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Abstract
Surrogate models are commonly used to reduce the number of required expensive fitness evaluations in optimizing computa-
tionally expensive problems. Although many competitive surrogate-assisted evolutionary algorithms have been proposed, it
remains a challenging issue to develop an effective model management strategy to address problems with different landscape
features under a limited computational budget. This paper adopts a coarse-to-fine evaluation scheme basing on two surrogate
models, i.e., a coarse Gaussian process and a fine radial basis function, for assisting a differential evolution algorithm to
solve computationally expensive optimization problems. The coarse Gaussian process model is meant to capture the general
contour of the fitness landscape to estimate the fitness and its degree of uncertainty. A surrogate-assisted environmental
selection strategy is then developed according to the non-dominance relationship between approximated fitness and estimated
uncertainty. Meanwhile, the fine radial basis function model aims to learn the details of the local fitness landscape to refine
the approximation quality of the new parent population and find the local optima for real-evaluations. The performance and
scalability of the proposed method are extensively evaluated on two sets of widely used benchmark problems. Experimental
results show that the proposed method can outperform several state-of-the-art algorithms within a limited computational
budget.
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Introduction

The differential evolution (DE) algorithm [50] has been
shown to be very powerful in solving discontinuous, non-
differential, multi-modal, and not well-defined problems.
As a population-based search metaheuristic, however, DE
is also subject to challenges when solving computationally
expensive problems [5,34,36,69,71]. Thus, computationally
cheap surrogate models, including polynomial regression
(PR) [34,64], radial basis function (RBF) [22,32,53,59],
artificial neural network (ANN) [14,23,27], support vector
machines (SVM) [63,68], and Kriging or Gaussian pro-
cess (GP) [3,6,16,41,42] are often used as a substitution of
the original computationally expensive objective function to
reduce the required computational cost of evolutionary opti-
mization [1,8,29].

While early research on surrogate-assisted evolution-
ary optimization typically used single surrogate models,
either in evolutionary search [26,27] or in local search [46],
multi-model assisted evolutionary algorithms have become
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increasingly popular for different reasons. A straightforward
motivation of using multiple surrogates is to enhance the
approximation accuracy and predict the reliability of the
approximated fitness using a neural network ensemble [28],
or to promote the diversity of search in both single- andmulti-
objective optimization [35,39,73]. Tang et al. [61] presented
a hybrid surrogate assisted particle swarm optimization, in
which an RBF model constructed by interpolating the resid-
ual errors was added to a low order polynomial regression
model to form the final hybrid surrogate model to approxi-
mate the original fitness landscape. A selective ensemble was
proposed for offline optimization [66] to adapt the surrogate
where the on-line update of themodels is impossible. Amore
sophisticated idea is to use multiple surrogates to approxi-
mate the global and local features of the fitness function,
respectively. For example, Zhou et al. [74] suggested to com-
bine both the global and local surrogate models to accelerate
the evolutionary optimization, in which a prescreen proce-
durewas presented based on a globalGaussian processmodel
and an RBF-based trust-region search strategy was proposed
in the spirit of Lamarckian learning. Tenne et al. [62] devel-
oped an improved version of hierarchical surrogate assisted
memetic algorithm by adaptively switching global and local
RBF models based on the leave-one-out cross-validation
errors. Sun et al. [59] suggested to use a global surrogate
model to smooth out the local optima and a local surrogate
model was trained for each individual to approximate the fit-
ness as accurately as possible. The authors further proposed a
cooperative swarm algorithm for high-dimensional computa-
tionally expensive problems [58], in which an RBF network
was utilized to smooth out the local optima and assist the
social learning particle swarm optimization to quickly locate
the region where the global optimum is located. The global
RBF is combined with a local fitness estimation strategy
[60] to improve the accuracy of the approximated fitness.
In the context of off-line data-driven optimization, where
no fitness evaluations are allowed, a low-order polynomial
has been used to generate training data for online update of
a Gaussian process [9]. A slightly different approach was
reported in Isaacs et al. [24] that employed multiple RBF
models for multiple database subsets obtained by k-means
clustering topresent a spatially distributed surrogates assisted
evolutionary algorithm for multi-objective optimization. The
third line of research on multi-model assisted evolution-
ary optimization aims to exploit the uncertainty information
multiple surrogates can offer, similar to the infill criteria
in Bayesian optimization [57]. Wang et al. [65] proposed
an ensemble-based model management method for surro-
gate assisted particle swarm optimization which searches for
the promising and most uncertain candidate solutions to be
evaluated using the expensive simulation model. In [20], a
heterogeneous ensemble is employed to replace the Gaus-
sian process for estimating the mean as well as the standard

deviation of the fitness so that infill criterion driven model
management strategies can be applied to surrogate-assisted
optimization of high-dimensional problems. Note that the
computational complexity of the Gaussian process increases
in cubic with the number of training data, making it unreal-
istic for the high-dimensional problems.

Surrogate-assisted DE algorithms for solving computa-
tionally expensive problems have also been widely studied.
Mallipeddi et al. [44] proposed to keep generating candidate
offspring for each parent solution until the fitness of the can-
didate offspring approximated by the Kriging model is better
than that of its parent or the number of generated candidate
offspring reaches the predefined maximum. Then the can-
didate offspring with the best-approximated fitness will be
evaluated using the expensive objective function and com-
pared with its parent. The winner will be passed to the next
generation. Similarly, Gong et al. [19] proposed to generate
multiple offspring candidates for each parent by applying dif-
ferent reproduction operators, and the onewith themaximum
density value estimated by the Parzenwindowmethod is cho-
sen to be the offspring to be evaluated using the expensive
objective function. After that, each offspring will compete
with its parent to survive. To further reduce the number of
required real fitness evaluations, Vincenzi et al. [64] pro-
posed an infill sampling strategy that is the weighted sum of
the estimated fitness and the distance to the history sample
points to assist a DE algorithm. Liu et al. [41] adopted the
lower confidence bound for a Gaussian process assisted DE
algorithm for solving medium-scale expensive optimization
problems. Note, however, that the Sammon mapping tech-
nique was used for reducing the original decision space to a
low-dimensional space. Multi-model assisted DE algorithms
have also been proposed for solving expensive optimiza-
tion problems [43]. A soft-margin support vector classifier
was employed to divide a population combining the parent
and offspring individuals into two groups according to their
estimated fitness. The group of individuals having better fit-
ness were re-evaluated using a regressionmodel to determine
which ones will be eventually evaluated using the real objec-
tive function. In [15], Elsayed et al. proposed to use a global
Kriging model to approximate the fitness of individuals of
a DE algorithm, then the expected improvement (EI) crite-
rion is used for selecting solutions to be evaluated using the
real objective function. Liu et al. [40] proposed a surrogate-
assisted DE for multi-fidelity evolutionary optimization of
computationally expensive problems.

While many surrogate-assisted evolutionary algorithms
incorporate the uncertainty of the estimated fitness in model
management, the uncertainty propagation in environmental
selection lacks consideration. As a result, the individuals
selected as the parents of the next generation may be located
very far away from the optimum and the recently evaluated
individuals, making the evolutionary algorithm more likely
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to get stuck in a minimum of the surrogate model. To avoid
premature convergence and promote the diversity of the pop-
ulation, this work proposes a selection strategy that considers
both the approximatedfitness values and the estimated degree
of uncertainty. To this end, a GP surrogate model is adopted
to estimate the fitness value and the uncertainty of the esti-
mated fitness, which are used as two criteria in selecting
parents. Different from most existing GP-assisted evolution-
ary algorithms, this work employs a second surrogate, which
is an RBF model, for determining which offspring individ-
uals are to be evaluated using the real fitness function. The
main reason is that the computational complexity of the GP
is cubic to the number of training data, which makes the GP
unsuited for accurately modeling the local fitness landscape
in a high-dimensional space. By contrast, RBF models have
shown to be computationally efficient for local modeling of
both low- and high-dimensional problems [25]. Due to the
above reasons, we introduce an RBF model to approximate
the local details of the fitness landscape and employ it to
refine the approximation quality of the new parent popula-
tion prevailing in the environmental selection, apart from the
GP as a global surrogate for selecting parents. To promote
the exploitation, a local search is applied to find the opti-
mum of the RBF model in the local area covered by the
selected parents and the top-ranking evaluated samples for
fitness evaluation using the expensive real objective function.
We term the overall algorithmmulti-model assisted differen-
tial evolution algorithm, MADE for short.

The main contributions of this paper can be summarized
as follows:

(1) A coarse-to-fine evaluation scheme basing on two surro-
gate models, i.e., a coarse Gaussian process and a fine
radial basis function, is proposed for assisting the dif-
ferential evolution algorithm to solve computationally
expensive optimization problems.

(2) A surrogate-assisted environmental selection strategy
is developed to select promising parents for the next
generation according to the non-dominance relationship
between approximated fitness and estimated uncertainty.

(3) In each generation, a fine surrogatemodel is used to refine
the approximation quality of the selected parent indi-
viduals from the environmental selection and screen out
promising individuals for real-evaluation. On the other
hand, a surrogate-based local optimization is performed
according to the improvement of the current best to strike
a balance between exploration and exploitation.

(4) Systematic experiments have been conducted to validate
the effectiveness and efficiency of MADE and compare
it with several state-of-the-art algorithms on symmetric
fitness landscapes with optimum lying on the origin and
non-symmetric fitness landscapes with non-origin opti-
mum.

The remainder of this paper is divided into the following sec-
tions. Section 2 describes in detail the proposedmulti-model
assisted differential evolution algorithm. Section 3 empiri-
cally assesses the performance of the MADE algorithm on
two sets of benchmark problems with different types of fit-
ness landscapes. Finally, Sect. 4 concludes the paper with a
summary of this work and suggestions for future research.

Multi-model assisted DE

In canonical surrogate-assisted differential evolution algo-
rithm, parent individuals for the next generation are normally
selected according only to the approximated fitness, while
overlooking the estimated uncertainty of the approximated
fitness. Consequently, surrogate-assisted evolutionary algo-
rithms are very likely to converge prematurely [3], when the
surrogate fails to correctly capture the landscape of the fitness
function and has a large uncertainty in fitness approximation.
Therefore, we propose to select also the individuals whose
approximated fitness has a large degree of uncertainty. In
addition, a fine surrogate model is constructed to refine the
approximation quality of these individuals and select the best
one aswell as the local optimum in the neighborhood of these
individuals for fitness evaluation using the real computation-
ally expensive function.

Figure 1 gives a diagram of the proposed algorithm. From
Fig. 1, we can see that two surrogate models, a coarse GP
model and a fineRBFmodel, are introduced to assist the opti-
mization. The coarse GP model [54] is mainly for selecting
parent individuals for the next generation in the environ-
mental selection, while the fine RBF model, which has
been shown effective for high-dimensional problems [72],
is adopted for two purposes. One is to refine the approxi-
mation quality of the selected parent individuals from the
GP-assisted environmental selection and choose the best one
for fitness evaluation using the real computationally expen-
sive objective function, and the other is to search the local
optimum for real-evaluation from the region covered by the
new parent population and the best-evaluated samples.

Before the optimization starts, a number of solutions
are sampled using the symmetric Latin hypercube design
(SLHD) method [33] and they are evaluated using the
computationally expensive objective function. These offline
sampled solutions as well as their fitness values are stored
in an archive. The best solutions in the archive are used to
seed the initial population of the DE, and then the crossover
and mutation operators of DE are conducted to generate the
trial/offspring candidate solutions. After that, a coarse GP
model is first constructed using the collected solutions from
the archive that are in the vicinity of the parents and the
trial/offspring population. A parent for the next generation
will then be selected according to the dominance relationship
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based on the approximated fitness and the estimated uncer-
tainty. Once all parents for the next generation are selected,
a fine RBF model is then built using adjacent real-evaluated
solutions of the selected parents to refine the approximation
quality of theparent individuals, and thebest one among these
selected parents is chosen for real-evaluation if it is supe-
rior to the current global best. Otherwise, an RBF-assisted
local optimization will be implemented to found a local opti-
mum for fitness evaluation using the real computationally
expensive objective function. Afterwards, the archive and
the global best are updated by the newly evaluated solutions.
And finally the above process is repeated until the termina-
tion condition is reached.

Algorithm 1 gives the pseudo-code of the MADE algo-
rithm. The proposed algorithm follows the main steps of
the basic differential evolution algorithm, including offline
solution sampling, population initialization, generation of
offspring using mutation and crossover, and selection of par-
ents. The main difference between the MADE algorithm and
the canonical differential evolution algorithm is that a coarse
GP model is used for fitness calculation and selection, and at
most two solutions will be evaluated using the real objective
function at each generation, which are chosen based on a sec-
ond surrogate, a fine RBFmodel. Note that an archive is used
to store all solutions that are evaluated using the real fitness
function. In the following, we will give a detailed descrip-
tion of the training of the coarse GP model and the fine RBF
model, GP-assisted environmental selection, RBF-assisted
individual refinement, and RBF-assisted local optimization.

Construction of the coarse Gaussian process

As the Gaussian process model is used for the selection
of parents for the next generation, the archive samples dis-
tributed in the neighborhood of the current parent and the
trial/offspring populations are to be used for constructing
the coarse GP model. To minimize the impact of unevenly
distributed training samples that result in poor approxima-
tion quality of the GP model in certain regions of the whole
design space, a training sample selection strategy based on
the maximin distance criterion with the current global best to
be the initially selected sample is employed to determine the
final training set. Here it should be noted that the coarse GP
model aims to capture the global fitness landscape related to
the location of the current parent and the trial/offspring pop-
ulations. The procedure to train a coarse GP model is given
in Algorithm 2.

InAlgorithm2, pop(t) and poptrial(t) are the parent popu-
lation and the trial/offspring population, respectively.MP(t)
represents the population merged by pop(t) and poptrial(t).
CNs denotes a set that includes all neighbors of the solutions
in the merged population MP(t). Generally, a minimum of
D + 1 training samples are required to train the GP model

Algorithm 1 Pseudo code of the MADE algorithm
1: Offline solution sampling: generate a number of solutions using

SLHD, evaluate their fitness using the expensive real objective func-
tion, and save them in the archive;

2: Population initialization: choose NP best solutions from the archive
to form the initial population pop(t) of DE, set t = 0;

3: while the computational budget is not exhausted do
4: Generate a trial population: generate a trial population poptrial(t)

by means of mutation and crossover from the current parent pop-
ulation pop(t);

5: Merge the parent population pop(t) and the trial (offspring) pop-
ulation poptrial(t) to obtain MP(t) = pop(t)

⋃
poptrial(t);

6: Construct the Gaussian process model; (see Algorithm 2)
7: Conduct the GP-assisted environmental selection (see Algo-

rithm 3), and determine the parent population pop(t + 1);
8: Train the radial basis function model; (see Algorithm 4)
9: Implement the RBF-assisted individual refinement: calculate

the fitness of all individuals in population pop(t + 1) using the
RBF model, and screen the ones superior to the global best for
real-evaluation;

10: if the current global best is unimproved then
11: Perform the RBF-assisted local optimization: search the

optimum of the RBF model in the local crossover region cov-
ered by the parent population pop(t+1) and the best evaluated
samples;

12: Calculate the fitness of the optimum using the real fitness
function;

13: end if
14: Update the current global best with the newly evaluated solu-

tions;
15: Update the archive by adding the newly evaluated solutions in

the archive, and set t = t + 1;
16: end while

Algorithm 2 Construction of the coarse GP model
1: for each solution in the merged population MP(t), either in pop(t)

or poptrial(t), do
2: Find 2×(D+1) closest neighboring solutions (nbi ) in the archive;
3: end for
4: Store the closest neighbors of all solutions in the MP(t) to CNs,

and eliminate the duplicated solutions;
5: Set the training set Ts = φ;
6: Find the solution in CNs that has the best fitness value, and save it

to set Ts
7: while |Ts | ≤ 2 × (D + 1) do
8: for each solution in CNs − Ts do
9: Find the closest neighbor in set Ts , and denote the distance to

the closest neighbor as distk , k = 1, 2, . . . , |CNs − Ts |
10: end for
11: Put the k-th solution in set CNs − Ts that satisfies

maxk=1,2,...,|CNs−Ts |distk into Ts ;
12: end while
13: Construct GP model using dataset Ts .

for a D-dimensional optimization problem [51] so that the
resulting model is able to properly learn the global profile of
the fitness landscape. As suggested in [3,16], the number of
training samples should not be less than 2× D, so we set the
size of training set to 2 × (D + 1) in our work.

In Algorithm 2, we obtain the final training samples with
two steps. First, a number of closest neighbors are found for

123



Complex & Intelligent Systems (2021) 7:2347–2371 2351

Fig. 1 A diagram of the multi-surrogate assisted differential evolution algorithm
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each solution in the merged population. Then, 2 × (D + 1)
samples will be sequentially selected according to the dis-
tance to the best solution in the neighborhood. Figure 2
gives an illustrative example showing the procedure of sam-
ple selection using a two-dimensional Ackley function. In
this work, 2 × (2 + 1) = 6 samples are required for train-
ing the coarse GP model. In this example, to better show the
proposed strategy for selecting training samples, 12 samples
will be chosen. In the figure, the stars in black represent all
individuals in the merged population, including the parent
and trial/offspring populations. The circles in red are a union
of all neighbors found for each individual in the merged pop-
ulation, and the triangles in blue are the selected samples for
training the GP. The numbers in Fig. 2 represent the order
of individuals in the merged neighbors chosen to be saved
in the training set Ts for training the GP model. The solu-
tion indicated with the number 1 has the best fitness value
among all merged neighbors, so it will be saved in set Ts at
first, denoted as Ts = {x1}. And then the minimum distance
of each individual in the merged neighbors to the current
set Ts will be calculated. We can see that solution number 2
has the maximum value among all these minimum distances,
which will be saved to Ts , Ts = {x1, x2}. We continue to
do this for the rest individuals in the merged neighbors and
this time, solution number 3 has the maximum distance to
Ts and will be saved to set Ts = {x1, x2, x3}. This procedure
continues until this is done for all solutions in the merged
neighbors. From Fig. 2, we can see that the training samples
will be widely distributed in the decision subspace where
the merged population is located. We can also note that dif-
ferent markers overlap at some positions in Fig. 2. This is
because the individual in the parent population may be eval-
uated using the real objective function, which will be saved
in the archive, and obviously will be one of the individuals
in the merged neighbors because of the zero-distance to the
merged population.

GP-assisted environmental selection

The main benefit of using the GP model is that it can provide
not only the approximated fitness value but also an estimated
uncertainty of the approximated fitness. Different from most
existing DE algorithms that use the fitness value to select
parents for the next generation, the proposed MADE algo-
rithm selects parents based on both the approximated fitness
and the estimated uncertainty. More specifically, solutions
with a better fitness value will be passed to the next gen-
eration. Besides, we also expect that some individuals with
large estimated uncertainty can be included in the next pop-
ulation to avoid searching for potentially poor solutions and
achieve a good trade-off between exploration and exploita-
tion. Accordingly, bi-objective selection will be performed
as described in Eq. (1):

Fig. 2 An illustrative example of data selection for constructing the
coarse GP model

min g(x) = ( f̂ (x),−ŝ(x)) (1)

In Eq. (1), f̂ (x) and ŝ(x) are the approximated fitness
and estimated uncertainty, respectively. Algorithm 3 lists the
pseudo-code of selecting parents for the next generation.
The merged population will be sorted into a number of non-
dominated fronts at first according to the two objectives, i.e.,
the approximated fitness and estimated uncertainty, basing
on the non-dominated sorting in [12]. Then we select parent
solutions from the first non-dominated front until the next
parent population is filled. If the number of solutions on the
last front to be selected is more than what the population can
hold, only the ones with larger crowding distances [12] will
be selected.

Algorithm 3 GP-assisted environmental selection
1: Sort the individuals that are in the merged population MP(t) using

the fast non-dominated sorting approach proposed in [12];
2: Set pop = φ. Assume there are NF fronts in total and each front

has FSi , i = 1, 2, . . . , NF solutions;
3: for i = 1 : NF do
4: if |pop| + |FSi | < N P then
5: pop = pop ∪ FSi ;
6: else
7: Sort the solutions on front i based on the crowding distance

values in an descending order;
8: Select the first N P − |pop| solutions and combine them with

pop;
9: end if
10: end for
11: Output pop.
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Fine RBF-assisted individual refinement

After the parents for the next generation are selected, a fine
surrogate model, an RBF model, is built to re-approximate
the fitness of these parents so that the approximation quality
of the parent individuals can be refined. Herein, the parents
with superior RBF prediction against the current global best
will undergo the real objective function evaluation. The strat-
egy for the fine RBF modeling is described in Algorithm 4.
As depicted in Algorithm 4, all the nearest neighbors sur-
rounding the selected parent population pop(t + 1) without
duplicates are taken to train the fine RBF model.

Algorithm 4 Radial Basis Function Modeling
1: for each individual popi in the current parent population pop(t+1)

do
2: Find its closest 2 × (D + 1) neighbors from the archive;
3: end for
4: Store the neighbors of all solutions in pop(t + 1) to CNsRBF, elim-

inate the duplicate solutions;
5: Train the RBF model using dataset CNsRBF.

Fine RBF-assisted local optimization

When there is no parent solution that is superior to the cur-
rent global best after refining the approximation quality of the
selected parent population according to the fine RBF model,
an optimization based on this fineRBFmodel is performed in
the local regions that are intersections of the hypercube areas
covered by the partial top-ranking real-evaluated samples and
the selected parent population. For the fine RBF-assisted
local optimization, a multi-point based swarm intelligence
optimizer SL-PSO [7] is used as the underlying local search
engine instead of the traditional single-point based gradient-
based optimization algorithm, such as sequential quadratic
optimization (SQP) [46], to ensure sufficient exploitation of
the local fitness landscape, avoiding premature convergence
due to the initial value sensitivity. However, other swarm
intelligence optimizers can also be used for the fine RBF-
assisted local optimization.

Some practical issues

In MADE, the coarse GP-assisted environmental selection,
the fine RBF-assisted individual refinement and the fine
RBF-assisted local optimization are consecutively used to
balance the trade-off between global exploration and local
exploitation. Here attention should be paid to the roles of
different surrogate models, where the coarse GP model is
employed to provide additional guidance information on the
uncertainty of the trial/offspring population for the identi-
fication of the new parent population in the environmental

selection instead of the one-to-one competitive selection
operator in the canonical DE, whereas the fine RBF model is
employed to identify better individuals amongst the selected
parents and to find the optimal solutions in the neighborhood
covered by the selected parents and the best-evaluated sam-
ples. For the GP-assisted environmental selection, promising
parent individuals for the consecutive evolution are sifted
out from the merged population of the parent population
coupled with the trial/offspring population, according to
their approximated fitness and approximated uncertainty.
These individuals driven by the DE behavior learning oper-
ators (DE/current-to-best/1 used in this paper) are prone
to gradually explore the unknown landscape of the whole
search space, especially the ones with large approximated
uncertainty.On the other side, for theRBF-assisted local opti-
mization, the optimum of the RBF model is used to update
the current global best and accelerate the convergence of
the algorithm, thereby facilitating the local exploitation. And
meanwhile, these optima can also be provided as additional
training sample alternatives for GP modeling as well as for
improving the quality of theRBFmodel in the optimal region.

Additionally, it is conceivable that more and more sample
pointswill aggregate in the optimal region of the design space
as the optimization proceeds since the sequential infilling of
the real-evaluated optimal solutions determined in the RBF-
assisted individual refinement and the RBF-assisted local
optimization in each generation, especially the ones in the
fine RBF-assisted local optimization. Thus, in this paper, a
distance threshold

ε = min
(√

10−6D, 5.0 × 10−5D × min(UB − LB)
)

(2)

in [37] is preset as an additional selection criterion in deter-
mining whether the candidate solutions will be re-evaluated
using the real objective function so as to avoid the evalu-
ated solutions being too close to each other, where D is
the problem dimension, UB and LB denote the upper and
lower bounds of the search space, respectively. Here in the
RBF-assisted individual refinement and RBF-assisted local
optimization, the optimal solutions whose distances to the
real-evaluated samples are larger than the threshold will
undergo re-evaluation by the real objective function.

Experimental results and discussions

To evaluate the effectiveness and scalability of MADE, two
sets of benchmark problems, including five commonly used
basic test functions [58,65] featured by symmetric fitness
landscape with optimum lying on the origin and eight bench-
mark problems from CEC’s 14 expensive optimization test
suit [38] characterized by non-symmetric fitness landscape
and shifted optimum (non-origin optimum), are adopted in
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the comparative studies. Table 1 lists the 13 test functions
and their main characteristics. We conduct experiments on
these test problems of 10, 20 and 30 dimensions, respectively,
therefore, a total of 39 benchmark problems are involved.

In the following subsections, we first examine the effec-
tiveness of the GP and RBF models in MADE, followed by
a verification of the validity of the local search. Then we
perform an investigation on the behavioral characteristics of
MADE and finally make a comparison of its performance
against several state-of-the-art algorithms. In the experi-
ments, the population size of all compared DE algorithms are
set to 5×D for problemsof 10, 20, and30dimensions, and the
stopping criterion is when the maximum number of fitness
evaluation reaches 11×D. The scaling factor F and crossover
rate Cr are set to F = 0.50 and Cr = 0.75, respectively [4].
The SL-PSO used in the fine RBF-assisted local optimiza-
tion follows the same parameter settings as suggested in the
corresponding literature, and the termination condition of
SL-PSO is when the maximum number of iteration reaches
50× D or the local optimum of the fine RBF model remains
unchanged for 20 consecutive generations. 30 independent
runs are carried out for each test instance and all compared
algorithms are implemented in MATLAB� R2019b and run
on an Intel(R) Core(TM) i7-9700U CPU @3.00 GHz desk-
top.

The roles of GPmodel and RBFmodel

In this work, we use a GP model for selecting parents for
the next generation and an RBF model for searching the
best solutions to be evaluated using the real objective func-
tion. To show the effectiveness of the GP model and the
RBF model, here we compare the proposed MADE algo-
rithm that using both GP and RBF models with two MADE
variants, i.e., MADE-GPOnly that using GP model alone in
MADE andMADE-RBFOnly that usingRBFmodel alone in
MADE, on the five basic benchmark problems. The charac-
teristics of these two algorithms andMADE are summarized
in Table 2. Here it should be noted that the main differences
between these three algorithms lie in three aspects: surrogate-
assisted environmental selection, surrogate-assisted individ-
ual refinement and surrogate-assisted local optimization.
Other settings of these three algorithms such as initializa-
tion, training sample selection, and the update of the global
best, etc. follow Algorithm 1.

Table 3 lists the statistical results of these three algorithms
on the five basic benchmark problems over 30 indepen-
dent runs. In Table 3, symbols “+”, “−”, “≈” indicate that
MADE-GPOnly andMADE-RBFOnlyperformsignificantly
worse than, significantly better than and comparably with
MADE, respectively, according to the pairwise Wilcoxon
rank-sum test at 0.05 significance level. The “Win/Loss/Tie”
records the number of benchmark instances thatMADEwins,
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losses and ties with MADE-GPOnly and MADE-RBFOnly.
In general, MADE can obtain better and comparable results
against the other two contestants on the selected benchmark
problems. Comparing toMADE-GPOnly,MADE can obtain
significantly better results on all selected benchmark prob-
lems throughout 10, 20 and 30 dimensions, indicating the
superiority of the fine RBF model against the fine GP model
in improving the performance of MADE. Comparing to
MADE-RBFOnly, MADE wins on six out of 15 benchmark
problems and tied on nine problems. Specifically, MADE
can obtain better results on a majority of benchmark prob-
lems except for the Griewank function, on which the results
obtainedbyMADE-RBFOnly are slightly better than those of
MADE. We speculate that it may be due to the smooth effect
of the cubic kernel function used in the fine RBF model that
smoothed out the local optima, thus facilitating the fast con-
vergence of the parent population. However, from Table 3,
we can find thatMADE can obtain significantly better results
than MADE-RBFOnly on Rosenbrock function and Ackley
function throughout 10, 20 and 30 dimensions, indicating
the effectiveness and good performance of the coarse GP-
assisted environmental selection in MADE.

As a whole, the results in Table 3 confirm the effec-
tiveness and efficiency of the coarse GP and the fine RBF
model in MADE, and also demonstrated the superiority of
the coarse-to-fine evaluation scheme based on these two sur-
rogate models.

The effectiveness of local search

In MADE, we perform a local optimization to search the
optimum of the fine RBF model for real-evaluation when the
current global best is unimproved. To verify the effective-
ness of local search, we count the number of local searches
performed by MADE on the five basic benchmark problems
for 30 runs. Figure 3 gives the boxplot of the number of
executions of local search by MADE on 10-, 20- and 30-
dimensional cases. In general, from Fig. 3, we can find that
the number of local searches is within half of the total com-
putational budget of 11D real fitness function evaluations for
10- to 30-dimensional problems. The number of executions
of local search increases with the number of dimensions. In
addition, from Fig. 3, we can also note that the deviations of
the number of local searches from 30 runs are large on the
Ellipsoid function and Griewank function of 10–30 dimen-
sions. This can be attributed to the single funnel landscape
features of these two problems. Overall, the results in Fig. 3
verified the effectiveness of local search.

Behavioral analysis of MADE

In this subsection, we compare the proposed MADE with
several MADE variants concerning RBF-DE, RBF-DE-LS,
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Table 3 Statistical results of MADE, MADE-GPOnly and MADE-RBFOnly on the selected benchmark problems

Problem D MADE-RBFOnly MADE-GPOnly MADE

Ellipsoid 10 1.84E−02± 6.79E−02(≈) 2.51E+00± 4.75E+00(+) 1.20E−02± 5.07E−02

Ellipsoid 20 8.36E−03± 1.55E−02(≈) 5.46E+01± 7.65E+01(+) 2.34E−03± 7.83E−03

Ellipsoid 30 5.01E−03± 1.25E−02(≈) 9.57E+01± 1.12E+02(+) 1.78E−03± 3.88E−03

Rosenbrock 10 1.58E+01± 1.30E+01(+) 5.59E+01± 3.24E+01(+) 1.17E+01± 9.90E+00

Rosenbrock 20 3.68E+01± 2.09E+01(+) 1.36E+02± 5.70E+01(+) 2.47E+01± 1.26E+01

Rosenbrock 30 5.62E+01± 3.15E+01(+) 2.21E+02± 9.97E+01(+) 4.14E+01± 2.17E+01

Ackley 10 5.39E+00± 4.67E+00(+) 1.58E+01± 6.07E+00(+) 3.62E+00± 4.40E+00

Ackley 20 5.06E+00± 4.56E+00(+) 1.90E+01± 7.91E-01(+) 3.30E+00± 3.37E+00

Ackley 30 4.53E+00± 3.77E+00(+) 1.92E+01± 4.01E-01(+) 2.01E+00± 1.52E+00

Griewank 10 4.83E−01± 3.21E−01(≈) 3.12E+00± 4.01E+00(+) 6.88E−01± 3.68E−01

Griewank 20 1.24E−01± 2.03E−01(≈) 8.45E+00± 1.36E+01(+) 3.52E−01± 2.99E−01

Griewank 30 7.77E−02± 1.18E−01(≈) 2.40E+01± 3.33E+01(+) 1.71E−01± 2.17E−01

Rastrigin 10 3.19E+01± 2.36E+01(≈) 4.72E+01± 2.30E+01(+) 2.80E+01± 2.43E+01

Rastrigin 20 5.36E+01± 4.33E+01(≈) 1.23E+02± 2.38E+01(+) 4.47E+01± 3.94E+01

Rastrigin 30 5.93E+01± 5.46E+01(≈) 2.07E+02± 3.95E+01(+) 6.54E+01± 6.59E+01

Win/Lose/Tie 6/0/9 15/0/0 –

Fig. 3 The number of local searches performed by MADE on the
selected benchmark problems for 30 runs

GPEI-DE, GPMinF-DE, MADE-NoLS, and the standard DE,
to gain further insight into the impact of each algorithm com-
ponent on the performance of MADE, such as the coarse
GP-assisted environmental selection, fine RBF-assisted indi-
vidual refinement, and RBF-assisted local optimization.

Description of MADE variants

Table 4 shows the main characteristics of MADE variants in
the environmental selection and infill-sampling.More specif-
ically, for the RBF-DE, this method is an RBF-assisted DE,
in which an RBF model is built to predict the fitness of the
derived trial/offspring population after performing mutation
and crossover operations on the parent population. The train-
ing samples for RBF modeling are drawn from the adjacent
evaluated samples surrounding the trial/offspring population.
In the model management, the infilling strategy follows a
greedy pairwise comparison sampling rule that identifies the

individuals in the trial/offspring population with superior
predictions over their associated parents as candidate solu-
tions for real-evaluation. And these selected individuals will
be real-evaluated only when their distances to the evaluated
samples meet the predefined distance criterion, which is the
same as the one adopted inMADE. Note that, in the environ-
mental selection of RBF-DE, the new parent population for
the next generation is determined through a pairwise com-
petition rule that selects better individuals from each pair of
target/parent and trial/offspring individuals.

For the RBF-DE-LS, it is an RBF-DE variant that embed-
ded an RBF-assisted SL-PSO local search after the environ-
mental selection. The RBFmodel adopted in the local search
is the same as the one in the environmental selection. As with
the MADE, the region for local search is also the intersec-
tion area of the hypercube neighborhoods surrounded by the
trial/offspring population and the best sample subset in the
archive. And the optimum found in local search performs
real-evaluation only if its distance from the evaluated sam-
ples meets the predefined distance criterion.

For the GPEI-DE and GPMinF-DE, these two algorithms
are two variants of MADE stripped of the RBF-assisted SL-
PSO local search, both of them employ only a GP model
for assisting the environmental selection and infill sampling.
GPEI-DE and GPMinF-DE adopt the same GP modeling
method that collects the nearest neighbors surrounding the
parent and trial/offspring populations as training samples
for constructing the GP model. And both algorithms use
the same environmental selection strategy proposed in the
MADE. The key point to differentiating between these two
algorithms lies in the infill criterion, where GPMinF-DE relies
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Table 4 Characteristics of MADE variants

Algorithms Environmental selection Infill-sampling

RBF-DE • Using a fine RBF model trained by the
adjacent evaluated samples of the
trial/offspring population

• Selecting the individuals in the
trial/offspring population with superior
predictions over their associated parents for
real-evaluation

• Using a pairwise competition rule to select
better individuals from each pair of parent
and offspring individuals to determine the
new parent population

RBF-DE-LS • Using a fine RBF model trained by the
adjacent evaluated samples of the
trial/offspring population

• Selecting the individuals in the
trial/offspring population with superior
predictions over their associated parents for
real-evaluation

• Using a pairwise competition rule to select
better individuals from each pair of parent
and offspring individuals to determine the
new parent population

• Searching the optimum of the fine RBF
model by SL-PSO for real-evaluation

GPMinF-DE • Using a coarse GP model • Selecting the individual with the minimum
GP prediction for real-evaluation

• Using non-dominated sorting to determine
he new parent population from the merged
population

GPEI-DE • Using a coarse GP model • Selecting the individual maximizing the
expected improvement criterion for
real-evaluation

• Using non-dominated sorting to determine
the new parent population from the merged
population

MADE-NoLS • Using a coarse GP model • Using a fine RBF model

• Using non-dominated sorting to determine
the new parent population from the merged
population

• Selecting the individual with the best RBF
prediction among the new parent population
for real-evaluation

on the performance-based sampling that chooses the individ-
ual with the minimumGP prediction in the parent population
for real-evaluation, while GPEI-DE chooses the individual
maximizing the EI criterion.

For MADE-NoLS, it is also an MADE variant that
excludes the RBF-assisted local optimization part inMADE.
As with the MADE, MADE-NoLS adopts a GP-assisted
environmental selection operator to determine the parent
population for the next generation and builds a fine RBF
model to filter out the individual with the best predictions
among the new parent population for subsequent real-
evaluation.

Comparison results of MADE andMADE variants

The statistical results averaged over 30 independent runs are
listed in Table 5, wherein the best value on each benchmark
instance is highlighted in boldface. The pairwise Wilcoxon
rank-sum test [17,18]with 95%confidence level is conducted
for investigation of significant differences between MADE

and MADE variants, and symbols “+”, “−”, “≈” indicate
that MADE performs significantly better than, significantly
worse than, and comparably with the compared MADE
variants, respectively. The average rank of each algorithm
is calculated according to the Friedman test [13], and the
“Win/Loss/Tie” records the number of benchmark instances
that MADE wins, losses, and ties with the contenders.

From Table 5, one can observe that all surrogate-assisted
DE algorithms can obtain better results than the canonical
DE within a limited computational budget. Compare MADE
withRBF-DE,MADEobtains the best solutions on all bench-
mark problems varying from different dimensionalities and
fitness landscapes, indicating the positive effects of associ-
ating multiple surrogates and local search to improve the
performance of MADE. Comparing MADE with RBF-DE-
LS, MADE obtains the best results on the majority of test
instances except for the Griewank function, on which the
RBF-DE-LS performs the best. This may be attributed to the
low precision of the coarse GP model that fails to capture
the local details of the multi-peak topology on the fitness
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landscape of the Griewank function covered by the merged
population, resulting in the failed selection of the correct
offspring population. However, the results demonstrate the
attractive performance of GP-assisted environmental selec-
tion in guiding the right convergence of MADE. Comparing
with another twoMADE variants, ie., GPMinF-DE and GPEI-
DE, we can find from Table 5 that the MADE-NoLS have
achieved significantly better results on most of the bench-
mark instances, revealing the good performance of fine
RBF-assisted individual refinement in enhancing the right
prescreening of promising individuals for real-evaluation.
When comparing toMADE, however, MADE-NoLS obtains
significantly worse results on all the benchmark instances,
verifying the excellent reinforcement effect of RBF-assisted
local optimization in substantially improving the perfor-
mance of MADE. In addition, from Table 5, in terms of
the average ranking according to the Friedman test, for all
involved benchmark functions, MADE gets the first rank-
ing, followed by MADE-NoLS, RBF-DE-LS, GPMinF-DE,
GPEI-DE, RBF-DE, and canonical DE. As a conclusion, the
results in Table 5 demonstrated the good synergy between the
components of MADE in steering its correct convergence.

The convergence profiles of the compared algorithm on
the selected benchmark problems of 10, 20, and 30 dimen-
sions are summarized in Fig. 4, which were averaged over
30 independent runs. From Fig. 4, we can found that MADE
performs the best on Ellipsoid, Rosenbrock, Ackley, and
Rastrigin function through 10–30 dimensions, whereas the
RBF-DE-LS outperforms other alternatives on Griewank
function. For theGriewank function characterized by amulti-
peaked single funnel topology, MADE adopts a coarse GP
model to select a promising parent population for guiding
the evolving dynamics of DE at each iteration, which is
conducive to smoothing the search space and accelerating
convergence in the early stage of optimization as shown in
Fig. 4j–l. Nonetheless, the coarse GP model fails to capture
the multi-peak fitness landscape around the global optimum,
resulting in the incorrect selection of the parent population
and premature convergence in the later search stage. In con-
trast, RBF-DE-LS constructs a fine RBF model to learn a
priori knowledge concerning the local features of the global
optimal region, thus delivering high accuracy in the selection
of a new parent population. Note that in MADE the fine RBF
model is utilized to refine the new parent population and sift
out the best-predicted individual for real-evaluation during
the RBF-assisted individual refinement, while in RBF-DE-
LS, the fine RBF model is performed to screen the predicted
trail/offspring individuals that are better than the associated
target/parent individuals so as to identify the parent popula-
tion for the next generation.

In terms of GPMinF-DE and GPEI-DE, GPMinF-DE out-
performs GPEI-DE on most of the benchmark instances,
especially for Rosenbrock and Rastrigin function. GPEI-

DE performs slightly better than GPMinF-DE on the 10-
dimensional Ackley function, while both present comparable
performance on the 20- and 30-dimensional Ackley func-
tion. From Fig. 4, we can also find that both GPMinF-DE and
GPEI-DE perform better than RBF-DE on all the selected
benchmark instances through 10–30 dimensions and poses a
good convergence tendency, demonstrating the effectiveness
of GP-assisted environmental selection operator in the parent
population selection.

From Fig. 4, however, one can note that among the three
MADE variants without RBF-assisted local optimization,
MADE-NoLS outperforms GPMinF-DE and GPEI-DE on all
benchmark instances, corroborating the imperative of using
the fine RBFmodel to refine the approximation quality of the
selected parent population. Here note that the correct filtra-
tion of the parent population contributes to providing more
valuable training samples for the subsequent update of the
GP model.

For Rosenbrock and Rastrigin function, from Fig. 4d–f
and 4m–o, we can find that RBF-DE-LS are outperformed by
MADE-NoLS throughout 10- to 30-dimensional instances.
And RBF-DE-LS stagnates and prematurely converges in
the later stage of optimization. We surmise that the exces-
sive consumption of real-evaluations causes the performance
degradation of RBF-DE-LS since RBF-DE-LS consumes
a majority of real-evaluations for selecting the new par-
ent population, whereas no real-evaluation is conducted in
MADE-NoLS during the GP-assisted environmental selec-
tion and at most one individual performs real-evaluation in
RBF-assisted individual refinement at each iteration.

From Fig. 4, we can also find that MADE-NoLS achieves
a dramatic performance improvement in conjunction with
the fine RBF-assisted local optimization (ie., MADE) on
all the benchmark instances, and MADE maintains a good
downtrend against other alternatives, indicating the effective-
ness of the RBF-assisted local optimization in promoting the
exploitation capability of MADE. To summarize, the results
shown above demonstrate the effectiveness and feasibility
of collaboration between coarse GP-assisted environmental
selection, fine RBF-assisted individual refinement, and RBF-
assisted local optimization in MADE.

Performance comparison between isomorphic
algorithms

To examine the efficacy of MADE with other isomor-
phic algorithms, in this subsection, we conduct two sets
of comparative studies of MADE with four representative
state-of-the-art algorithms, ie., CAL-SAPSO [65], GORS-
SSLPSO [70], FSAPSO [37], and S-JADE [4], on two
different types of benchmark test suits, respectively. Here the
CEC’14 expensive optimization test suit featured by non-
symmetric fitness landscapes with shifted global optima is
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Fig. 4 Convergence profiles of compared algorithms on the selected benchmark problems of 10, 20, and 30 dimensions

used as another test suit apart from the above five basic test
functions. The main task of these comparisons is to gain
insight into the performance differences of these methods in
handling different types of problems within a small number
of real fitness function evaluations.

In the following subsections, we first compare MADE
with CAL-SAPSO, GORS-SSLPSO, and FSAPSO on the
five popular basic test functions, followed by a comparison
of MADE with GORS-SSLPSO, FSAPSO, and S-JADE on
the CEC’14 expensive optimization test suit. To make a fair
comparison, these four algorithms adopt the same popula-

tion size of 5D and each of them terminates after exhausting
the computational budget of 11D real fitness function evalu-
ations, thus ensuring that each algorithm consumes the same
number of real-evaluations. The other parameters involved
are configured with the same settings as recommended in
their corresponding literature.
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Illustrations on the algorithm architectures of these
five contestants

CAL-SAPSO[65] sequentially employedonemulti-surrogate
ensemble to search for the most uncertain solution and the
other for finding the best-approximated solution for real-
evaluation in the whole design space, while adopting a local
multi-surrogate ensemble to exploit the optimal region cov-
ered by the top-ranking archive samples for seeking the
promising optima to be real-evaluated depending on whether
the optimal solution achieves improvement. Analogous to
CAL-SAPSO, MADE takes full advantage of multiple sur-
rogates and leverages the uncertainty information provided
by the coarse GP model for sifting out promising par-
ent population for the next generation, whilst refining the
best-approximated individual for real-evaluation by a fine
RBF model. An RBF-assisted local search is also integrated
within MADE to exploit the promising region surrounding
by the top-ranking archive samples. The key to distinguishing
CAL-SAPSO fromMADE lies in the fact that the former con-
centrates on sampling promising solutions for re-evaluation
by the multi-surrogate ensemble-based PSO search in the
global exploration part, while the latter puts emphasis on
selecting a promising parent population bymeans of a coarse-
to-fine model evaluation for guiding the global exploration
of DE.

GORS-SSLPSO [70] built a globalRBFmodel to approxi-
mate the design space and employed the SL-PSO [7] to locate
the optimal solution, where the search population of SL-
PSOwasperiodically adjusted for consecutively approaching
and exploiting the optimal region. GORS-SSLPSO dynam-
ically restarted the underlying SL-PSO with a top-ranking
archive sample subset to be the new initial population, and
the optimum found in each restart loop was selected for
real-evaluation. As distinct from GORS-SSLPSO, MADE
determines the parent population for the next generation
through a non-dominated sorting in the light of the uncer-
tainty information of candidate solutions derived from a
coarse GP model. On the other side, as with the MADE,
GORS-SSLPSO also performs the local search centered
around the neighborhood of the top-ranking archive sam-
ple subset in each restart loop. Therefore, it is interesting to
compare the performance of these two approaches to gain
certain insight into the efficacy of different environmental
selection strategies.

FSAPSO [37] searched the optimum of the global RBF
model in the territory covered by the iterative swarm and the
best predicted particle amongst the iterative swarm for real-
evaluations in tandem in each generation. And in case the
global optimum remains unimproved, themost uncertain par-
ticle amongst the iterative swarmwas additionally selected as
a candidate solution for real-evaluation, wherein the uncer-
tainties of particleswere calculated byweighting the distance

and fitness of their adjacent evaluated samples. FSAPSO has
been proved to perform well on small and medium-scale
problems. Similar to MADE, FSAPSO also incorporates an
RBF-assisted local optimization, where a global RBF model
was constructed using all the evaluated samples and the
search region was circumscribed to a local region covered
by the current iterative swarm.MADE differs from FSAPSO
mainly in that MADE draws on the uncertainty information
provided by the coarse GP model in environmental selection
to extract promising parent population for the next genera-
tion and performs local optimization resorting to a fine local
RBF model and a multi-point swarm intelligence optimizer
SL-PSO, emphasizing generating instructive parent popula-
tion, whereas FSAPSO focuses on infill sampling from the
candidate solutions.

S-JADE [4] combined global and local RBF models to
guide the mutation and selection operations in the optimiza-
tion process. The optima of the global and local RBF models
were separately utilized as competitive alternatives to the
randomly chosen top-ranking best and dissimilar population
individuals in the mutation operator for guiding the muta-
tion operation. And in the environmental selection, a portion
of trial/offspring individuals with smaller predictions by the
global RBF model amongst the trial/offspring population
underwent real-evaluation and further competed with the
associated parent individuals for entering the next genera-
tion, while the remaining parent individuals were directly
inherited from the ones in the previous generation. It fol-
lows that S-JADE employs the one-to-one rivalry selection
to update part of the parent population, whereas MADE
updates the parent population by a coarse GP-assisted envi-
ronmental selection. And unlike S-JADE that constructs a
local RBF model for each individual and uses the optima
of both global and local RBF models to guide the muta-
tion direction, MADE only uses the optimum of a local RBF
model as an alternative to the current global best to guide the
mutation of the target/parent population.

Comparison results of algorithms on the five basic
test problems

Table 6 lists the optimization results of the four algo-
rithms under comparison on the five basic test problems,
including the mean and variance (shown as Mean ± Std.)
obtained by each algorithm after 30 independent runs, the
pairwise Wilcoxon rank-sum test at a significant level of
0.05, and the average rank of each algorithm calculated
by Friedman test, where the symbols “+”, “−” and “≈”
indicate that MADE performs significantly superior to, sig-
nificantly inferior to, and comparable to the contestants. As
seen from Table 6, MADE can obtain significantly better
results thanCAL-SAPSOandFSAPSO throughout 10- to 30-
dimensional benchmark problemswithin a limited evaluation
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budget. Comparing to GORS-SSLPSO,MADE acquires sig-
nificantly better results onEllipsoid,Rosenbrock, andAckley
functions. For Griewank and Rastrigin function, from Table
6, we can see that there is no significant difference in the
results of GORS-SSLPSO and MADE except for the 30-
dimensional Griewank function, on which MADE gets a
significantly better result. we speculate that this may be due
to the smoothing effect of the coarse GP model in MADE,
inducing the parent population to quickly converge to the
global optimal region, therefore providing a larger proba-
bility to locate the global optimum. Furthermore, according
to the average rank, MADE gets the first rank, followed by
GORS-SSLPSO, FSAPSO, and CAL-SAPSO. Thus, it can
be concluded that for the basic test functions characterized by
symmetric landscapes and optima lied on the origin, MADE
can be chosen as a promising optimizer in contrast to GORS-
SSLPSO, FSAPSO, and CAL-SAPSO when only a small
number of real fitness evaluations are available, eg., 11D
real-evaluation budget.

Figure. 5 presents the convergence profiles of these four
approaches on the selected benchmark functions. As seen
from Fig. 5a–c and 5g–i, MADE outperforms the other
three contestants remarkably on the unimodal Ellipsoid and
multimodal Ackley functions of 10–30 dimensions under an
11D real-evaluation budget. For the Ellipsoid function as
shown in Fig. 5a–c, GORS-SSLPSO performs comparably
to FSAPSO,whereasGORS-SSLPSOoutperforms FSAPSO
on the multimodal Ackley, Griewank, and Rastrigin func-
tions. Nonetheless, both of them are outperformed byMADE
as shown in Fig. 5g–o.

For the Rosenbrock function featured by multimodal and
narrow valley fitness landscape, MADE converges slowly
in the early stage of optimization, where CAL-SAPSO and
GORS-SSLPSO converges faster as shown in Fig. 5d–f. It
is conceivable that in the early search stage the surrogate
ensemble in CAL-SAPSO approximates the fitness land-
scape with high precision under limited training samples
available and the top-ranking solutions in GORS-SSLPSO
provide a promising leading population. However, MADE
and FSAPSO exhibit good downward trends in the later
search stage, where MADE outperforms the other three
compared algorithms on 10- and 20-dimensional cases and
performs comparably with FSAPSO on 30-dimension case
as shown in Fig. 5d–f.

For the single-funnel Griewank function characterized
by symmetric and regular multimodal fitness landscape,
MADE converges slightly faster than the other three com-
pared approaches, especially on the 30-dimensional case
as shown in Fig. 5j–5l, yet there is no significant dif-
ference between MADE and GORS-SSLPSO on 10- and
20-dimensional cases according to Table 6. Likewise, for
the multimodal Rastrigin function with multiple funnels,
MADE performs comparably to GORS-SSLPSO and both

perform superior to CAL-SAPSO and FSAPSO across 10-
to 30-dimensional caseswithin 11D real fitness function eval-
uations. These results confirm the fact that the selection of
suitable evolutionary populations is conducive to improving
the convergence performance of the algorithmwhile enhanc-
ing its adaptability to different fitness landscapes.

Comparison results of algorithms on the CEC’14
expensive optimization test suit

Table 7 lists the comparison results of MADE, S-JADE,
FSAPSO and GORS-SSLPSO on the CEC’14 expensive
optimization test suit within 11D real fitness function evalua-
tions. In general, MADE significantly outperforms S-JADE,
FSAPSO andGORS-SSLPSO on 21, 16 and 11 instances out
of 24 benchmark problems, respectively, and MADE gets
the first rank, followed by GORS-SSLPSO, FSAPSO and
S-JADE, according to the Friedman test.

For the two surrogate-assisted DE variants MADE and
S-JADE, the results in Table 7 show that MADE can obtain
significantly better results than S-JADE on nine instances
(F1–F9) among 12 unimodal benchmark problems (F1–F12),
on which MADE is comparable to S-JADE on F10 and F11,
and is outperformed by S-JADE on F12. Although there is no
significant difference between the results obtained byMADE
and S-JADE on F10 and F11, the mean values of MADE
averaged over 30 independent runs are worse than those of
S-JADE. However, from Table 7, MADE significantly out-
performs S-JADE on 12 multimodal benchmark problems
(F13–F24), indicating the superiority of MADE against S-
JADE in dealing with problems with non-symmetric fitness
landscapes and shifted global optima under a small number
of real fitness function evaluations.

In terms of the two surrogate-assisted PSO variants
FSAPSO andGORS-SSLPSO, fromTable 7, we can find that
MADE has obtained significantly better results than GORS-
SSLPSO on six out of 12 unimodal benchmark problems (ie.,
F3, F6, F10, F11 and F12) and five out 12multimodal bench-
mark problems (ie., F14, F15, F19, F20, and F21), especially
on the shifted Step function (F10–F12) and shifted rotated
Rosenbrock’s function across 10–30 dimensionalities. And
on the other side,MADE ties with GORS-SSLPSO on 11 out
of 24 benchmark problems, and is inferior toGORS-SSLPSO
on 20-D F17 and 10-D F22. Comparing MADE to FSAPSO,
from Table 7, one can also find that MADE has obtained
significantly better results than FSAPSO on all the 12 mul-
timodal benchmark problems, while the results obtained by
MADE are as good as those of FSAPSO on six out of 12
unimodal instances and are worse than those of FSAPSO on
shifted sphere function of 20 and 30 dimensions (F2–F3). As
a whole, the results show in Table 7 further demonstrate the
remarkable performance of MADE against GORS-SSLPSO
and FSAPSO on problems with different fitness landscapes
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Fig. 5 Convergence profiles of compared algorithms on the basic test problems of 10, 20, and 30 dimensions

and non-origin optimum when only a limited real-evaluation
budget is available.

Figures 6, 7 provides the convergence profiles of these
four contestants on the CEC’14 expensive optimization test
suit. From Fig. 6, it can be observed that S-JADE is sig-
nificantly outperformed by the other three contenders on
four unimodal benchmark problems of 10 to 30 dimen-
sions including the shifted sphere function (F1–F3), shifted
Ellipsoid function (F4–F6), and shifted and rotated Ellipsoid
function (F7–F9). This may be due to the fact that S-JADE
consumes more real-evaluations in the environmental selec-

tion than the other three contenders in each generation.
In contrast, the performance of GORS-SSLPSO degrades
on the shifted Step function of 10, 20 and 30 dimensions
and GORS-SSLPSO converges prematurely in 11D real-
evaluations, whereas S-JADE performs slightly better than
MADE and FSAPSO, and MADE outperforms FSAPSO
with the increase of dimensionality. We surmise that GORS-
SSLPSOstagnates on the discontinuous andflat basins owing
to the greedy search of population composed of the optimal
subset, resulting in the failure of escaping from the local
traps, while S-JADE invokes more real-evaluations to eval-

123



Complex & Intelligent Systems (2021) 7:2347–2371 2365

Table 7 Statistics of GORS-SSLPSO, FSAPSO, S-JADE and MADE on the CEC’14 expensive optimization test suit

Problem GORS-SSLPSO FSAPSO S-JADE MADE

F1 3.33E−05± 4.81E−05(≈) 5.53E−05± 7.17E−05(≈) 3.53E−01± 2.10E−01(+) 1.32E−04± 2.29E−04

F2 2.55E−05± 3.08E−05(≈) 1.06E−05± 1.66E−05(−) 1.80E+00± 7.62E−01(+) 5.84E−05± 7.10E−05

F3 6.09E−05± 5.85E−05(+) 5.29E−06± 7.31E−06(−) 7.31E+00± 2.05E+00(+) 5.76E−05± 1.32E−04

F4 3.15E+00± 3.47E+00(≈) 1.94E+00± 1.60E+00(≈) 1.83E+01± 1.25E+01(+) 2.33E+00± 2.76E+00

F5 1.69E+01± 1.18E+01(≈) 1.82E+01± 1.10E+01(≈) 1.48E+02± 6.89E+01(+) 1.68E+01± 8.80E+00

F6 4.32E+01± 1.47E+01(+) 4.18E+01± 1.69E+01(+) 4.53E+02± 1.21E+02(+) 3.10E+01± 1.59E+01

F7 4.13E+01± 3.15E+01(≈) 3.21E+01± 3.05E+01(≈) 1.66E+02± 1.02E+02(+) 2.96E+01± 2.56E+01

F8 8.36E+01± 3.80E+02(+) 1.54E+01± 1.13E+01(+) 1.78E+02± 7.56E+01(+) 1.22E+01± 1.71E+01

F9 2.01E+02± 1.18E+02(≈) 2.34E+02± 1.26E+02(+) 1.67E+03± 5.40E+02(+) 1.62E+02± 1.10E+02

F10 5.47E+00± 5.24E+00(+) 2.10E+00± 2.16E+00(≈) 1.87E+00± 1.22E+00(≈) 2.77E+00± 1.94E+00

F11 1.57E+01± 1.14E+01(+) 9.07E+00± 5.30E+00(≈) 5.60E+00± 2.04E+00(≈) 6.67E+00± 4.23E+00

F12 4.22E+01± 3.15E+01(+) 2.02E+01± 1.28E+01(+) 1.29E+01± 3.95E+00(−) 1.58E+01± 6.26E+01

F13 3.99E+00± 2.84E+00(≈) 6.71E+00± 2.88E+00(+) 9.02E+00± 1.50E+00(+) 2.97E+00± 1.10E+00

F14 5.15E+00± 3.14E+00(+) 7.81E+00± 2.67E+00(+) 9.23E+00± 9.10E−01(+) 3.79E+00± 2.70E+00

F15 6.81E+00± 2.70E+00(+) 9.03E+00± 3.05E+00(+) 9.24E+00± 7.85E−01(+) 3.79E+00± 2.45E+00

F16 8.01E−01± 2.19E−01(≈) 9.06E−01± 1.29E−01(+) 1.05E+00± 5.68E−02(+) 7.61E−01± 1.95E−01

F17 4.10E−01± 1.43E−01(−) 8.08E−01± 1.21E−01(+) 1.21E+00± 7.77E−02(+) 5.77E−01± 1.87E−01

F18 3.39E−01± 1.11E−01(≈) 6.54E−01± 1.07E−01(+) 2.03E+00± 2.65E−01(+) 3.40E−01± 2.19E−01

F19 1.57E+02± 7.78E+01(+) 3.38E+02± 1.50E+02(+) 3.01E+02± 1.41E+02(+) 7.09E+01± 3.71E+01

F20 1.30E+02± 4.06E+01(+) 2.28E+02± 1.29E+02(+) 2.44E+02± 5.11E+01(+) 4.18E+01± 2.17E+01

F21 7.16E+02± 3.17E+02(+) 2.93E+03± 9.33E+02(+) 1.27E+03± 3.44E+02(+) 1.82E+02± 5.13E+01

F22 3.17E+01± 1.28E+01(−) 5.84E+01± 1.97E+01(+) 7.63E+01± 1.03E+01(+) 4.19E+01± 1.97E+01

F23 5.83E+01± 2.21E+01(≈) 8.04E+01± 2.99E+01(+) 1.62E+02± 1.77E+01(+) 6.28E+01± 2.34E+01

F24 8.21E+01± 2.61E+01(≈) 1.11E+02± 5.69E+01(+) 2.63E+02± 1.43E+01(+) 7.94E+01± 2.91E+01

Average rank 2.25 2.62 3.54 1.58

Win/Loss/Tie 11/2/11 16/2/6 21/1/2 −

uate promising offspring individuals and therefore enriches
the a priori knowledge of the search space, helping it jumpout
of the local traps. From Fig. 6, we can also notice thatMADE
performs comparably with GORS-SSLPSO and FSAPSO on
most of the unimodal benchmark problems except for F3
and F8, on which MADE and FSAPSO outperforms GORS-
SSLPSO.

In terms of multimodal benchmark problems, it can be
seen from Fig. 7 that MADE shows significant superior-
ity against S-JADE, FSAPSO and GORS-SSLPSO on the
shifted Ackley’s function (F13–F15) and shifted rotated
Rosenbrock’s function (F19–F20) of 10, 20 and 30 dimen-
sions within 11D real fitness function evaluations, while
S-JADE performs comparably with FSAPSO on 30-D F15,
10-D F19 and 20-D F18. For the shifted Griewank function,
MADE, GORS-SSLPSO and FSAPSO show comparable
performance on the 10-dimensional instance, yet MADE
and GORS-SSLPSO outperforms FSAPSO as the increase
of dimensions, and FSAPSO performs slightly better than
MADE in the later search stage. Notice thatMADE performs
consistently better than S-JADE on this benchmark prob-

lem across 10 to 30 dimensions, indicating the superiority
of coarse GP-assisted environmental selection in economiz-
ing the invocation frequency of the real fitness function.
Moreover, MADE and GORS-SSLPSO perform comparable
on 20- and 30-dimensional shifted Rastrigin function (F23–
F24), while the MADE is outperformed by GORS-SSLPSO
on 10-D instance (F22).

In summary, the results shown in Table 7 and Figs. 6 and 7
demonstrate the good adaptability and scalability of MADE
in different types of benchmark problems, which are featured
by non-symmetric fitness landscapes and non-origin optima.
And further corroborated the comparable and superior per-
formance of MADE against four state-of-the-art algorithms
when a small number of the real-evaluation budget is avail-
able.

Computational complexity analysis

The computational complexity of MADE consists of the
following main parts according to Algorithm 1: fitness eval-
uation at the initialization phase, coarse GP modeling and
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Fig. 6 Convergence profiles of GORS-SSLPSO, FSAPSO, S-JADE and MADE on the unimodal CEC’14 benchmark problems

non-dominated sorting on the merged population in GP-
assisted environmental selection, fine RBF modeling and
promising individual selection in RBF-assisted individual
refinement, and the SL-PSO local search in RBF-assisted
local optimization. In this subsection, we only give an
approximation to the upper bound of the computational com-
plexity for one generation of MADE.

At the initialization phase, the fitness evaluation of the
initial population (parent population) takes O

(
NpD

)
com-

putations, where Np denotes the population size and D is
the problem dimension. Then the parent population undergo
mutation and crossover to generate the trial/offspring popula-
tion, which also requires a runtime of O

(
NpD

)
. After merg-

ing the parent population and the trial/offspring population, a
coarseGPmodel is constructed to compute the approximated
fitness and estimated uncertainty of the merged population,
where the training set for the coarse GP modeling is deter-

mined by a two-step sample selection. A closest sample sub-
set of size Nns to themerged population is firstly chosen from
the archive,which demandsO

(
2NpNarcD

)
computations for

finding the closest neighbors in the archive by calculating the
Euclidean distances of sample pairs. Here Narc denotes the
size of archive. Then Nsgp sample points is selected from
the selected Nns closest sample points to be the final train-
ing samples for the coarse GP modeling, which requires
O

(
NsgpNnsD

)
computations to calculate the Euclidean dis-

tances of sample pairs and O (Nns log Nns) computations
to sort the obtained distances. The computational complex-

ity for building a GP model is O
(
K N 3

sgpD
)
[41], where

K denotes the number of iterations required for hyper-
parameter optimization.Afterwards, the non-dominated sort-
ing is carried out on the merged population to determining
the new parent population for the next generation, which

require O
(
M

(
2Np

)2
)

+ O
(
M

(
2Np

)
log

(
2Np

))
compu-
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Fig. 7 Convergence profiles of GORS-SSLPSO, FSAPSO, S-JADE and MADE on the multimodal CEC’14 benchmark problems

tations. Here M denotes the number of objectives and
M = 2, M � Np in this paper. Note that the size of
the merged population is 2Np. Thus the total computational
complexity for the GP-assisted environmental selection

is O
(
NpNarcD + NsgpNnsD + Nns log Nns + K N 3

sgpD
)
as

Narc, Nsgp and Nns are usually bigger than Np.
In the RBF-assisted individual refinement, a fine RBF

model is built to re-approximate the selected parents from
the GP-assisted environmental selection. Here a closest
sample set to the new parent population is selected from
the archive to be the training samples, which requires
O

(
NpNarcD

)
computations. To construct an RBF model of

interpolation form used in our method, O
(
N 3
srbfD

)
com-

putations are needed [67], where Nsrbf denotes the size
of training set. Thereafter, to select the best individual for
real-evaluation, the parents are sorted according to the fit-
ness approximated from the fine RBF model, which require

O
(
Np log Np

)
computations. Thus the total computational

complexity for the RBF-assisted individual refinement is
O

(
NpNarcD + N 3

srbfD + Np log Np
)
.

In the worst case that the current global best is unim-
proved, a local search based on SL-PSO is carried out for
finding the optimum of the fine RBF model, which involves

O
(
N 2
ps + NpsD

)
computations [7]. Here Nps denotes the

population size of SL-PSO. Therefore, the overall computa-
tional complexity of MADE is as follows:

T = O
(
Npd + NpNarcD + NsgpNnsD + Nns log Nns

)

+ O
(
K N 3

sgpD + N 3
srbfD + N 2

ps + NpsD
)

(3)

Here it should be noted that the time complexity for a sin-
gle fitness evaluation is non-deterministic polynomial hard
(NP-hard) [47] for most of the real-world computationally
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expensive problems, so the time complexity of MADE is
acceptable.

Conclusion

A novel multi-model assisted differential evolution algo-
rithm called MADE is proposed in this paper for solving
computationally expensive problems. Two surrogate mod-
els, an GP model and an RBF model, is separately used to
explore and exploit the design space. The GP model is con-
structed as a coarse surrogate to learn the global feature of the
fitness landscape and assist the selection operator for select-
ing the instructive parent population for the next generation.
An coarse GP-assisted environmental selection strategy is
then developed by simultaneously considering the approxi-
mated fitness and estimated uncertainty. In addition, an RBF
model was introduced to serve as a fine model to refine the
approximation quality of the selected parent populationwhile
finding the best individual amongst the population and the
local optimum in its vicinity for fitness evaluation using the
real objective function. These two strategies together make a
good balance between exploration and exploitation in search-
ing for an optimum within a limited computation budget.
The proposed algorithm was evaluated on two sets of widely
used benchmark problems characterized by different types
of fitness landscapes. The numerical results showed that the
proposed algorithm performs better than a few state-of-the-
art surrogate-assisted DE and PSO algorithms.

Model management remains the focus of research in
surrogate-assisted evolutionary algorithms. As our experi-
mental results showed that the fidelity of the surrogate model
may influence the optimal results of the algorithm, in the
future, the criteria for self-determining the model fidelity
will be studied based on the contribution of the model in
the algorithm so as to improve the performance of our
method. Moreover, extending our method to multi-objective
optimization and applying it for real-world computationally
expensive problems are also interesting works in the future.
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Appendix A: Differential evolution

The differential evolution [50] is used in this work as the
fundamental search algorithm for the proposed framework.
Generally, it is comprised of four parts, i.e., initialization,
mutation, crossover, and selection. Several mutation strate-
gies have been proposed for differential evolution [11], in
this paper, the DE/current-to-best/1 mutation strategy [10],
which perturbs the current target vector by adding a scaled
difference of two other populationmembers to a convex com-
bination of the current target vector and the best population
member, is adopted to generate a donor/mutant vector for
each individual in the population. Therefore, a mutant vector
for each individual is generated as follows:

vi (t) = xi (t) + F · (xbest(t) − xi (t))

+ F · (xR1(t) − xR2(t)) (4)

where xi (t) and xbest(t) are the i-th individual for pertur-
bation and the best individual found so far at iteration t ,
respectively. xR1(t) and xR2(t) are two different individuals
randomly chosen from the current population. F ∈ (0, 2]
denotes the scale factor which plays a role in scaling the
difference vectors.

After the mutation operation for each individual, the bino-
mial crossover operator is then conducted on the mutant
vector to generate the trial vectors as follows

ui j (t) =
{

vi j (t) if rand < Cr | j = jrand
xi j (t) otherwise

(5)

where ui j (t) is the j-th dimension of i-th trial vector, Cr ∈
(0, 1] denotes the crossover rate that controls the number
of components inherited from the donor vector. jrand is a
randomly selected integer within {1, 2, . . . , d} to ensure that
at least one component of trial vector is inherited from the
mutant vector.
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The offspring is finally determined through a greedy selec-
tion scheme described as follows

xi (t + 1) =
{
ui (t) if f (ui (t)) ≤ f (xi (t))
xi (t) otherwise

(6)

Appendix B: Gaussian process

Gaussian process (GP) [45], also called Kriging, is a type of
probabilistic models, and has been developed for assisting
global optimization in the past several decades [3,16,31,56].
In the Gaussian process model, it is often assumed that the
responses of the training data are derived from a multivari-
ate normal distribution. If the correlation function is defined,
for example, the Gaussian correlation function which is uti-
lized in our method, the final approximation model can be
derived based on the maximum likelihood estimation and the
Bayesian theory. Generally, the final approximation model
consists of prediction mean f̂ (x) and corresponding vari-
ance ŝ2(x) which can be described as follows,

f̂ (x) = β̂ + (y − 1β̂)TC−1c(x) (7)

ŝ2(x) = σ̂

[

1 − c(x)TC−1c(x) + (1 − 1TC−1c(x))2

1TC−11

]

(8)

where C is the correlation matrix that each of its element is
the value of the following Gaussian correlation function

C(xi , x j ) = exp

[

−
d∑

k=1

θk |xik − x jk |2
]

(9)

The hyperparameters θ = (θ1, θ2, . . . , θd), β̂ and σ̂ 2

are estimated by maximum likelihood estimation, c(x) =
(C(x, x1),C(x, x2), . . . ,C(x, xN )) is the correlation vec-
tor between the position x and training dataset X =
(x1, x2, . . . , xN )T , 1 is an unity vector with length D. More
detailed information can be refered to [30,56].

Appendix C: Radial basis function network

The radial basis function (RBF) network, which has much
faster training speed than the multilayer perceptron (MLP)
trained with backpropagation (BP) rule [55], was proposed
by Broomhead and Lowe [2] in 1998. Empirical findings
show that the performance of the RBF network is relatively
insensitive to the increase on the dimension of the problem
[25]. Therefore, the radial basis function interpolation [49]
is proposed to be used in this paper.

Generally, given N input–output data pairs (x1, f (x1)),
(x2, f (x2)), . . . , (xN , f (xN )), xi ∈ 	D, f (xi ) ∈ 	, i =
1, 2, . . . , N , the radial basis function interpolates this set of
points with following formula [21]:

f (x) =
N∑

i=1

αiϕ(‖x − xi‖) + p(x) (10)

where ‖·‖ andϕ(·) are the Euclidian norm and basis function,
respectively. Representative basis functions include cubic
splines, thin-plate splines, Gaussian function, linear splines,
and multi-quadrics splines [21]. In this paper, a cubic splines
basis function defined as ϕ(r) = r3 is used to construct the
RBF model. αi ∈ R denotes the i-th weight coefficient for
cubic spline interpolation to point xi . p(x) is a linear polyno-
mial with D variables that satisfies

∑N
i=1 αi p(xi ) = 0. The

unknown parameters in Eq. (10) are then obtained by solving
the following system

(
Φ P
PT 0

) (
α

c

)

=
(
F
0

)

(11)

where matrix Φ ∈ 	N×N with element Φi j = ϕ(‖xi −
x j‖), i, j = 1, 2, . . . , N ,α = (α1, α2, . . . , αN )T ∈ 	N

denotes a vector of weight coefficients. P ∈ 	N×(D+1) is a
basis function matrix of linear polynomial p(x) on the inter-
polating points, and c = (c1, c2, . . . , cD+1)

T ∈ 	D+1 is
the vector of coefficients for the linear polynomial p(x),
F = ( f (x1), f (x2), . . . , f (xN ))T ∈ 	N . Note that the
coefficient matrix in Eq. (11) is nonsingular as long as the
interpolating points are all affinely independent [48,52].
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