2
v
1

u
1
v
1
, u

1
v
2

�
G

1

1
×m �

G
2

1

0.5 0.5 0.6 0.5 0.5 0.5 0.6

�
G

1

2
×m �

G
2

2

0.2 0.4 0.3 0.2 0.2 0.4 0.3
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Example 3.2  Consider the two intuitionistic fuzzy graphs as 
shown in Figs. 1 and 2 and their corresponding max product 
G1 ×m G2 shown in Fig. 3.

Then, the complement of max product of G1 and G2 is 
shown in Fig. 4.

Theorem 3.1  Let G1 and G2 be two regular intuitionistic 
fuzzy graphs. If underlying crisp graphs G∗

1
  and G∗

2
 are com-

plete graphs and �G1

1
, �

G1

2
, �

G2

1
, �

G2

2
 are constants which sat-

isfy �G1

1
≥ �

G2

1
, �G1

2
≤ �

G2

2
 ; �G2

1
≥ �

G1

1
 , �G2

2
≤ �

G1

2
 ; 𝜎G1

1
> 𝜇

G1

1
 , 

𝜎
G1

2
< 𝜇

G1

2
 and 𝜎G2

1
> 𝜇

G2

1
 , 𝜎G2

2
< 𝜇

G2

2
 . Then, complement of 

max product of two intuitionistic fuzzy graphs G1 and G2 is 
regular intuitionistic fuzzy graph.

Proof:  Let G1 and G2 be two regular intuitionistic fuzzy 
graphs. The underlying crisp graphs G∗

1
 and G∗

2
 are complete 

graphs of degrees d1 and d2 for every vertices of V1 and V2.
Given that �G1

1
, �

G1

2
, �

G2

1
 and �G2

2
 are constants, say 

�
G1

1
(x) = c1, �

G1

2
(x) = c2, ∀ x ∈ V1 �

G2

1
(y) = c3, �

G2

2
(y) = c4 

∀ y ∈ V2 and �G1

1
≥ �

G2

1
, �G1

2
≤ �

G2

2
 ; �G2

1
≥ �

G1

1
 , �G2

2
≤ �

G1

2
.

By theorem, max product of two regular intuitionistic 
fuzzy graphs is regular intuitionistic fuzzy graph.

Consider 
(

x1, y1
)

∈

(

�
G1

1
×m �

G2

1

)

d
G1×mG2

1

(

x1, y1
)

=
∑

(x1,y1)(x2,y2)∈E

(

�
G1

1
×m �

G2

1

)

((

x1, y1
)(

x2, y2
))

=
∑

x1=x2, y1y2∈E1

(

�
G1

1
×m �

G2

1

)

(

x1, y1
)

∧
(

�
G1

1
×m �

G2

1

)

(

x2, y2
)

−
(

�
G1

1
×m �

G2

1

)

((

x1, y1
)(

x2, y2
))

+
∑

y1=y2, x1x2∈E1

(

�
G1

1
×m �

G2

1

)

(

x1, y1
)

∧
(

�
G1

1
×m �

G2

1

)

(

x2, y2
)

−
(

�
G1

1
×m �

G2

1

)

((

x1, y1
)(

x2, y2
))

+
∑

x1x2∈E1,y1y2∉E2

(

�
G1

1
×m �

G2

1

)

(

x1, y1
)

∧
(

�
G1

1
×m �

G2

1

)

(

x2, y2
)

+
∑

x1x2∉E1,y1y2∈E2

(

�
G1

1
×m �

G2

1

)

(

x1, y1
)

∧
(

�
G1

1
×m �

G2

1

)

(

x2, y2
)

+
∑

x1x2∈E1,y1y2∈E2

(

�
G1

1
×m �

G2

1

)

(

x1, y1
)

∧
(

�
G1

1
×m �

G2

1

)

(

x2, y2
)

+
∑

x1x2∉E1,y1y2∉E2

(

�
G1

1
×m �

G2

1

)

(

x1, y1
)

∧
(

�
G1

1
×m �

G2

1

)

(

x2, y2
)

.

3(0.6,0.3)

(0.5,0.2) (0.5,0.4)

1(0.6,0.3) 2(0.5,0.4)

Fig. 1   Intuitionistic fuzzy graph G
1

Fig. 2   Intuitionistic fuzzy graph G
2

2(0.4,0.2)

(0.3,0.4)

1(0.5,0.5)
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Since G∗
1
 and G∗

2
 are complete graphs, then

Similarly

Case (i) : If �G1

1
(x) ≤ �

G2

1
(y) and �G1

2
(x) ≥ �

G2

2
(y) for all x ∈ V1 and y ∈ V2.

By Eq. (5)

(5)

d
G

1
×mG2

1

(

x
1
, y

1

)

=
∑

x
1
=x

2
, y

1
y
2
∈E

2

(

�
G

1

1
×m �

G
2

1

)

(

x
1
, y

1

)

∧
(

�
G

1

1
×m �

G
2

1

)

(

x
2
, y

2

)

−
(

�
G

1

1
×m �

G
2

1

)

((

x
1
, y

1

)(

x
2
, y

2

))

+
∑

y
1
=y

2
, x

1
x
2
∈E

1

(

�
G

1

1
×m �

G
2

1

)

(

x
1
, y

1

)

∧
(

�
G

1

1
×m �

G
2

1

)

(

x
2
, y

2

)

−
(

�
G

1

1
×m �

G
2

1

)

((

x
1
, y

1

)(

x
2
, y

2

))

+
∑

x
1
x
2
∈E

1
,y
1
y
2
∈E

2

(

�
G

1

1
×m �

G
2

1

)

(

x
1
, y

1

)

∧
(

�
G

1

1
×m �

G
2

1

)

(

x
2
, y

2

)

−
(

�
G

1

1
×m �

G
2

1

)

((

x
1
, y

1

)(

x
2
, y

2

))

+
∑

x
1
x
2
∈E

1
,y
1
y
2
∈E

2

(

�
G

1

1
×m �

G
2

1

)

(

x
1
, y

1

)

∧
(

�
G

1

1
×m �

G
2

1

)

(

x
2
, y

2

)

.

(6)

d
G1×mG2

2

(

x1, y1
)

=
∑

x1=x2, y1y2∈E2

(

�
G1

2
×m �

G2

2

)

(

x1, y1
)

∨
(

�
G1

2
×m �

G2

2

)

(

x2, y2
)

−
(

�
G1

2
×m �

G2

2

)

((

x1, y1
)(

x2, y2
))

+
∑

y1=y2, x1x2∈E1

(

�
G1

2
×m �

G2

2

)

(

x1, y1
)

∨
(

�
G1

2
×m �

G2

2

)

(

x2, y2
)

−
(

�
G1

2
×m �

G2

2

)

((

x1, y1
)(

x2, y2
))

+
∑

x1x2∈E1,y1y2∈E2

(

�
G1

2
×m �

G2

2

)

(

x1, y1
)

∨
(

�
G1

2
×m �

G2

2

)

(

x2, y2
)

.

d
G1×mG2

2

(

x1, y1
)

=
∑

x1=x2, y1y2∈E2

(

�
G1

2

(

x1
)

∧ �
G2

2

(

y1
)

)

∨
(

�
G1

2

(

x2
)

∧ �
G2

2

(

y2
)

)

−
(

�
G1

1
×m �

G2

1

)

((

x1, y1
)(

x2, y2
))

+
∑

y1=y2, x1x2∈E1

(

�
G1

1

(

x1
)

∨ �
G2

1

(

y1
)

)

∧
(

�
G1

1

(

x2
)

∨ �
G2

1

(

y2
)

)

−
(

�
G1

1
×m �

G2

1

)

((

x1, y1
)(

x2, y2
))

+
∑

x1x2∈E1,y1y2∈E2

(

�
G1

1

(

x1
)

∨ �
G2

1

(

y1
)

)

∧
(

�
G1

1

(

x2
)

∨ �
G2

1

(

y2
)

)

=
∑

x1=x2, y1y2∈E2

(

�
G1

1

(

x1
)

∨ �
G2

1

(

y1
)

)

∧
(

�
G1

1

(

x2
)

∨ �
G2

1

(

y2
)

)

.
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By Eq. (6)

Since by the definition of max product of two intuitionistic fuzzy graphs

d
G1×mG2

2

(

x1, y1
)

=
∑

x1=x2, y1y2∈E2

(

�
G1

2

(

x1
)

∧ �
G2

2

(

y1
)

)

∨
(

�
G1

2

(

x2
)

∧ �
G2

2

(

y2
)

)

−

(

�
G1

2
×m �

G2

2

)

((

x1, y1
)(

x2, y2
))

+
∑

y1=y2, x1x2∈E1

(

�
G1

2

(

x1
)

∧ �
G2

2

(

y1
)

)

∨
(

�
G1

2

(

x2
)

∧ �
G2

2

(

y2
)

)

−

(

�
G1

2
×m �

G2

2

)

((

x1, y1
)(

x2, y2
))

+
∑

x1x2∈E1,y1y2∈E2

(

�
G1

2

(

x1
)

∧ �
G2

2

(

y1
)

)

∨
(

�
G1

2

(

x2
)

∧ �
G2

2

(

y2
)

)

.

d
G1×mG2

1

(

x1, y1
)

=
∑

x1=x2, y1y2∈E2

�
G2

1

(

y1
)

−
(

�
G1

1
×m �

G2

1

)

((

x1, y1
)(

x2, y2
))

+
∑

y1=y2, x1x2∈E1

�
G2

1

(

y1
)

−

(

�
G1

1
×m �

G2

1

)

((

x1, y1
)(

x2, y2
))

+
∑

x1x2∈E1,y1y2∈E2

c3

=
∑

x1=x2, y1y2∈E2

�
G2

1

(

y1
)

− �
G1

1

(

x1
)

∨ �
G2

1

(

y1y2
)

+
∑

y1=y2, x1x2∈E1

�
G2

1

(

y1
)

− �
G1

1

(

x1x2
)

∨ �
G2

1

(

y1
)

+
∑

x1x2∈E1,y1y2∈E2

c3

=
∑

x1=x2, y1y2∈E2

c3 − �
G1

1

(

x1
)

+
∑

y1=y2, x1x2∈E1

c3 − �
G2

1

(

y1
)

+ c3d
∗
G2

(

y1
)

d∗
G1

(

x1
)

Similarly

Since G1 and G2 are two regular intuitionistic fuzzy 
graphs & G∗

1
 and G∗

2
 are complete graphs, then �G1

1
 and �G2

1
 

are constants say 
(

e1 , e2
)

 and 
(

e3, e4
)

.

d
G1×mG2

2

(

x1, y1
)

=
(

c4 − c2
)

d∗
G2

(

y1
)

+ c4d
∗
G2

(

y1
)

d∗
G1

(

x1
)

.

d
G1×mG2

1

(

x1, y1
)

=
(

c3 − c1
)

d2 + c3d1d2,
d
G1×mG2

2

(

x1, y1
)

=
(

c4 − c2
)

d2 + c4d1d2.
Case (ii) : If �G1

1
(x) ≥ �

G2

1
(y) and �G1

2
(x) ≤ �

G2

2
(y) for all 

x ∈ V1 and y ∈ V2

d
G1×mG2

1

(

x1, y1
)

=
∑

x1=x2, y1y2∈E2

�
G1

1

(

x1
)

−
{

�
G1

1

(

x1
)

∨ �
G2

1

(

y1, y2
)

}

+
∑

y1=y2, x1x2∈E1

�
G1

1

(

y1
)

−
{

�
G2

1

(

y1
)

∨ �
G1

1

(

x1, x2
)

}

+
∑

x1x2∈E1,y1y2∈E2

�
G1

1

(

x1
)

=
∑

x1=x2, y1y2∈E1

c1 − �
G1

1

(

x1
)

+
∑

y1=y2, x1x2∈E2

c1 − �
G2

1

(

y1
)

+ c1d
∗
G2

(

y1
)

d∗
G1

(

x1
)

=
(

c1 − c1
)

d2 +
(

c1 − c3
)

d1 + c1d1d2 =
(

c1 − c3
)

d1 + c1d1d2

=
∑

x1=x2, y1y2∈E1

c1 − �
G1

1

(

x1
)

+
∑

y1=y2, x1x2∈E2

c1 − �
G2

1

(

y1
)

+ c1d
∗
G2

(

y1
)

d∗
G1

(

x1
)

.
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Similarly

Hence, complement of max product of two regular intui-
tionistic fuzzy graphs is regular.

Theorem 3.2  Let G1 and G2 be two regular intuitionistic 
fuzzy graphs of the underlying crisp graphs; G∗

1
 and G∗

2
 

are regular graphs with the vertex sets; and edge sets of 
G1 and G2 are different constants which satisfies 𝜎G1

1
> 𝜇

G2

1
, 

𝜎
G1

2
< 𝜇

G2

2
 ; 𝜎G2

1
> 𝜇

G1

1
 , 𝜎G2

2
< 𝜇

G1

2
 ; 𝜎G1

1
> 𝜇

G1

1
 , 𝜎G1

2
< 𝜇

G1

2
 and 

𝜎
G2

1
> 𝜇

G2

1
 , 𝜎G2

2
< 𝜇

G2

2
 . Then, complement of the max product 

of two regular intuitionistic fuzzy graphs G1 and G2 is regu-
lar intuitionistic fuzzy graph.

d
G1×mG2

2

(

x1, y1
)

=
(

c4 − c2
)

d1 + c4d1d2.

Proof:  Let G1 and G2 be two regular intuitionistic fuzzy 
graphs. The underlying crisp graphs G∗

1
 and G∗

2
 are regular 

graphs of degrees g1 and g2 for every vertices in V1 and V2.
Given that �G1 , �G2 , �

G1 and �G2 are constants, say 
�
G1

1
(x) = c1, �

G1

2
(x) = c2, ∀ x ∈ V1 �

G2

1
(y) = c3, �

G2

2
(y) = c4 

∀ y ∈ V2 ,�G
1

1

(

x
1
y
1

)

= e
1
,�

G
1

2

(

x
1
y
1

)

= e
2
, �

G
2

1

(

x
1
y
1

)

= e
3
,�

G
2

2

(

x
1
y
1

)

= e
4
 

and 𝜎G1

1
> 𝜇

G2

1
, 𝜎G1

2
< 𝜇

G2

2
 ; 𝜎G2

1
> 𝜇

G1

1
 , 𝜎G2

2
< 𝜇

G1

2
.

Consider 
(

x1, y1
)

∈

(

�
G1

1
×m �

G2

1

)

.

Case (i) : If �G1

1
(x) ≤ �

G2

1
(y) and �G1

2
(x) ≥ �

G2

2
(y) for all 

x ∈ V1 and y ∈ V2

d
G1×mG2

1

(

x1, y1
)

=
∑

x1=x2, y1y2∈E2

(

�
G1

1

(

x1
)

∨ �
G2

1

(

y1
)

)

∧
(

�
G1

1

(

x2
)
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1

(

y2
)

)

−
(

�
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1
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G2

1

)
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)(

x2, y2
))

+
∑
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(

�
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1

(

x1
)

∨ �
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1

(

y1
)

)

∧
(

�
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1

(

x2
)

∨ �
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1

(

y2
)

)

−
(

�
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1
×m �
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1

)

((

x1, y1
)(

x2, y2
))

+
∑

x1x2∈E1,y1y2∉E2

(

�
G1

1

(

x1
)

∨ �
G2

1

(

y1
)

)

∧
(

�
G1

1

(

x2
)

∨ �
G2

1

(

y2
)

)

+
∑

x1x2∉E1,y1y2∈E2

(

�
G1

1

(

x1
)

∨ �
G2

1

(

y1
)

)

∧
(

�
G1

1

(

x2
)

∨ �
G2

1

(

y2
)

)

+
∑

x1x2∉E1,y1y2∉E2

(

�
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1

(

x1
)

∨ �
G2

1

(

y1
)

)

∧
(

�
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1

(

x2
)

∨ �
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1

(
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)

)

+
∑

x1x2∈E1,y1y2∈E2

(

�
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1

(

x1
)

∨ �
G2

1

(

y1
)

)

∧
(

�
G1

1

(

x2
)

∨ �
G2

1

(

y2
)

)

=
∑

x1=x2, y1y2∈E2

�
G2

1

(

y1
)

−
{

�
G1

1

(

x1
)

∨ �
G2

1

(

y1, y2
)

}

+
∑

y1=y2, x1x2∈E1

�
G2

1

(

y1
)

−
{

�
G2

1

(

x2
)

∨ �
G1

1

(

x1, x2
)

}

+
∑

x1x2∈E1, y1y2∉E2

c3 +
∑

x1x2∉E1, y1y2∈E2

c3 +
∑

x1x2∉E1,y1y2∉E2

c3 +
∑

x1x2∈E1,y1y2∈E2

c3

=
(

c3 − c1
)

g2 +
(

c1 − c1
)

g1 + c3dG∗
1

(

x1
)

|

|

|

E2

|

|

|

+ c3
|

|

|

E1

|

|

|

dG∗
2

(

y1
)

+ c3
|

|

|

E1

|

|

|

|

|

|

E2

|

|

|

+ c3dG∗
2

(

x2
)

dG∗
1

(

x1
)

,
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where ||
|

E1

|

|

|

 and ||
|

E2

|

|

|

 are the degree of vertex of complement 
graphs G∗

1
 and G∗

2
.

d
G

1
×mG2

1

(

x
1
, y

1

)

=
(

c
3
− c

1

)

g
2
+ c

3
g
1

|

|

|

E
2

|

|

|

+ c
3
g
2

|

|

|

E
1

|

|

|

+ c
3

|

|

|

E
1

|

|

|

|

|

|

E
2

|

|

|
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1
g
1
g
2
.

Similarly
d
G

1
×mG2

2

(

x
1
, y

1

)

=
(

c
4
− c

2

)

g
2
+ c

4
g
1

|

|

|

E
2

|

|

|

+ c
4
g
2

|

|

|

E
1

|

|

|
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4

|

|

|

E
1

|

|

|

|

|

|

E
2

|

|

|

+ c
2
g
1
g
2

.
This is true for all vertices of V1 ×m V2.
Case (ii) : If �G2

1
(x) ≤ �

G1

1
(y) and �G2

2
(x) ≥ �

G1

2
(y)  for all 

x ∈ V1 and y ∈ V2.

d
G1×mG2

1

(

x1, y1
)

=
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where E1 and E2 are the degree of the vertex of complement 
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Similarly

This is true for all vertices in V1 ×m V2.
Hence, complement of modular product of two regular 

intuitionistic fuzzy graphs is regular.

Applications of max product of intuitionistic 
fuzzy graphs in school determination

Let X =
{

x1, x2, … , xn
}

 be the universe of dis-
cou r se .  Le t  A =

{⟨

x, �A
1
(x),�A

2
(x)

⟩

∶ x ∈ X
}

 and 
B =

{⟨

x, �B
1
(x),�B

2
(x)

⟩

∶ x ∈ X
}

 be two intuitionistic fuzzy 
sets in X. Szmidt and Kacprzyk [17, 18] proposed the fol-
lowing distance measure between A and B:

The Normalized Hamming Distance

Suppose that S =
{

S1, S2, … , Sn
}

 be a set of 
schools, P =

{

p1, p2, … , pm
}

 be a set of papers, and 
Q =

{

q1, q2, … , qt
}

  be a set of students.
Let R1 be a relation between school points and each sub-

ject paper, and relation R2 be a relation between students and 
their corresponding subject entrance score.

We can describe the distance between the students and 
the schools using the following matrix:Equation as Image
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.

4

5 3

2

1

Fig. 6   Intuitionistic fuzzy graph G
2

Ali

Joseph                                        Mathew

Yusuf                                         Sunil

Fig. 5   Intuitionistic fuzzy graph G
1

(0.1,0.1)

1 1(0.6,0.3) (0.5,0.4) 2 1(0.5,0.4) 3 1(0.6,0.3)

(0.5,0.3) (0.5,0.4)

(0.5, 0.4) (0.6, 0.3)

2(0.6,0.2) (0.5, 0.2) 2 2(0.5,0.2) 3 2(0.6,0.2)

(0.1,0.0)

1 × 2
̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅

Fig. 4   Complement of max product of G
1
 and G

2

(0.5,0.2)

1 1(0.6,0.3) 2 1(0.5,0.4) (0.5,0.4) 3 1(0.6,0.3)

(0.6,0.3) (0.5,0.4) (0.6,0.3)

1 2(0.6,0.2) 2 2(0.5,0.2) (0.5,0.2) 3 2(0.6,0.2)

(0.5,0.2)

1 × 2

Fig. 3   Max Product G
1
×m G

2
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Applying the fact that shortest distance between two 
intuitionistic fuzzy sets shows more similarity between 
them, therefore, it can be described that for the student qi is 
to be enroll in the school corresponding to min

i

{

d
(

qi, Sj
)}

.
Here, we have considered a set of schools 

S =
{

S1, S2, S3, S4, S5
}

 , P ={Tamil (Ta), English (Eng), 
Mathematics (Mat), Science (Sci), Social Science (Sos)} be 
a set of papers and Q = {Ali, Mathew, Sunil, Yusuf, Joseph}.

In Figs. 5 and 6, we assume that G
1
=

(

Q,
{

N
1
,N

2
,N

3
,N

4
,N

5

})

 
is an intuitionistic fuzzy graph of the set of students and 
G2 =

(

S,
{

N
�

1
,N

�

2
,N

�

3
,N

�

4
,N

�

5

})

 is an intuitionistic fuzzy 
graph of the set of schools, where Q = { Ali, Mathew, Sunil, 
Yusuf, Joseph and S =

{

S1, S2, S3, S4, S5
}

.
The relation between school points and subject papers and 

the relation between students and their corresponding aver-
age entrance marks are given in Tables 3 and 4, respectively.

In the following table, we have used intuitionistic fuzzy 
sets as a tool, since it incorporates the membership grades 
(the average marks of the questions that have been correctly 
answered by the student) and the non-membership grades 

1 2 …

1 ( 1, 1) ( 1, 2) … ( 1, 1)

2 ( 2, 1) ( 2, 2) … ( 1, 2)

. . . … .

. . . … .

. . . … .
( , 1) ( , 2) … ( , ) (the average marks of the questions that have been incor-

rectly answered by the student).
The max product of G1 and G2 is shown in Fig. 7.
The following decision matrix has been obtained by 

finding distance between each student (Table 3) and each 
school (Table 4) using normalized hamming distance func-
tion depending upon the their entrance marks.

S
1

S
2

S
3

S
4

S
5

Ali 0.079167 0.084167 0.09 0.108333 0.125
Mathew 0.104167 0.1175 0.106667 0.058333 0.075
Sunil 0.0875 0.1675 0.14 0.091667 0.108333
Yusuf 0.1625 0.12583 0.08167 0.15 0.11667
Joseph 0.07083 0.1175 0.12333 0.09167 0.09167

From the above decision matrix, less distance between the 
student and school implies more possibility to get enrollment 
in the corresponding school. Therefore, the student Ali is to 
enroll in the school S1 , the student Mathew is to enroll in the 
school S4 , the student Sunil is to enroll in the school S1 , the 
student Yusuf is to enroll in the school S3 , and the student 
Joseph is to enroll in the school S1.

Fig. 7   Max product G
1
×m G

2

, 1 ℎ , 1 , 1 , 1 , 1

, 2 ℎ , 2 , 2 , 2 , 2

, 3 ℎ , 3 , 3 , 3 , 3

, 4 ℎ , 4 , 4 , 4 , 4

, 5 ℎ , 5 , 5 , 5 , 5

Table 4   Relation between students and their corresponding average 
entrance marks

R
2

Tamil English Mathemat-
ics

Science Social 
science

Ali (0.9, 0.1) (0.6, 0.2) (0.9, 0) (0.6, 0.4) (0.7, 0.1)

Mathew (0.3, 0.4) (0.7, 0.2) (0.8, 0.2) (0.6, 0.3) (0.7, 0.3)

Sunil (0.9, 0.1) (0.8, 0.1) (0.8, 0.2) (0.4, 0.5) (0.9, 0.2)

Yusuf (0.4, 0.3) (0.4, 0.5) (0.6, 0.2) (0.7, 0.1) (0.6, 0.1)

Joseph (0.7, 0.2) (0.6, 0.1) (0.9. 0.1) (0.8, 0.2) (0.9, 0.1)

Table 3   Relation between 
school points and subject papers

R
1

Tamil (Tam) English (Eng) Mathematics (Mat) Science (Sci) Social science (Sos)

S
1

(0.8, 0.1) (0.9, 0.1) (0.9, 0.05) (0.7, 0.2) (0.8, 0.2)

S
2

(0.7, 0.04) (0.6, 0.3) (0.95, 0) (0.7, 0.1) (0.6, 0.4)

S
3

(0.5, 0.02) (0.5, 0.2) (0.6, 0.3) (0.6, 0.1) (0.7, 0.1)

S
4

(0.5, 0.4) (0.9, 0.1) (0.8, 0.1) (0.6, 0.2) (0.8, 0.2)

S
5

(0.7, 0.2) (0.8, 0.1) (0.7. 0.2) (0.8, 0.2) (0.6, 0.3)
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Conclusion

Graph theory has numerous applications in solving vari-
ous networking problems encountered in different fields 
such as signal processing, transportation, and error codes. 
In particularly, the shortest path problem is a well-known 
combinatorial optimization problem in graph theory. Intui-
tionistic fuzzy graph models are more practical and useful 
than fuzzy graph models as it provides membership and non-
membership grades for representing imprecise information 
which occur in real-life situations. This paper has introduced 
the complement of max product of two intuitionistic fuzzy 
graphs. Using the max product, the different types of struc-
tural models can be combined to produce a better one. The 
special attention on the regularity in the complement of 
two intuitionistic fuzzy graphs has been given as it can be 
applied widely in designing reliable communication and net-
work systems. Finally, an application of intuitionistic fuzzy 
graphs in decision-making concern the school determina-
tion for the students based on their entrance score has been 
presented. In future, we are going to extend our work to: (1) 
Pythagorean fuzzy graphs; (2) Interval-valued Pythagorean 
fuzzy graphs, and (3) Spherical fuzzy graphs.
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