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Abstract
Remote center of motion (RCM) constraint has attracted many research interests as one of the key challenges for robot-
assisted minimally invasive surgery (RAMIS). Although it has been addressed by many studies, few of them treated the
motion constraint with an independent workspace solution, which means they rely on the kinematics of the robot manipulator.
This makes it difficult to replicate the solutions on other manipulators, which limits their population. In this paper, we propose
a novel control framework by incorporating model predictive control (MPC) with the fuzzy approximation to improve the
accuracy under the motion constraint. The fuzzy approximation is introduced to manage the kinematic uncertainties existing
in theMPC control. Finally, simulations were performed and analyzed to validate the proposed algorithm. By comparison, the
results prove that the proposed algorithm achieved success and satisfying performance in the presence of external disturbances.
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Introduction

In the last decades, open surgery was the standard approach
to perform surgeries. Nowadays, minimally invasive surgery
(MIS) has been introduced to overcome some of the main
drawbacks related to open surgery [1–5]. Indeed, with MIS,
the size of the surgical wounds is small; therefore, intraopera-
tive and postoperative conditions are preferable: the bleeding
is significantly limited and thus, the need for blood transfu-
sions is reduced as well. Moreover, postoperative pain and
complications are reduced, and the recovery from the surgery
is faster than in the case of open surgery [6,7]. In addition
to hemorrhage occasions where open surgery must be imple-
mented, the application of MIS has aroused more attention
[8]. Among them, one of the main minimally invasive tech-
niques is laparoscopy, performed only inside the abdominal
wall and the pelvic cavities for both diagnostic and surgical
purposes [9,10]. It can be seen that laparoscopy has gradually
become a frequently applied technique for several medical
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interventions, such as gynecological operations and digestive
system surgeries [8,11].

However, performing a minimally invasive operation is
more difficult than traditional open surgery because the sur-
geon has only a bidimensional vision of the operative field,
which is projected on 2D images. Also, the incisions are
very small, and the surgeon must be cautious in moving
the instrumentation [12]. To conclude, disadvantages of MIS
compared to open surgery include a long learning curve, poor
vision and depth perception, limited range of movement and
dexterity, and the lack of haptic feedback,which leads to poor
outcomes if the surgeon is not well trained in the intervention
[7,12].

With the development of robotics and strict operational
requirements in MIS, using the robot to replace the tradi-
tional open surgery has become a popular trend andmanifests
chances that can partly debate shortcomings of MIS, and
related works have boomed the research field. First, many
robots used in the medical field assure a three-dimensional
view of the operative workspace with adjustable magni-
fication. Besides, they provide better dexterity correcting
the tremor of the surgeon and improving their movements
through motion scaling. Finally, robots that contain high
numbers of degrees of freedom (DOFs) and wristed instru-
ments resemble human motion well [12].

In robot-assisted MIS, the robot must implant both an
endoscope and the surgical tools needed for the operation
into the patient’s body so that the surgeon can observe the
internal environment and perform the surgery. The robot’s
end-effector must enter the patient’s body through narrow
apertures, and the whole operation must be performed with-
out applying excessive forces on the edges of these incisions.
In order not to provoke damage to the patient, the end-effector
must only translate along the tool axis and the entering point.
Thus, the incision point represents a kinematic constraint that
the robot cannot violate and that is called Remote Center of
Motion (RCM) [13].

RCM constraint is extremely important for a robot to
successfully implement the MIS, but this rigorous con-
trol requirement is extremely challenging to implement.
Generally, the RCM constraint can be accomplished either
mechanically or by software [14,15]. In the former case,
also known as passive RCM constraint, the definition of the
pivot is obtained bymechanically constraining the pivot itself
to the mechanism kinematics employing circular tracking
arcs, dual parallelograms, or synchronous spherical linkages
[14,16–18]. However, these methods are expensive and wear
out with time.With the development of control methods [19–
23], in the latter case, that is the programmable or active
RCM, the constraint is accomplished by multi-joints’ coor-
dinated control, usually exploiting industrial redundant robot
[24]. Implementation of the active method is less expen-
sive than the passive one and allows greater flexibility. Also,

this method is quite robust, but it brings problems related
to space-occupation and lesser maneuverability, thus differ-
ent software methods and their RCM tackling effects are
becoming a prominent research topic. Different methods and
controllers have been proposed and studied in the litera-
ture, including the so-calledRCM-constrained Jacobian [25],
a dual quaternion-based kinematic controller [26], a task-
space augmentation method [27,28], fuzzy approximation
[29,30], decoupled controllers [15,31,32], etc. Furthermore,
optimization approaches have been proposed, and these
techniques treat RCM constraint as an equality constraint
[33].

As for the RCM-constrained Jacobian, the Jacobianmatri-
ces of the robot and the tool’s endpoint are used to directly
compute the endpoint Jacobian; then the obtained Jacobian
matrix is inserted in a feedback kinematic controller so that
the robot can follow the desired trajectory [25]. Regarding the
dual quaternion-based controller, the RCM is programmable,
and the software maintains it through a kinematic con-
troller that operates in the unit dual quaternion space [26].
The task-space augmentation method couples the coordi-
nates of the RCM constraint and the task space to achieve
two main tasks: the respect of the RCM constraint and the
correct performance of the tool-tip trajectory [27]. Finally,
it has been demonstrated that one of the best performing
methods is the null-space and task-space decoupled control
[15,27]. In this method, the null space and the task space
are hierarchically considered, then they can be combined
together by utilizing specific weights. Moreover, to over-
come the impossibility of using the Jacobian matrix with
redundant robots, it has been introduced a pseudo-inverse
Jacobian that allows solving the inverse kinematics of the
robot [15].

Model Predictive Control (MPC) has been vastly applied
in various industrial applications. However, this control
method requires accurate modeling of the controlled object,
and it is also very challenging to control the surgical robot.
Therefore, in laparoscopic applications, there are only very
few and old studies at present [34–37]. Nevertheless, in the
case that the motion equation of the robot is clear, MPC has
the following significant advantages. MPC considers only
the task space, so it is easier to be implemented than the
decoupled one. Furthermore, it is a model-based and an
optimization-based control method; in particular, this con-
trol method can predict the future trajectory that the robot
should follow, and thus, starting from the system model, the
control input is set to the optimal value [38]. Lastly, with
the MPC strategy, it is possible to introduce constraints on
the inputs and the state of the system, for example, it can
be imposed a velocity constraint such that the joint veloc-
ity does not reach high value [39–41]. For the reasons listed
above, we decided to apply the MPC method to realize the
trajectory following and RCM constraint in MIS. Further-
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more, direct fuzzy adaptive controllers are known to work
in the presence of a large uncertainty or unknown vari-
ation in plant parameters and disturbances [42]. In [43],
unknown time-varying periodic disturbances from human–
robot interaction are compensated by an adaptive fuzzy
approximation.

In this work, we propose and simulate the application of
MPC for active RCM constraint on an industrial serial 7-
DOF robot, the KUKA LWR4+. The control objectives of
the minimally invasive surgery in this paper are to control
the robot following a desired trajectory and in the meantime,
maintaining the surgical tool passing through the RCMpoint,
that is, the end position and orientation of the surgical tool
should be controlled simultaneously. Since the surgical tool
is attached to the end of the robot, namely, the position and
orientation of the last joint (i.e., the wrist joint) should be
controlled. First, a two-dimensional (2D) trajectory tracking
and RCM constraint for the surgical tool are considered. The
surgical tool is modeled as a virtual dynamic systemwith vir-
tual velocity along the two axes and virtual angular velocity
around the end of the surgical tool. Thereby, the trajectory
tracking and RCM constraint problem are transferred into
the control problem of the virtual dynamic system. Then,
MPC can be applied to design the controller of the virtual
dynamic system. Second, since the workspace of the robot is
3D, thus, to simplify the 3D problem, it is projected into xy-
plane and yz-plane, respectively. Then, the above-mentioned
2D MPC solution can be used to solve these two 2D prob-
lems. The actual position of the end of the surgical tool and
its orientation can be obtained through the mapping from
2D to 3D, and the actual position and orientation of the last
joint of the robot can also be determined. By utilizing the
inverse kinematics of the robot, we can control the robot to
get to the actual pose to realize the trajectory tracking and
RCM constraint. By simplifying the trajectory tracking and
RCM constraint problem into controlling a virtual surgical
tool, it is easy to replicate the solutions on other manipula-
tors. Furthermore, the fuzzy approximation is introduced to
manage the kinematic uncertainties and external disturbance
existing in the MPC control. Finally, the efficiency and accu-
racy of the proposed approach are validated with the KUKA
LWR4+ robot on simulation environment, with comparing to
the decoupled method and the MPC method without fuzzy
approximation.

The paper is organized as follows: themodel of the robot’s
kinematics and the mathematical solution of the RCM con-
straint are explained in the second section. In the third
section, the control design method of the MPC and the
fuzzy approximation are taken into account. The fourth sec-
tion illustrates the results of the paper and compares them
to the decoupled method and MPC method without fuzzy
approximation. Finally, the conclusions are reported in the
last section.

Problem statement

RCM constraint

In minimally invasive surgery, the surgical instrument enters
through an incision point in the abdominal wall and must not
hurt the edges of the wound during the surgical procedure.
Therefore, it can only translate along the tool axis and the
incision point. This type of constraint is called remote cen-
ter of motion (RCM) constraint. Generally, the surgical tools
used in MIS consist of a slender shaft, a cutting or grasping
end-effector. Therefore, the surgical tool is often treated as
a probe, with a specific length and moves under RCM con-
straints, to simulate the behavior of the surgical tool during
surgery. Similarly, in this paper, we approximate the surgical
tool as a line segment with a specific length l to describe
the RCM constraint model in a two-dimensional space. The
simulated model of the surgical tool is shown in Fig. 1.

In this constraint model, Tdes describes the desired tra-
jectory, and P rcm indicates the RCM constraint point. The
surgical tool tip needs to track the desired trajectory Tdes

while also satisfying the RCM constraint, i.e., crossing the
RCM point. In Cartesian space, the pose of the surgical tool
that can satisfy these two conditions at the same time is
unique, that is, the position and orientation of the surgical
tip are determined uniquely by Tdes and P rcm. Here, we
define a tool vector that points from the tip of the surgical
instrument center to the center of the RCM constraint to rep-
resent the surgical instrument’s desired location under the
RCM constraint.

tool = P rcm − Tdes. (1)

Then, the angle of the vector can be calculated by the fol-
lowing equation:

Fig. 1 Virtual model of the surgical tool in 2D. The surgical tool is
connected to the robot end-effector, that is, the last joint of the robot.
The end of the surgical tool should follow the desired trajectory T des,
and the tool should pass through the RCM point P rcm at the same time
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θ̄ = acos

(
xrcm − xactual

|tool|
)

, (2)

where |tool| =
√

(xrcm − xactual)2 + (
yrcm − yactual

)2. It
should be noted here that the angle is chosen to correspond
to the x-axis.

In geometric space, utilizing the tool vector, the pose of
the last robot joint can be described by the desired trajectory
Tdes and the RCM point P rcm. The specific relationship is
shown in the following equations:

θ robot = θ̄ , (3)

P robot = Tdes − l · tool

|tool| . (4)

Thus, a definite correspondence is established between
the last robot joint pose and the desired trajectory point that
satisfies the RCM constraint. In this work, the position and
orientation of the robot are the main control objectives.

2D RCM constraint

In practice, the motion control of the surgical tool is accom-
plished by a series of discrete control points distributed over
the desired trajectory,which is expressed in the controlmodel
as a control relation with time parameters [44–48]. In the
motion process, the wrist joint pose and surgical tool position
still follow theRCMconstraint relations given in the previous
section, but the velocity must be considered. Here, as shown
in Fig. 2, xactual, yactual, and θactual were used to describe the
pose achieved by the tool tip at a certain time; moreover, the
velocity of the tool tip is defined by vx , vy (virtual linear
velocities), and ω (virtual angular velocity). Similarly, the
coordinates of the RCM constraint were defined as (xrcm,
yrcm), and finally, we have chosen the desired trajectory in
the form of a vector of organized as (xd , yd , θd ). It should be
mentioned that (xd , yd , θd ) is the desired pose trajectory of
the robot, which means that if the robot can be controlled to
follow the desired pose trajectory, the control objectives of
the desired trajectory and RCM constraint can be maintained
simultaneously. It should be noted here that the kinematic
modeling of the tool tip is within the virtual space, which
aims at simplifying the complexity of the model.

At the initial moment, the surgical tool position coincides
with the initial point of the desired trajectory. After consider-
ing the time and velocity parameters, the pose of the surgical
tool at time t can be given by the following kinematic model:

x(t) = x(t − 1) + vx T ,

y(t) = y(t − 1) + vyT ,

θ(t) = θ(t − 1) + ωT ,

(5)

Fig. 2 Kinematic diagram of the surgical tool shown in 2D space. The
surgical tool frame is established at the end of the surgical tool, and it
is consistent with the robot base frame (in blue). It is assumed that the
surgical tool can move along x and y axes with virtual linear velocity vx
and vy . In addition, it can rotate around the end with a virtual angular
velocity ω

where T is the time interval between t and t−1. Furthermore,
the kinematic model (6) can be rewritten in a more general
matrix formby distinguishing the state parameters and output
parameters:

⎡
⎣ x(t)
y(t)
θ(t)

⎤
⎦ =

⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦

⎡
⎣ x(t − 1)
y(t − 1)
θ(t − 1)

⎤
⎦ +

⎡
⎣ T 0 0
0 T 0
0 0 T

⎤
⎦

⎡
⎣ vx

vy
ω

⎤
⎦ .

(6)

Then, in a more compact way, it can be written as:

X(t) = A · X(t − 1) + B · u(t), (7)

where u(t) is the velocity vector of the surgical tool, which
is also the control term in the kinematic model. Furthermore,
the new actual position achieved by the surgical tool:

⎡
⎣ xactual
yactual
θactual

⎤
⎦ =

⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦

⎡
⎣ x(t)
y(t)
θ(t)

⎤
⎦ . (8)

That can be written as:

Y(t) = C · X(t). (9)

Once the kinematic model for the actual tool position con-
trol has been determined, the MPC control method can be
designed for the control term u(t) to track the desired trajec-
tory.
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3D RCM constraint

As the problem of the RCM constraint in 3D space resem-
bles with it in 2D space, passing modification, the expression
of the RCM constraint problem in two dimensions can be
extended to three dimensions. Nevertheless, there is an easier
way to solve this problem, which is decomposing the RCM
constraint equations. In this chapter, a dimensionality reduc-
tion method based on coordinate decomposition is proposed,
which projects the surgical tool andRCMconstraint relation-
ship in tri-dimensional space onto the mutually orthogonal
planes, x−y and x−z planes. Thus, the problem in 3D space
is converted into 2D space RCM constraint problems that
are already discussed. The specific projection relationship is
shown in Fig. 3. In the picture, line AB represents the sur-
gical tool, where point A is the tool handle connected to the
end of the robot, point B is the tool tip, and point C rep-
resents the RCM point. In Cartesian space, the projections
on two orthogonal planes can determine the pose of the line
segment in 3D space, and here we choose the x−y and x−z
projection planes for our analysis. Similarly, using the projec-
tion decomposition method we can also obtain the expected
trajectory of the tool tip in both x−y and x−z planes, and
carry out the 2D RCM constraint analysis in each of the two
planes. For the x−y plane, it is easy to obtain the vectors con-
taining the x and y coordinates of the tip and its orientation
θxy among the time by means of geometric projection laws.
Analogously, from the x−z plane, we can also obtained x , z,
and the angle θxz , where the coordinate x is equal to the one
obtained from the x − y plane. Then, the coordinates of the
wrist joint satisfying the RCM constraint can be expressed
as:

Fig. 3 The projection of the 3D RCM constraint in the 2D plane

xrobot = xtip + l · cos(θxy) · cos(θxz),
yrobot = ytip + l · sin(θxy) · cos(θxz),
zrobot = ztip + l · cos(θxy) · sin(θxz),

(10)

where l is the tool length, xtip, ytip, and ztip are the position of
the surgical tool, and xrobot, yrobot, and zrobot represents the
position of another end of the surgical tool. With this trajec-
tory of the last joint of the robot, the robot can be controlled
to maintain the desired trajectory and RCM constraint in 3D
space. The detailed framework of the projection decomposi-
tion method is shown in Fig. 4.

Control system design

Controller designmethod

The MPC is a predictive model and it can be described
through a prediction horizon P and a control horizon M .
At the time instant i , the model predicts the possible outputs
of the next P steps, but to compute the output at the instant
i + 1, it considers only the first M predicted frames.

Surgical tool 
3D RCM 
constraint

Desired 3D 
trajectory

Tool pose
2D RCM

Tool pose
2D RCM

2D 
Desired 

trajectory 

2D 
Desired 

trajectory 

MPC 
control

MPC 
control

Actual wrist 
position  and 
velocity in x-

y plane

Actual wrist 
position  and 
velocity in x-z 

plane

x-y plane x-z plane

Geometric 
combination

Robot 
inverse 

kinematics

Joints motion 
to follow the 

trajectory

3D space

Fig. 4 Conceptual scheme of the projection decomposition method
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Fig. 5 The proposed fuzzy approximation-based MPC control frame-
work for maintaining trajectory tracking and RCM constraint. xd,xy
represents the desired position and angle trajectory (xd , yd , θd ) in x−y
plane, xactual,xy is the actual position and angle trajectory of the sur-

gical tool in x−y plane. uxy(k) if the output of the x−y plane MPC
controller, uxy,fuzzy(k) denotes the compensation item, and ud,xy(k) =
uxy(k) + uxy,fuzzy(k). The definitions of the these values in x-z plane
are omitted here for the sake of simplification

To implement the MPC control method we start from the
discrete kinematicmodel defined in theRCMConstraint sub-
section [49]:

xi (k + 1) = A · xi (k) + Bi · ui (k) + di (k),
y(k) = C i · xi (k), (11)

where xi ∈ Rn, ui ∈ Rr , y ∈ Rq . di ∈ Rn . n is the state
dimensionality, r is the input dimensionality, and q is the
output dimensionality. It should be noted that during prac-
tical scenarios, the motion of organs is rhythmic due to the
rhythm of breathing. The motion of organs is a disturbance
for the tasks of trajectory tracking and RCM constraints. The
dynamics of the external disturbance induced by the rhythmic
motion of the organs is unknown and nonlinear. Therefore,
the external disturbance induced by the uncertain motion of
organs is defined as di ∈ Rn .

The discrete model in (8) and (10) can be written through
the predictive model as [50]:

Y(k) = Fy · x(k) + Gy · U(k), (12)

where:

Y(k) =
⎡
⎢⎣

y(k + 1)
...

y(k + p)

⎤
⎥⎦
qP×1

, (13)

U i (k) =
⎡
⎢⎣
ui (k)
...

ui (k + M − 1)

⎤
⎥⎦

Mr×1

, (14)

Fy =
⎡
⎢⎣
CAi
...

CAp
i

⎤
⎥⎦

pq×n

, (15)

Gy =

⎡
⎢⎢⎢⎢⎢⎢⎣

CBi 0 0
...

... 0
CAM−1

i Bi · · · CBi
...

...
...

CAP−1
i Bi · · · C ∑ P−M

i=0 Ai
i Bi

⎤
⎥⎥⎥⎥⎥⎥⎦

pq×Mr

, (16)

where p is the number of prediction steps and M is the
number of control steps.

Once we have computed the possible outputs Y(k), we
must find the best path for the robot by minimizing a cost
function [51]:

min
U i (k)

= ‖W(k) − Y(k)‖2Qy
+ ‖U(k)‖2Ry

, (17)

whereW(k) is a t×qpmatrix containing the desired pose of
the tip at the instantk, and t is the number of the simulation
time intervals. The solution that minimizes the cost function
is given by [51]:

U(k) =
(
GT

y QyGy + Ry

)−1
GT

y Qy

(
W(k) − Fyx(k)

)
.

(18)

So we have defined:

u(k) = dTU(k), (19)
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where

d =
⎡
⎣1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0

⎤
⎦ . (20)

Finally, we have computed the new values of x and y as in
(12). The procedure is repeated for all the t time intervals of
the simulation.

Fuzzy approximation

Asmentioned above, themotion of organs is a disturbance for
the tasks of trajectory tracking and RCM constraints, which
is defined as di ∈ Rn . To achieve the implementation of a
task by controlling the position of the surgical tip regardless
of the external disturbance, the fuzzy approximation method
proposed in [42] is utilized in this paper to compensate for
the external disturbance. As mentioned in [42], a nonlinear
disturbance can be represented by the function of f (Z) :
Rn → Rm as f (Z) = θT S(Z) + ε(Z), where θ ∈ Rl is the
adaptable weight, the vector Z = [z1, z2, . . . , zn] ∈ Rn is
the input vector of the function model, S(Z) ∈ Rn denote
the vector of the kernel function. ε ∈ R represents the error
of the approximation performance, which should meet the
condition: ∃ε̄ ∈ R > 0, |ε(Z)| ≤ ε̄, ∀Z ∈ �Z [42,52]. In
our work, the adaptive rule [53] for the approximation model
is selected as:

ξ j =
∏n

i=1 μAli (zi )∑m
j=1

∏n
i=1 μAli (zi )

, j = 1, . . . ,m. (21)

The weight parameters [53] � is adjusted with �̇ =[
θ̇1, θ̇2, . . . , θ̇m

]
∈ Rm×l , θ̇ i ∈ Rl , i = 1, 2, . . . ,m:

θ̇ i =

⎧⎪⎨
⎪⎩

γ ei Pξ T (Z), ‖θ i‖ < Mθ i or
(‖θ i‖ ≥ Mθ i

&γ EPξ T (Z) < 0
)

�(Z), ‖θ i‖ ≥ Mθ i&γ ei Pξ T (Z) ≥ 0,

(22)

where �(Z) = γ ei P
(
1 − θ i θ

T
i

‖θ i‖2
)

ξ T (Z), and γ ∈ Rm×m

denotes the updating speed matrix of the compensator. In
addition, the vector of system output error is defined by
E = [

e1, e2, . . . , em; ė1 , ė2, . . . , ėm]. Based on the Lya-
punov stability theorem, the P ∈ R2×1 is chosen. The
following motion compensation method is adopted to esti-
mate the external disturbances. Xd , Ẋd , X and Ẋ are the
input of the fuzzy system, and the output is the compensated
angular velocity on each axis. After approximation of the
uncertain disturbance, an adaptive fuzzy term ufuzzy(k):

ufuzzy (k) = �T S
(
Xd , Ẋd , X, Ẋ

)
. (23)

Fig. 6 Simulation setup in Matlab

is introduced to compensate the uncertain external distur-
bances. The desired control term can be expressed as:

ud (k) = u (k) + ufuzzy (k) . (24)

Control framework

To solve the 3D space RCM constraints, we choose the pro-
jection decomposition method to transform the problem into
two 2D RCM constraint problems, and obtain the coordi-
nate projections and velocity components of the wrist joint
using MPC in both planes. Since the kinematic control is
performed in joint space, we need to combine the position
and velocity components of the wrist into 3D space through
geometric relations. Once the wrist joint pose and velocity
is obtained, the angle and angular velocity of each joint of
the robot can also be solved by inverse kinematics, which in
turn drives the robot motion and completes the surgical tool
trajectory tracking. Furthermore, the fuzzy approximation
method is introduced to compensate for the external distur-
bance induced by the motion of organs. The detailed control
framework is shown in Fig. 5.

Simulation results

The comparative simulations are performed for the following
purposes:

1. To show that the proposed MPC-based method is able
to improve the trajectory tracking and RCMmaintaining
performance, in comparison with the typical decoupled
method;

2. To demonstrate that fuzzy approximation-based compen-
sation ismore effective tomaintain the performancewhen
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Fig. 7 Simulation trajectories

Fig. 8 Experiment
one—Zig-Zag trajectory
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Table 1 Root mean square rrror
(RMSE) of the trajectory
tracking and RCM constraint in
experiment one and two

Zig-Zag trajectory Sine trajectory

RMSEtraj RMSErcm RMSEtraj RMSErcm

Experiment one Decoupled 1.15 4.35 0.97 3.06

MPC 0.63 0.13 0.52 0.11

Experiment two Without fuzzy 1.05 1.04 1.13 1.17

Fuzzy 0.21 0.19 0.25 0.15
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Fig. 9 Experiment one—Sine
trajectory

0 200 400 600 800 1000 1200 1400 1600 1800 2000

timesteps

-0.245
-0.24

-0.235
-0.23

x 
[m

]

(a) X-axis trajectory

Desired
Decoupled
MPC

0 200 400 600 800 1000 1200 1400 1600 1800 2000

timesteps

0.4

0.45

0.5

y 
[m

]

(b) Y-axis trajectory

0 200 400 600 800 1000 1200 1400 1600 1800 2000

timesteps

0.2096
0.2097
0.2098

z 
[m

]
(c) Z-axis trajectory

0 200 400 600 800 1000 1200 1400 1600 1800 2000

timesteps

0

0.5

1

e
tr

aj
 [m

m
] (d) Trajectory error

0 200 400 600 800 1000 1200 1400 1600 1800 2000

timesteps

0

5

e
rc

m
 [m

m
] (e) Error between RCM point and tool

there are external disturbances induced by the motion
of organs, in comparison with the proposed MPC-based
method but without disturbance compensation.

The performance of the proposed method is verified
through the simulation in Matlab. An environment in which
a KUKA LWR4+ robot is loaded, the initial and the struc-
tural information have been given. In the virtual environment,
the RCM constraint (the red circle) and the tip (in blue)
were added as well, which is shown in Fig. 6. While the
RCM is kept fixed, the tip moves following the chosen tra-
jectories. In the simulation, two trajectories are chosen to
conduct the experiment, that is, the zigzag and sine trajec-
tories, which are shown in Fig. 7. It should be noted that
to simplify the trajectory, the Z -axis positions of these two
trajectories are kept fixed. To better demonstrate the superi-
ority of the proposed method, two comparative experiments
are conducted. First, the proposed method without fuzzy
approximation is compared with the decoupled method [15]
to show the better performance of the MPC-based method.
Second, the proposed method with fuzzy approximation is
comparedwith the onewithout fuzzy approximation to verify

the effectiveness of the fuzzy approximation when there are
some external disturbances. It is noted that during surgeries,
although the human body remains stationary, the motion of
organs is rhythmic, often following the rhythm of breath-
ing. The motion of organs is a disturbance for the tasks of
trajectory tracking and RCM constraints. Therefore, in the
simulation, we set the disturbance as a periodic sinusoidal
disturbance. Some metrics of evaluation are introduced here
to analyze the simulation results:

etrajx = xactual − Tdes,x ,

etrajy = yactual − Tdes,y,

etrajz = zactual − Tdes,z,

(25)

etraj =
√
e2trajx + e2trajy + e2trajz , (26)

ercm = ‖(P rcm − Xactual) × tool‖
‖P rcm − Xactual‖ . (27)

As for the control part, with our MPC method, the pre-
diction horizon p and the control horizon m are chosen as
10 and 4, respectively. It is noted that for the sake of the
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Fig. 10 Experiment
two—Zig-Zag trajectory
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computational time, the predictive horizon has been set to
a bigger value than the control horizon. Furthermore, the
weight parameters Q and R are determined through several
cycles of the trial with different combinations of the param-
eters. At the end, a high Q and a low R have been chosen to
maintain a small tracking error and quite reactive behavior
that allows us to change the input according to what has been
advised by other MPC applications [54].

The results of the first simulation are shown in Figs. 8 and
9with Fig. 8 displaying the Zig-Zag trajectory and Fig. 9 pre-
senting the Sine trajectory. It indicates that the performance
of the proposed MPC-based method is significantly better
than the decoupled method, both in the trajectory error and
the RCM error. The overall trajectory error of the proposed
MPC method is within 1 mm, while that of the decoupled
method would exceed 1 mm. As for the RCM error, the
proposed MPC-based method can maintain near 0 at all
the timestamps. However, the RCM error of the decoupled
method could reach up to 5 mm.

The results of the second simulation are listed in Figs. 10
and 11 with Fig. 10 displaying the Zig-Zag trajectory
and Fig. 11 presenting the Sine trajectory. It can be seen
from the experimental results that the performance would
be greatly effected by the external disturbances without
the fuzzy approximation-based disturbance compensation.
While introducing the fuzzy approximation-based compen-
sation method, the performance are better, the trajectory and
RCM error would decrease to 0 gradually, which means that
the fuzzy approximation method can accurately estimate and
compensate for the external disturbances.

Based on the above discussion of the experimental results,
we summarize the advantages of the proposed method. The
significance lies in the higher trajectory accuracy and RCM
accuracy compared to the decoupling method, and also in
the effective suppression of external disturbances induced
by rhythmical motions of organs.
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Fig. 11 Experiment two—Sine
trajectory
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Conclusion

In this section, we demonstrate the advantages and poten-
tial of the MPC approach to robot-assisted laparoscopy. The
specific contributions are summarized below.

1. The 3D trajectory tracking and RCM constraint main-
taining problem has been projected into 2D space, which
could simplify the problem.

2. The virtual kinematic model of the surgical tool is
established, and the trajectory and RCM constraint are
transferred into controlling the position and orientation
of the virtual surgical tool.

3. The fuzzy approximation method is introduced to com-
pensate for the external disturbances induced by the
rhythmical motion of organs.

Simulations have been conducted to verify the effective-
ness of the proposed method, both in comparison with the
decoupled method and the proposed method without fuzzy

approximation-based disturbance compensation. The results
shows that the performance of the proposed method is better
than the decoupled method, and the fuzzy approximation-
based compensation method can accurately estimate the
external disturbances and compensate for the disturbances.
However, there are only simulation results in this paper. In the
future, there shall be improvements such as the introduction
of constraints on the tool velocity according to the different
scenarios of minimally invasive surgeries. After improve-
ments, the method could be implemented directly in the
control of a KUKA LWR4+, or any other industrial robots,
by re-tuning theMPC parameters, changing the values of the
D-H parameters, and re-setting the initial configuration. In
addition, the proposed method can be extended to investi-
gate other research areas, such as mobile robots, soft robots
[55,56], etc.
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50. Raković SV (2016)Model predictive control: classical, robust, and
stochastic [bookshelf]. IEEE Control Syst Mag 36(6):102–105

51. Levine WS, Grüne L, Goebel R, Rakovic SV, Mesbah A, Kol-
manovsky I, Di Cairano S. Allan DA, Rawlings JB, Sehr MA et al
(2018) Handbook of model predictive control

52. Chen B, Liu XP, Ge SS, Lin C (2012) Adaptive fuzzy control of a
class of nonlinear systems by fuzzy approximation approach. IEEE
Trans Fuzzy Syst 20(6):1012–1021

53. Tong S, Li Y (2012) Adaptive fuzzy output feedback control of
mimo nonlinear systems with unknown dead-zone inputs. IEEE
Trans Fuzzy Syst 21(1):134–146

54. Hamid UZA, Zamzuri H, Raksincharoensak P, Rahman MAA
(2016) Analysis of vehicle collision avoidance using model pre-
dictive control with threat assessment. In: 23rd ITS world congress

55. ChenY,Wang L, GallowayK, Godage I, SimaanN, Barth E (2020)
Modal-based kinematics and contact detection of soft robots. Soft
Robot

56. Yu S, Huang TH, Yang X, Jiao C, Yang J, Chen Y, Yi J, Su H
(2020) Quasi-direct drive actuation for a lightweight hip exoskele-
ton with high backdrivability and high bandwidth. IEEE/ASME
Trans Mechatron 25(4):1794–1802

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Incorporating model predictive control with fuzzy approximation for robot manipulation under remote center of motion constraint
	Abstract
	Introduction
	Problem statement
	RCM constraint
	2D RCM constraint
	3D RCM constraint


	Control system design
	Controller design method
	Fuzzy approximation
	Control framework

	Simulation results
	Conclusion
	References




