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Abstract
Image denoising faces significant challenges, arising from the sources of noise. Specifically, Gaussian, impulse, salt, pep-
per, and speckle noise are complicated sources of noise in imaging. Convolutional neural network (CNN) has increasingly 
received attention in image denoising task. Several CNN methods for denoising images have been studied. These methods 
used different datasets for evaluation. In this paper, we offer an elaborate study on different CNN techniques used in image 
denoising. Different CNN methods for image denoising were categorized and analyzed. Popular datasets used for evaluat-
ing CNN image denoising methods were investigated. Several CNN image denoising papers were selected for review and 
analysis. Motivations and principles of CNN methods were outlined. Some state-of-the-arts CNN image denoising methods 
were depicted in graphical forms, while other methods were elaborately explained. We proposed a review of image denoising 
with CNN. Previous and recent papers on image denoising with CNN were selected. Potential challenges and directions for 
future research were equally fully explicated.
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Introduction

In the last decade, the utilization of images has grown tre-
mendously. Images are corrupted with noise in the process 
of acquisition, compression, and transmission. Environmen-
tal, transmission, and other channels are mediums through 
which images are corrupted by noise. In image processing, 
image noise is the variation in signal (in random form) 
that affects the brightness or color of image observation 
and information extraction. Noise adversely affects image 
processing tasks (such as video processing, image analysis, 
and segmentation) resulting in wrong diagnosis [1]. Hence, 
image denoising is a fundamental aspect which strengthens 
the understanding of image processing task.

Due to the increasing generation of digital images cap-
tured in poor conditions, image denoising methods have 
become an imperative tool for computer-aided analysis. 
Nowadays, the process of restoring information from noisy 
images to obtain a clean image is a problem of urgent impor-
tance. Image denoising procedures remove noise and restore 
a clean image. A major problem in image denoising is how 
to distinguish between noise, edge, and texture (since they 
all have high-frequency components). Interestingly, the most 
discussed noise in literature is the: additive white Gaussian 
noise (AWGN) [2], impulse noise [3], quantization noise [4], 
Poisson noise [5], and speckle noise [6]. AWGN occurs in 
analog circuitry, while impulse, speckle, Poisson, and quan-
tization noise occur due to faulty manufacturing, bit error, 
and inadequate photon count [7]. Image denoising methods 
are used in the field of medical imaging, remote sensing, 
military surveillance, biometrics and forensics, industrial 
and agricultural automation, and in the recognition of indi-
viduals. In medical and biomedical imaging, denoising algo-
rithms are fundamental pre-processing steps used to remove 
medical noise such as speckle, Rician, Quantum, and others 
[8, 9]. In remotes sensing, denoising algorithms are used to 
remove salt and pepper, and additive white Gaussian noise 
[10, 11]. Synthetic aperture radar (SAR) images provide 
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space and airborne operation in military surveillance [12]. 
Image denoising algorithms have helped to reduce speckle 
in SAR images [13]. Moreover, forensic images do not have 
a specific kind of noise, they could be corrupted by any kind 
of noise. This noise can reduce the quality of evidence in the 
image thus, image denoising methods have helped suppress 
noise in forensic images [14]. Image denoising methods 
were used to filter paddy leaf and detect rice plant disease. 
Undoubtedly, image denoising is a hot area of research, 
encompassing all spheres of academic endeavor.

The linear, non-linear and non-adaptive filters were the 
first filters used for image applications [15]. Noise reduction 
filters are categorized into six (linear, non-linear, adaptive, 
wavelet-based, partial differential equation (PDE), and total 
variation filters). Linear filters appropriate output pixels 
with input neighboring pixels (using a matrix multiplica-
tion procedure) to reduce noise. Non-linear filters preserve 
edge information and still suppress noise. In most filtering 
applications, the non-linear filter is used in place of the lin-
ear filter. Linear filter does not preserve edge information; 
hence, it is considered a poor filtering method. A simple 
example of a non-linear filter is the median filter (MF) [16]. 
Adaptive filters employ statistical components for real-time 
applications (least mean square [17] and recursive mean 
square [18] are examples). Wavelets-based filters transform 
images to the wavelet domain and are used to reduce addi-
tive noise [19, 20]. A detailed review of different denoising 
filters is available in reference [21, 22].

Most of the above-mentioned filters have produced rea-
sonably good results, however, they have some drawbacks. 
These drawbacks include poor test phase optimization, 
manual parameter settings, and specific denoising models. 
Fortunately, the flexibility of convolutional neural networks 
(CNN) has shown the ability to solve these drawbacks [23]. 
CNN algorithms have shown a strong ability to solve many 
problems [24]. For example, CNN has achieved excellent 
results in image recognition [25], robotics [26], self-driving 
[27], facial expression [28], natural language processing 
[29], handwritten digital recognition [30] and so many other 
areas. Chiang and Sullivan [31] were the first to use CNN 
(deep learning) for image denoising tasks. A neural network 
(weighting factor) was used to remove complex noise, then 
a feedforward network [32] produced a balance between 
efficiency and performance of the denoised image. In the 
early developments of CNN, the vanishing gradient, activa-
tion function (sigmoid [33] and Tanh [34]), and unsupported 
hardware platform made CNN difficult. However, the devel-
opment of AlexNet [35] in 2012 has changed the difficulty in 
CNN usage. More CNN architecture (such as; VGG [36] and 
GoogleNet [37]) have been applied to computer vision tasks. 
References [38, 39] were the first CNN architecture used in 
image denoising tasks. Zhang et al. [40] used the denoising 
CNN (DnCNN) for image denoising, super-resolution, and 

JPEG image blocking. The network consists of convolutions, 
back-normalization [41], rectified linear unit (ReLU) [42] 
and residual learning [43].

The use of CNN is not limited to general image denoising 
alone, CNN produced excellent results for blind denoising 
[44], real noisy images [45], and many others. Although 
several researchers have developed CNN methods for image 
denoising, only a few have proposed a review to summa-
rize methods. Reference [46] summarized CNN methods 
for image denoising with categories based on noise type. 
Although this review is elaborate; it does not consider sev-
eral methods for specific images. Again, the research did not 
consider recent methods (the year 2020 methods); hence, 
several research works published in late 2020 were unin-
tentionally omitted. Our review provides an overview of 
CNN image denoising methods for different kinds of noise 
(including specific image noise). We discuss state-of-the-
arts methods with emphases on image type and noise speci-
fication. The outline of CNN image denoising methods is 
depicted in Fig. 1. It is hoped that explanations in this study 
will provide an understanding of CNN architectures used in 
image denoising. Our contribution is summarized as follows:

1.	 Analysis of different CNN image denoising models, 
database, and image type.

2.	 The highlight of commonly used objective evaluation 
methods in CNN image denoising

3.	 Potential challenges and road maps in CNN image 
denoising.

The rest of the paper is organized as follows. In Sect. 2, 
we review different CNN image denoising methods. In 
Sect. 3, we review databases for CNN image denoising algo-
rithms. Section 4 gives an analysis of CNN image denoising; 
finally, the paper is concluded in Sect. 5.

Literature review

In this section, several existing methods for CNN image 
denoising will be discussed. We divide CNN image denois-
ing approaches into two: (1) CNN denoising for general 
images, and (2) CNN denoising for specific images. The 
first approach uses CNN architectures to denoising general 
images, while the second approach uses CNN to denoise 
specific images. The first approach is widely used in CNN 
denoising applications when compared to the second. Gen-
eral images refer to images that represent a general purpose 
rather than the details (See [47] for samples of general 
images). Specific images are images intentionally created 
with a special or particular kind. For example, medical 
images, infrared images, remote sensing images, and others 
are kinds of specific images. The reason for dividing CNN 
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denoising by image category is to bring readers up to speed 
with the latest CNN architecture with regards to image types. 
A block diagram depicting different approaches is shown 
in Fig. 1.

CNN denoising for general images

Reference [48] proposed the attention-guided CNN (ADNet) 
for image denoising. ADNet consists of 17 layers with 4 
blocks (sparse block (SB), feature enhancement block 
(FEB), attention block (AB), and reconstruction block 
(RB)). The use of sparsity has shown to be effective for 
image application [49]; hence, the SB was used to improve 
efficiency, performance, and to reduce the depth of the 
denoising framework. The SB has 12 layers with two types 
(dilated Conv + BN + ReLU, and Conv + BN + ReLU). The 

FEB has 4 layers with 3 types (Conv + BN + ReLU, Conv, 
and Tanh), while the AB has a single convolution layer. The 
AB was used to guide the SB and FEB which are useful for 
unknown noise. Finally, the RB performs reconstruction to 
produce a clean image. For training, the mean square error 
[50] was used to create model training (see Fig. 2).

Some deep learning algorithm produces excellent results 
with synthetic noise; however, most of this network do not 
achieve good results in image corrupted by realistic noise. 
The research by Guo et al. [51] proposed the noise estima-
tion removal network (NERNet). NERNet reduced noise on 
images with realistic noise. The architecture was divided 
into two modules; the noise estimation module and the noise 
removal module. The noise estimation module appropri-
ates the noise-level map with the symmetric dilated block 
[52, 53] and the pyramid feature fusion [54]. Meanwhile, 
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the removal module used the estimated noise-level map to 
remove noise. The global and local information for preserv-
ing details and texture were aggregated into the removal 
module. The output of the noise estimate module was passed 
into the removal module to produce clean images.

It is no gainsaying that CNN learns noise patterns and 
image patches effectively. However, this learning produces 
a network with a large amount of training data and image 
patches. Because of the aforementioned, reference [55] pro-
posed the patch complexity local divide and deep conquer 
network (PCLDCNet). The network was divided into local 
subtask (according to clean image patch and conquer block) 
and was trained on its local space. Each noisy patch weight-
ing mixture was combined with the local subtask. Finally, 
image patches were grouped by complexity [56], while the 
training of the k network was achieved by the modified 
stacked denoising autoencoders [57]. Network degradation 
is another problem in a deep learning network (the deeper 
the layer the higher the error rate). Although the introduc-
tion of ResNet [58] resolved this issue, there is still room 
for improvement. Shi et al. [59] proposed the hierarchical 
residual learning that does not require the identity map-
ping for image denoising. The network has 3 sub-networks: 
feature extraction, inference, and fusion. Feature extraction 
sub-network extracts patches representing higher dimension 
feature maps. The interference sub-network [60] contains 
cascaded convolutions that produce a large receptive field. 
The cascaded procedure was performed to learn noise maps 

from multiscale information and to produce tolerating errors 
in noise estimation. Finally, the fusion sub-network fuses the 
entire noise map to produce estimation.

Gai and Bao [61], used the improved CNN (MP-DCNN) 
for image denoising. MP-DCNN is an end-to-end adaptive 
residual CNN constructed for modeling noisy images. Noise 
from the input image was extracted by the leaky ReLU, and 
the image features were reconstructed. An initial denoised 
image was inputted into the SegNet to obtain edge informa-
tion. The MSE and the perceptive loss function [62] were 
used to obtain the final denoised image (see Fig. 3).

Another research by reference [63] proposed a new dic-
tionary learning model for a mixture of Gaussian (MOG) 
distribution. The method was used for the expectation–maxi-
mization framework [64]. A minimization problem that uses 
the sparse coding and dictionary updating with quantita-
tive and visual comparison was adopted. Specifically, this 
method was used to learn hierarchical mapping functions, 
and to prevent vanishing problems, Zhang et al. [65] pro-
posed the separation aggregation network (SANet). SANet 
used three blocks (convolutional separation block, deep 
mapping block, and band aggregation block) to remove 
noise. The convolution separation block decomposed the 
input noise into sub-blocks [66, 67]. Then, each band was 
mapped into a clean and latent form using the convolution 
and ReLU layers. Finally, the band aggregation block con-
catenates all maps and convolutes features to produce the 
output. The SANet model was inspired by the non-local 
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patch (NPL) model [67]. NPL model consists of patch 
grouping, transformation, and patch aggregation. Residual 
images obtained by learning the difference between noisy 
and clean image pairs produce loss of information. This 
information is important in producing an effective noise-free 
output image. Reference [68] proposed the detail retaining 
CNN (DRCNN) to navigate between noisy and clean pairs 
without losing information. The model (DRCNN) focused 
on the integrity of high-frequency image content and pro-
duces better generalization ability. A minimization problem 
was analyzed, designed, and solved from the detail loss func-
tion. DRCNN has two modules: the generalization module 
(GM), and the detail retaining module (DRM). GM involves 
convolution layers with a stride of 1, while DRM involves 
several convolution layers. Unlike several architectures, 
DRCNN does not have BN.

Computation cost is an emerging problem in CNN 
applications, a very large network always occupies a large 
memory space and requires high computational capacity. 
These networks are unsuitable for applications on smart and 
portable devices. Because of the above problem, Yin et al. 
[69] proposed a side window CNN (SW-CNN) for image 
filtering. SW-CNN has two parts: side kernel convolution 
(SKC), fusion, and regression (FR). SKC aligns slide or cor-
ner of operation window with the target pixel to preserve 
edges. SKC was combined with CNN to provide effective 
representation power. A residual learning strategy [70] was 
adopted to map layers. FR involves two convolutional phases 
consisting of three operations: pattern expression, non-lin-
ear mapping, and weight calculations. The pattern expres-
sion calculates the gradient from the feature map tensor to 

produce a pattern tensor. Non-linear mapping convolutes the 
pattern tensor with different kernels to produce a tensor with 
(Hxwxd) dimension. Finally, the weight calculations gener-
ated the weighting coefficient of each pixel.

Single noise reduction with CNN is a difficult task. A 
more difficult task is to remove mixed noise from an image 
using CNN. Most mixed noise removal algorithms involve 
pre-processing outlier. Reference [71] proposed the denois-
ing-based generative adversarial network (DeGAN) for 
removing mixed noise from images. The generative adver-
sarial network (GAN) [72] has been widely used in deep 
learning applications. The DeGAN involved the generator, 
discriminator, and feature extractor network. The genera-
tor network used the U-Net [73] architecture, while the dis-
criminator network consists of 10 end-to-end design layers. 
The main purpose of the discriminator network was to check 
whether the image estimated by U-Net (extractor network) 
was noise free. Finally, the feature extraction network used 
the VGG19 [74] to extract features and to assist the model 
training by calculating the loss function (see Fig. 4).

Xu et al. [75] proposed the Bayesian deep matrix factori-
zation (BDMF) for multiple image denoising. BDMF used 
the deep neural network (DNN) for low-rank components 
and optimization via stochastic gradient variation Bayes 
[76–78]. The network is a combination of the deep matrix 
factorization (DMF) network and the Bayesian method. 
Synthetic and hyperspectral images were used to evaluate 
the methods. Reference [79] proposed the classifier/regres-
sion CNN for image denoising. The regression network was 
used for restoring the noisy pixel identified by the classifier 
network, while the classifier network detects impulse noise. 

Fig. 4   DeGAN [71]
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The classifier network involves convolution, BN, ReLU, a 
softmax, and a skip connection. Meanwhile, based on the 
label predicted by the classifier network, the regression net-
work used four layers and a skip connection to predict clean 
images (see Fig. 5).

Reference [80] proposed the complex-valued CNN 
(CDNet) for image denoising. First, the input image was 
passed to 24 sequential connected convolutional units 
(SCCU). SCCU involve the complex-valued (CV) convo-
lutional layer, complex-valued (CV) ReLU, and complex-
valued (CV) BN. A 64 convolutional kernel was used in the 

network. The residual block was implemented for the middle 
18 units. The convolution/deconvolution layer with a stride 
of 2 was used to improve computational efficiency. Finally, 
the merging layer transformed the complex-valued features 
into a real-value image. Overall, CDNet has five blocks: 
complex-valued (CV) Conv, complex-valued (CV) ReLU, 
complex-valued (CV) BN, complex-valued (CV) residual 
block (RB), and merging layer (see Fig. 6).

Zhang et al. [81] proposed the detection and reconstruc-
tion of CNN for color images (3-channel). The method has 
three networks; classifier network, denoiser network, and 

Fig. 5   Classifier/regression 
CNN [79]
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reconstruction network. The classifier network predicts color 
channels to determine the probability of impulse noise in the 
image. Decision-maker procedures (that compute the label 
vector of each pixel) were employed to ascertain noisy or 
noise-free color pixels. Sparse clean image replaced cor-
rupted channels (0 for noise free). Finally, the denoised 
image was reconstructed by the image reconstruction archi-
tecture. In a nutshell, the classifier network (consist of con-
volution, and ReLU layers) predicts the probability of chan-
nels, then the denoiser network (consist of convolution, BN, 
and ReLU layers) corresponds to the noise-free color pixel, 
while the reconstruction network (has only convolutions) 
reconstructs the images. Although the networks have the 
same structures, the depth and the number of nodes are dif-
ferent. Adaptive moment estimation (Adam) [82] was used 
to optimize the networks.

Reference [83] proposed the CNN variation model (CNN-
VM) for denoising of images. The CNN used in this research 
was termed EdgeNet and it consists of multiple scale resid-
ual blocks (MSRB). EdgeNet extracts feature from the noisy 
image through an edge regularization method. The total 
variation regularization was used to obtain superior perfor-
mance in the shape edge. The Bregman splitting method 
was used to obtain solutions to the model. MSRB employed 
a kernel of two for each bypass to detect local features. A 
skip connection was used for inputting data and to gener-
ate output features. Another skip connection was used after 
each MSRB block with a bottleneck layer fusing detected 
features. Four MSRB blocks were adopted in the EdgeNet 
training procedure. A comparison of different methods in 
this section is available in Tables 1 and 2.

CNN denoising for specific images

Islam et al. [84] proposed a feedforward CNN method to 
remove mixed noise (Gaussian–impulse). The method 
adopts a computational efficiency transfer learning approach 
for noise removal. The model consists of a pre-processing, 
and four convolution filtering stages. A rank order filter-
ing operation was applied to each stage and the convolution 
layer preceded the ReLU and max-pooling layers. The output 
of the first stage was fed into the ReLU and the output of 
the ReLU was pooled (max pooling). The second and third 
stages used convolution and ReLU layers, and the last stage 
adopts the convolution layer. A back-propagation algorithm 
(with differentiable and traceable loss function) was used to 
train the model. Finally, the model used a data argumenta-
tion [85, 86] for effective learning. Another research by Tian 
et al. [87] proposed a deep learning method based on U-Net 
[73] and Noise2Noise [88] method. First, the noise was val-
idated on computer-generated holography (CGH) images. 
Then, the classical Gerchberg–Saxton (GS) algorithm [89] 
was used to generate different holograms (two-phase). Next, 

the noise reduction mechanism (UNET and Noise2Noise) 
was obtained. Finally, the MSE was used as the loss func-
tion and the learning rate was set at 0.001. Like the pre-
vious method, the MSE was adopted as the loss function; 
apparently, MSE can act as a good loss function in image 
denoising.

Reference [90] proposed the spectral–spatial denoising 
residual network (SSDRN). SSDRN used the spectral dif-
ference [91] mapping method based on CNN with residual 
learning for denoising. The network was an end-to-end algo-
rithm that preserves spectral profile and removes noise. A 
key band was selected based on a principal transform matrix 
with DnCNN [40]. Overall, SSDRN involves three parts: 
spectral difference learning, key band selection, and denois-
ing (by DnCNN) model. Unlike most CNN denoising mod-
els, SSDRN used the batch normalization [92] layer in each 
block of the algorithm. Reference [93] proposed the patch 
group deep learning for image denoising. A training set 
with a patch group was created and then the deep learning 
method [94, 95] was used to reduce the noise. Reference [96] 
developed an end-to-end deep neural network (DDANet) for 
computational ghost image reconstruction. DDANet used 
a bucket signal with multiple tunable noise-level maps. A 
clear image was outputted after training with the simulated 
bucket signals and the ground-truth image. DDANet has 21 
layers that include: fully connected layers, dense blocks, and 
convolution layers. The inputs, transformation, noise adding 
[97] encoding [98], and object recovery layers were used 
in the DDANet architecture. A skip connection [99, 100] 
for passing high-frequency feature information was utilized. 
The attention gate (AG) [101] and dilated convolution were 
used to filter the features. Finally, the dropout layer [102] 
was used to avoid overfitting, while the BN accelerated loss 
function.

Zhang et  al. [103] proposed the deep spatio-spectral 
Bayesian posterior network (DSSBPNet) for hyperspectral 
images. A blend of Bayesian variation posterior and deep 
neural network produced the DSSBPNet. Specifically, the 
method was divided into two parts: deep spatio-spectral 
(DSS) network and Bayesian posterior. The DSS network 
split the input image into three parts producing a spatio-
spectral gradient [104] for each part. Different convolutions 
were used in the DSS network. Meanwhile, the likelihood of 
original data, noise estimate, noise distribution, and sparse 
noise gradient constitute the Bayesian posterior method. 
Finally, a forward–backward propagation method was used 
to connect the DSS with the Bayesian posterior. Reference 
[105] proposed the two-stage cascaded residual CNN to 
remove mixed noise from infrared images. The model used 
the mixed convolutional layer combining dilated convolu-
tions, sub-pixel convolutions, and standard convolutions to 
extract and improve accuracy. A residual learning method 
was used to estimate the calibration parameter from the 
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input image. Five feature extraction blocks (FEBs) used 
the coarse–fine convolution unit (CF-Conv) and the spatial-
channel noise attention unit (SCNAU) to stack noise fea-
tures. The last convolution layer for each network consists of 
a single filter with kernel size (see Fig. 7). Giannatou et al. 
[106] proposed the residual learning CNN (SEMD) for noise 
removal in scanning electron microscopic images. SEMD 
is a residual learning method inspired by the DnCNN and 
trained to estimate the noise at each pixel of a noisy image. 
The input block in SEMD consists of a convolutional layer 
followed by a ReLU and BN. The output block consists of 
a convolution with one filter for reconstruction. Jiang et al. 
[107] proposed the generative adversarial network based 

on the deep network for denoising of underwater images 
(UDnNet). UDnNet consists of two sub-networks: a gen-
erator network, and a discriminator network. The generator 
network generates realistic samples using the training pro-
cedure, asymmetric codec structure, and a skip connection. 
The output of the generative network was processed by the 
convolution-instance Norm-Leaky ReLU. A deconvolution-
instance Norm-Leaky ReLU decodes the features.

Reference [108] combined the bilateral filter, the hybrid 
optimization, and the CNN to remove noise. The bilat-
eral filter [100, 109] was used to remove noise, while 
the hybrid optimization used the swarm insight strategy 
[110] to preserve edges. Finally, a CNN classifier (with 

Table 1   Comparison of CNN denoising methods for general images

Author References Year CNN name Noise type Image type Additional comments

Tian et al. [48] 2020 ADNet General noise General image Sparse, attention, enhancement, 
and reconstruction blocks for 
image denoising

Guo et al. [51] 2020 NERNet Realistic noise General image Used the noise estimation and 
noise removal modules for 
denoising

Hong et al. [55] 2019 PCLDCNet General noise General image Combine the complexity local 
divide and deep conquer

Shi et al. [59] 2019 Hierarchical residual learning General noise General image Three network module for noise 
removal

Zhang et al. [63] 2019 Dictionary learning model Gaussian-mixed noise General image Propose the dictionary learning 
model with a minimization 
framework

Gai and Bao [61] 2019 MP-DCNN Mixed noise General image Leaky ReLU, SegNet, MSE, and 
perception loss function for 
image denoising

Zhang et al. [65] 2019 SANet General noise General image Used the convolution separation, 
deep mapping, and band aggre-
gation blocks to remove noise

Li et al. [68] 2020 DRCNN General noise General image Generalization and detail 
retaining modules for image 
denoising

Yin et al. [69] 2020 SW-CNN General noise General image Slide kernel convolution, CNN, 
fusion, and regression

Lyu et al. [71] 2020 DeGAN Mixed noise General image Extractor, discriminator, and 
feature extractor network for 
noise removal

Xu et al. [75] 2020 BDMF General noise Multiple images A Bayesian method with deep 
matrix factorization for image 
denoising

Jin et al [79] 2020 Classifier/regression CNN Impulse noise General image A combination of the classifier 
and regression model for image 
denoising

Zhang et al. [81] 2019 Detection/reconstruction CNN Impulse noise Color images Deep CNN using reconstruction 
and detection methods

Fang and Zeng [83] 2020 CNN-VM General noise General image TV, MSRB, and Bregman split-
ting method

Quan et al. [80] 2021 CDNet General noise General image CV Conv, CV ReLU, CV BN, 
CV residual block, and merg-
ing layers
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convolution layers, pooling layer with feature extraction, 
and fully connected layer) was used to classify the image. 
For the evaluation procedure, the peak signal to noise 
ratio, vector root mean square error, structural similarity 
index, and root mean square error was adopted [8, 111]. 
A major challenge when using CNN for speckle reduc-
tion is labeling. Ultrasound images are not labeled; hence, 
it becomes very difficult for deep learning to identify 
speckle. Feng et al. [112] proposed a hybrid CNN method 
for speckle reduction. The method involves a three knowl-
edge system. Since speckle noise was similar to Gaussian 

distribution in the logarithm transform domain, the dis-
tribution parameters were also estimated in the logarithm 
transformation domain with maximum likelihood estima-
tion. Second, a transfer denoising network was trained 
with a clean natural image dataset. Finally, the VGGNet 
was used to extract structural boundaries from the trained 
images. Overall, the transferable denoising network was 
trained based on Gaussian prior knowledge of Ultrasound 
clean images. Then, fine-tuning of the pre-trained network 
with prior knowledge of structural boundaries was per-
formed. Ultrasound images (breast, liver, and spinal) and 

Table 2   Advantages and disadvantages of CNN denoising methods for general images

Author References Advantages Disadvantages Accura-
cies 
(PSNR)

Accu-
racies 
(SSIM)

Tian et al. [48] Reduces the memory footprint of a network
Produces ability to learn longer range 

dependencies and remove gradient vanish-
ing problems

Require lots of computation power
Add extra weights to the network which 

makes the network slow

35.69 –

Guo et al. [51] Support exponential expansion of recep-
tive field without loss and with improved 
performance

Add extra weight parameter to the network 
which consumes computation

40.10 0.94

Hong et al. [55] Creates deeper representation for effective 
denoising

Require lots of computation power
Network arrangement is cumbersome

26.36 0.78

Shi et al. [59] Reduces network degradation without learn-
ing identity mapping

Increases validation accuracy

Increases network complexity and depends 
largely on batch normalization

33.37 0.88

Zhang et al. [63] Reduces the amount of computation time, 
and select features effectively

Difficult to train and produces space com-
plexity

31.56 0.86

Gai and Bao [61] Usage of LeakyReLU provides better perfor-
mance, fast and easy calculations without 
dying ReLU

Adjustment during training is impossible 
which may lead to lower accuracies

29.15 0.88

Zhang et al. [65] Reduces gradient vanishing problem and 
produce high accuracies

High bias is carried into aggregated frames
Require lots of computation power

35.0 0.94

Li et al. [68] Uses fewer parameters and hence does not 
require large storage

Adapts easily to different image restoration 
task

May be trapped at a local minimum
Produces recurrent parameter changes after 

a calculation that may result in low accura-
cies

32.88 0.94

Yin et al. [69] Learn filtering task efficiently which help to 
reduce computation time

When applied to a large dataset may produce 
low accuracy

Require lots of computation power

41.35 0.99

Lyu et al. [71] Generate samples faster and easily
Do not require bias, specific dimensionality

Require lots of computation power
Setup is cumbersome

33.69 0.96

Xu et al. [75] Easy to incorporate accuracies in the model Require lots of computation power without 
a very excellent priori model which may 
reduce accuracies

– 0.61

Jin et al. [79] Produce stable training when batch size is 
large, decreasing the scale of updates while 
training

Require lots of computation power
Require sufficient batch size to generate good 

result

46.41 0.99

Zhang et al. [81] Perform optimally for both color and gray-
scale images

Require large batch size to generate good 
result

39.26 0.99

Fang and Zeng [83] Reduces staircase effect on images, and effec-
tively preserves edges

Prone to contrast loss when fusing with CNN 33.05 0.89

Quan et al. [80] Produces good accuracy with a complex-
valued layer

Require lots of computation power 45.78 0.90
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artificially generated phantom (AGP) images were used to 
evaluate the method.

Reference [113] used the pre-trained residual learn-
ing network (RLN) for despeckling of ultrasound images. 
The model consists of noise and pre-trained RLN models. 
A noise model was created from the training dataset, and 
then random patches were generated from the speckle noise 

images. The RLN was then used to train the random patches, 
and a despeckled image was created. The pre-trained RLN 
has 59 layers (consist of Conv, ReLU, and BN) for training 
and testing. The method was tested with artificial and natural 
images corrupted with speckle noise (see Fig. 8).

Kim and Lee [114] proposed the conditional generative 
adversarial network (CGAN) for noise reduction in low-dose 

Fig. 7   Two-phased cascaded 
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chest images. CGAN involves the generative model [115], 
discriminator model [116], and the prediction model. The 
generator model has 14 layers and focused on synthesized 
realistic images from random vector sample noise distribu-
tion. Meanwhile, the discriminator model has 4 layers and 
trains on ground-truth images. The tensor library was used 
to accomplish the CGAN architecture. Li et al. [117] pro-
posed a progressive network learning strategy (PNLS) that 
fits the Racian distribution with large convolutional filters. 
The network consists of two residual blocks (used for fitting 
pixel domain, and matching pixel domains). The first resid-
ual block used the Conv, and ReLU layers without the BN 
layer. The second residual block used the Conv, ReLU, and 
BN layers. Each block has 5 layers with three convolution 
layers acting as the intermediary between blocks (see Fig. 9).

Reference [118] proposed a novel CNN method for 
denoising MRI scans (CNN-DMRI). The network used con-
volutions to separate image features from noise. CNN-DMRI 
is an encoder–decoder structure for preserving important 
features and ignoring the unimportant ones. The neural 
network learns prior features from the image domain and 
produced clean images. A down-sampling and up-sampling 

factor of 2 was adopted. CNN-DMRI is a four-layer network; 
the first two layers have 64 filters followed by CONV lay-
ers. The down-sampling layer has 128 filters followed by 4 
residual blocks and a 64 up-sampling filter. Finally, a concat-
enation of the noisy image and the network was performed 
to produce a clean MRI. Comparison of different methods 
in this section is available in Tables 3 and 4.

CNN image denoising performance 
measures

Performance evaluations are key indices in image denois-
ing. Over the years, researchers have used different objec-
tive evaluation methods for CNN image denoising. Below 
are different evaluation methods adopted by researchers in 
CNN denoising.

The mean square error (MSE): Is the average of the 
square of the difference between the original image and the 
denoised image. Lower MSE values signify better image 
quality.

Fig. 8   Pre-trainedRLN [113]
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Peak signal to noise ratio (PSNR): is determined 
through the MSE. It is an engineering term that meas-
ures the ratio between maximum original signal and MSE. 
Higher PSNR values signify better image quality.

Structural similarity index measure (SSIM): measure 
perceptual difference (such as luminance, contrast, and 

(1)MSE =
1

N
||I − L||2.

(2)PSNR = 10*log10

(
(max (I))2

MSE

)
.

structure) of two similar images. Higher SSIM values sig-
nify better image quality.

where �I and �L are the average gray values, �I and �L are the 
variance of patches, �IL is the covariance of I and L, and Q1 
and Q2 denote two small positive constants (typically 0.01).

Root mean square error (RMSE): measure the difference 
between estimated predictions and actual observed values. 
The MSE is the scale square of RMSE. The RMSE between 
two image metrics (P, Q) is:

(3)SSIM(u, v) =

(
2�I�L + Q1

)(
2�IL + Q2

)
(
�2
I
+ �2

L
+ Q1

)(
�2
I
+ �2

L
+ Q2

) ,

Table 3   Comparison of CNN denoising methods for specific images

Author References Year CNN Name Noise type Image type Additional comments

Islam et al. [84] 2018 Feedforward CNN Mixed noise (Gauss-
ian and impulse)

Object recognition 
image

Feedforward CNN with 
data argumentation for 
proper learning

Tain et al. [87] 2020 Deep learning (U-Net 
and Noise2Noise 
method)

General noise Coherent images Used the U-Net and 
Noise2Noise method 
for denoising

Xie et al. [90] 2018 SSDRN General noise Hyperspectral image The spectral difference 
with DnCNN for 
image denoising

Park et al. [93] 2020 Patch group deep 
learning

– Cadmium zinc telluride 
fusion image

Patch group deep 
learning for image 
denoising

Wu et al. [96] 2020 DDANet General noise Computational ghost 
images

Bucket signal, fully 
connected, dense, and 
convolutional layers

Zhang et al. [103] 2020 DSSBPNet General noise Hyperspectral images Deep spato-spectral 
network, and Bayesian 
posterior method

Guan et al. [105] 2020 Two-phase cascaded 
residual CNN

Mixed noise Infrared images Cascaded CF-conv and 
SCNAU for image 
denoising

Giannatou et al. [106] 2020 SEMD General noise Scanning electronic 
microscopic images

Residual learning CNN 
for image denoising

Jiang et al. [107] 2020 UDnNet General noise Underwater images Generator and discrimi-
nator networks

Elhoseny and Shankar [108] 2019 FB, DF-MFF, and CNN Salt and pepper noise Medical images (MRI, 
CT scan, ultrasound)

FB, DF-MFF, and CNN

Feng et al. [112] 2020 Hybrid CNN Speckle noise Ultrasound images Transfer denoising net-
work and VGGNet

Kokil and Sudharson [113] 2020 Pre-trained RLN Speckle noise Ultrasound and general 
images

Testing and training pre-
trained RLN

Kim and Lee [114] 2020 CGAN General medical noise Low-dose chest images Generator and dis-
criminator for noise 
reduction

Tripathi and Bag [118] 2020 CNN-DMRI Rician noise MRI images Encoder-decoder 
denoising MRI 
network

Li et al. [117] 2020 PNLS Rician noise MRI image Cascading of two sub-
Rician networks for 
image denoising
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Feature Similarity (FSIM and FSIMc): is designed for 
gray-scale images and luminance components of color 
images. It computes local similarity maps and pools these 
maps into a single similarity score.

To learn more about the FSIM and FSIMc see refer-
ence [119].

(4)RMSE =
√
MSE (P,Q) =

����
m�

p=1

n�

q=1

(Ppq − Qpq)
2.

(5)FSIM =

∑
x∈Ω SL(x).PCm (x)
∑

x∈Ω PCm (x)
,

(6)FSIMc =

∑
x∈Ω SL(x).

�
Sc(x)

��
.PCm (x)

∑
x∈Ω PCm (x)

.

The signal to noise ratio (SNR): measures noise level rela-
tive to the original image as follows.

The Spectral Angle mapper (SAM), and the Erreur Rela-
tive Globale Adimensionnelle de Synthèse (ERGAS) [120] are 
used with other evaluation methods in remote sensing images. 
Overall, the PSNR and the SSIM are the most widely used 
evaluation methods for CNN denoising. These two methods 
are popular because they are easy and are considered tested 
and valid [121].

(7)SNR = 10log10
||L||

||I − L||
.

Table 4   Advantages and disadvantages of CNN denoising methods for specific images

Author References Advantages Disadvantages Accura-
cies 
(PSNR)

Accu-
racies 
(SSIM)

Islam et al. [84] A very easy and fast training process
Produces good accuracies

Requires a very large dataset for accurate 
results

31.61 0.92

Xie et al. [90] Reduces the problem of vanishing gradi-
ent and obtain good accuracies and 
training time

Require lots of computation power, setup 
is cumbersome

45.58 0.98

Elhoseny and Shankar [108] Excellent edge preservation and effective 
noise removal

Require lots of computation power, setup 
is cumbersome

52.35 0.95

Wu et al. [96] Produces easy writing optimization, 
hence saves time and provides easy 
maintenance

Require lots of computation power 23.1 0.95

Zhang et al. [103] Produces easy accuracies, and maximizes 
explicit objectives

Assumptions are needed for priori which 
are difficult to understand

37.69 0.98

Feng et al. [112] Pre-trained weight and architecture pro-
duces speckle clean images, and require 
less computation power

Require longer interference time and 
prone to error because of the deep 
network

30.68 0.90

Guan et al. [105] Eliminates vanishing problem with the 
encoder and decoder

Require lots of training time, because of 
the long sequence model

38.23 –

Kokil and Sudharson [113] Reduces vanishing gradient problem, 
hence produce good speckle reduction 
result

Require longer interference time and 
produces higher test error

31.46 0.89

Kim and Lee [114] Image despeckling is easy, fast, and 
accurate

Easy to generate images for training

Difficult in training the model (model is 
too complex)

– 0.97

Li et al. [117] Reduces vanishing gradient problems and 
produce a good noise removal network

Require longer interference time and 
produces high test error

35.21 0.96

Tripathi and Bag [118] Dimensions of feature maps are reduced 
hence produce a good result

Reduces vanishing gradient problem with 
residual blocks

Require lots of computation power, 
network setup is cumbersome

43.18 0.98

Jiang et al. [107] Learn identity function effectively, and 
provide an alternative path for gradient

Require lots of computation power 32.09 0.94
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Datasets

This section provides a list of datasets used for CNN image 
denoising algorithms. They include: ImageNet large scale 
visual recognition challenge object detection (ILSVRC-
DET) [122], Places2 [123], BerkeleySegmentation Data-
set (BSD) [124], waterloo explorationdatabase [125], 
EMNIST [126], COCO dataset [127], MIT-Adobe five k 
[128], ImageNet [129], BSD68 [130], Set 14 [131], Renoir 
[132], NC12 [133], NAM [134], SIDD [135], SUN397 
[136], Set5 [137], CAVE [138],Harvard database [139], 
MRI brain dataset [140], LIVE1, Chelsea,DIV2K dataset 
[141], HIS dataset Xiongan, first Affiliated Hospital of 
Sun Yat-Sen University, Shenzen third people’s Hospital, 
Artificially generated phantom (AGP) [142], Ultrasound 
dataset [143, 144], SPIE American association of physicist 
in medicine lung CT-challenge database [145], SIAT-CAS 
MRI dataset, Brainweb [146, 147], IXI dataset [148], Mul-
tiple sclerosis [149], Prostrate MRI [150], ThammasatU-
niversity Hospital dataset [151]. A few samples of data 
in the dataset used by researchers for CNN denoising are 
shown in Fig. 10. Similarly, Fig. 11 is the graph of data-
sets used for evaluating CNN denoising methods. How-
ever, the Berkeley segmentation dataset has the highest 
usage because it is particularly suited for image denoising 
research. Three major points that matter when selecting 
datasets are relevance, usability, and quality [47, 152]. 
Hence, we believe that datasets with higher usage for 
CNN denoising tasks have these aforementioned points. 
It should be noted that some datasets were not recorded in 
the graph (Fig. 10). The reason for this was because they 
have a fewer appearance in CNN denoising researchers.

Analysis

A total of 152 references were included in this paper, specifi-
cally, 31 research papers related to CNN image denoising. 
In this review, a conscious effort was made to include all 
research articles relating to CNN image denoising; however, 
some studies might have been skipped. A graph depicting the 
number and the publication year for CNN image denoising 
methods is available in Fig. 12. From the figure, it is clear 
that researchers have just recently adopted CNN for image 
denoising. This is open research for further experimentation 
and exploration. Finally, the graph of image type adopted by 
the CNN image denoising methods is available in Fig. 13

Conclusions and future directions

Recently, CNN architectures are becoming quite useful 
in image denoising. We have proposed a survey of differ-
ent techniques relating to CNN image denoising. A clear 
understanding of different concepts and methods was elu-
cidated to give readers a grasp of recent trends. Several 
techniques for CNN denoising have been enumerated. A 
total of 144 references were included in this paper. From 
the study, we observed that the GAN was the most used 
method for CNN image denoising. Several methods used 
the generator and the discriminator for extraction and 
clean image generation. Interestingly, some researchers 
combined the GAN method with the DCNN methods. The 
feedforward CNN and U-Net were also used. The residual 
network was used severally by researchers. A reason for 
the high usage of the residual network could be its effec-
tiveness and efficiency. Researchers used the residual net-
work to limit the numbers of convolutions in their network. 

Fig. 10   A few samples of images in datasets used by researchers
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Fig. 11   Datasets for CNN-IQA methods

Fig. 12   Number of papers published yearly
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A creative measure adopted by the researcher was to try to 
mixed noise (impulse Gaussian noise). To reduce mixed 
noise in images, several careful deep convolutions were 
required. The Rician and speckle noise is common in med-
ical images. Pre-trained networks have worked excellently 
in medical image noise reduction. The database from 
Berkeley was the most used in CNN image denoising. In 
addition, the attention mechanism and residual networks 
are commonly used CNN techniques in image denoising 
tasks. The reason for such wide acceptance is because of 
their popularity and effectiveness in image denoising.

Some problems confronted by CNN image denoising 
methods include not enough memory for CNN applica-
tions, and difficulty in solving unsupervised denoising 
tasks. Conclusively, only very few CNN methods were 
used for medical images. It will be encouraging if more 
CNN methods could be applied to denoise medical images. 
In addition, the authors try to collect codes and software; 
however, it was not available. The provision of more mem-
ory allocations for the CNN task will be very helpful. This 
could be a research area for future discussion.

The findings of the review can be summarized below:

•	 From the available literature, it is clear that CNN can 
considerably remove all kinds of noise from images and 

advance capability in image denoising. Several studies 
reported higher performance of CNN architecture for 
image denoising. CNN architectures support end-to-end 
procedures and are implemented promptly.

•	 CNN architecture can be customized for noise removal 
tasks creating patterns that remove the bottleneck of van-
ishing gradients.

•	 CNN methods are designed using technical knowledge 
and principles in concert with understanding the noise 
type and noise models.

•	 Most studies used pre-trained CNN models; however, 
noise properties are in a continuous nature and need a 
model built from scratch. Building such a model creates 
room for readjustment and fine-tuning. However, build-
ing a model from the beginning require lots of computa-
tion space and time. With the introduction of cloud-based 
methods (e.g., COLAB), it is hoped that the problem of 
space and time would be resolved.

•	 The use of spatial patterns in CNN architecture could 
create a shift from conventional methods to deep learn-
ing methods. Contrary to perceptions that CNN is a black 
box, features visualization methods provide a trusted 
platform for noise removal, however, the greatest chal-
lenge remains the computational time and space.

Fig. 13   List of image types
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