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Abstract
A fuzzy fractional-order PID control algorithm for a general type industrial temperature control system is proposed in this
paper. In order to improve the production quality and controlled model accuracy, a fractional-order elementary system is used
to describe the temperature control process. The gain coefficients of the proposed fractional-order PID controller is updated
online based on a set of fractional-order fuzzy rules which are defined by Mittag–Leffler functions and follow fat-tailed
distributions. Therefore, the proposed controller parameters could be auto-tuned according to model uncertainties, noise
disturbance, random delay, and etc. Examples of the studied temperature control systems are shown to verify the effectiveness
of the proposed controller. The superiority of fractional calculus is fully explored in the presented control methodology.
The controlled temperature profile with the proposed algorithm could realize more satisfactory dynamic performance, better
robustness respect to environment changes caused by internal and external disturbance.

Keywords Fractional calculus · Fuzzy logic control · Fractional-order PID control

Introduction

In industrial processes, the production quality and efficiency
are always influenced a lot by the run-to-run temperature
control [1]. Therefore, the dynamic performance, robustness
and accuracy of temperature control becomes one of the
most decisive elements impacting product quality as well
as operation safety. The temperature control performance of
industrial thermal systems are usually affected by different
complicated factors, for instance, pressure impact, load vari-
ations, gas flow impact, measurement noise. These factors
make this kind of system hard to be modelled accurately. But
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since the recipes of temperature control are always repeated
and consist of similar stages, simple models fitting from the
measured input-output data are used frequently for controller
designwith the overall consideration of different internal and
external disturbance [2].

Most of the temperature control processes were modelled
or approximated by the first-order elementary model in the
previous studies [2–4]. However, with the growing demand
of production quality and efficiency, some of the complex
temperature control stages may not be described adequately
by this kind of elementary model. Fractional-order elemen-
tary model with an extra fractional order may provide more
flexibility to represent the dynamic behaviors of practical
temperature control process [4]. Therefore, in this paper, a
fractional-order elementary model is used to represent a gen-
eral type of industrial temperature control system, which also
includes the first-order elementary model as a special case
[5].

The widely used control methods for temperature control
includes classic control and intelligent control [1,8]. Among
these, the PID controller is one of themost commonly applied
classic controlmethods. It has the advantages of simple struc-
ture, easy to be understood, implemented and tuned, etc.

The Fractional-order PID (FOPID or PIλDμ) type con-
troller is an extension of PID controller which has two
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extra tuning parameters, namely integral order λ and dif-
ferential order μ [6,7]. It also has the similar advantages
with the PID controller, such as a simple structure. The
two additional parameters offer extra flexibility in satisfying
controller design specifications, for example, the frequency
domain specifications of closed-loop systems. Moreover, the
controlled system with the FOPID controller has a certain
memory, which can adjust the control performance appropri-
ately according to the historical information and potentially
improve system transient performance and robustness. Cur-
rently, the FOPID controller has already been applied in
some practical applications. Many studies show that FOPID
controllers outperform the other controllers in industrial
processes [12–15]. The tuning and auto-tuning method of
FOPID controller for industry applications has been studied
in [12] byMonje et al. A two degree-of-freedom FOPID con-
trollerwas proposedbyPachauri et al. for temperature control
of fermentation process [13]. Another modified IMC-PID
controller applied on bioreactor temperature control process
has been presented in [14]. Qin et al. proposed a kind of
FOPID controller and applied it on the temperature control
of vegetable green houses in [15].

The effectiveness of fuzzy logic controller (FLC) has also
been proved in some complicated temperature control pro-
cesses [16,17]. FLCs provide more robust performances and
are less sensitive to parameter variations comparedwith other
controllers [18]. After the PID type controller parameters
are achieved according to certain requirements, the control
performance may be quite sensitive to unpredictable dis-
turbance or environment change. Under the circumstances,
a fuzzy controller is more effective for self-adapting. But
the controlled system usually is hard to achieve a high pre-
cision performance. Therefore, the combination of FOPID
controller and FLC could simultaneously guarantee the high
precision dynamic performance and robustness of industrial
control systems, such as the temperature control process.Dif-
ferent design approaches and applications of fractional-order
fuzzy PID (FFuzzy PID) controllers have already been stud-
ied [19–22]. Tajjudin et al. designed a self-tuning fuzzy FOPI
controller and applied it in the steam distillation process [17].
Das et al. proposed an FFuzzy PID controller based on differ-
ent integral performance indices and applied the controller
to various kinds of controlled systems including linear and
nonlinear ones [19]. A variable order FFuzzy PID controller
whose five parameters could be tuned online simultaneously
with respect to system parameter changes was presented by
Liu et al. [20]. An FFuzzy PID controller was applied to a
Multi-Input-Multi-Output (MIMO) robotic manipulator by
Sharma et al. and produced more superior control perfor-
mance than conventional controllers [22]. An interval type-2
FFuzzy PID controller was studied in [23] with its perfor-
mance evaluation by Kumar et al.

However, most of the existing FFuzzy PID controllers
are straightforward combinations of FOPID controllers and
FLCs. The fractional nature is not integrated in their con-
trol logic, so the superiority of fractional calculus has not
been fully explored. The common used membership func-
tions in fuzzy rules are always set as a linear type (such
as triangle and trapezoid), due to its simple and natural
characteristic. For nonlinear distributions, Gaussian mem-
bership function is the most popular one. Few study has
discussed about how to enhance system control performance
by improving the mentioned membership functions. The
widely used Gaussian membership functions follow expo-
nential convergence. However, not all the distributions in
nature satisfy exponential convergence. It has been proved
that heavy-tailed distributions could provide general frame-
works for modeling in economics, finance, econometrics,
statistics, risk management, insurance and so on [24–27].
Heavy-tailed distributions own a heavier tail (slower con-
vergence rate) than exponential distributions. As a class of
heavy-tailed distributions, fat-tailed distribution goes to zero
as a power y−a , for large y. It could be employed to construct
a group of novel membership functions. Integrating fat-tailed
distribution into membership functions, the fractional-order
(FO) membership functions can be obtained. It provides one
more optimization dimensionwhich offersmore possibilities
in improving system transient performance and robustness.
In order to further improve the dynamic performance and
robustness of the studied general type temperature control
system, we design a series of FO membership functions in
this paper, which follow fat-tailed distributions. Based on the
proposed fuzzy rules, the parameters of FOPIDcontroller can
be auto-tuned online.More specifically, according to the con-
trolled process error and its derivative, the parameters of the
proposed FOPID controller including the gain coefficients
of the proportional, integral and derivative parameters are
updated by a fuzzy logic controller. Therefore, when impact
factors (such as pressure, gas flow, sensor dynamics, etc)
change or measurement noise involves, the temperature con-
trol performance could be adjusted automatically according
to the environment.

This paper is organized as follows. Firstly, “The process
model” introduces the studied temperature control process
model and “Fractional calculus” gives the preliminaries of
fractional calculus including fractional derivative, Mittag-
Leffler function and their properties. Then, the FFuzzy PID
control method is proposed in Sect. “Fuzzy fractional-order
PID control”, where FO membership functions, fuzzy rules
and the design steps of FFuzzy PID controller are given. In
Sect. “Examples”, examples are shown toverify the effective-
ness of the presented methods under different circumstances.
At last, the conclusion is drawn in “Conclusion”.
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The process model

Industrial temperature control profile usually consists of dif-
ferent control stages. Each of these stages may be affected by
a lot of factors, such as pressure variations, gas flow changes,
sensor dynamics, and etc. But a complex model including all
these precise factors will be difficult to carry out and hard for
controller design. Therefore, most of these stages have been
modelled or approximated by a first-order elementary model
as shown in Eq. (1) [2].

G(s) = K

T s + 1
e−Ls, (1)

where K is the system gain, T is the time constant and L is
the time delay.

However, the fractional-order elementary model with an
extra fractional order α in Eq. (2) may provide more flexibil-
ity and accuracy to represent the dynamic behaviors of the
control process.

G(s) = K

T sα + 1
e−Ls . (2)

For example, the temperature system we studied which is
a plasma etching chamber of a semiconductor manufactor is
modeled based on themeasured input-output data. The cham-
ber configuration is quite complicated as shown in Fig. 1, but
it can be considered as a four zones heater abstractly. So the
controlled plant is essentially a four-input-four-output sys-
tem. Since we have already added some decouplers in the
corresponding zones, each of the four zones can be treated
as a single-input-single-output system.

The detailed system information and decoupling process
can be referred to [28,29]. One of the on-site temperature
control profiles of this etching chamber is shown in Fig. 2.
The data fitting of one representative step which is fitted by
a fractional-order elementary model is illustrated in Fig. 3
with α = 0.94 and L = [0, 2]s. It can be seen that the
fractional-order elementary model well describe the process
with high accuracy. Therefore, it is reasonable to use the
fractional-order elementary model to describe a general type
of industrial temperature control system. This type of con-
trolled plant has been widely used in modelling and analysis
of industrial control processes [19,20].

Fractional calculus

Fractional derivative

Three FO differential definitions are frequently used, namely
Grunwald-Letnikov definition, Riemann-Liouville defini-
tion, and Caputo definition [30,32]. Due to the different

Fig. 1 The internal structure of plasma etching chamber
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Fig. 2 On-site data profile of temperature control
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Fig. 3 The fractional-order elementary model fitting

properties of these three FO differential operators, they are
applied in different fields of engineering and computing
science. However, with null initial conditions, there is no
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difference among these three FO differential operators. We
consider the Caputo definition in this paper, because of its
wide applications in real physical situations and engineering
problems [31,34].

For a function f (t) ∈ Cn+1([t0,+∞] ,R), its Caputo
derivative of order α is defined as [31]:

t0D
α
t f (t) = 1

Γ (n − α)

∫ t

t0

f (n)(τ )

(t − τ)α+1−n dτ , (3)

where t0 and t are the lower and upper limits of the operator
respectively, α ∈ R is the order of Caputo derivative, the
positive integer n satisfies n − 1 < α ≤ n, and Γ (·) is
Gamma function defined by

Γ (x) =
∫ +∞

0
t x−1e−tdx, (x ∈ R+).

The Laplace transform of Caputo derivative is:

L {
t0D

α
t f (t); s} = sαF(s)

−
n−1∑
k=0

sα−k−1 f (k)(t0), n − 1 < α < n,

(4)

where L {·} denotes the Laplace transform, s is the variable
operator in Laplace transform, and F(s) = L { f (t); s}.

Mittag–Leffler function

As a generalization of the exponential function, Mittag-
Leffler function always exists in the solution of FO differen-
tial equations [33]. Consider a two-parameter Mittag-Leffler
function, whose power series is defined as [31]:

Eα,β(x) =
∞∑
k=0

xk

Γ (αk + β)
, (5)

where α > 0, β > 0 and x ∈ C. Especially E1,1(x) =
ex under α = β = 1. The one-parameter Mittag-Leffler
function is a special case with β = 1:

Eα(x) =
∞∑
k=0

xk

Γ (αk + 1)
= Eα,1(x). (6)

The Laplace transform of two-parameter Mittag–Leffler
function represents:

L
{
tβ−1Eα,β(−λtα)

}
= sα−β

sα + λ
, (Re(s) > |λ| 1α ), (7)

where t ≥ 0, s is the variable operator of Laplace domain,
and Re(s) is the real part of s.

In addition, we give a property for the one-parameter
Mittag-Leffler function in the next Lemma 1.

Lemma 1 [35] The one-parameter Mittag-L-effler function
satisfies the following estimates,

Eα (z) = 1

α
exp

(
z
1
α

)
− 1

zΓ (1 − α)

+O

(
1

z2

)
, when z → +∞,

Eα (z) = − 1

zΓ (1 − α)
+ O

(
1

z2

)
, when z → −∞.

Fuzzy fractional-Order PID control

In the recent years, the FOPID control has experienced a fast
development. A lot of researches have focused on how to
tune the FOPID controller and achieved better control per-
formance. The parameters in FOPID controller consist of the
fractional orders for integral (λ) and derivative (μ), and the
gain coefficients for the proportional (Kp), integral (Ki ) and
derivative (Kd ) parameters. To update these gain coefficients
(Kp, Ki and Kd ), a fuzzy logic controller is added before the
FOPIDcontroller in this paper. So Kp , Ki and Kd become the
output scaling factors, which can be updated following the
fuzzy ruleswith respect to the controlled process error (e) and
its derivative (de/dt), simplified by ’ec’ in this paper). The
block diagram of the studied FFuzzy PID control is shown
in Fig. 4. The ’Fuzzy Logic Controller’ block updates the
outputs (Kp, Ki and Kd ) mapped by the inputs (e and ec) in
some fuzzy rules designed by membership functions.

The widely used membership functions in fuzzy rules
include the types of triangle, trapezoid, Gaussian, bell and so
on [18]. Triangle and trapezoid belong to linear membership
functions, which are the most natural and unbiased. Gaus-
sian and bell membership functions are nonlinear, which
earn more applications in the study of fuzzy control. Espe-
cially, the Gaussian type obtains the most attentions because
that its nonlinear characteristic and distribution curve satisfy
the complexity of process control better. However, in order
to realize the better control performance, most fuzzy con-
trol studies focus on how to give a better rule base in fuzzy
controller. Few study has tried to improve the control per-

Fig. 4 Block diagram of fuzzy fractional-order PID control

123



Complex & Intelligent Systems (2023) 9:2585–2597 2589

formance by choosing a better membership function. In this
paper, we will extend the existing membership function of
Gaussian type to its FO ones.Withmore comparisons in con-
trol experiments, FO membership functions will show their
superiority verified in simulation results.

Fractional-order membership functions

A fuzzy subset F of X associated with a characteristic func-
tion is called a fuzzy set. The corresponding characteristic
function is called membership function, i.e., μF (x) : X →
[0, 1], x ∈ X . In this section, we will update the Gaussian
membership function by Mittag-Leffler function, and pro-
pose a class of FO membership function. As it is known that
the Gaussian membership function μF (·) is described by

μF (x) = exp

[
−1

2

(
x − c

σ

)2
]

, (8)

where F is a fuzzy set, c denotes the core of the membership
function, and σ is a parameter to decide the width of the
membership function.

In recent years, heavy-tailed distributions have drawn
more attention from researchers in probability theory related
fields. Heavy-tailed distributions own heavier tails than the
exponential distribution, and provide powerful tools for
modelling some practical anomalous diffusion processes in
finance, biochemistry, environmental science and so on [24–
27]. In this part, we will give a type of FO membership
function, which belongs to fat-tailed distributions. Fat-tailed
distribution is a kind of heavy-tailed distributions, and it
goes to zero as a power y−a , for large y. Combined with
one-parameter Mittag-Leffler function (6), we construct the
following FO membership function,

μF,α (x) = Eα

(
−1

2

[(
x − c

σ

)2
]α)

, (9)

where F , c, and σ are same with (8), and fractional order α

satisfies 0 < α ≤ 1.

Remark 1 Whenα = 1, FOmembership function (9) is equal
to the Gaussian one (8). In other words, Gaussian member-
ship function is just a special case of FOmembership function
(9).

Remark 2 For any α ∈ (0, 1], the FO membership function
(9) satisfies

μF,α (c) = Eα (c) = 1,

which conforms to the necessary condition of membership
function.

Fig. 5 FO membership function with different orders α

Remark 3 FO membership function (9) with 0 < α < 1
belongs to fat-tailed distributions, which is a type of heavy-
tailed distributions. It owns fatter tails than the exponential
distribution (such as α = 1), which means that samples far
from the core of the membership function might occur in
higher probability. The proof of its fat-tailed property will be
given in Theorem 1.

Theorem 1 When 0 < α < 1, the FO membership function
(9) is fat-tailed distributions, and its convergence rate to zero
follows a power as |x − c|−2α for large |x |.
Proof As |x | → +∞, it has

−1

2

[(
x − c

σ

)2
]α

→ −∞.

Based on Lemma 1, it obtains

μF,α (x) = Eα

(
−1

2

[(
x − c

σ

)2
]α)

= 2σ 2α

|x − c|2αΓ (1 − α)
+ O

(
1

|x |4α
)

, (10)

when |x | → +∞ and 0 < α < 1. This completes the proof
of Theorem 1. ��

When c = 0 and σ = 0.06, the FO membership function
with different orders α is shown in Fig. 5. With 0 < α < 1,
they follow fat-tailed distributions and own different conver-
gence rate according to the change of α.

In this paper, we define the scaled input and output by
seven fuzzy cases as Negative Big (NB), Negative Medium
(NM), Negative Small (NS), Zero (Z), Positive Small (PS),
PositiveMedium (PM), and Positive Big (PB). For each case,
the closed interval for the scaled input or output is set as
[−0.3, 0.3]. NB and PB are designed as ’Z’ and ’S’ type
membership functions respectively. The other cases are all
defined by FO membership functions described by (8). We
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Fig. 6 Membership functions for input variable es or ecs

Fig. 7 Membership functions for output variable ΔKs
p , ΔKs

i or ΔKs
d

give an example with α = 1 and σ = 0.06 for the input
variable (σ = 0.04 for the output variable), which is shown
in Figs. 6 and 7.

Remark 4 Because the closed interval for the scaled inputs
es , ecs or outputs ΔKs

p, ΔKs
i , ΔKs

d is [−0.3, 0.3], the
controlled process error e and its derivative ec should be
transformed onto [−0.3, 0.3] under scaled maps. Then,
ΔKp, ΔKi and ΔKd could be obtained after the gained
maps from gained inputs ΔKs

p, ΔKs
i , ΔKs

d . With the cor-
responding gain factors Se, Sec, Sp, Si and Sd , it satisfies
the following equations.

es = Se · e,
ecs = Sec · ec,
ΔKp = Sp · ΔKs

p,

ΔKi = Si · ΔKs
i ,

ΔKd = Sd · ΔKs
d .

The fuzzy rules

Based on some given fuzzy rules, the outputs of fuzzy logic
controller ΔKs

p, ΔKs
i and ΔKs

d can be achieved according

Table 1 The fuzzy rules for ΔKs
p

es/ecs NB NM NS Z PS PM PB

NB NB NB NM NM NM Z Z

NM NB NB NM NS NS Z PS

NS NM NM NM NS Z PS PS

Z NM NM NS Z PS PM PM

PS NS NS Z PS PS PM PM

PM NS Z PS PM PM PM PB

PB Z Z PM PM PM PB PB

Table 2 The fuzzy rules for ΔKs
i

es/ecs NB NM NS Z PS PM PB

NB PB PB PM PM PS Z Z

NM PB PB PM PS PS Z Z

NS PB PM PS PS Z NS NS

Z PM PM PS Z NS NM NM

PS PM PS Z NS NS NM NB

PM Z Z NS NS NM NB NB

PB Z Z NS NM NM NB NB

Table 3 The fuzzy rules for ΔKs
d

es/ecs NB NM NS Z PS PM PB

NB NS PS PB PB PB PM NS

NM PS PS PB PM PM PS Z

NS Z PS PM PM PS PS Z

Z Z PS PS PS PS PS Z

PS Z Z Z Z Z Z Z

PM NB NS NS NS NS NS NB

PB NB NM NM NM NS NS NB

to the inputs of fuzzy logic controller es and ecs . We employ
the fuzzy rules as the follwing two-dimensional form.

FuzzyRules : Ifes is Es and ecs is ECs,

then ΔKs
p is ΔΨ s

p, ΔKs
i is ΔΨ s

i and ΔKs
d is ΔΨ s

d ,
(11)

where Es , ECs , ΔΨ s
p , ΔΨ s

i andΔΨ s
d denote the fuzzy sets

of es , ecs , ΔKs
p, ΔKs

i and ΔKs
d respectively.

Because each input fuzzy set consists of 7 cases (NB, NM,
NS, Z, PS, PM and PB), two inputs es and ecs own 72 = 49
rules for the maps from es and ecs to ΔKs

p, ΔKs
i or ΔKs

d .
In addition, all the rules are concluded in Tables 1, 2 and 3
for ΔKs

p, ΔKs
i and ΔKs

d respectively.
Based on the above fuzzy rules, the relationships between

inputs es , ecs and outputs ΔKs
p, ΔKs

i and ΔKs
d can be

obtained. If we choose the FOmembership functions in Figs.
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Fig. 8 ΔKs
p depended on es and ecs

Fig. 9 ΔKs
i depended on es and ecs
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0 K
s d

0.1
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0

ecs

0.1

0
-0.1

0.2

0.2 -0.2
-0.3

Fig. 10 ΔKs
d depended on es and ecs

6 and 7, the exact map values can be achieved under Fuzzy
Logic Designer inMATLAB, and are shown in Figs. 8, 9 and
10.

Steps of FFuzzy PID Control

Under the above presentation of fuzzy logic control, we give
the detailed steps of FFuzzy PID control in this subsection.

Step 1: according to characteristics of the controlled FO
system, choose the initial controller parameters Kp, Ki , Kd ,
a series of FO membership functions and scaling factors. In

other words, determine a group of parameters including of
α, σ , Se, Sec, Sp, Si and Sd .

Step 2: calculate the input and output membership func-
tions. Based on the 49 rules in Tables 1, 2 and 3, obtain the
maps from es and ecs to ΔKs

p, ΔKs
i or ΔKs

d .
Step 3: For e and ec in the controlled FO system, calculate

the scaled inputs es and ecs by

es = Se · e,
ecs = Sec · ec,

in order to transform them into [−0.3, 0.3]. Gain the ΔKs
p,

ΔKs
i and ΔKs

d according to Step 2, then obtain ΔKp, ΔKi

and ΔKd by

ΔKp = Sp · ΔKs
p,

ΔKi = Si · ΔKs
i ,

ΔKd = Sd · ΔKs
d .

Step 4: update the gain coefficients Kp, Ki and Kd by the
obtained ΔKp, ΔKi and ΔKd .

Step 5: update the fractional order α of membership func-
tions and back to Step 2, until the controlled system obtains
the expected control performances.

Examples

A great variety of factors, for instance, load variations,
measurement noise disturbance, pressure impact, gas flow
impact, set-point temperature impact and etc, may affect
the dynamic performance of temperature control system
and bring about parameter uncertainties. In this section, the
dynamic control performance and robustness of the studied
general type temperature control plants are tested to verify the
effectiveness of the proposed control algorithm. In order to
make the system in Eq. (2) more general, it is further divided
into three specific types by the normalized dead-time ratios
(delay (L) / time constant (T )) [19]. When L 	 T , L ≈ T ,
and L � T , the controlled systems are called lag domi-
nated, balanced lag and delay, and delay-dominated systems
respectively.

For comparison, three kinds of controllers i.e. an OPID
(Optimal PID used in [36]), an FOPID (Fractional-Order PID
used in [36]), an FFuzzy PID (Fractional-order Fuzzy PID
proposed in this paper) are designed for each controlled plant.

The Nelder-Mead simplex method is used to optimize the
controller parameters and the ITAE indicator is applied as an
objective function in the optimization process [20]. In order
to proceed fair comparison, the parameters of the FFuzzy
PID controller are the same to those used in FOPID con-
troller, which are shown in Table 4. In the following, the
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Table 4 Controller parameters

Kp Ki Kd λ μ

G1(s) FOPID 0.3810 5.1988 5.5785 1.0600 0.5299

PID 3.0002 2.7565 1.6308 – –

G2(s) FOPID 0.6881 0.5201 0.3062 1.0383 0.7458

PID 0.1125 0.2601 0.1356 – –

G3(s) FOPID 0.1462 0.7339 0.1299 0.9882 0.2328

PID 0.3502 0.7800 0.1500 – –

set-point regulation, robustness of gain variations, distur-
bance rejection and random delay suppression capabilities of
the proposed control algorithm, which are quite important in
temperature control systems, are verified respectively. Note
that the system gain K is normalized into 1 without loss of
generality.

Firstly, consider a lag dominated system of Eq. (2) G1(s)
with T = 1.1, α = 1.5, L = 0.105. The perfor-
mance indicators of G1(s) under different circumstances
are shown in Table 5. The set-point regulation comparison
of G1(s) controlled by three different controllers is illus-
trated in Fig. 11. All of the three responses are acceptable.
But the system controlled by the FOPID controller has rel-
atively large overshoot, and the settling time of that with
the OPID controller is longer than the other two. There-
fore, the best transient performance is achieved by the
FFuzzy PID controller. In order to test the robustness of
G1(s) controlled by different controllers, ±20% parameter
uncertainties (on T , K ) are added to the controlled sys-
tem as shown in Fig. 12. It is seen from Fig. 12 that the
system controlled by FFuzzy PID controller also outper-

0 2 4 6 8 10 12 14 16 18 20
t/s

0

0.2

0.4

0.6

0.8

1

1.2

Am
pl

itu
de

FFuzzy
OPID
FOPID

Fig. 11 Set-point regulation performance of G1(s)

forms the other two. In Fig. 13, a disturbance signal with
−0.2 in amplitude is added to the system at t = 10s.
The disturbance rejection performance of G1(s) with the
FFuzzy controller in Fig. 14 demonstrates its superiority
compared with the other two curves as well. Finally, a
random delay ∈ [0, 0.2]s is applied to G1(s) instead of
the fixed delay 0.105s. Figure 11 shows the performance
comparison of G1(s) with random delay under three dif-
ferent controllers. Clearly, the controlled performance of
the FOPID controller has been affected a lot by the ran-
dom delay. Its overshoot and settling time are quite large.
The settling time of G1(s) under the OPID controller in
Fig. 11 is the largest, though the corresponding response
overshoot is quite small. Therefore, the response of sys-

Table 5 Performance indices of G1(s)

Controllers Overshoot (%) Rise time (s) Peak time (s) Steady-state error

Set-point Regulation FFuzzy PID 3.7242 0.1734 0.8489 3.94E-06

PID 3.2558 0.6489 1.6667 1.07E-05

FOPID 6.8569 0.1895 0.461 5.32E-05

Set-point Regulation with +20% Para Uncertainties FFuzzy PID 5.2427 0.2187 1.2088 9.84E-05

PID 6.5707 0.584 1.5976 2.09E-05

FOPID 8.1157 0.1894 0.4869 9.19E-05

Set-point Regulation with − 20% Para Uncertainties FFuzzy PID 0.6526 0.3647 1.2246 3.33E-05

PID – 0.7714 – 1.36E-04

FOPID 0.7312 0.2312 4.6366 3.00E-06

Disturbance Rejection Performance FFuzzy PID 2.9863 0.2205 1.1994 4.88E-05

PID 3.2589 0.5838 1.5958 4.21E-04

FOPID 8.5736 0.1817 0.4303 7.79E-05

Random Delay Suppression Performance FFuzzy PID 2.9576 0.2600 1.0942 7.83E-05

PID 3.2771 0.6300 1.5670 7.60E-06

FOPID 17.2508 0.2000 0.5202 2.19E-06
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Fig. 12 Robustness with respect to load uncertainties of G1(s)
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Fig. 13 Disturbance rejection performance of G1(s)
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Fig. 14 Random delay suppression performance of G1(s)

tem G1(s) with the FFuzzy PID controller still has the most
satisfactory control performance. The example shows that
the lag dominated system G1(s) controlled by the FFuzzy
PID controller has more desirable transient performance as
well as robustness compared with that controlled by other
controllers.

Then, a balanced lag and delay system with T =
1.5, α = 1.5, L = 1 is considered. The perfor-
mance indicators of G2(s) under different circumstances
are shown in Table 6. The set-point regulation compari-
son of G2(s) is demonstrated in Fig. 15. It shows that
the rising times of G2(s) controlled by the FOPID and
FFuzzy PID controllers are similar, but the undershoot of
that under FOPID is too large. The control performance
of the OPID controller which oscillates a lot is far from
desirable. Figures 16, 17 and 18 are performance com-
parisons of G2(s) with ±20% parameter uncertainties (on
T , K ), with a disturbance signal at t = 10s, and with
[0.7, 1.3]s random delay instead of fixed delay respec-
tively. The dynamic performances of G2(s) controlled by
the FFuzzy PID controllers under these three different con-
ditions are desirable. In contrast, the systems controlled
by the FOPID controller always have large undershoots.
The step responses under the OPID controller oscillate a
lot, so their performances are much worse than that under
the other two controllers. Hence, both dynamic perfor-
mance and robustness of the balanced lag and delay system
G2(s) controlled by the proposed controller are better than
others.

At last, a delay dominated system with T = 0.05, α =
1.5, L = 1 is investigated. G3(s) has a relatively large
delay to time constant ratio (L/T ), so it is more dif-
ficult to be controlled. Its performance indicators under
different circumstances are shown in Table 7. Figure 19
is the set-point regulation of G3(s) under three different
controllers. All the responses in Fig. 19 oscillate during
the transient process and all the rising times are simi-
lar. The overshoot of the system controlled by the OPID
controller is much larger than the other two. Meanwhile,
the undershoot of G3(s) with the FFuzzy PID controller
is the largest. Since G3(s) is quite sensitive, so ±10%
parameter uncertainties (on T , K ) are added in Fig. 20
to test its robustness. Obviously, the system controlled by
the FFuzzy PID controller is robust to parameter uncer-
tainties with almost unchanged rising time and overshoot.
But the control performances of the FOPID and OPID con-
trollers are sensitive to parameter uncertainties that their
performances change a lot under different conditions. The
step response comparison of G3(s) with random delay ∈
[0.9, 1.1]s is shown in Fig. 21. Similarly, the controlled per-
formance of the FFuzzy PID controller outperforms the other
two.
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Table 6 Performance indices of G2(s)

Controllers Overshoot (%) Rise time (s) Peak time (s) Steady-state error

Set-point Regulation FFuzzy PID 3.4463 1.145 2.9297 2.50E-04

PID 5.6058 4.4115 7.1624 2.25E-05

FOPID 2.7358 1.17 2.8458 7.44E-04

Set-point Regulation with +20% Para Uncertainties FFuzzy PID 9.6896 1.2094 3.1499 2.00E-04

PID 21.8131 3.8458 7.3562 1.00E-03

FOPID 14.1886 1.0531 3.1499 0.00E+00

Set-point Regulation with −20% Para Uncertainties FFuzzy PID 0.2777 1.2637 7.1726 1.00E-03

PID – 5.4819 – 1.02E-01

FOPID 2.2856 1.1158 8.3329 4.49E-01

Disturbance Rejection Performance FFuzzy PID 3.3739 1.155 2.8502 0.00E+00

PID 9.8601 3.0959 5.4982 2.70E-03

FOPID 2.0161 1.2689 8.9175 2.00E-04

Random Delay Suppression Performance FFuzzy PID 2.4586 1.3000 3.3000 1.22E-05

PID 10.9397 3.2000 5.6000 3.70E-06

FOPID 2.0287 1.3000 8.5000 2.67E-05
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Fig. 15 Set-point regulation performance of G2(s)
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Fig. 16 Robustness with respect to load uncertainties of G2(s)
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Fig. 17 Disturbance rejection performance of G2(s)
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Fig. 18 Random delay suppression performance of G2(s)
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Table 7 Performance Indices of G3(s)

Controllers Overshoot (%) Rise time (s) Peak time (s) Steady-state error

Set-point regulation FFuzzy PID 2.0914 0.9828 4.3757 4.07E-05
PID 21.4166 0.7326 2.233 2.34E-06
FOPID 5.0535 0.9243 2.1792 8.31E-06

Set-point regulation with
+10% Para Uncertainties

FFuzzy PID 4.9871 1.6487 3.8665 1.31E-05

PID 42.5226 0.5491 2.4177 4.30E-06
FOPID 23.5585 0.7879 2.3824 3.20E-06

Set-point regulation with
-10% Para Uncertainties

FFuzzy PID 1.3871 0.9148 3.2304 1.50E-03

PID 1.9204 0.8599 2.0277 0.00E+00
FOPID 0.2137 1.6555 6.2162 0.00E+00

Random delay suppression
performance

FFuzzy PID 4.2415 0.8325 2.9177 3.61E-06

PID 21.8339 0.8132 2.2463 1.02E-05
FOPID 8.6441 1.0122 2.1198 5.62E-06
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Fig. 19 Set-point regulation performance of G3(s)

As it is shown in Table 7 and Fig. 21, the perfor-
mances of FFuzzy PID, OPID and FOPID controllers in
rise time, peak time and steady-state error all present little
difference. However, comparing three controllers, the over-
shoot of PID controller is obviously higher than the other
two. Thus, the controlled performance of the FOPID con-
troller is still acceptable, but that of the OPID controller is
poor.

In general, all the simulation results show that different
types of the studied temperature control system with the pro-
posed controller achieve not only more desirable dynamic
performances but also better robustness compared with other
controllers. Moreover, the proposed control algorithm shows
great potential in improving the control performance of
systems with uncertainties or random delay. This is also
the superiority of the on-line fuzzy tuning algorithm under
fractional-order membership function. The controlled tem-
perature profile with the proposed algorithm could realize
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Fig. 20 Robustness with respect to load uncertainties of G3(s)
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Fig. 21 Random delay suppression performance of G3(s)
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more smooth dynamic performance, relatively small process
jitter, superior robustness respect to environment change,
measurement noise disturbance and random delay input,
which helps a lot in improving production quality and
efficiency.

Conclusion

In this paper, a fuzzy fractional-order PID controller is
designed for a general type industrial temperature control
process described by a fractional-order elementary system.
The fractional-order membership functions presented by
employing Mittag-Leffler functions follow fat-tailed distri-
butions. They can provide one more optimization dimension
compared with original membership functions. The fuzzy
rules and design steps of the proposed fuzzy logic con-
troller are given in detail. The controller parameters can
be adjusted on-line according to the model uncertainties
and disturbance caused by the environment changes. More-
over, examples of the studied temperature control system are
shown to demonstrate the superiority of the proposed control
method.

Our future work may concentrate on exploring other prac-
tical applications of the proposed control algorithm.
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