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Abstract
Uncertainties from hydrological and meteorological environments constantly pose disturbances to water sustainability. Pro-
gramming under such uncertainties aims at finding solutions to this risky condition. From the sight of uncertain water
availability, this paper builds a water life cycle model to reduce the risks of inappropriate estimations of water availability
within a river basin and incorporates the results in robust programming. Then, a policy-driven scenario analysis is conducted
to provide managerial implications in terms of ongoing water-saving policies.WithMin–Tuo river basin as the case, we finally
reach the conclusions that: (1) Equity is a necessity when considering the water allocation in a river basin, which enables a
more sustainable mode of local water use. (2) Local citizens’ willingness to follow the policies is a key to relieve the water
pressure, while the progress of water-saving techniques could add to its effectiveness.

Keywords Water resources management · Robust programming · Water life cycle · Scenario analysis

Introduction

Uncertainties of water-related decisions exist in both engi-
neering and ecological environment, from the sight of sus-
tainablewatermanagement [1]. It has become anecessity that
urban decision makers take water sustainability into account,
as recommended in United Nations Sustainable Develop-
ment Goal 6 (UNSDG6) [2]. Generally, wemeasure the risks
of inappropriate decisions through the analysis of uncertain-
ties. They usually appear with something we do not know,
and something we thought is known [3]. For those unknowns
we do not know, predictions and estimations can be applied
to reduce the uncertainties. But with those unknowns that
are pretended known, insufficient information often leads to
over-fitting scenarios or unsustainable resource planning [4].
Due to the ambiguity of parameters that should be known
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before decisions, uncertain programming has become criti-
cal.

In general, parameters included in a programming model
can be classified into two primary forms, i.e. deterministic
and uncertain. Conventional studies applying optimization
models in decision-making usually incorporate determinis-
tic parameters. However, it is often the case that optimization
parameters are not fully resolved at the very first [5], the
samewithwater resourcesmanagement.With unknown vari-
ations in future water demand and supplies, deterministic
information is no longer applicable for future sustainable
development, raising the need for uncertain decision-making
[6, 7]. For example, the basin manager cannot anticipate
the exact water availability, since meteorological factors like
temperature and precipitation are out of control [8]. The
alarm for ongoing climate change is ringing, and intensi-
fied temperature rising has altered both the meteorological
and hydrological environment into more complicated. We
must reconsider the water resources planning in a changing
environment.

Since the optimization results can be significantly affected
by uncertainties, even drawing infeasibility on programming,
a long-term exploration into this field has lasted for decades.
Stochastic optimization (SO) and robust optimization (RO)
are two main branches of mathematical programming under
uncertainties. As a typical solution to decision-making con-
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Table 1 Classification of recent studies in uncertain water planning

Branches Sub-branches Articles Uncertainty presented as

Uncertain programming Interval programming [16] Interval numbers

[17] Intervals with random boundaries

Stochastic programming [18] Probability distributions and fuzzy variables

[19] Interval numbers with probability distributions

[20] Interval numbers with probability distributions

[21] Interval numbers with probability distributions

Fuzzy programming [22] Fuzzy sets

[23] Fuzzy sets

[24] Fuzzy interval sets

Deterministic programming – [25] Deterministic parameter

– [26] Deterministic parameter

– [27] Deterministic parameter

sidering uncertainties, SO requires exact PDFs of uncertain
parameters; however, lacked for most cases in practice due
to the information barriers. In comparison, a RO problem
starts with an uncertainty set, which can be shaped in mul-
tiple ways, e.g. box, ellipsoidal, polyhedral, and sets with
uncertain moments [9]. Also, the feasibility within a RO
problem must be guaranteed for any realization of the uncer-
tain parameters [10], i.e. power of robustness. Though RO
is a powerful tool for decisions under uncertainties, it has
not grasped much attention in water resources management,
compared with SO. This paper takes a trial to apply RO in
a real-world water planning to provide more robust regional
water allocation.

To date, uncertainties in water planning are commonly
considered as interval, probability, and fuzzy sets. Stochastic
programming searches for optimal solutions in anuncertainty
set generated from PDFs that should be explicitly acknowl-
edged. For fuzzy programming, uncertainties within fuzzy
sets can be divided into different memberships or grades
[11]. Interval programming defines uncertain variables and
parameters as interval numbers, with known upper and lower
bounds [12]. Intervals are also effective in building distribu-
tion functions and resolving the uncertainties in tests [13].
A summary of recent studies that focus on uncertain water
planning is shown in Table 1, and some other studies also
develop a more complex uncertainty set with hybrid types.
In a combination of interval uncertainty and fuzzy program-
ming, Li et al. [14] applied interval sets in defining uncertain
parameters, and designed a fuzzy objective in programming.
Fu et al. [15] considered the uncertainties inwater availability
as discrete intervals and probability distributions in exploring
water planning alternatives. From the existing literatures, we
can see that interval uncertainty is commonly considered in
water planning, due to its simplicity and wide acceptability.

Therefore,we follow the former literature and use the interval
uncertainty set to represent the uncertain water availability.

Practical programming of limited natural resources is con-
sidered critical under ambiguous information of availability,
e.g. water availability, especially in developing countries
with a large population but already insufficient resources.
Total available water (AW) is a key for any programming
model, since it is the major limiting factor in water allocation
[28]. Traditional studies commonly treatAWas deterministic
according to historical records of water allocation. In other
words, the estimation for AW is experience-oriented. With
the applications of forecasting techniques, e.g. time series
analysis [29], linear regression [30], and artificial neural net-
works [31], related studies have enriched their explanation
for AW. This paper mainly considers uncertainties existing
in AW, under the development of RO model, and applies
the water life cycle to provide more accurate estimations for
AW’s nominal value, as a complement of existing literature.

This paper aims at solving the robust programming prob-
lem in a real-world case within a bilevel water management
framework. As for the main contributions, (1) this paper
builds a water life cycle model based on historical records
before the decision-making, to provide a more accurate esti-
mation for AW’s nominal value in the interval uncertainty
set. (2) The robust solutions of a leader–follower problem
are given, providing robust decisions that could be enforced
to optimize overall water equity and local water use profits.
(3) Different scenarios that could further influence the effec-
tiveness of water-saving policies are built and then analyzed
in the discussion, enabling insights into the future implica-
tions of final water allocation schemes.

Methodologies applied in this paper will be depicted in
“Methodology”. Then, a case study is designed in “Case
study”. Results of robust programming are shown in “Results
and discussions”, followed by further discussions on the pol-
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Fig. 1 Bilevel water allocation
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icy implications through policy-driven scenario analysis. In
the last section, conclusions and existing limitations of this
paper will be given.

Methodology

“Problem statement” illustrates the water allocation problem
under a hierarchical framework with uncertain water avail-
ability. “Robust water allocation model” provides a global
robust programming model that is also general for other
basins under similar conditions. With special cases, param-
eters and constraints could be modified according to the
features of water allocation.

Problem statement

As shown in Fig. 1, a leader–follower problemappearswithin
a bilevel water management framework. Generally, a bilevel
programming contains an upper level problem that has mul-
tiple lower level problems [32]. The leader, authority of river
basin, owns the highest priority in water resources manage-
ment andmakes the final decision. The followers, i.e. subarea
managers, hold the responsibility of allocating water to dif-
ferent sectors. According to former researches and the water
use statistics in China, we consider four main water con-
sumption sectors, i.e. ecological, industrial, domestic, and
agricultural sectors. Under the proposed framework, both
the overall equity of river basin and local profits of subar-
eas can be optimized within a Stackelberg game, in which
the authority of river basin leads the upper decision first, own-
ing a complete knowledge of possible reflections of subareas.

In contrast, the subarea managers act accordingly right after
the upper decisions are made [33]. Based on water allocation
results, trade-offs of mutual gains from water allocation will
be further discussed.

Before constructing the bilevel model for basin-level
water allocation, the following assumptions were made for
basin-level water allocation program, referring to the former
works of [34, 35]:

1. Subareas own the sharedwater resources supplied by one
single river basin and other supplies are not included, e.g.
remained water resources of subareas.

2. Allocated water to subareas is all distributed to sectors,
with no reservation.

3. There is no water exchanging or trading among the sub-
areas or subordinate sectors.

4. River basin authority fully understands the objectives and
constraints of bilevel decisions while subarea managers
act accordingly.

5. Subareas are under an uncooperative situation where no
information is shared and conflicts among competitive
subareas are not included.

Robust water allocationmodel

In this paper, we put forward the robust programming in
water resources management and apply solvable linear pro-
gramming (LP) to obtain solutions, i.e. robust counterpart
approach. The theory of robust counterpart (RC) begins with
an equivalent LP form of the original robust programming
[36, 37]. With the evolution of RC approach, adjustable
robust counterpart (ARC) that aims at relieving the con-
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servativeness of robust solutions was introduced. However,
the ARC is computationally intractable (NP-hard) in most
cases. Therefore, Ben-Tal et al. [38] proposed an improved
affinely adjustable robust counterpart (AARC) to transfer
ARC problem into solvable LP, while maintaining robust-
ness. Basically, AARC introduces the affine function of
uncertain data in the new problem.

With historical data of AW, we can define the support set
� as follows:

� �
{
˜AW

∣∣∣AWmin ≤˜AW ≤ AWmax

}
(1)

where AWmin and AWmax are the upper and lower bounds of
uncertain˜AW.

Then, an interval uncertainty set can be defined with
adjustable coefficient θ :

� �
{
˜AW

∣∣∣AW∗(1 − θ ) ≤˜AW ≤ AW∗(1 + θ )
}

(2)

where AW∗ is the nominal value of˜AW. Generally, the nom-
inal value is present based on assumptions, e.g. average value
of historical records. In this paper, a water life cycle model
will be applied to determine the AW∗. θ represents the like-
lihood of managers willing to accept the uncertainties of
climate change. When θ � 0, the problem is equal to a deter-
ministic problemwhere˜AW � AW∗. Uncertainties that may
exert impacts on˜AW cover both meteorological and hydro-
logical factors [39]. In this paper,we set θ as themeasurement
of meteorological factors, e.g. natural factors that may cause
variations in water availability. In a wider range, θ represents
temperature, wind speed, humidity, and other related reflec-
tions of climate change. Following the instruction of AARC,
we establish the bilevel robust programming model.

Upper level decision

In this paper, the leader (authority as a leader of river basin)
first decides under what principles could the limited water
resources be allocated rationally. Then, constraints that may
influence the feasibility of allocation should be considered.

Upper level objective function: maximizing the equity
ofwater resource allocation Equity refers to an unbiased sit-
uationwhere individuals under competition are treated equal,
and in water allocation, it is defined as equitable access to
water resources. Though equity is an uncountable term, we
can followwhatGini has defined in the exploration of income
inequality [40]. Hu et al. [35] measured water allocation
equity by the equitable sharing of the used water quantity
for each unit of economic benefits. In this paper, we focus
on the equitable access to water of all water population in
subareas, to relieve the gap between high water pressure and

low water pressure, i.e. gap between a large population shar-
ing limited water resources and a small population sharing
abundant water resources.

Considering the water loss existing in transportation, dis-
tribution etc., the total amount of water from the river will
be more than those reaching to the terminal users. Let Qef

i
represents the efficiently allocated water which excludes the
total of loss in subarea i .

Qef
i � Qi (1 − β loss

i ) (3)

where β loss
i is the ratio of total loss during the transportation

from water plants to users.
Considering the total amount of water users Si in subarea

i , we set the Gini coefficient of water allocation as follows:

G � 1

2I
∑I

i�1
Qef
i
Si

I∑
u�1

I∑
z�1

∣∣∣∣∣
Qef

u

Su
− Qef

z

Sz

∣∣∣∣∣ (4)

where twodifferent subareas are denotedbyu and z amongall
the subarea i . In specific, water allocation among subareas is
regarded perfectly equal ifG � 0, under which the water use
per capital of each subarea shares no difference, i.e. entirely
equitable access to water.

Upper constraint 1: water availability For the very first
feasibility, total allocated water

∑I
i�1 Qi of upper level to

subarea i cannot exceed AW, which is uncertain.

I∑
i�1

Qi ≤˜AW (5)

where critically,˜AW is presented as a random variable which
shares no explicit information of probability distributions but
historical records.

Upper constraint 2: water demand There’s always a trade-
off between water supply and demand before conducting the
water allocation. Thus, we set a constraint on the range of
Qef

i based on the minimal water demand of subareas. That
is, the total amount of water allocated to subarea i should
necessarily exceed or equal to Dmin

i .

Dmin
i ≤ Qef

i (6)

where minimal water demand Dmin
i is based on historical

water demand of study areas.

Lower level decision

From the sight of Stackelberg game, the followers (subarea
managers)make the decisions right after the upper decision is
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done, i.e. total available water allocated to subareas is settled.
Then, lower decisions start with the priority of sectorial water
use, i.e. objective of water allocation. Also, constraints that
could exert disturbances on water allocation are included.

Lower objective function: maximizing the overall profits
Subarea managers consider more for the overall profits of
water allocation to different sectors. As for the industrial
sector, water resources are mainly distributed to produc-
tion, manufacturing, and other industrial activities, denoted
as qIndi . Ecological water use qEcoi ensures the protection of

hydrological environment. qDomi and qAgri , i.e. domestic sec-
tor and agricultural sector, are critical for local citizens. For
subareas, unit profits gains are treated as deterministic, for
which we can use statistical data to represent. Unit returns
of water consumption in three economic sectors are repre-
sented by pAgri , pIndi and pDomi , which are estimated through
historical records and shown in Appendix 1 (Table 7).

Total profit gains of water allocated to economic sectors
can be treated as the products of allocated water and unit
profit gains:

MaxP �
I∑

i�1

qIndi × pIndi + qDomi × pDomi + qAgri × pAgri .

(7)

Lower constraint 1: water availability The total amount of
water allocated to sectors is equal to those initially allocated
to subareas in the upper decisions:

qEcoi + qIndi + qDomi + qAgri � Qef
i . (8)

Lower constraint 2: minimal water demand To ensure the
basic need of economic sectors, i.e. industrial, agricultural,
and domestic sectors, allocated water to those sectors should
be more than the minimal water demand.

qIndi ≥ (dIndi )min (9)

qAgri ≥ (dAgri )min (10)

qDomi ≥ (dDomi )min. (11)

Lower constraint 3: water-saving policies Water-saving has
long been a critical issue in water resources management,
with relevant regulations on total consumption from the local
use. In this study, we consider limitations on total consumed
water of industrial and agricultural sectors throughmaximum
consumption before the planned year, i.e. quotas of water
consumption, to support the water-saving policies:

qIndi ≤ cIndi (12)

qAgri ≤ cAgri (13)

where cIndi and cAgri represent the quotas of water consump-
tion in the industrial and agricultural sector.

Specially when considering the fundamental requirement
for living as primary principle, we treat the quota of domestic
water use as a minimum guarantee:

qDomi ≥ cDomi (14)

where cDomi represents the quotas of water consumption in
domestic sector.

Lower constraint 4: minimal ecological demand According
towater report of Sichuan province, ecologicalwater demand
has long been compressed by economic sectors, which is
harmful to the ecological environment of river basin. Thus,
a constraint for minimal demand is set to ensure adequate
supply of ecological water:

qEcoi ≥ (dEcoi )min (15)

where (dEcoi )min is the minimal water demand of ecological
sector in subarea i .

In some cases, the scarcity of water could also be inten-
sified due to the over-emphasized ecological water demand,
and even the basic availability of living water could be influ-
enced. Thus, we also attached another constraint on the
maximum quantity of ecological water use:

qEcoi ≤ (dEcoi )max (16)

where (dEcoi )max is the maximum threshold of ecological
water use in subarea i .

Global model

Finally, we reach to a global model composed of the upper
and lower decisions. Given that Qef

i � Qi (1−β loss
i ), the total

allocated water
∑I

i�1 Qi should be included in˜AW and the
upper level objective is determined by Qef

i that is effectively
transported to subareas:

Min G � 1

2I
∑I

i�1
Qef
i
Si

I∑
u�1

I∑
z�1

∣∣∣∣∣
Qef

u

Su
− Qef

z

Sz

∣∣∣∣∣
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s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I∑
i�1

Qi ≤˜AW

Qef
i ≥ Dmin

i⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max P �
I∑

i�1
qIndi × pIndi + qDomi × pDomi + qAgri ×pAgri

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qEcoi + qIndi + qDomi + qAgri � Qef
i

(dIndi )min ≤ qIndi ≤ cIndi

(dAgri )min ≤ qAgri ≤ cAgri

qDomi ≥ cDomi

qDomi ≥ (dDomi )min

(dEcoi )min ≤ qEcoi ≤ cEcoi

Qef
i , qEcoi , qIndi , qDomi , qAgri ≥ 0.

(17)

Solution procedure

Conventional bilevel programming is regarded as NP-hard,
which indicates observed possibility in compromising, in
terms of the leader and followers’ shared profits. Basically,
hierarchical problems can be transferred into a standard
mathematical program by replacing each follower’s prob-
lemwith itsKarush–Kuhn–Tucker (KKT) condition [41].We
applied this strategy and transferred problem (17) to problem
(18) to make it solvable:

MinG � 1

2I
∑I

i�1
Qef
i
Si

I∑
u�1

I∑
z�1

∣∣∣∣∣
Qef

u

Su
− Qef

z

Sz

∣∣∣∣∣

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I∑
i�1

Qi ≤˜AW

Qef
i ≥ Dmin

i

qEcoi + qIndi + qDomi + qAgri � Qef
i

(dIndi )min ≤ qIndi ≤ cIndi

(dAgri )min ≤ qAgri ≤ cAgri

qDomi ≥ cDomi

qDomi ≥ (dDomi )min

(dEcoi )min ≤ qEcoi ≤ cEcoi

s1+i − s1−i + s2+i − s2−i + s3+i − s3−i + s4+i + s4++i + s5+i − s5−i � −pIndi − pDomi − pAgri

s1+i ((qEcoi + qIndi + qDomi + qAgri ) − Qef
i ) − s1−i (Qef

i − (qEcoi + qIndi + qDomi + qAgri ))

+s2+i (qIndi − (dIndi )min) − s2−i (cIndi − qIndi ) + s3+i (qAgri − (dAgri )min) − s3−i (cAgri − qAgri )

+s4+i (qDomi − cDomi ) + s4++i (qDomi − (dDomi )min) + s5+i (qEcoi − (dEcoi )min) − s5−i ((dEcoi )max − qEcoi ) � 0

s6i (q
Eco
i + qIndi + qDomi + qAgri ) � 0

Qi , qEcoi , qIndi , qDomi , qAgri ≥ 0, s j±i ≥ 0, j � 1 . . . 6

(18)
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where s1±i ,s2±i ,s3±i ,s4+i ,s4++i ,s5±i ,and s6i represent the dual

variables of qEcoi + qIndi + qDomi + qAgri � Qi ,(dIndi )min ≤
qIndi ≤ cIndi ,(dAgri )min ≤ qAgri ≤ cAgri , qDomi ≥ cDomi ,
qDomi ≥ (dDomi )min, (dEcoi )min ≤ qEcoi ≤ cEcoi and

qEcoi , qIndi , qDomi , qAgri ≥ 0 respectively.
To solve problem (18), we refer to [37] and solve

its affinely adjustable robust counterpart (AARC) instead,
under the typical situation of right-hand side uncer-
tainty ˜AW. Transferred AARC models are presented as
problem (20). Note that, the original decision variables
Qi , qIndi , qAgri , qDomi , qEcoi are transferred to their affine

functions considering˜AW, i.e. π0
i,t +

∑
r∈It π

r
i,tAWr ,π

0,Ind
i,t +∑

r∈It π
r ,Ind
i,t AWr , π

0,Agr
i,t +

∑
r∈It π

r ,Agr
i,t AWr , π

0,Dom
i,t +∑

r∈It π
r ,Dom
i,t AWr and π

0,Eco
i,t +

∑
r∈It π

r ,Eco
i,t AWr . Final LP

problem (21) is obtained based on the principles in Eq. (22)
(shown in Appendix 2). Results could be processed through
Lingo software.

Case study

In “Study area” and “Data sources”, we introduce the study
area according to its geographical features, water use con-
ditions and the available data sources. Then in “Modeling
the water life cycle”, we conduct a water life cycle analysis
using statistical data of study area. Worth mentioning, the
study area, i.e. Min–Tuo river basin, is facing the same water
allocation issue that we mentioned in “Problem statement”.
Also, other basins in China could also find a reference in this
study.

Study area

Numerous tributaries of Yangtze river form the Min–Tuo
river basin (99°–106° E, 28°–34° N) and cover a total area
of 16.3×104 km2 at the upstream (shown in Fig. 2). Min
river owns abundant water resources for 953.6×109 m3 on
average and supplies for more than 11 prefectures in Sichuan
Province and Qinghai Province, China, with a coverage of
13.5×104 km2 and full length of 735 km. It’s the main water
supplier of Sichuan Province and serves water resources for
about 1.9×106 residents, more than half of which are in
urban areas. Embedded with large population, water plan-
ning for Min river must find trade-offs between equity and
local profits. Tuo river situates in central Sichuan Province
and covers a total area of 2.56×104 km2 at a length of
627.4 km. Since Tuo river flows through the industrial cities
ofLuzhou,Neijiang, Ziyang, Jianyang,Chengdu andDeyang
in Sichuan Province, it has to balance the industrial water
consumption among areas. Moreover, it has been faced with
intensified water issues, e.g. inefficient water allocation and

Table 2 List of subareas

Subareas Abbreviations Subareas Abbreviations

Chengdu CD Zigong ZG

Deyang DE Yibin YB

Ziyang ZY Luzhou LZ

Ya’an YA Ngawa NG

Meishan MS Garzê GZ

Neijiang NJ Liangshan LS

Leshan LE

water pollution [42]. Since only 7% of the Min river locates
inQinghai Provincewhile Tuo river fully involved in Sichuan
Province, this paper takes Sichuan Province in the case study,
and applies the bilevel RO model to deal with the real-world
water allocation problem of this area. In all, 13 subareas and
the water use sectors are included in further analysis (shown
in Table 2).

For river basin, the uncertainties in total available water
have been a long-term concern in related studies [43, 44].
In this paper, both meteorological and hydrological uncer-
tainties of water availability are considered, through the
incorporated water life cycle analysis and robust program-
ming. For the principles of water allocation, managers of
Min–Tuo river basin should find a sustainable path toward
adequatewater supplieswith lesswater stress,with the imple-
mentation of water-saving policies. As shown in “Problem
statement”, this paper considers basin-level water allocation
under a hierarchical framework, inwhich a Stackelberg game
should be satisfied with Nash equilibrium.

Data sources

Statistics applied in this study are from Sichuan Statistical
Yearbook (2010–2019), Sichuan Water Resources Bulletin
(2009–2019), Report of Water resources planning in Sichuan
province (2013), Key points of water conservation in Sichuan
province in 2020 etc., as well as two official websites, i.e.
the Sichuan Provincial Water Resources Department and
Hydrology and Water Resources Survey Bureau of Sichuan
Province.

Reference parameters in robust programming are set based
on the historical water allocation results and statistics of
Min–Tuo river basin. Statistics of water population in each
subarea (2004–2019) are applied to predict the future water
population. With serial records of water allocated to subar-
eas from river, as well as water allocated to sectors from
subareas, the minimal demand of subareas, minimal and
maximum demand of different sectors (i.e. ecological, indus-
trial, domestic, and agricultural sectors) could be obtained.
Motivated by water-saving policies performed in Sichuan
province, we also treat maximum quantity of water allocated
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Fig. 2 Min–Tuo river basin in
Sichuan province, China

to sectors before the planned year as the quotas of water use,
as stated in “Robust water allocation model”.

Modeling the water life cycle

This paper refers to life cycle analysis (LCA) for model-
ing AW∗ in a more accurate way. Cai et al. [45] consider
water processing as the extraction, production, use, treatment
and discharge/reuse among water reservoirs, users and treat-
ment plants. Similarly, water life cycle (WLC) in this paper
has five components in processing, i.e. upper stream, river
basin, water plants, subareas and sewage treatment plants,
with the natural environment as the boundary. Accordingly,
five periods in water processing are covered, i.e. water flow-
ing, extraction, production, use and recycling, from “cradle
to grave.”

Integrated structure ofWLC is shown in Fig. 3. In specific,
this paper denotes the inflows and outflows in pairing dur-
ing the water processing periods. Initially, streams from the
upper river Qinflows flow into the target basin. Also, precip-
itation offers another main inflow Qin-1 into the river basin,
with unavoidable loss in evaporation Qout-1. In the second

stage, non-processed natural water Qin-2 are extracted from
the river into the water plants in subareas, where the natural
water are transferred into usable water

∑
Qi . Also, unqual-

ified water or water loss in this stage is denoted as Qout-2.
In the third stage, i.e. water resources programming, usable
water for subareas

∑
Qi is further allocated to differentwater

use sectors (
∑

Qi j ). In the fourth stage, used water from
different sectors Qin-3 is transported into sewage treatment
plants (Qout-3), and can be divided into treated water Qin-4

and untreated water Qout-4. Then, treated water Qin-4 will be
further processed for recycled water Qin-5, with the produc-
tion of unqualified water Qout-5. Generally, recycled water
Qin-5 can be directly allocated to subareas.

Assumptions for the WLC are shown as below:

1. Uncertainties mainly exist in the water flowing and pre-
cipitation periods, i.e. Qinflows and Qin-1. Therefore, we
further defined them as Q̃inflows and Q̃in-1 in modeling
AW.

2. Qin-4 and Qin-5 can only be known when decisions on
water resources programming in last period are deter-
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Fig. 3 Macroscopic WLC model

mined, since they depend on decision variables
∑

Qi

and
∑

Qi j .
3. Precipitations are considered as basin-level, and other

sources of water resources, e.g. other inflows, are not
included.

4. Ratio of water loss in precipitation, water production,
sewage treatment and water recycling are deterministic
in terms of annual statistical records, scilicet the tech-
nologies for water processing are mature. Also, ratio of
sewage produced from used water is deterministic.

Introduction to the variables and parameters in WLC is
shown in the Appendix 1 (Table 6).

Then, we could easily reach to the estimation of AW∗.

AW∗ � σ6(Q̃in-1 + Qinflows) + Qin-5 (19)

where Q̃in-1, Qinflows and Qin-5 represent uncertain efficient
precipitations, uncertain inflows from the upper stream, and
qualified water after recycling, respectively. In general, the
Q̃in-1 can be predicted through time series analysis based
on historical records of precipitations. Qinflows is viewed as
annually stable, not considering extreme natural disasters,
e.g. floods. Qin-5 is decided by the water use condition of last
year, i.e. total amount of used water, sewage produced and
treated, and effectively recycled water. Finally, the overall
availability coefficient of river water is denoted by σ6, i.e.
utilization rate of total water resources.

In this paper, we incorporate Autoregressive Integrated
Moving Average model (ARIMA) to obtain the estimation
for future precipitations. In specific, it consists of three basic
forecasting models, i.e. autoregressive model (AR), mov-
ing average model (MA) and difference model (I). It can
also be viewed as an Autoregressive Moving Average model
(ARMA) that incorporates difference effects. Commonly,
this model is denoted as ARIMA(p, d, q), where p is the

order of autoregressive, d is the order of difference and q
is the order of moving average. With SPSS 25 software, we
input the annual precipitations inMin–Tuo river basin during
1998–2019, and use the ARIMA(0, 2, 1) model for predict-
ing regional precipitations in 2020 and the result is shown in
Fig. 4. Estimation for precipitation in 2020 is 1574.56 × 108

m3 (Stationary R2 � 0.578).
Based on historical records of total precipitations and

estimations for effectively transferred water resources in
Min–Tuo river basin from 1997 to 2019, we reach to the
average of σ1 as 0.57. According to the technological targets
of Key points of water conservation in Sichuan province in
2020, the ratio of lost water in production and transportation
is 0.1, i.e. σ2. Referring to water consumption, sewage pro-
duction and treatment records, we set σ3 and σ4 as 0.83 and
0.9, respectively. In the process of water recycling, the ratio
of qualified recycled water σ5 is 0.2, based on the technolog-
ical targets of Key points of water conservation in Sichuan
province in 2020. The average of σ6, i.e. utilization rate of
total water resources, in Min–Tuo river basin is 0.288, refer-
ring to [46].

With the prediction of annual precipitation in 2020, sum
of allocated water in 2019 and estimations for parameters in
WLC, we reach to the estimation of AW∗ at 235.035 × 108

m3.

Results and discussions

The results of bilevel robust programming are shown in
“Allocation strategies based on predicted AW* in 2020” and
in “Policy-driven scenario analysis”, a policy-driven scenario
analysis is conducted and the managerial insights are pro-
vided in discussions.
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Fig. 4 Results of ARIMA model

Table 3 Optimization results of bilevel RO with different θ

θ � 0 θ � 0.05 θ � 0.1 θ � 0.15 θ � 0.2

Upper objective 0.03998 0.05952 0.06592 0.09132 0.11596

Lower objective (108 yuan) 44,047.50 38,915.41 38,648.15 34,904.40 31,465.57

Total allocated water (108 m3) 235.035 223.283 211.531 199.780 188.028

Allocation strategies based on predicted AW*

in 2020

Original strategies

Table 3 shows the optimization results of bilevel RO model
as θ changes. Considering θ as the measurement of meteoro-
logical factors, we set the range of θ as [0, 0.2] and selected
0.05, 0.1, 0.15, 0.2 in the numerical examples, to describe
to what extent the managers can accept the uncertainties of
climate change. Since robust programming aims at optimiz-
ing the worst case within the interval uncertainty set (see
Eq. 2), the total allocated water to subareas decreases as θ

increases. As shown in the results, the upper objective, i.e.
minimal Gini coefficient of per capita water, reaches to its
optimality at 0.03998 when θ � 0, while the lower objective,
i.e. local profits, reaches 44,047.5 × 108 yuan at its optimal-
ity. Besides, the upper and lower objectives both get worse
while θ increases, arriving at 0.11596 and 31,465.57 × 108

yuan respectively. In this case, θ exerts great impacts on the
bilevel decisions, because of the deduction in total available
water.

To further explore the performance of lower decisions
by water use sectors with economic returns, i.e. industrial,
domestic and agricultural sectors, we can turn to Fig. 5. Due
to the settings of prevailed domestic water use, economic
returns from service industry, i.e. water use of local citi-
zens, take the lead among the three sectors, varying from

28,587.77 × 108 yuan to 21,377.64 × 108 yuan. As for the
industrial water use, it brings 8243.48 × 108 yuan in return
when θ � 0.1 and meets a drop at 7980.54× 108 yuan when
θ � 0.15. Accordingly, the returns from agricultural water
use vary from 2184.77 × 108 yuan to 1954.16 × 108 yuan
as θ changes.

To provide a more specific report on the numerical results
of bilevel water allocation, we first focus on the results of
deterministic model (θ � 0), shown in Fig. 6. It can be found
that if the uncertain AW is considered as deterministic, the
managers would make safer decisions while not considering
the possible changes inwater availability at all. Therefore, the
results represent how original decisions are made when the
impacts of climate change are not included. Figure 6a shows
the allocatedwater to subareas, and then to sectors. Red curve
Level 2019 reflects the water use per capital among different
subareas before the planned year, where the gaps between
Deyang and Ziyang are nearly shown by three times of total
water per capital in Ziyang. Besides Ziyang, areas includ-
ing Neijiang, Zigong, Yibin, Luzhou, Ngawa and Garzê are
far behind, compared with other areas. While in the results
of the planned year (blue curve), the gaps are prominently
narrowed. Figure 6b represents the numerical results and cor-
responding proportions of allocated water.

For comparison, Figs. 7 and 8 show how results vary
among managers’ different attitudes toward uncertainties of
climate change. When θ � 0.05, the managers are likely
to support decisions under the variations of available water
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Fig. 5 Local economic profits
by sectors (108 yuan)
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Fig. 6 Programming results of
deterministic model (θ � 0).
Note: a Curve level 2019 in red
represents the water use per
capita in 2019 (m3)
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within [− 5%, + 5%]. In this occasion, worst case happens
when total available water is reduced by 5%. Similarly, the
worst cases in robust programming refer to reduced avail-
able water by 10, 15 and 20% when θ � 0.1, θ � 0.15 and
θ � 0.2. As θ changes, the impacts of climate change exert

limited variationswithin total allocatedwater to subareas and
lead to a proportionally change in columns. Similarly, the
blue curves in Fig. 7 are depicted according to water use per
capita under different levels of meteorological disturbances.
The gaps among different subareas are likely to expand when
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Fig. 7 Programming results with different θ

θ gets bigger, while those left-behind areas, Ziyang, Nei-
jiang etc., sharing a consistent level of water per capita. From
Fig. 8, we can find that only the domestic water use is con-
stantly shrank as total available water being reduced, because
of the priority of citizens’ livable environment designed in
the constraints. In other words, with surplus water supplies
considering the maximum demands from other three sectors,
i.e. industrial, agricultural and ecological, local managers are
willing to divert it to unconstrained domestic water sector to
make more profits.

Sensitivity analysis

Since the future demands of four sectors are estimated
according to historical data, the robustness of water alloca-
tion strategies could be further examined through a sensitivity
analysis with increasing demands. In building the original
strategies of water allocation, the maximum water demands
are controlled under the maximum consumption before the
planned year, and the minimal water demands are based on

historical minimal demands. Therefore, we assume that both
themaximumandminimal demands are increased by propor-
tions and test the results with the varying θ . From the results
(shown in Table 4), we can see that the solutions remain opti-
mal when demands are increased by less than 50%, and we
could still reach optimality by enlarging the acceptance for
uncertainties as demands increase, until the solutions become
infeasible when increased by 80%.

Policy-driven scenario analysis

Scenario design

As stipulated by Report of Water resources planning in
Sichuan province (2013), the total water consumption of
Min–Tuo river basin in 2020 is scheduled to be 175 × 108

m3, with detailed targets for domestic water use per capital,
industrial water use per industrial production and agricultural
water use per farm land. To test the strength of ongoingwater-
saving policies, as well as the possible water stress generated
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Fig. 8 Programming results with different θ (by proportion)

from increasing demands, a policy-driven scenario analysis
is conducted from the sight of total availablewater andwater-
saving targets. On one hand, real-word disturbances, e.g.
population growth and industrial production growth, could
bring in extra water demands in comparison with prediction.
On the other hand, the effectiveness of water-saving policies
could largely alter the water use conditions, e.g. more local
citizens are willing to take actions and then less water will be
wasted. Progress in water-saving techniques could also add
to the effectiveness of policies.Data applied in further discus-
sions include forecasted population, farm land and industrial
growth in 2020. Corresponding simulated data of policy tar-
gets (quotas) are then calculated according toReport ofWater
resources planning in Sichuan province (2013).

Scenario S0 is used as the control group, in which no extra
measures are taken to relieve the possible stress of water use,
reflected by total water use, industrial water use, domestic
water use and ecological water use. Introduction to designed
scenarios is shown below.

Table 4 Sensitivity analysis of bilevel RO with different θ

θ � 0.05 θ � 0.1 θ � 0.15 θ � 0.2

+ 50% Optimal Optimal Optimal Optimal

+ 55% Infeasible Optimal Optimal Optimal

+ 65% Infeasible Infeasible Optimal Optimal

+ 70% Infeasible Infeasible Infeasible Optimal

+ 80% Infeasible Infeasible Infeasible Infeasible

The first column denotes the proportion by which the maximum and
minimal demands are increased

The first scenario (S1) is embedded with high speed of
population growth and economic development. More risks
will be attached to this scenario since thewater demands from
industrial and domestic sectors will be largely increased.

The second scenario (S2) represents how water-saving
technical progress works to reduce the water stress from
increasing water demands in S1. In this paper, water-saving
technical progress integrates multiple actions, i.e. avoiding
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Fig. 9 Water allocation under S0 (108 m3)

unnecessary waste in water allocation and improving the
water recycling efficiency. In specific, we improve β loss

i in
robust programming and σ2, σ4 and σ5 in WLC by 20%,
restricted within [0, 1] if the improved value exceeds the
boundaries.

The third scenario (S3) is prepared to test how citizens’
willingness for water-saving performs under relevant poli-
cies. We illustrate citizens’ willingness by the effectiveness
of policy implementation. In this paper, we assume that only
60% of the water population initially hold firmly the new
water-saving policies while other 40% do not. For those local
citizens with strongwillingness, quotas of water use are what
exactly given by the government. Inversely, the other will
keep up with the average water use before the planned year,
i.e. in 2019.

The fourth scenario (S4) integrates both the technical
progress of water-saving and citizens’ willingness toward
ongoing policies, in comparison with S1.

Details for parameter settings of the four scenarios are
shown in Table 5.

Policy implications under different scenarios

Results of scenario analysis are shown in Figs. 9 and 10.
First we notice that the results of robust programmingmostly
exceed the quotas of water use in subareas, and only some
of the areas satisfy the baseline of water-saving policies.
That is, the schemes we obtained through robust program-
ming are not feasible considering the water-saving policies
designed in 2013. Therefore, we have to reconsider the ongo-
ing policies under the latest mode of water use. For areas like
Ziyang, Neijiang and Luzhou, the gaps between expectation
and demands at present are prominent, in comparison with
Chengdu, Ya’an, Meishan and Liangshan.

In contrast to Fig. 9 that focuses on the existing gaps
between expectation and demands at present, Fig. 10 indi-
cates how technical progress and the actual effectiveness of
water-saving policies influences gaps. First with scenario 1,
the Fig. 10a illustrates the possible population growth and
economic development influencing future water demands.
Gaps between water supplies (color lines) and limited water
use (red areas) are further narrowed in this occasion, con-
sidering the existing gaps shown in Fig. 9. It indicates a
greater stress in water supplies, since ascending demands are
approaching the actual supplies in planned year. Then, we try
to find a solution to this condition and relieve the possible
stress inwater supplies. Two basicmeasures are included, i.e.
relevant technical progress inwater-saving and citizens’will-
ingness to take the actions. The former adds to the feasibility
by lifting up supplies with more available water, while the
latter works to lower down the demands through citizens’
water-saving actions. In scenario 2, techniques including
reducing the unnecessary waste in production and improving
the efficiency of recycling are applied. Through the advance-
ment of techniques, the total available water has increased
by 2.6%. As shown in Fig. 10b, the water pressure has
been relieved to some extent, especially for areas including
Ziyang, Yibin and Luzhou, while Deyang, Ya’an and Leshan
still in great supply pressure. Then, we turn to improve cit-
izens’ willingness to keep up with the water-saving policies
in scenario 3. Shown in Fig. 10c, the gaps existing at present
have been further narrowed, comparedwith scenario 2. In this
case, 80% of the local citizens would like to save more water
as stipulated by policies while only 20% stay still. Appar-
ently, it’s more effective than promoting technical progress
solely. Then, Fig. 10d shows how the two measures coop-
erate to relieve the water stress, as designed in scenario 4.
We can see that the overall effectiveness of actions has been
doubled in narrowing the gaps. In this condition, the overall
water stress originated from speed-up population growth and
economic development has been largely relieved.

Conclusions

This paper applies RO in a real-world water allocation case
under a bilevel water management framework. With the
application of WLC, the estimations for future water avail-
ability are considered more accurate, since the uncertain
factors have been transferred to annual precipitations to a
large extent. Within the changes of meteorological factor θ ,
optimization results under different attitudes toward risks are
shown and reflect managerial implications for basin man-
ager. Besides, a policy-driven scenario analysis is conducted
to provide suggestions for managers of case area, as well as
similar regions with water allocation issues. Main findings
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Table 5 Parameter settings of
scenarios S0 S1 (%) S2 (%) S3 (%) S4 (%)

Population growth rate – + 20 + 20 + 20 + 20

Industrial production growth rate – + 20 + 20 + 20 + 20

Urbanization rate – + 20 + 20 + 20 + 20

Water-saving technical progress – – + 20 – + 20

Citizens’ willingness toward policies – – – + 20 + 20

“–” denotes no extra changes to this parameter
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Fig. 10 Water allocation under different scenarios (108 m3)

of this paper provide some insights for hierarchical water
resources management considering future uncertainties:

(1) Equity is a necessity for sustainable development,
especially when considering areas with uneven water
distribution. As for Min–Tuo river basin, water alloca-
tion at present has intensified the difference between
areas with large population but limited water resources,
and those with small population but adequate water

resources. By adding overall equity of water allocation,
i.e. equitable access to water of all population, to robust
programming as the basic principle, we can find uneven
water use per capita has been improved a lot, especially
for those left-behind areas. Besides, with the increasing
uncertainties of climate change, the equity of basin-level
water allocation could be influenced since total available
water is not stable.
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(2) The effectiveness of water policy implementation could
be largely influenced by local citizens, as well as the fea-
sibility of relevant techniques. In this study, we conduct
a policy-driven scenario analysis to test the resilience of
robust decisions, in terms of ongoing water-saving poli-
cies taken in Min–Tuo river basin. Results show that
local citizens’ willingness to take actions could relieve
the existing water stress caused by increasing demands
to a large extent. Moreover, the considerations for tech-
nical progress, i.e. reducing the unnecessary waste in
water production and improving the efficiency of recy-
cling, could do more benefits than taking one action
only.

(3) Hydrological and meteorological uncertainties in water
resources management are inevitable, but appropriate
methodologies could be applied to reduce the uncertain-
ties in decisions. This paper considers uncertain water
availability in both the hydrological and meteorologi-
cal environment. On one hand, the application of WLC
works to visualize the evolution of water resources to
provide more accurate estimation for uncertain variable
in robust programming. On the other hand, the robust
programming introduces an adjustable factor, i.e. mete-
orological factor θ in this paper, to reflect the impacts of
climate change as rounded as possible. In this condition,
both hydrological and meteorological uncertainties are
considered.

(4) The approaches and models applied in this study are
universal and also helpful in providing sustainable and
robust water allocation schemes. We would support
its generality in other basins under similar water use
conditions. When special cases are considered, e.g.
basins with different hydrological features, modifica-
tions could be conducted in the parameter settings and
constraints. Also, more insights could be found if we
look into more water allocation cases in other basins of
China.

Limitations of this paper will inspire us to explore more
for uncertain decision-making in water resources manage-
ment: (1) this paper applies incorporatedWLCand adjustable
robust programming to model the water availability and
the relationship between water pollution and water short-
age could be further explored from the sight of hydrology.
(2) Multi-dimensional and multi-source meteorological and
hydrological data will be considered in future studies to
provide more accurate estimations for water availability,
referring to more advanced prediction models, e.g. inter-
pretable prediction model [47]. (3) Further discussion on
this topic will be held with more uncertain factors, e.g. water
demand, water supply capability and environmental changes.
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Table 6 Variables and
parameters in WLC Variables Definition Classification Equation Estimation

Qinflows Upper inflows Deterministic – –

Qin-1 Efficient precipitations Uncertain – –

Qout-1 Evaporation loss Deterministic in ratio Qout - 1 � σ1(Qin-1 + Qout-1)σ1

Qin-2 Extracted water Uncertain – –

Qout-2 Water loss in production Deterministic in ratio Qout-2 � σ2(Qin-2 + Qout-2) σ2∑
Qi Allocated water to

subareas
Decision variables – –

∑
Qi j Allocated water to

sectors
Decision variables – –

Qin-3 Sewage produced Deterministic in ratio Qin-3 � ∑
Qi j ∗ σ3 σ3

Qout-3 Sewage transported Deterministic in ratio Qout-3 � Qin-3

Qin-4 Treated sewage Deterministic in ratio Qin-4 � Qout-3 ∗ σ4 σ4

Qout-4 Untreated sewage Deterministic in ratio Qout-4 � Qout-3 ∗ (1 − σ4) σ4

Qin-5 Qualified recycled water Deterministic in ratio Qin-5 � Qin-4 ∗ σ5 σ5

Qout-5 Unqualified water Deterministic in ratio Qout-5 � Qout-4 ∗ (1 − σ5) σ5

Table 7 Unit returns of water
consumption by sectors
(yuan/m3)

CD DY ZY YA MS NJ LE

Agricultural sector 19.10 18.80 23.40 29.04 18.41 39.53 22.07

Industrial sector 564.72 318.52 386.80 183.99 222.70 407.13 225.62

Domestic sector 558.59 423.97 368.59 224.57 331.18 381.59 297.74

ZG YB LZ NG GZ LS

Agricultural sector 28.81 35.36 23.39 20.10 24.49 20.24

Industrial sector 291.05 134.52 407.98 459.86 332.18 487.73

Domestic sector 387.98 330.59 281.95 159.88 96.16 323.43
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Appendix 2
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