
Complex & Intelligent Systems (2021) 7:2735–2750
https://doi.org/10.1007/s40747-021-00423-9

ORIG INAL ART ICLE

S2ES: a stationary and scalable knowledge transfer approach for
multiagent reinforcement learning

Tonghao Wang1 · Xingguang Peng1 · Demin Xu1

Received: 23 January 2021 / Accepted: 4 June 2021 / Published online: 13 July 2021
© The Author(s) 2021

Abstract
Knowledge transfer is widely adopted in accelerating multiagent reinforcement learning (MARL). To accelerate the learning
speed of MARL for learning-from scratch agents, in this paper, we propose a Stationary and Scalable knowledge transfer
approach based on Experience Sharing (S2ES). Themainframe of our approach is structured into three components: what kind
of experience, how to learn, and when to transfer. Specifically, we first design an augmented form of experience. By sharing
(i.e., transmitting) the experience from one agent to its peers, the learning speed can be effectively enhanced with guaranteed
scalability. A synchronized learning pattern is then adopted, which reduces the nonstationarity brought by experience replay,
and at the same time retains data efficiency. Moreover, to avoid redundant transfer when the agents’ policies have converged,
we further design two trigger conditions, one is modifiedQ value-based and another is normalized Shannon entropy-based, to
determine when to conduct experience sharing. Empirical studies indicate that the proposed approach outperforms the other
knowledge transfer methods in efficacy, efficiency, and scalability. We also provide ablation experiments to demonstrate the
necessity of the key ingredients.

Keywords Knowledge transfer · Experience sharing · Multiagent reinforcement learning · Learning from scratch

Introduction

Due to the capacity in solving single-agent sequential
decision-making tasks, reinforcement learning (RL) meth-
ods like Q-learning [47] have attracted increasing research
interest in recent years. In such scenarios, the problem can
be mathematically modeled as a Markov decision process
(MDP) [36]. When it extends to multiagent systems (MAS),
multiagent RL (MARL) algorithms have been developed. In
the context of MARL, the MDP is extended to an environ-
ment where only the joint action of all individual actions can
fully determine the state transition [33]. Thus, MARL is a
more complex problem, and its learning speed is often not
very satisfactory [31].

Knowledge transfer has been proven as a useful tool to
accelerate MARL [8,41]. One popular approach is action
advising [1,25,35], which focuses on enhancing the perfor-
mance of learning agents (advisees) according to the expert

B Xingguang Peng
pxg@nwpu.edu.cn

1 School of Marine Science and Technology, Northwestern
Polytechnical University, Xi’an 710072, PR China

agents’ (advisors’) policies [51]. Chernova and Veloso [7]
proposed a confidence-based knowledge transfer method.
They designed a distance threshold to describe the agent’s
familiarity with the current state and a confidence threshold
to estimate the expected performance with respect to the cur-
rent state. If the two thresholds are not fully satisfied, the
knowledge transfer will be triggered, i.e., the learning agent
will ask for action advice from a predefined teacher. Further
considering the communication cost in the advising process,
Torrey and Taylor [44] proposed an action advising method
named Teaching on a Budget. The authors designed several
criteria to evaluate when it is proper to offer action advice.
With the help of the designed criteria, the performance of the
agent was enhanced with a limited amount of advice from
the teacher. In these cases, action advising showed satisfac-
tory performance with fixed roles of advisors and advisees,
which should be predefined before learning by integrating
pre-trained agents with expert knowledge [34,43] or human
demonstrations [11,42].

However, experts or human demonstrations are not always
available in many cases, for example, multiagent path plan-
ning problems [13] and smart grid problems [40]. In this
kind of cases, the tasks could be totally different, so that

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-021-00423-9&domain=pdf
http://orcid.org/0000-0002-8704-3841
http://orcid.org/0000-0001-8483-5432

2736 Complex & Intelligent Systems (2021) 7:2735–2750

experts from other tasks may not perform well; and in these
tasks, it is often very hard or expensive for humans to find
an optimal solution for demonstration. In other words, it is
unfeasible to predefine the role of advisors or advisees [25],
and the agents have to learn from scratch. Silva et al. [32]
proposed a simultaneously learning and advising method to
achieve action advising based on dynamic role assignment.
The proposed method allows the agents to exchange their
roles between an advisor and an advisee, thereby dynam-
ically determine whether an agent should ask for or give
advice according to trigger conditions that are calculated
according to Q values and state visit counts (i.e., how many
times an agent has encountered a specific state). Hou et al.
[14] modeled action advising-based approaches as memetic
processes and designed a Q value-based metric to evaluate
the timing of providing action advice. Without maintaining
visit counts for specific states, this kind of metrics can be
adopted in problems with large state space. To avoid the
biases from handcrafted trigger conditions, Omidshafiei et
al. [25] proposed LeCTR, introducing two more networks
for each agent to learn when to request and provide advice,
respectively. Since the advice selection problem remains
unsettled, LeCTR can only be applied to pairwise scenar-
ios, i.e., only two agents are allowed in the environment.

Although remarkable progress has been made, there are
two inherent flaws if we directly adopt the action advising-
basedmethods in learning-from-scratch settings: (1) Limited
scalability. For algorithms aiming to solve multiagent prob-
lems, it is crucial to keep effective and practical when the
number of agents grows up [16,27]. In the action advising-
based methods, the knowledge transfer is conducted in an
inquiry-answer manner, which means that an advisor (pre-
defined or dynamically determined) has to put itself in the
advisees’ places and calculate solutions for them with extra
computational burden. In learning-from-scratch scenarios,
the computational load will be magnified, because every
agent could be an advisor,making the computational load rise
quadratically with the growth of the number of agents. This
feature hinders the scalability of the system. A more detailed
analysis can be found in Sect. 3.4. (2) Nonstationarity. When
there is more than one agent in a shared environment, the
behavior of each agent will affect the others’ observation
of this environment. In a learning-from-scratch MARL sce-
nario, the behavioral policies of the agents are constantly
changing due to the concurrent learning of the agents, mak-
ing the reaction pattern of the environment seems to be not
deterministic, i.e., nonstationary, in the view of each agent
[24,49]. This is a common and crucial issue for MARL with
multiple learning agents [23], which changes the learning
target of the agents and thus prevents them from converging
to a fixed optimum [12]. There are many approaches to solve
the nonstationarity. A straightforward way is to disable the

experience replay [9,14,25], but this will eliminate the data
efficiency. Another kind of approach is to collect the obser-
vations of all the peers as the policy input [21]. However, it
will do harm to the scalability, because the dimension of the
state space will rise remarkably with the number of agents.
Thus, it is very challenging and necessary to develop a new
knowledge transfer approach that can give consideration to
both scalability and stationarity.

To this end, we propose a Stationary and Scalable knowl-
edge transfer approach based on Experience Sharing (S2ES)
to enhance the learning speed of MARL with learning-
from-scratch agents. First, to enhance the scalability of the
algorithm,we design an augmented form of experience as the
expression of knowledge. By actively sharing this augmented
experience from one agent to its peers, the inquiry-answer
manner can be avoided, making the computational load of
the learning system show linear increase with the growth of
the system scale. Second, a synchronized learning scheme is
designed to reduce nonstationarity. The synchronized learn-
ing scheme devotes to making the learning trajectories of the
agents identical for stationarity, and the multiagent nature
enables it to retain the merits of experience replay. More
importantly, the input of an agent’s policy remains to be its
local observation, avoiding dimension explosion of the state
space when there are many peers. At last, we also design two
metrics to determine when the experience should be trans-
ferred.

The main contributions of this paper are

1. A novel augmented experience-based experience sharing
scheme is proposed for the learning-from-scratchMARL
problem, which shows good scalability and stationarity.

2. We propose a new principle in designing trigger con-
ditions for S2ES, and design two conditions using this
principle to determine when to share the experience.

3. Empirical studies with ablations are provided, which not
only validates the proposed algorithm but also clarifies
the contributions of each component.

The remainder of this paper is organized as follows. In
Sect. 2, we present some background concepts and algo-
rithms. Sect. 3 details the proposed S2ES, followed by a
numerical analysis of the scalability. Empirical studies and
ablations are provided and discussed in Sect. 4, and some
concluding remarks and future works are outlined in Sect. 5.

Preliminaries

In this section, we introduce some relevant mathematical
backgrounds of RL and MARL.

123

Complex & Intelligent Systems (2021) 7:2735–2750 2737

MDP and SG

MDPs [2] are often used to describe sequential decision-
making and can be seen as a formalization of single-agent RL
problems [36].AnMDP is defined by a tuple 〈S,A, T,R, γ 〉,
where S and A are the state space and action space, respec-
tively. T(s, a, s′) : S × A × S → [0, 1] is the transition
probability function, denoting the probability of state tran-
sition from s to s′ given action a. R : S × A → R is the
reward function and γ ∈ [0, 1) is a discount factor. Usually,
the agent in a MDP aims to find an optimal policy π∗ that
can maximize the state value function when t = 0. The state
value function can be given by

vπ (s) = Eπ

[∞∑
k=0

γ krt+k+1|st = s

]
, (1)

where π : S×A → [0, 1] is the policy that the agent takes,
vπ (s) represents the value of state s under policy π , Eπ [·]
calculates the expected value given policy π , and rt denotes
the reward at time t . To evaluate the quality of an action
choice in state s, the state-action value function (AKA Q
value) is defined as

Qπ (s, a) = Eπ

[∞∑
k=0

γ krt+k+1|st = s, at = a

]
. (2)

When the system is extended to a MAS setting, it can be
modeled as a Stochastic Game (SG) [3,30] (orMarkovGame
[20]). Assuming the agents can only perceive local state
observations rather than the state of the environment, an SG
can be formalized as a tuple G = 〈n,S,U, T,O, O,R, γ 〉
[9], inwhichn denotes the number of agents.U : U1×· · ·×Un

is the joint action space; for agent i , we have its own action
ui ∈ Ui and the joint action u ∈ U. T(s, u, s′) : S×U×S →
[0, 1] is the transition probability given a state and a joint
action.O : O1 × · · · ×On is the joint observation space and
O is the observation function. For agent i , it obtains an obser-
vation oi = O(s, ui) : S × Ui → Oi . R : R1 × · · · × Rn

is the joint reward space, in whichRi is the reward function
of agent i .

Q-learning and IQL

Q-learning [47] is a classic RL algorithm for MDPs, which
iteratively updates the Q-value according to

Qπ (s, a) = Qπ (s, a) + α (y − Q (s, a)) , (3)

in which y = r + γ maxa′ Q
(
s′, a′) is the target value, and

δ
.= y−Q (s, a) is the TD error. Employing neural networks

to estimate the Q-value, Mnih et al. [22] developed the deep

Q-network (DQN). To train the network for better estima-
tions, if the neural network is parameterized by vector θ , the
following loss function should be minimized:

L (θ) = Es,a,r ,s′∼D
[(
y− − Q (s, a; θ)

)2]
, (4)

in which D denotes the experience replay buffer, which is
adopted to break the correlations of the observation sequence.
y− = r + γ maxa′ Q

(
s′, a′; θ−)

is the target value given by
a periodically updated target network with parameter vec-
tor θ−, aiming to remove the correlations between Q-value
and target value. The experience replay and target network
together improve the learning stability.

When trying to solvemultiagent tasks, one straightforward
but efficient way to extend Q-learning to the independent Q-
learning (IQL) [39]. In IQL, each agent learns an independent
policy according to its own observations and actions. Incor-
porating neural networks and experience replay, Tampuu et
al. [37] introduced DQN to IQL. Since it does not need any
centralized computation or global information, this kind of
independent learning approaches are well received due to its
scalability [9]. However, the adoption of experience replay
brings outdated knowledge to the learning agents,making the
learning process nonstationarity [24]. In this paper, we aim
to effectively accelerate the learning process of independent
learners while reducing the nonstationarity.

Since themain contribution of this paper lies in the knowl-
edge transfer procedure, later in this paper, we will take the
classic independent DQN as the base algorithm to detail the
derivation and implementation of S2ES.

S2ES

In this section, we introduce the general framework of our
proposed S2ES, detail how and why the expected goals can
be achieved by the proposed schemes, and analyze the scal-
ability of S2ES numerically. The mainframe of S2ES can be
divided into 3 main parts: what kind of experience, how to
learn, and when to transfer.

What kind of experience

In the MARL domain, the effectiveness of the experience
sharing schemehas been demonstrated in the literature. Com-
monly, experience refers to the tuple 〈oi , ui , r i , o′i 〉, inwhich
oi and ui represent state observation and action of agent i ,
respectively. r i is the resultant reward, and o′i is the state
observation at next time step [52]. The time index is omitted
for brevity. Wang et al. [45] introduced the experience shar-
ing scheme into the dynamic service composition domain.
A centralized supervisor collects the state transitions of the

123

2738 Complex & Intelligent Systems (2021) 7:2735–2750

Fig. 1 Demonstration of the
different computational load of
sharing regular experience and
the augmented experience.
Purple boxes mark the
differences between Fig. 1a, b.
1© Experience generation: We
have to calculate the target value
y to generate the augmented
experience, while for the regular
experience, 〈o, u, r , o′〉 is
enough. 2© Loss calculation:
When using the regular
experience to calculate the loss,
an agent needs to compute y
together with the Q value; but
for the augmented experience,
the target values can be obtained
directly from the experience
without calculation

agents and offers action advice to the agents at each step.
Similarly, Yasuda and Ohkura [50] designed a centralized
controller to learn how to move a swarm of robots. The con-
troller is trained by collecting the experiences of the robots.
Compared with the methods above, we focuses on a kind of
MASwhere the agents learn from scratchwithout centralized
memories or controllers.

In S2ES, we first design the “experience” using an aug-
mented form of transition. To enhance the learning stability,
a periodically updated target network is usually adopted to
help with the calculation of target values yi , which is respon-
sible to break the correlations between the action values Qi

and target values yi [22]. In this work, we take the networks
of the peers as the target networks and design an augmented
form of experience: adding target value yi , rather than its
ingredients r i and o′i , to the experience. Fed by the shared
(transmitted) augmented experience fromagent j , the param-

eters of agent i’s value network θ i will be updated according
to the loss given by

L
(
θ i

)
= Eo,u,y j∼D

[(
y j − Qi

(
o, u; θ i

))2]
. (5)

Apparently, the incorporation of y j in Eq. 5 is expected to
eliminate the correlation between target value and Q value
without maintaining target networks for each agent, which
should be able to enhance the stability of the algorithm.

Another good feature of sharing the augmented experience
is the computational efficiency. Since the target values are
pre-calculated by the transmitting agents, the receivers need
not do this computation again when reusing shared experi-
ence to train their networks. Compared to sharing regular
experience

〈
o, u, r , o′〉, this reduces the computational load.

Figure 1 depicts the difference in detail. In each epoch, an

123

Complex & Intelligent Systems (2021) 7:2735–2750 2739

agent selects action according to its own observation and
policy and gets feedback from the environment. Now, it is
sufficient for an agent to obtain and share the regular expe-
rience, i.e., state transition

〈
o, u, r , o′〉 (see Fig. 1a), while it

is not before the target value is computed if we would like to
share the augmented experience (see Fig. 1b). For agentswho
have received experience transmitted from the peers, if the
experience is in the regular transition form, they should cal-
culate the target value of each piece of experience together
with the Q value to further calculate the loss; while if the
augmented experience is transmitted, the target values can
be obtained directly from the experience, which means that
only the Q values should be computed then. This explains
why sharing the augmented experience will reduce the com-
putational burden.

At the same time, since S2ES shares experience actively
without considering the status of the peers, its computational
load is naturally lower than the action advising-based knowl-
edge transfer in which the advisors have to undertake extra
computations for the advisees. More importantly, compared
to the action advising-based methods, the actively sharing
mechanism in S2ES provides better scalability with respect
to the number of learning agents. More detailed analysis and
comparison of the scalability will be given later in Sect. 3.4.

How to learn

Having determined what kind of experience to share, we now
discuss how the received experience should be used in the
learning process.

It is natural if we simply introduce the concept of expe-
rience replay in single-agent deep RL, saving and sampling
experience in a replay buffer, which is expected to improve
the data efficiency and stability.However, itwill bringnonsta-
tionarity, because the sampled experience may be generated
by old-fashioned policies [9,26].

Nonstationarity is a key challenge for independent learn-
ers [19]. Since the independent learners take the state of the
peers as part of the environment, when the policies of the
peer agents are changed, the state transition probability will
change in the view of an agents local perspective, which
brings about nonstationarity.

Formally, according to [19] and [24], the decision-making
process of agent i in an MAS is stationary, iff, for any time
k, l ∈ N, given o, o′ ∈ Oi and u ∈ U

P
[
ok+1 = o′ | uk =

〈
ui , u−i

k

〉
, ok = o

]
= P

[
ol+1 = o′ | ul =

〈
ui , u−i

l

〉
, ol = o

]
,

(6)

in which u−i = u\ {
ui

}
, i.e., the joint action of all the agents

except agent i .

One possible solution is to disable the experience replay
[10], avoiding the effects of the outdated experience. This
brings a difficult choice between using experience replay for
better stability and data efficiency and disabling it for better
stationarity.

Here, we propose a synchronized learning scheme, trying
to avoid the nonstationarity brought by old experience while
at the same time retaining the stability and sample efficiency
to some extent. Specifically, each agent in S2ESmaintains an

independent replay buffer, D̂i
for agent i , which only stores

the self-generated and received experience at the current time
step. At every time step, agent i updates θ i according to Eq. 5
using all the experience in the buffer, i.e., the batch size is
equal to the max size of replay buffer. Then, at the beginning
of each time step, the replay buffer will be cleaned up for the
upcoming new experience.

With the help of the designed synchronized learning, the
agents no longer use the experience generated by old policies,
and thus, the environment should be stationary in agents’
local view [9]. On the other hand, although the sampling
efficiency is reduced, because the outdated experience is dis-
carded, the shared experience can make up for this loss to
some extent. Meanwhile, with S2ES, the instability caused
by the sequential correlation of the experience will no longer

exist, because the experience in D̂i
are generated from dif-

ferent decision-making processes of different agents.

When to transfer

There exist many MARL scenarios in which the system is
sensitive to the communication cost in the learning process,
such as real-world training or learning systems deployed on
computer clusters. In these cases, too much communication
among agents in the knowledge transfer process will instead
lower the learning speed [44]. Hence, we have to further
modify S2ES to reduce the communication cost.

As detailed above, the action advising-based methods
require two-way communication—the advisees need to first
broadcast their own observations, and then, the advisors will
send advice back. In contrast, S2ES devotes to accelerat-
ing the learning process by actively sharing experience. This
can be achieved in a one-way manner, indicating that the
communication of S2ES has been naturally reduced by half.
Meanwhile, compared to the regular experience

〈
o, u, r , o′〉,

the augmented experience has its advantage in packet size.
Here, we try to further reduce the communication by intro-

ducing two metrics to trigger the experience sharing when
necessary. In general, current works focus on two types of
metrics: state visit counts based [32] and Q value-based
[14,44]. The state visit count-based methods assume that
an agent is more skilled in handling the states which have
been visited more. This requires each agent to keep a count

123

2740 Complex & Intelligent Systems (2021) 7:2735–2750

for every possible state, which may be unfeasible when the
state space is extremely large. The Q-based approaches are
not affected by the state space, but before the policies of the
agents are converged, the Q valueswill be noisy, and thus, Q-
based metrics will be groundless in the early learning stage
[1,53].

However, considering the exploration–exploitation trade-
off in the RL process, we believe that the early learning
stage is just a period when the knowledge transfer should be
encouraged for better exploration, which has similar insights
to the anneal process in ε-greedy; as learning proceeds, the
policies of the agents are expected to converge and the Q
values will get more accurate, which makes it reasonable to
rely on the Q value then.

On this basis, we first design a S2ESmethod with Q value
based trigger condition, namely S2ES-Q. Since an agent
needs to know the Q values of the peers, the Q value should
be added to the augmented experience, so the augmented
experience of S2ES-Q can be written as

〈
oi , ui , Qi , yi

〉
1 for

agent i . Then, inspired by the Sigmoid function, a modifying
function f (·) is designed to modify the Q value, which is
given by

f
(
Qi j , τ

)
= Qi j

1 + e−a(τ−b)
, a, b > 0, τ ∈ N

+, j ∈ Ni , (7)

where Qi j denotes the latest Q value that agent i has received
from agent j , a and b are tuning parameters of the modifying
function, τ is the number of episodes that the agents have
been experienced, andNi is a set of the neighbors of agent i .
Denoting ni as the number of agent i’s neighbors, the trigger
condition of experience sharing can be written as

Qi >
1

ni

∑
j

f
(
Qi j , τ

)
. (8)

It is obvious that the modifying function 7 will lower the
Q-value in the early stage to make the condition 8 satisfied
more frequently, triggering more experience sharing in the
early stage. While later, f

(
Qi j , τ

)
will gradually converge

to Qi j , whichmeans only experiencewith higher state-action
value than the averagewill be shared. This featurewill reduce
communication significantly in the later stage.

Shannon entropy is another metric that can describe the
action quality in the aspect of confidence in the decision-
making process. Thus, we try to adopt the normalized
Shannon entropy in [28] to the S2ES framework, named as
S2ES-H. The normalized Shannon entropy can be written as

Hi = −
M∑

m=0

p
(
uim

) · log p
(
uim

)
logM

, (9)

1 This will not affect the above packet size comparison between regular
and augmented experience.

in which Hi is the normalized entropy of agent i’s action
distribution, M is the number of possible actions of agent i ,
i.e., the dimension of Ui , and p

(
uim

)
is defined as

p
(
uim

)
= Qi

(
o, uim; θ i

)
∑M

m=0 Q
i
(
o, uim; θ i

) . (10)

The key design principle of the modifying function in
S2ES-Q is to encourage experience sharing in the early stage,
because the Q value-based metric may be inaccurate and
more exploration should be conducted at that time. Simi-
larly, the entropy of actions can also be inaccurate in the early
learning stage, since the Hi is also calculated by Q values, as
described in Eq. 10. Thus, in S2ES-H, this principle should
also be followed. For simplicity, we use the same modify-
ing function f (·) as in S2ES-Q, and the trigger condition of
S2ES-H can be given by

f
(
Hi , τ

)
= Hi

1 + e−a(τ−b)
〈HT , a, b〉 0, τ ∈ N

+, (11)

where HT is a fixed threshold.
With the trigger condition 11, experience sharing will

be triggered more frequently in the early learning stage; as
learning proceeds, f

(
Hi , τ

)
converges to Hi gradually, and

only experience generated by highly confident actions will
be shared. Since the value of normalized Shannon entropy
is strictly limited to (0, 1], it is convenient and reasonable to
find a fixed threshold to trigger the communication, avoiding
the inclusion of trigger-condition-related information in the
augmented experience, like the Qi in S2ES-Q. Therefore, the
augmented experience in S2ES-H remains to be

〈
oi , ui , yi

〉
.

This good feature explains why we choose the normalized
entropy rather than the vanilla Shannon entropy in this work.

However, we have to point out that the metrics based on
Eq. 8 are just intuitive examples to validate the basic ideas
of this paper. A more systematic derivation of the trigger
condition should be investigated in the future.

We can now give the overall workflow of S2ES, as shown
in Fig. 2. At time t , each agent in the system perceives the
state of the environment st and generates the corresponding
observation, i.e., ot1 for agent 1. Then, the action ut1 is gen-
erated according to the policy of agent 1. At the same time,
ot1 and u

t
1 are saved to the augmented experience; the corre-

sponding Qt
1 should also be saved if we use S2ES-Q rather

than S2ES-H. After getting feedback from the environment,
the agent will further calculate the target value yt1 and save
it to finally form the augmented experience Et

1. If E
t
1 is, in

the view of agent 1 itself, qualified to share, then it will be
transmitted to the peer agents. Each agent maintains a replay
buffer which only stores the augmented experience at the
current time step, which is aimed to reduce nonstationarity.

123

Complex & Intelligent Systems (2021) 7:2735–2750 2741

Fig. 2 Workflow of S2ES

Algorithm 1 S2ES
Initialization: n agents, Environment

Procedure S2ES

1: while stop condition is not satis f ied do

2: for each agent i do

3: Get observation oi ;

4: Get action ui according to π(θ i) (ε − greedy);

5: Interact with Environment and get target yi ;

6: if S2ES-Q then

7: Augmented Experience Ei = 〈
oi , ui , Qi , yi

〉
;

8: else if S2ES-H then

9: Augmented Experience Ei = 〈
oi , ui , yi

〉
;

10: end if

11: if (S2ES-Q and Trigger Condition 8) or (S2ES-H and Trigger Condition 11) then

12: Send Ei to the other agents;

13: end if

14: Collect experience from peers;

15: Form the batch D̂i
;

16: Train π(θ i);

17: end for

18: end while

Algorithm 1 provides the pseudocode of the proposed S2ES.

Analysis of scalability

In deep RL, the main computational load lies in the decision-
making (forward) and learning (backpropagation) processes,
both of which are related to the size of the network. In the
following analysis, all the agents are assumed to use the same
neural networks.

Assuming S2ES is utilized in an MAS with n learning
agents, each agent conducts one round of both decision-
making and training at each time step. For a single agent,

denoting the computational load of one decision-making
process as cf and one backpropagation as cb, the total com-
putational load of S2ES in a step can be written as

TS2ES = n · cf + n · cb = C · n, (12)

where C is a constant. We can find that the adoption of S2ES
does not affect the time complexity of the system, which
remains to be O(n).

As for the action advising-based approaches, assuming
that there is a probability pask for each agent to raise an
inquiry, and a probability pans for agents who received the
inquiries to provide advice to the advisees, for each step in

123

2742 Complex & Intelligent Systems (2021) 7:2735–2750

an MAS with n learning agents, the total computational load
can be given as

TAA = n · cf + n · cb + pask · n · pans · (n − 1) · cf
= C1 · n2 + C2 · n,

(13)

where C1 and C2 are constants. The third term of Eq. 13
depicts the extra computation induced by action advising.
Therefore, the time complexity of action advising-based
methods is O(n2).

To summarize, the computational load of MARL with
S2ES increases linearly with the growth of the scale of the
MAS,which indicates that S2ESwill not affect the scalability
of the learning system. While for the action advising-based
approaches, it shows quadratic increase under the same set-
tings. This indicates better scalability of S2ES.

Empirical study

In this section,wewill first compare the proposedS2ESmeth-
ods (including S2ES-Q and S2ES-H) with other methods
empirically, analyzing the difference inmission performance
and computational load. Then, ablation studies are provided
to demonstrate the impact of each component. At last, the
scalability of S2ES will be verified.

To validate the effectiveness and efficiency of S2ES, we
utilize the classicminefield navigation tasks (MNT) platform
[38,48]. The MNT simulates a grid minefield environment
with one flag (target) and several tanks (agents) and bombs
(obstacles) randomly distributed in the field. The mission of
the tanks is to navigate to the target while avoiding colli-
sions. Once a tank arrives at the target within the time limit,
it is counted as one successful event; otherwise, if a tank
encounters collisions, it fails the mission and gets stuck to
the spot until the next episode. One episode ends when the
conditions of all the agents are determined, i.e., successful or
failed, or when the time runs out. Then, the positions of the
agents, obstacles, and destination will be randomly reset to
start a new episode. A typical scenario of the MNT mission
is given in Fig. 3.

In an MNT mission, global information of the environ-
ment is not available to the agents. Instead, the agents are
equipped with three sets of detecting sonars that can observe
local information. The bombs and agents sonar sets detect
the bombs and agents in five directions—left (L), left front
(LF), front (F), right front (RF), and right (R), obtaining the
relative distance and bearing of the bombs and peer agents.
As for the target, only the relative bearing can be obtained,
but the target sonar set is equipped in all 8 directions, i.e., L,
LF, F, RF, R, left-back, back, and right-back, which means
that this bearing of the target is available in any direction.
This meets the real-world sensing of not only autonomous

Fig. 3 Illustration of an MNT mission

tanks or unmanned ground vehicles (UGVs) [6,18], but also
other unmanned agents like autonomous underwater vehicles
(AUVs) [4,5,46]. The agents can only move one grid at once
and not allowed to move backwards, so we can formalize the
action space of agent i as Ui = {L, LF, F, RF, R}.

All the agents use fully connected multilayer perceptrons
with one hidden layer composed of 36 neurons and run DQN
independently with a learning rate of 0.5. The ε-greedy strat-
egy is adopted for exploration, in which ε is initialized as 0.5
and anneals linearly to 0.005. The hyper-parameters of the
modifying function are set as a = 0.001 and b = 5000.

Comparison with existing algorithms

In this section, we compare the performance of the proposed
S2ES with action advising-based method eTL, episode shar-
ing [39], and deep IQL with no knowledge transfer.

AdHocTD, AdHocVisit [32], eTL [14], and LeCTR [25]
are some of themost classic action advising based algorithms
that investigate the knowledge transfer problem for MARL
with no experts, in which AdHocTD and AdHocVisit are
based on state visit counts, while eTL is based on Q values.
However, for an MNT task, the state space is very large. The
number of states for each agent in MNT can be given by

nGrid
nSonar · nTargetBearing, (14)

where nGrid is the number of grids on each side (i.e., the reso-
lution of the sonars), nSonar denotes the number of the sonars,
and nTargetBearing is the number of possible relative directions
of the destination. For a 16 × 16 sized map, the number of
states is 1610 × 8, which makes counting the visiting times
of each state unfeasible. At the same time, LeCTR is only
designed for pairwise scenarios, which cannot be applied to

123

Complex & Intelligent Systems (2021) 7:2735–2750 2743

Fig. 4 Policy enhancement in the learning process. The subfigures are snapshots of 5 S2ES-Q agents in MNT missions after 0, 5000, 10,000, and
30,000 episodes, respectively. The circles denote the starting positions of the agents and the lines with arrows track their trajectories

Table 1 Time consumption of
the compared algorithms (in
hours)

Scenario Algorithm

S2ES-Q S2ES-H IQL eTL Episode sharing

3 agents, 5 bombs 0.26 0.24 0.25 0.39 0.85

5 agents, 10 bombs 0.35 0.43 0.43 0.77 1.20

10 agents, 5 bombs 0.61 0.57 0.71 2.30 2.42

15 agents, 3 bombs 0.88 0.80 1.00 4.34 3.72

MAS with more than two agents yet. Thus, we select eTL as
the representation of action advising-based methods.

In the following experiments, we set the minefield as
a 16 × 16 grid world, and the length of each episode is
limited to 30 steps. There are 30000 episodes in each experi-
ment, and the performance is evaluated over intervals of 100
episodes. Experiments are conducted in four MNT scenarios

of different complexity, and the results are averaged over 50
independent runs.

Figure 4 shows the ability enhancement of S2ES-Q learn-
ing agents in a learning process. Figure 4a tracks the
trajectories of the agentswithout learning, inwhich the agents
move blindly and end up with 0 rewards (the blue and cyan
trajectories guide the tanks to the bomb, while the others

123

2744 Complex & Intelligent Systems (2021) 7:2735–2750

0 0.5 1 1.5 2 2.5 3

104

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e
/ %

3 agents, 5 bombs

S2ES-Q

S2ES-H
eTL
IQL
EpisodeSharing

0 0.5 1 1.5 2 2.5 3

104

0

10

20

30

40

50

60

70

80
5 agents, 10 bombs

S2ES-Q

S2ES-H
eTL
IQL
EpisodeSharing

0 0.5 1 1.5 2 2.5 3

Episodes 104

0

10

20

30

40

50

60

S
uc

ce
ss

 R
at

e
/ %

10 agents, 5 bombs

S2ES-Q

S2ES-H
eTL
IQL
EpisodeSharing

0 0.5 1 1.5 2 2.5 3

Episodes 104

0

10

20

30

40

50
15 agents, 3 bombs

S2ES-Q

S2ES-H
eTL
IQL
EpisodeSharing

Fig. 5 Success rates of the compared algorithms

make the tanks wander in the field until 30 steps are used
up). As the learning process proceeds, the agents gradually
learn to approach the target while avoiding bombs. As shown
in Fig. 4b–d , a clear tendency can be found that the agents
become more and more likely to find collision-free short
paths to the destination.

Figure 5 demonstrates the performance of the methods in
MNT scenarios with 3 agents and 5 bombs, 5 agents and 10
bombs, 10 agents and 5 bombs, and 15 agents and 3 bombs,
respectively. The lines are plotted according to the mean suc-
cess rate of the independent runs, while the shadows denote
the standard deviation (STDV). We can find that, in all of
the provided scenarios, the success rates of both S2ES-Q
and S2ES-H are higher than the other approaches at both the
early stage and the following convergence phase, indicating
that S2ES accelerates the learning speed better than the other
knowledge transfer approaches. At the same time, we can

also find that S2ES-Q has a similar performance to S2ES-H,
showcasing the rationality of the design principle of the trig-
ger condition. In addition, the STDV of S2ES methods are
also lower that the other methods.

Table 1 details the total computation time of the 50 inde-
pendent runs. The data are generated on the same computer
with Intel� Core(TM) i7-8700K CPU @3.70 GHz and an
RAM of 32 GB. From this table, we can find that S2ES
(including S2ES-Q and S2ES-H) achieves the best perfor-
mance with the lowest computation time compared with the
other algorithms. It is inevitable that the interaction between
agents increases the computational time. However, since
S2ES brings little extra computational load and the signifi-
cant performance enhancement of S2ES reduces the average
length of the episodes, its computing time is even shorter
than the algorithm with no communication (IQL). When
using the action advising-based method eTL, the advisors

123

Complex & Intelligent Systems (2021) 7:2735–2750 2745

0 0.5 1 1.5 2 2.5 3

104

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e
/ %

3 agents, 5 bombs

S2ES-Q

S2ES-H
eTL
IQL
EpisodeSharing

0 0.5 1 1.5 2 2.5 3

104

0

50

100

150

200
5 agents, 10 bombs

S2ES-Q

S2ES-H
eTL
IQL
EpisodeSharing

0 0.5 1 1.5 2 2.5 3

Episodes 104

0

100

200

300

400

500

600

S
uc

ce
ss

 R
at

e
/ %

10 agents, 5 bombs

S2ES-Q

S2ES-H
eTL
IQL
EpisodeSharing

0 0.5 1 1.5 2 2.5 3

Episodes 104

0

200

400

600

800

1000

1200
15 agents, 3 bombs

S2ES-Q

S2ES-H
eTL
IQL
EpisodeSharing

0 1 2 3

104

0

1

2

0 1 2 3

104

0

1

2

0 1 2 3

104

0

1

2

0 1 2 3

104

0

1

2

Fig. 6 Number of communication of the compared algorithms

Table 2 The number of
transmitted packages of the
compared algorithms

Scenario Algorithm

S2ES-Q S2ES-H eTL Episode sharing

3 agents, 5 bombs 5.95 5.23 16.55 16.67

5 agents, 10 bombs 6.91 5.93 24.97 17.18

10 agents, 5 bombs 10.61 7.61 48.49 27.89

15 agents, 3 bombs 13.20 10.69 69.52 29.31

have to conduct extra calculations to generate the advice for
the advisees; while when using S2ES, the potential advi-
sors share experience based solely on their own observation
rather than considering the others’ status. This causes the dif-
ference in computational time between S2ES and eTL. The
long computing time of Episode Sharing lies in the learning
of too many episodes and the low success rate.

The number of communication during the whole learn-
ing process is illustrated in Fig. 6. We can find that S2ES-Q,
S2ES-H, and eTL show downward trends in the learning pro-

cess, which is due to the decrease of the number of steps in
each episode brought by the policy improvement. However,
the trends of S2ES algorithms are more significant thanks to
the trigger condition in Eqs. 8 and 11 . Note that although the
episode sharing method shows a small number of commu-
nication at the early stage, it transmits all the transitions of
an episode at once. If we define the size of a state transition
as the standard size of a package, Table 2 provides the aver-
age number of transmitted packages in an episode. It is clear
that the transmitted packages of both S2ES-Q and S2ES-H

123

2746 Complex & Intelligent Systems (2021) 7:2735–2750

are much less than the other knowledge transfer approaches,
which indicates that S2EShas the lowest communication traf-
fic.

To summarize, our proposed S2ES-Q and S2ES-H can
efficiently accelerate the learning process in the learning-
from-scratch scenario, and achieves better performance com-
pared with the other popular knowledge transfer approaches.
Compared to the action advising-based and episode sharing-
based knowledge transfer approaches, S2ES-Q and S2ES-H
can achieve better acceleration performance with lower com-
putational load and communication cost.

Ablations

To confirm whether each part of S2ES works as expected,
we further provide a series of ablation studies in the MNT
scenario with 5 agents and 10 bombs.

Figure 7 demonstrates the effectiveness of sharing the
augmented experience. Compared to the deep IQL2 with-
out any information exchanging among agents, the learning
speed is significantly enhanced in the early learning stage
by sharing regular experience and using them in a conven-
tional experience replay manner (ES-EXP-ER). However,
the incorporation of replay buffer brings nonstationarity,
which causes the significant performance drop. When the
agents share the augmented experience but remain saving
and sampling them in the experience replay (ES-AEXP-ER),
the learning speed in the early stage is further enhanced.
Moreover, the learning curve of ES-AEXP-ER drops less
dramatically than that of ES-EXP-ER, indicating that the
the stability is improved. This matches the motivation of the
design of augmented experience, which is that the shared
target value will break the correlation between Q and target
value. Since the nonstationarity problem remains unsolved,
the learning target keeps changing and the performance still
drops with learning.

The performance of the synchronized learning scheme can
be indicated in Fig. 8. By incorporating synchronized learn-
ing, even sharing regular experience (ES-EXP-SYNC) can
achieve better performance than ES-EXP-ER. More impor-
tantly, we should note that ES-EXP-SYNC converges to
a similar optimum to eTL without performance dropping.
Since eTL has no concern about nonstationarity, because
it does not use experience replay, it is fair to say that the
incorporation of synchronized learning can reduce the non-
stationarity as we expected.

The influence of the event triggering scheme is demon-
strated in Fig. 9. Here, we add S2ES without event trigger
(i.e., sharing all the augmented experience, namely ES-
AEXP-SYNC-ALL) for comparison. Comparison of the
number of communication is provided in Fig. 10. We can

2 Note that we do not incorporate target networks in this paper.

0 0.5 1 1.5 2 2.5 3

Episodes 104

0

10

20

30

40

50

60

70

80

S
uc

ce
ss

 R
at

e
/ %

ES-AEXP-ER
ES-EXP-ER
IQL

Fig. 7 Ablation for augmented experience

0 0.5 1 1.5 2 2.5 3

Episodes 104

0

10

20

30

40

50

60

70

80

S
uc

ce
ss

 R
at

e
/ %

ES-EXP-SYNC
ES-EXP-ER
eTL

Fig. 8 Ablation for synchronized learning

find that with the event triggering schemes, the communica-
tion is significantly reduced, especially in the late learning
stage, while the performance remains satisfactory. This is a
good feature for systems that are sensitive to the commu-
nication cost in the learning process. The trade-off between
communication and learning performance can be adjusted by
tuning a and b in Eq. 7 according to the user’s preference.

Validation of scalability enhancement

In this section, the scalability of the proposed S2ES is investi-
gated. Since S2ES-H shows similar performance to S2ES-Q,
and the different choice of trigger condition will not affect
the scalability of the algorithm, in this part, we take the per-

123

Complex & Intelligent Systems (2021) 7:2735–2750 2747

0 0.5 1 1.5 2 2.5 3

Episodes 104

0

10

20

30

40

50

60

70

80
S

uc
ce

ss
 R

at
e

/ %

ES-AEXP-SYNC-ALL

S2ES-Q

S2ES-H

Fig. 9 Ablation for event trigger

0 0.5 1 1.5 2 2.5 3

Episodes 104

0

1000

2000

3000

4000

5000

6000

7000

8000

N
um

be
r

of
 C

om
m

un
ic

at
io

n

ES-AEXP-SYNC-ALL

S2ES-Q

S2ES-H

Fig. 10 Comparison of communication with or without event trigger

formance of S2ES-Q as the representation of S2ES for clarity
and use the name of S2ES in the following figures and anal-
ysis for generalization.

The test environment is an extension of MNT with a
25 × 25 grid world and 10 mines. 5, 10, 15, 20, 25, and
30 learning agents are deployed in this environment, respec-
tively. Each episode has a timeout of 50 steps, and the results
are evaluated every 100 episodes. There are 15000 episodes
in each simulation run, and 50 independent runs are carried
out.

Keeping effective is a primary requirement when analyz-
ing scalability [17]. Figure 11 shows the mean success rates
over each episode in the 50 runs. The boxes and dots in the
figure illustrate that S2ES outperforms eTL in terms of both

0

10

20

30

40

50

60

A
ve

ra
ge

 S
uc

ce
ss

 R
at

e
/ %

S2ES
eTL

5 10 15 20 25 30
Number of Agents

Fig. 11 Mean success rates for different number of agents

5 10 15 20 25 30

Number of Agents

0

2

4

6

8

10

12

14

T
im

e
C

on
su

m
pt

io
n

/ h

0.42 0.79 1.13 1.47 1.81

2.22

0.8

2.21

4.22

6.77

9.83

13.12
S2ES
eTL

Fig. 12 Computational complexity with different number of agents

the overall success rate and variance, regardless of the num-
ber of agents.

Computational load is a crucial feature when evaluating
the scalability of an algorithm. If the computational load
increases dramatically with the growth of the system scale, it
will become impractical for the learningmethod to be applied
to large-scale multiagent systems. Time consumption of eTL
and S2ES with the different number of agents is given in
Fig. 12, where the time refers to the total time of 50 indepen-
dent runs. From this figure,we canfind that the computational
load of S2ES increases linearly as the number of agents
increases, while that of eTL grows quadratically. This result
matches our analysis in Sect. 3.4, which can be attributed
to the different knowledge transfer mechanisms. For agents
running S2ES, by providing “good” knowledge actively, no
extra computational load have to be taken to generate advice;

123

2748 Complex & Intelligent Systems (2021) 7:2735–2750

0

5

10

15
N

um
be

r
of

 C
om

m
un

ci
at

io
n

105

S2ES
eTL

0

0.5

1

1.5

2
105

5 10 15 20 25 30

Number of Agents

Fig. 13 Number of communication with different numbers of agents

while in contrast, agents with action advising-based knowl-
edge transfer have tomake decisions for both themselves and
their peers.

Communication is another key factor. Figure 13 compares
the average number of communication of eTL and S2ES in
each episode, from which we can find that the communica-
tion of these two approaches differs by orders of magnitude.
Meanwhile, it is notable that the communication of eTL also
increases quadratically, while that of S2ES increases only
linearly.

To summarize, the simulation results on theMNTplatform
indicate that S2ES outperforms the action advising-based
methods in terms of both performance and scalability. A gen-
eral test is conducted to show the effectiveness and efficiency
of S2ES, while ablations further clarify the contributions of
each part of S2ES. Moreover, we also provide simulations to
show that, compared to the action advising-based methods,
S2EShas better scalabilitywith respect to both computational
load and communication cost.

Conclusion

Devoting to accelerating MARL in scenarios where all the
agents learn from scratch, we propose a stationary and
scalable knowledge transfer approach based on experience

sharing, namely S2ES, to conduct knowledge transfer among
agents in the learning process.

The main structure of S2ES is divided into what kind of
experience, how to learn, and when to transfer. Specifically,
we first design an augmented form of experience, which is
able to effectively enhance the learning speed. By actively
sharing the augmented experience to the peers, the knowl-
edge canbe transferredwithout extra computing for the peers,
which further brings high computing efficiency and scalabil-
ity. A synchronized learning scheme is then introduced, by
which the agents only learn through the experience at the
current time. This avoids the nonstationarity brought by the
conventional experience replay and, at the same time, retains
data efficiency to some extent. At last, considering there are
some MARL scenarios that are sensitive to the communica-
tion cost in the learning process, we further design an event
triggering scheme to determine when to share the augmented
experience to the peers. Taking the accuracy of Q value into
account, two trigger conditions are provided, one is Q value
based and another is normalized entropy-based.

Empirical studies in MNT scenarios with different com-
plexity demonstrate that S2ES achieves effective acceleration
for learning-from-scratch MARL and outperforms the other
popular approaches. Ablation studies are provided to fur-
ther confirm the credits of each part for the performance
enhancement, whichmatches well with our expectations.We
also present performance analysis when the learning system
scales up, which not only shows that S2ES keeps performing
well in different settings, but also confirms that the compu-
tational load of S2ES increases only linearlywith the growth
of the number of agents, indicating better scalability than the
action advising-based approaches.

In the future, the problem of when to transfer should
be further investigated. More delicate triggering condition
should be provided, which may consider communication
cost, state familiarity, negative transfer, and the accuracy of
the state-action value as a whole. Moreover, for better appli-
cation of S2ES, experience sharing scheme formore complex
tasks, such as StarCraft [29] and PO-MNT [15], should also
be studied.

Author contributions TW and XP contributed to the conception of the
study; TW performed the experiments; TW and XP performed the data
analyses; TWwrote themanuscript; XP andDX revised themanuscript;
DX provided constructive suggestions.

Funding This work is funded by the National Natural Science Founda-
tion of China, Award Number: 62076203, 61473233.

Declarations

Conflict of interest The authors declare that they have no known
conflicts of interest/competing interests that could have appeared to
influence the work reported in this paper.

123

Complex & Intelligent Systems (2021) 7:2735–2750 2749

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Amir O, Kamar E, Kolobov A, Grosz B (2016) Interactive teaching
strategies for agent training. In: Proceedings of the 25th inter-
national joint conference on artificial intelligence (IJCAI), pp
804–811

2. Barto AG, Sutton RS, Watkins C (1989) Learning and sequential
decision making. University of Massachusetts Amherst, MA

3. BowlingM,VelosoM (2000)An analysis of stochastic game theory
for multiagent reinforcement learning. CMU DARPA

4. Cao X, Sun H, Guo L (2020) Potential field hierarchical reinforce-
ment learning approach for target search by multi-AUV in 3-D
underwater environments. Int J Control 93(7):1677–1683

5. Carlucho I, De Paula M, Wang S, Petillot Y, Acosta GG (2018)
Adaptive low-level control of autonomous underwater vehicles
using deep reinforcement learning. Robot Auton Syst 107:71–86

6. Chen J, Yuan B, Tomizuka M (2019) Model-free deep reinforce-
ment learning for urban autonomous driving. In: Proceedings
of the 2019 IEEE intelligent transportation systems conference
(ITSC), IEEE, pp 2765–2771. https://doi.org/10.1109/ITSC.2019.
8917306

7. Chernova S, Veloso M (2009) Interactive policy learning through
confidence-based autonomy. J Artif Intell Res 34:1–25. https://doi.
org/10.1613/jair.2584

8. Clouse JA (1997) On integrating apprentice learning and reinforce-
ment learning. PhD thesis, University of Massachusetts Amherst

9. Foerster J, Nardelli N, Farquhar G, Afouras T, Torr PHS, Kohli
P, Whiteson S (2017) Stabilising experience replay for deep
multi-agent reinforcement learning. In: Proceedings of the 34th
international conference onmachine learning (ICML), PMLR, Pro-
ceedings of machine learning research, vol 70, pp 1146–1155

10. Foerster JN, Assael YM, de Freitas N,Whiteson S (2016) Learning
to communicate to solve riddles with deep distributed recurrent Q-
networks. arXiv preprint arXiv:1602.02672

11. Griffith S, Subramanian K, Scholz J, Isbell CL, Thomaz A (2013)
Policy shaping: integrating human feedback with reinforcement
learning. Adv Neural Inf Proc Syst 26: 2625–2633

12. Hernandez-Leal P, Kaisers M, Baarslag T, de Cote EM (2017)
A Survey of Learning in Multiagent Environments: Dealing with
Non-Stationarity. arXiv preprint arXiv:1707.09183 pp 1–64

13. Hou Y, Zeng Y, Ong YS (2016) A memetic multi-agent demon-
stration learning approach with behavior prediction. In: 15th
international conference on autonomous agents andmultiagent sys-
tems, ACM, pp 539–547

14. Hou Y, Ong YS, Feng L, Zurada JM (2017) An evolutionary
transfer reinforcement learning framework for multiagent sys-
tems. IEEE Trans Evolut Comput 21(4):601–615. https://doi.org/
10.1109/tevc.2017.2664665

15. Hou Y, Ong Y, Tang J, Zeng Y (2019) Evolutionary multiagent
transfer learning with model-based opponent behavior prediction.
IEEE Trans Syst Man Cybern Syst 1–15

16. Iqbal S, Sha F (2019) Actor-attention-critic for multi-agent rein-
forcement learning. In: Proceedings of the 36th international
conference on machine learning (ICML), PMLR, proceedings of
machine learning research, vol 97, pp 2961—-2970

17. Jiang J, Lu Z (2018) Learning attentional communication formulti-
agent cooperation. Adv Neural Inf Process Syst 2018:7254–7264

18. Kraemer L, Banerjee B (2016) Multi-agent reinforcement learning
as a rehearsal for decentralized planning.Neurocomputing 190:82–
94

19. Laurent GJ, Matignon L, Fort-Piat NL (2011) The world of inde-
pendent learners is not Markovian. Int J Knowl-Based Intell Eng
Syst 15(1):55–64. https://doi.org/10.3233/KES-2010-0206

20. LittmanML (1994) Markov games as a framework for multi-agent
reinforcement learning. Elsevier, Amsterdam, pp 157–163

21. Lowe R, Wu Y, Tamar A, Harb J, Abbeel P, Mordatch I (2017)
Multi-agent actor-critic for mixed cooperative-competitive envi-
ronments. Adv Neural Inf Process Syst 30: 6379–6390

22. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare
MG,Graves A, RiedmillerM, FidjelandAK,Ostrovski G, Petersen
S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran D, Wier-
stra D, Legg S, Hassabis D (2015) Human-level control through
deep reinforcement learning. Nature 518(7540):529–533. https://
doi.org/10.1038/nature14236

23. Nguyen TT, Nguyen ND, Nahavandi S (2020) Deep reinforcement
learning for multiagent systems: a review of challenges, solutions,
and applications. IEEE Trans Cybern 50(9):3826–3839

24. Omidshafiei S, Pazis J, Amato C, How JP, Vian J (2017) Deep
decentralized multi-task multi-agent reinforcement learning under
partial observability. In: Proceedings of the 34th international con-
ference on machine learning (ICML), vol 70, pp 2681–2690

25. Omidshafiei S, Kim DK, Liu M, Tesauro G, Riemer M, Amato
C, Campbell M, How JP (2019) Learning to teach in cooperative
multiagent reinforcement learning. In: Proceedings of the AAAI
conference on artificial intelligence (AAAI), vol 33, pp 6128–6136

26. Palmer G, Tuyls K, Bloembergen D, Savani R (2017) Lenient
multi-agent deep reinforcement learning. In: Proceedings of the
17th international conference on autonomous agents and multia-
gent systems (AAMAS), international foundation for autonomous
agents and multiagent systems, Richland, SC, pp 443–451

27. Qu G,Wierman A, Li N (2020) Scalable reinforcement learning of
localized policies for multi-agent networked systems. In: Proceed-
ings of the 2nd conference on learning for dynamics and control
(L4DC), PMLR, vol 120, pp 256–266

28. QuX, Sun Z, OngYS,GuptaA,Wei P (2020)Minimalistic attacks:
how little it takes to fool deep reinforcement learning policies. IEEE
Trans Cogn Dev Syst p 1

29. SamvelyanM, Rashid T, deWitt CS, Farquhar G, Nardelli N, Rud-
ner TGJ, Hung CM, Torr PHS, Foerster J, Whiteson S (2019) The
starcraft multi-agent challenge. CoRR abs/1902.04043

30. Shapley LS (1953) Stochastic games. Proc Natl Acad Sci
39(10):1095–1100

31. Silva FLD, Costa AHR (2019) A survey on transfer learning
for multiagent reinforcement learning systems. J Artif Intell Res
64(2019):645–703

32. Silva FLD, Glatt R, Costa AHR (2017) Simultaneously learning
and advising in multiagent reinforcement learning. In: Proceed-
ings of the 16th conference on autonomous agents and multiagent
systems (AAMAS), pp 1100–1108

33. Silva FLD, Glatt R, Costa AHR (2019) MOO-MDP: an object-
oriented representation for cooperative multiagent reinforcement
learning. IEEE Trans Cybern 49(2):567–579. https://doi.org/10.
1109/tcyb.2017.2781130

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ITSC.2019.8917306
https://doi.org/10.1109/ITSC.2019.8917306
https://doi.org/10.1613/jair.2584
https://doi.org/10.1613/jair.2584
http://arxiv.org/abs/1602.02672
http://arxiv.org/abs/1707.09183
https://doi.org/10.1109/tevc.2017.2664665
https://doi.org/10.1109/tevc.2017.2664665
https://doi.org/10.3233/KES-2010-0206
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1109/tcyb.2017.2781130
https://doi.org/10.1109/tcyb.2017.2781130

2750 Complex & Intelligent Systems (2021) 7:2735–2750

34. Silva FLD, Hernandez-Leal P, Kartal B, Taylor ME (2020a)
Uncertainty-aware action advising for deep reinforcement learn-
ing agents. In: Proceedings of the AAAI conference on artificial
intelligence, vol 34(04), pp 5792–5799

35. Silva FLD, Warnell G, Costa AHR, Stone P (2020b) Agents
teaching agents: a survey on inter-agent transfer learning. Auton
Agent Multi-Ag 34(1):1–17. https://doi.org/10.1007/s10458-019-
09430-0

36. Sutton RS, Barto AG (2018) Reinforcement learning: an introduc-
tion. The MIT Press, New York

37. Tampuu A, Matiisen T, Kodelja D, Kuzovkin I, Korjus K, Aru J,
Aru J, Vicente R (2017) Multiagent cooperation and competition
with deep reinforcement learning. PLoS One 12(4):1–15. https://
doi.org/10.1371/journal.pone.0172395

38. Tan AH, Lu N, Xiao D (2008) Integrating temporal difference
methods and self-organizing neural networks for reinforcement
learning with delayed evaluative feedback. IEEE Trans Neural
Netw 19(2):230–244

39. TanM (1993)Multi-agent reinforcement learning: independent vs.
cooperative agents. In: Proceedings of the 10th international con-
ference on machine learning (ICML), pp 330–337

40. Taylor A, Dusparic I, Galván-López E, Clarke S, Cahill V (2014)
Accelerating learning in multi-objective systems through transfer
learning. In: 2014 international joint conference on neural networks
(IJCNN), pp 2298–2305

41. Taylor ME, Stone P (2009) Transfer learning for reinforcement
learning domains: a survey. J Mach Learn Res 10(7):1633–1685

42. Taylor ME, Suay HB, Chernova S (2011) Integrating reinforce-
ment learning with human demonstrations of varying ability. In:
10th international conference on autonomous agents and multia-
gent systems (AAMAS), vol 1, pp 577–584

43. Taylor ME, Carboni N, Fachantidis A, Vlahavas I, Torrey L
(2014) Reinforcement learning agents providing advice in complex
video games. Connect Sci 26(1):45–63. https://doi.org/10.1080/
09540091.2014.885279

44. Torrey L, TaylorME (2013) Teaching on a Budget: agents advising
agents in reinforcement learning. In: Proceedings of the 12th inter-
national conference on autonomous agents and multiagent systems
(AAMAS), vol 2, pp 1053–1060

45. Wang H, Wang X, Hu X, Zhang X, Gu M (2016) A multi-agent
reinforcement learning approach to dynamic service composition.
Inf Sci 363:96–119. https://doi.org/10.1016/j.ins.2016.05.002

46. Wang T, Zhang L, Xu D, Feng J (2017) Novel cooperative naviga-
tion method for multi-AUVs based on optimal weight distribution
method. In: OCEANS 2017—Anchorage, vol 2017-January, pp 1–
7

47. Watkins CJCH, Dayan P (1992) Q-learning. Mach Learn 8(3–
4):279–292

48. Xiao D, Tan AH (2007) Self-organizing neural architectures and
cooperative learning in a multiagent environment. IEEE Trans Syst
Man Cybern B 37(6):1567–1580

49. Xiao Y, Hoffman J, Amato C (2020) Macro-action-based deep
multi-agent reinforcement learning. In: Proceedings of the con-
ference on robot learning (CoRL), PMLR, 100, pp 1146–1161

50. Yasuda T, Ohkura K (2018) Collective behavior acquisition of real
robotic swarms using deep reinforcement learning. In: 2018 sec-
ond IEEE international conference on robotic computing (IRC), pp
179–180, https://doi.org/10.1109/irc.2018.00038

51. Zhan Y, Ammar HB, Taylor ME (2016) Theoretically-grounded
policy advice from multiple teachers in reinforcement learning
settings with applications to negative transfer. In: Proceedings of
the 25th international joint conference on artificial intelligence
(IJCAI), vol 2016-January, pp 2315–2321

52. Zhang S, Sutton RS (2017) A deeper look at experience replay.
arXiv preprint arXiv:1712.01275 pp 1–9

53. Zimmer M, Viappiani P, Weng P (2014) Teacher-student frame-
work: a reinforcement learning approach. In: AAMAS workshop
autonomous robots and multirobotics systems, vol 1, pp 1–17

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/s10458-019-09430-0
https://doi.org/10.1007/s10458-019-09430-0
https://doi.org/10.1371/journal.pone.0172395
https://doi.org/10.1371/journal.pone.0172395
https://doi.org/10.1080/09540091.2014.885279
https://doi.org/10.1080/09540091.2014.885279
https://doi.org/10.1016/j.ins.2016.05.002
https://doi.org/10.1109/irc.2018.00038
http://arxiv.org/abs/1712.01275

	S2ES: a stationary and scalable knowledge transfer approach for multiagent reinforcement learning
	Abstract
	Introduction
	Preliminaries
	MDP and SG
	Q-learning and IQL

	S2ES
	What kind of experience
	How to learn
	When to transfer
	Analysis of scalability

	Empirical study
	Comparison with existing algorithms
	Ablations
	Validation of scalability enhancement

	Conclusion
	References

