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Abstract
The last years have seen a rapid growth of the takeaway delivery market, which has provided a lot of jobs for deliverymen.
However, increasing numbers of takeaway orders and the corresponding pickup and service points have made order selection
and path planning a key challenging problem to deliverymen. In this paper, we present a problem integrating order selection and
delivery path planning for deliverymen, the objective of which is to maximize the revenue per unit time subject to maximum
delivery path length, overdue penalty, reward/penalty for large/small number of orders, and high customer scoring reward.
Particularly, we consider uncertain order ready time and customer satisfaction level, which are estimated based on historical
habit data of stores and customers using a machine-learning approach. To efficiently solve this problem, we propose a hybrid
evolutionary algorithm, which adapts the water wave optimization (WWO) metaheuristic to evolve solutions to the main
order selection problem and employs tabu search to route the delivery path for each order selection solution. Experimental
results on test instances constructed based on real food delivery application data demonstrate the performance advantages of
the proposed algorithm compared to a set of popular metaheuristic optimization algorithms.

Keywords Takeaway delivery · Order selection · Path planning · Evolutionary optimization · Water wave optimization
(WWO) · Machine learning

Introduction

In our modern society, deep labor-division and fast-paced
lifestyles have made most people hard to find time to cook
for themselves. Therefore, more and more people resort to
takeaway (take-out) food, which can be selected online and
brought by deliverymen to their homeor offices. This require-
ment has boosted the food takeaway market in the last years.
According to data from the Statista company [36], in the UK,
2019, the total food service deliverymarket valuewas around
8.5 billion British pounds, 55% of which belonged to online
orders. In China, from 2015 to 2019, the total amount of take-
away orders increased from 134.8 billion RMByuan to 603.5
billion, the penetration (i.e., the ratio of the total takeaway
order amount to the national catering revenue) increased
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from 4.2 to 14.2% (Fig. 1), and the number of online take-
away customers reached 421 million in 2019, accounting for
49.3% of the total netizens (Fig. 2, data from Trustdata [38]).
Nowadays, takeaway has been one of the most popular and
fastest-growing service industries in the country.

The takeaway industry has provided numerous jobs, par-
ticularly deliveryman jobs, for the society. In popular online
takeaway ordering and delivery platforms, such as Meituan
Waimai and Baidu’s Eleme, the typical workflow can be
described as follows (as illustrated in Fig. 3):

1. Customers place orders online;
2. Takeaway stores receive the orders, determine which

orders they accept, and post the accepted order informa-
tion online (visible to deliverymen);

3. Deliverymen explore the candidate orders, among which
select those they want to deliver;

4. Deliverymen go to the stores, and if orders are ready, pick
up the orders and deliver them to the corresponding cus-
tomers.
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Fig. 1 The developments of takeaway industry in China from 2015 to
2019
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Fig. 2 The scale and utilization rate of online takeaway users in China
from 2015 to 2019

With the rapid growth of the takeaway industry, the work-
load of deliverymen increases dramatically. For example, in
2019, the average daily number of takeaway orders sent per
deliverymanwas around40, and the average delivery timeper
order was around 30 min. Therefore, to improve the working
efficiency and the corresponding revenue, every deliveryman
wants to optimize his order selection and delivery path rout-
ing decision. However, the number of candidate orders is
often large, different orders have different delivery fees, and
their pickup points (i.e., takeaway stores) and service points
(i.e., customer locations) are distributed in different loca-
tions. Therefore, it is difficult to optimize order selection and
delivery path planning for a deliveryman to maximize his
revenue.

This paper is a substantial extension of a conference paper
[40]. The conference paper proposed a hybrid optimization
algorithm for a basic problem of takeaway order selection
and delivery path planning. The basic problem assumed that
the ready time of each order is exactly known in advance;
however, in practice, the actual order ready time often devi-
ates widely from the expected order ready time, which can
badly affect the work proficiency of deliverymen. Moreover,
the basic problem did not consider customers’ scoring on
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Fig. 3 A typical takeaway order processing workflow

orders, which, in real-world takeaway delivery platforms, is
an important factor influencing the revenue of deliverymen.
In addition, the basic problem did not limit the delivery path
length, which may cause infeasible solutions. In this paper,
we add the limit ofmaximumdelivery path length to the prob-
lem, and use a machine-learning approach to estimate both
the order ready time and customer satisfaction level based on
the historical habit data of takeaway stores and customers,
so as to evaluate delivery solutions in a more accurate way.
For the extended problem, we adapt the hybrid optimization
algorithm to optimize the revenue of the deliveryman in a
more effective manner, and conduct more extensive experi-
ments to validate the performance of the proposed method.
The main contributions of this paper can be summarized as
follows:

– We present a problem of takeaway order selection and
delivery path planning for deliverymen, which utilizes
store and customer habit data to better estimate order
ready time and customer satisfaction level;

– We propose a hybrid evolutionary algorithm to efficiently
solve the problem;

– We demonstrate the performance of the proposedmethod
on test instances constructed based on real-world data of
online takeaway platforms.

In the rest of the paper, we first introduce related work in
the literature, and then present the problem of takeaway order
selection and delivery path planning for deliverymen; next,
we propose the machine-learning approach for estimating
the problem parameters and the hybrid evolutionary algo-
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rithm for solving the problem, and then validate the proposed
method in computational experiment; finally, we conclude
with a discussion.

Related work

With the rapid growth of electronic commerce, vehicle rout-
ing problems (VRPs) for scheduling vehicles to deliver goods
to a given number of service points (customers) have been
extensively studied in the literature [13]. Planning deliv-
erymen’ paths passing through a set of pickup points and
drop-off points subject to delivery time limits can be cat-
egorized as a special class of VRPs, known as the pickup
and delivery problem with time windows (PDPTW) [12].
For these NP-hard problems, traditional mathematical pro-
gramming methods are only effective on small-size problem
instances; therefore, metaheuristic and evolutionary algo-
rithms, such as genetic algorithms (GAs) and particle swarm
optimization (PSO), are widely used to find near-optimal
solutions for medium- and large-size problem instances
within an acceptable solution time [1,4,6].

In addition to common features of VRP and PDPTW,
takeaway delivery path planning has some special features.
First, as meal is perishable and customers are often wait-
ing anxiously, takeaway orders are typically expected to
be delivered within a short time (an hour or even much
less) and within minutes of the food becoming ready. Hsu
et al. [17] presented a VRP with time windows (VRPTW)
for delivering perishable food from a distribution center,
the objective of which considers not only the costs for dis-
patching vehicles, but also those of transportation, inventory,
energy and penalty costs for violating time windows. Huang
et al. [18] applied an ant colony optimization (ACO) algo-
rithm to plan the delivery route to minimize the total time for
takeaway distributions. Reyes et al. [32] formalized a meal
delivery routing problem to model the essential structure of
dynamic delivery systems, and developed an algorithm based
on rolling-horizon repeatedmatching to solve courier assign-
ment and capacitymanagement. Gao and Jiang [14] applied a
firework algorithm [54] to optimize takeaway delivery paths
in the condition of safety. Yu and Luo [43] studied an online
PDPTW with single pickup point for routing a delivery-
man with a constant capacity to serve requests released over
time so as to minimize the total latency. They proved the
lower bound of this problem for various capacities of the
deliveryman, and presented online wait-and-return and wait-
and-ignore online algorithms for a half line case. Yildiz and
Savelsbergh [42] presented a meal delivery routing prob-
lem that assumes perfect information about order arrivals;
they proposed a simultaneous column- and row-generation
method to solve the problem. Liao et al. [23] presented
a green meal delivery routing problem with the objectives

to simultaneously maximize customer satisfaction and rider
balance utilization and minimize carbon footprint; they pro-
posed an algorithm based on nondominated Sorting GA [11]
and adaptive large neighborhood search for the problem. Liu
and Liu [26] presented an integrated production and distri-
bution problem with a single machine, multiple customers,
and homogeneous vehicle; they solved this problem using
an improved large neighborhood search algorithm. Shan et
al. [29] proposed a deep reinforcement learning approach
combined with Dijkstra’s algorithm for food delivery route
planning, which can provide accurate navigation when road
network information is unknown. Ulmer et al. [39] studied a
stochastic PDPTW for delivering food from a set of restau-
rants to ordering customers. They presented an anticipatory
customer assignment policy, which is able to improve ser-
vice significantly for all stakeholders. To solve an integrated
problemof production-inventory-routing of perishable goods
with transshipment and uncertain demand, Liu et al. [28] pre-
sented an algorithm that begins with an initial solution and
then iteratively improves it using two local search strate-
gies including inserting the best and removing the worst
solutions. In [30], Liu considered on-demand meal delivery
service using drones, and proposed a progressive algorithm
for drone dispatch and order delivery in a dynamic, real-
time operational environment. When addressing a stochastic
online route-planning problem, Zheng et al. [48] proposed an
end-to-end deep-learning model for finding optimal routes in
milliseconds by learning policy from training data.

Second, orders are not available for pickup at the begin-
ning of the planning period, which was considered by Liu
et al. [25] in the capacitated VRP with order available time
and solved using a tabu search algorithm. In [27], the authors
proposed a hybrid harmony search and tabu search algorithm
for the problem. Li et al. [22] studied a similar VRP with
order release time, where a vehicle often needs multiple trips
due to the relatively short delivery distance. They proposed
an adaptive large neighborhood search algorithm combined
with a labeling procedure for the problem.

Third, one customer may order food multiple times from
a store or from multiple stores. Consolidating orders of the
same customer can reduce the delivery times and distance.
However, multiple deliveries to the same customer cannot be
completely removed. Zhang et al. [46] presented an integer
programming model of order consolidation aiming to reduce
the number of trips, while achieving a tradeoff between split-
ting and consolidating orders; they proposed a three-phase
heuristic algorithm to solve the problem, and demonstrated
the superiority of the order consolidation approach over the
first-in-first-out approach. To solve a time-critical third-party
logistics problemwith order consolidation and transshipment
point selection, Salhi et al. [33] proposed an effective meta-
heuristic based on the greedy randomized adaptive search
procedure. Soman and Patil [35] studied a heterogeneous
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VRP with release and due dates in the presence of order con-
solidation and warehousing capacity limits; they proposed a
scatter searchmethodwith strategic oscillation, which is able
to solve large-size instances. Ji et al. [20] proposed a method
for grouping food delivery tasks to improve food delivery
efficiency, using heuristics consisting of a greedy algorithm
and a replacement algorithm.

Most existing studies either integrate order assignment
and delivery path routing, or assume that the orders have
been assigned and hence focus on path routing. Nevertheless,
in takeaway delivery systems, deliverymen are not simply
passive entities; instead, they create their own “organic algo-
rithms” to manage, and in some cases, even subvert the
system [37]. For example, in popular food delivery platforms
such as Baidu Deliveries, Eleme, and Meituan, deliverymen
pay close attention to “grab orders” to improve their rev-
enue. However, studies on deliverymen’ proactive strategies
for takeaway order selection are relatively few. İç et al. [19]
studied an order selection problem for a bakery firm, for
which they used a fuzzy TOPSIS method to obtain the order
ranking incorporated in the knapsack problem to determine
the lot size and which orders to select. Ma et al. [31] con-
sidered a combined order selection and VRP for perishable
product delivery, for which they proposed a hybrid ACO
and local search method. Zhang and Liu [44] formulated a
takeaway distribution problem as a bi-objective, mixed inte-
ger programming model; they proposed a two-stage solution
strategy based on human–computer interaction to solve the
problem. Nevertheless, to the best of our knowledge, there
is no study on methods integrated order selection and path
planning for takeaway deliverymen, the revenue of which not
only consists of the basic delivery fee of each order overdue
penalty, but also is subject to reward/penalty for large/small
number of orders, and high customer scoring reward.

Problem formulation

Basic inputs

The consider problem aims to make an optimal decision of
order selection and delivery path planning for a deliveryman.
There are a set O of n candidate orders. For each order o ∈ O ,
the pickup point (store) is denoted by po, the expected order
ready time is denoted by ro, and the corresponding service
point (customer) is denoted by so. For convenience,we use p0
to denote the initial location of the deliveryman, and let P =(∪o∈O po

) ⋃ (∪o∈O so
) ⋃{p0} be the set of all pickup points,

service points, and the initial location of the deliveryman.The
travel time between each pair of points i and j is denoted
by Δt(i, j) (∀i, j ∈ P). The vehicle (typically, electronic
bicycle) of the deliveryman has a maximum distance; here,
we transform the maximum distance to the maximum travel

time T̂ , which neglects acceleration and deceleration in the
path for simplicity.

If an order o is selected by the deliveryman, the basic
delivery fee is vo, and it is required to deliver the order to
po before the delivery deadline t̂o to earn the delivery fee.
However, if the actual delivery time is later than t̂o, an overdue
penalty will be posed. In this study, we consider a three-
level overdue penalization rule that is employed bymost food
delivery platforms in China as follows:

– If the overdue time is shorter than 15min, the basic deliv-
ery fee will be deducted by a percent e1;

– If the overdue time is between [15, 30] min, the basic
delivery fee will be deducted by a percent e2;

– If the overdue time is longer than 30 min, no delivery
fee will be paid, and an additional penalty fee which is a
percent e3 of the basic delivery fee will be deducted.

The delivery platformalso encourages deliverymen to take
more orders: if the number of orders completed by a delivery-
man in a given period (e.g., per week) exceeds a threshold, an
additional rewardwill be granted; on the contrary, if the num-
ber is below a lower limit, his base salary will be deducted.
To reflect this effect on the deliveryman’s revenue per unit
time, in this problem, we set a lower limit na and two reward
thresholds n†a and n‡a (na < n†a < n‡a) on the number n p of
orders per hour completed by the deliveryman, and use the
following rule according to the reward/penalization levels in
popular platforms and number conversion based on average
working hours:

– If n p is less than the lower limit na , there is an additional
penalty of ε1(na − n p) yuan;

– If n p is between [n†a, n‡a), there is an additional reward
of ε2 yuan per order;

– If n p reaches or exceeds n
‡
a , there is an additional reward

of ε3 yuan per order.

Moreover, when the order is completed, if the customer
gives a five-star (highest) score on the order delivery, the
deliveryman will receive an award fee of e.

Note 1 The possibility of negative scoring and the corre-
sponding penalty are not considered in the revenue, to avoid
that orders from low-scoring customerswould not be selected
by any deliverymen.

Note 2 The above rules and parameters can be adjusted and
tailored to different delivery platforms, which will not have
side effect on our formulation and solution method.
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Table 1 The inputs of the
problem

Variable Description

n Number of the candidate orders

O Set of candidate orders

po Pickup point of order o (∀o ∈ O)

so Service point of order o (∀o ∈ O)

vo Basic delivery fee of order o (∀o ∈ O)

t̂o Delivery deadline of order o (∀o ∈ O)

ro Expected ready time of order o (∀o ∈ O)

p0 Initial location of the deliveryman

P Set of all involved points

Δt(i, j) Travel time from point i to point j (∀i, j ∈ P)

T̂ Maximum travel time of the delivery path

e1 First-level overtime penalty

e2 Second-level overtime penalty

e3 Third-level overtime penalty

na Lower limit of the number of orders per hour

n†a First threshold of the number of orders per hour

n‡a Second threshold of the number of orders per hour

ε1 Additional penalty on the number of orders per hour

ε2 First-level award on the number of orders per hour

ε3 Second-level award on the number of orders per hour

e Additional award per five-star score

r̂(o) Ready time of order o calculated using machine learning

ρ(o) Probability of five-star scoring calculated using machine learning

Uncertain factors

In particular, in this problem, we consider two uncertain fac-
tors. The first is that, at the beginning of the planning period,
the expected ready time ro of each order is estimated and
given by the store, but the estimation is not always accurate.
Inmany cases, the actual ready time, denoted by r̂(o), is later,
which will postpone all subsequent orders, and therefore, has
a significant side effect on the delivery time. We employ a
data-driven,machine-learning approach described in the next
section to estimate r̂(o) based on ro and the historical habit
data of the store.

The second is about customer satisfaction level. Although
the satisfaction level generally depends on the delivery time
[7], some customers are more likely to give five-star scores,
while others are not. We also employ a machine-learning
approach described in the next section to estimate the proba-
bility ρ(o) that the customer of the order will give a five-star
score on the delivery (under the condition that the delivery
time is not overdue) based on the delivery time and the his-
torical habit data of the customer.

Table 1 lists the above input variables of the problem.

Decision variables

The deliveryman needs to select a subset Ox of orders from
the candidate order setO , and then determine a path to deliver
the selected orders. Therefore, the decision variables of the
problem can be represented by the following three parts:

– An n-dimensional vector x = {x1, x2, . . . , xn}, where
xk = 1 denotes that ok is selected and xk = 0 otherwise
(1 ≤ k ≤ n); then the subset of selected orders is Ox =
{ok |ok ∈ O ∧ xk = 1}.

– A sequence y = {y1, y2, . . . , yl(y)} of the set of all pickup
points and service points of the orders in Ox, where l(y)
denotes the length of y. In other words, y represents the
delivery path of the deliveryman. For each y j in y, if y j is
a pickup point, we let O(y j ) = {o|o ∈ Ox∧ po = y j } be
the set of orders from store y j , and suppose that the orders
in O(y j ) are sorted in increasing order of ready time; if y j
is a service point, we let O ′(y j ) = {o|o ∈ Ox ∧ so = y j }
be the set of orders for customer y j .

– For each pickup point y j in y, an integer z(y j ) that
denotes the deliveryman’s decision on how many orders
the deliveryman will pick up from y j at this time. That is,
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if |O(y j )| = 1, then z(y j ) is 1; else, z(y j ) is an integer
in [1, |O(y j )|], indicating that the deliveryman will pick
up the first z(y j ) of these |O(y j )| orders and then leave
(and will go back for the remaining orders if exist).

Note 3 As the deliveryman may visit a store or a customer
more than once if the store or customer is related to multiple
orders, the length of permutation y is variable. Anyway, the
length l(y) is at most 2|Ox|. For simplicity, we never place
the initial location 0 of the deliveryman in the permutation.

Calculation of delivery time and revenue

The actual delivery time of each order depends on the order
ready time, pickup time, and delivery path y. Obviously, the
first point y1 in y must be a pickup point, and the time at
which the deliveryman arrives at y1 is

t(y1) = Δt(p0, y1). (1)

At the first pickup point y1, the deliveryman’s decision is
to pick up the first z(y1) orders in O(y1) and then leaves y1.
Let O[z] denotes the z-th element in O; the time at which
the deliveryman leaves y1 is

t ′(y1) = max
(
t(y1), r̂(O(y1)[z(y1)])

)
(2)

Afterward, we remove the first z(y1) orders from O(y1):

O(y1) = O(y1)\{O(y1)[1..z(y1)]} (3)

The times at which the deliveryman arrives at and leaves
each subsequent point in y j can be iteratively calculated as
follows (2≤ j ≤ l(y)):

t(y j ) = t ′(y j−1) + Δt(y j−1, y j ) (4)

t ′(y j ) =
{
t(y j ), y j is a service point

max
(
t(y j ), r̂(O(y j )[z(y j )])

)
, y j is a pickup point

(5)

When leaving each pickup point y j , we remove the first
z(y j ) orders from O(y j ):

O(y j ) = O(y j )\{O(y j )[1..z(y j )]} (6)

When arriving each service point y j , for each order o ∈
O ′(y j ), if the order has been picked up before y j , then its
delivery time d(o) is determined:

d(o) = t(y j ),∀o ∈ O ′(y j ) ∧ (∃ j ′ < j : o is among the first

z(y j ′) orders in O(y j ′)) (7)

Therefore, we can calculate the revenue of each order o ∈
Ox as follows:

f (o) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vo + ρ(o)e, d(o) < t̂o
(1 − e1)vo, t̂o ≤ d(o) ≤ t̂o + 15

(1 − e2)vo, t̂o+15 < d(o) ≤ t̂o+30

−e3vo, d(o) > t̂o + 30

(8)

Here, we specify time in minutes, and hence the number
of orders per hour is

n p = 60|Ox|/t(yl(x)) (9)

And the additional penalty/reward of a solution is calcu-
lated as follows:

g(x, y, z) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−ε1(na − n p), n p < na
ε2|Ox|, n†a ≤ n p < n‡a
ε3|Ox|, n p ≥ n‡a
0, otherwise

(10)

The problem objective is to maximize the revenue per unit
time, i.e., the ratio of the total revenue to the completion time
t(yl(x)):

max F(x, y, z) =
(∑

o∈Ox f (o)
) + g(x, y, z)

t(yl(x)) + ε
(11)

where ε is a very small number to avoid division by zero (i.e.,
if the deliveryman does not select any order, the objective
function value should be zero).

Constraints

We specify the following constraints for the problem:

– For each selected order o, the delivery path must contain
its pickup point po and service point so, and the (first)
occurrence of po should be before that of so:

po ∈ y ∧ so ∈ y ∧ ind(po, y)< ind(so, y), ∀o ∈ Ox

(12)

where ind(i, y)denotes the indexof element i in sequence
y (if the element occurs multiple time, it returns the first
index).

– The decision z(y j ) at each pickup point is not larger than
the cardinality of O(y j ):

1 ≤ z(y j ) ≤ |O(y j )|, ∀ pickup point y j in y (13)
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– The total travel time cannot exceed the maximum travel
time T̂ :

Δt(p0, y1) +
l(y)−1∑

j=1

Δt(y j , y j+1) ≤ T̂ (14)

Data-driven machine learning for estimating
order ready time and customer satisfaction
level

As aforementioned, for the considered problem, we identify
two uncertain factors, i.e., the actual order ready time and
customer satisfaction level, which are regarded as main chal-
lenges in order selection and delivery routing [9].We employ
a data-driven, machine-learning approach to provide more
accurate predictions to address these challenges based on his-
torical habit data of stores and customers, i.e., the overdue
records of stores and five-star scoring records of customers.

To predict the actual order ready time, we consider the
following influence factors of the corresponding store:

– Expected ready time ro of the current order given by the
store;

– Number of orders whose ready times are overdue in the
recent month;

– Percentage of orders whose ready times are overdue in
the recent month;

– Maximum, minimum, median, and standard deviations
of the overdue time of the overdue orders in the recent
month;

– Number of orders whose ready times are overdue in the
recent 3 days;

– Percentage of orders whose ready times are overdue in
the recent 3 days;

– Maximum, minimum, median, and standard deviations
of the overdue time of the overdue orders in the recent 3
days;

– Number of orders that are accepted by the store and to be
delivered in the next hour.

We construct a three-layer, feed-forward artificial neural
network (ANN) to calculate the actual order ready time based
on the above 14 inputs. The training data is limited to the
recent 1month, as the habit of a takeaway store often changes.

To predict the probability of five-star scoring on the order,
we consider the following influence factors of the corre-
sponding customer:

– Calculated delivery time d(o) of the current order;
– Number of orders placed by the customer in the recent 3
months, recent week, and recent day;

– Percentage of orders receiving five-star scores to all
orders that are not overdue in the recent 3 months, recent
week, and recent day;

– Number of orders received or to be received by the cus-
tomer 1 h before and after.

Similarly, we construct an ANN to calculate the proba-
bility based on the above eight inputs. The training data are
limited to the recent 3 months.

Ahybridevolutionaryalgorithmfor theprob-
lem

Due to the complex combinatorial nature of the considered
problem, we propose a hybrid evolutionary algorithm, which
consists of amain procedure for optimizing the solution to the
main order selection problem and a subprocedure for opti-
mizing path planning for each main solution. The flowchart
of the algorithm can be described by the following steps (as
illustrated in Fig. 4):

(1) Randomly initialize a population of order selection solu-
tions;

(2) For each order selection solution x in the population do:

Yes

No

Use a greedy method to produce an initial subsolution (y,z)

Use tabu search to improve (y,z)

Randomly initialize a population of order selection solutions

terminate?

Apply WWO propagation

Evaluate f(x) based on the best (y,z) found for x

New best solution?
Yes

WWO breaking

Update control parameters

Yes

Noterminate?

End

for each main solution x in the population do:

for each main solution x in the population do:

Fig. 4 The flowchart of the hybrid evolutionary algorithm
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(2.1) Use a greedy method to generate an initial path y
together with pickup decisions z;

(2.2) Use the subprocedure to iteratively improve the path
and decisions;

(2.3) Evaluate the fitness of x based on the best path and
decisions found so far;

(3) Use themain procedure to evolve the order selection solu-
tions;

(4) Repeat steps (2) and (3) until the stopping condition is
satisfied.

For the subprocedure for optimizing the delivery path
and the pickup decisions, we propose a heuristic method
based on tabu search [15,16], which is much faster than those
population-based evolutionary algorithms, as the subproce-
dure will be invoked as many times as the evaluations of
main solutions. For the main procedure for optimizing solu-
tions to the main order selection problem, we have tested
a set of popular evolutionary algorithms, and found that
the WWO metaheuristic [50] exhibits performance advan-
tages over other popular evolutionary algorithms on the test
instances.We describe the tabu search subprocedure (includ-
ing the greedy initialization method) and the main procedure
in details in the following two subsections, respectively.

Tabu search for path planning

Given a main order selection solution x, we first use the
greedy method to produce an initial subsolution (y, z) of
path with pickup decisions as follows:

(1) Initialize an empty sequence for y and an empty set Ω of
picked up orders;

(2) Choose the pickup point y closest to the deliveryman and
add it to the sequence, and calculate the arrival time t(y);

(3) Set the pickup decision z(y) as follows:

(3.1) If |O(y)| = 1, i.e., O(y) has only one order denoted
by oy , then set z(y) = 1;

(3.2) Else, find the last order o†y whose ready time is not

later than t(y), let j†y be the index of o
†
y in O(y), and

set z(y) to a random integer in [ j†y , |O(y)|];
(3.3) Remove the first z(y) orders from O(y) toΩ , and set

t ′(y) = max
(
t(y), r̂(O(y)[z(y)])); ifO(y)becomes

empty, remove y from the candidate pickup points;

(4) From all candidate pickup points and those service points
that are related to at least one order inΩ , choose the point
y closest to the deliveryman and add it to the sequence,
calculate the arrival time t(y), and

(4.1) If y is a pickup point, go to Step (3);

(4.2) If y is a service point, for all orders o ∈ Ω and so = y,
set d(o) = t(y), remove these orders from O ′(y), and
set t ′(y) = t(y); if O ′(y) becomes empty, remove y
from the candidate service points;

(5) Repeat Step (4) until Ω = Ox.

From the initial (y, z), we use tabu search that iteratively
searches the neighborhood of the subsolution and goes to
the best neighboring subsolution that is better than the cur-
rent one or is not tabued. As the subsolution consists of
two parts, the path and pickup decisions, we consider two
types of neighborhood search. The first type conducts point
swapping operations on the path y. Considering the problem
constraints, we design the following four swapping opera-
tions:

(a) Swap two adjacent pickup points p1 and p2, as illustrated
by Fig. 5a.

(b) Swap a service point s and a subsequent pickup point p;
in particular, if s has occurred again after p as a service
point of the order from p but not as a service point of
that from any other pickup point after p, then the next
occurrence of s will be removed, as illustrated by Fig.
5b.

(c) Swap a pickup point p and a subsequent service point s,
if s is a service point of the order from another pickup
point before p; however, if s is also a service point of the
order from p, s will be reinserted after p, as illustrated
by Fig. 5c.

(d) Swap two service points s1 and s2, where there is no any
pickup points between them, as illustrated by Fig. 5d.

In addition, if the swapping operations involves a pickup
point, Step (3) of the greedy initializationmethod is employed
to reset the pickup decision on the point, and each service
point related to a decreased decision is moved to a random
position after the corresponding order is picked up.

The second type of neighborhood search modifies pickup
decisions z by randomly choosing a pickup point y satisfying
|O(y)| > j†y and changing z(y) to another random value in

[ j†y , |O(y)|]; this can be divided into two case:

(a) z(y) is increased; in this case, if z(y) = |O(y)|, the later
occurrence(s) of y in y will be removed.

(b) z(y) is decreased; in this case, for each later occurrence
of y′ in y, Step 3) of the greedy initialization method
is employed to reset the corresponding pickup decision,
and each service point related to a decreased decision is
moved to a random position after the corresponding order
is picked up.
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Fig. 5 Illustration of the four
specific swapping operations
used in tabu search

P1 P2 S1P3 S1 S3 S2

P3 S1 P1 P2 S1 S3 S2 S4

S4 P2 P1 S1P3 S1 S3 S2 S4

P3 S1P1 P2 S1 S3 S2 S4

(a) Swap operation 1

(b) Swap operation 2

(d) Swap operation 4

P3 S1P1 P2 S3 S2 S4

If the second S1 is a service point of P1 

but not that of P2

P3 S1 P1 P2 S1 S3 S2 S4 P3 S1 P1 P2 S2 S3 S1 S4

P3 S1 P1 P2 S1 S3 S2 S4 S1 P2 S3 S2 S4

(c) Swap operation 3

If S1 is also a service point of P2

P3 S1 P1

S1 P2 S3 S2 S4P3 S1 P1 S1

If S1 is a service point of P1

Algorithm 1 presents the pseudo-code of tabu search,
where tmax is the maximum number of iterations, nb is the
neighborhood size (i.e., the number of neighbors generated
at each generation), tlen is the maximum tabu length, and
rnd() produces a random number in [0,1].

Algorithm 1: Tabu search algorithm for path planning
optimization.

1 Initialize an empty tabu list;
2 Use the greedy method to produce an initial path (y, z);
3 Let t = 0 and the best known subsolution (y∗, z∗) = (y, z);
4 while t < tmax do
5 for k = 1 to nb do
6 if rnd() < 0.5 then
7 Generate a neighbor of (y, z) by randomly

choosing and preforming a neighborhood search
on the path y;

8 else
9 Generate a neighbor of (y, z) by randomly

preforming a neighborhood search on the pickup
decisions;

10 Let (y′, z)′ to the best one among the nb neighbors that are
better than or the move from (y, z) to the neighbor is not
tabued;

11 Add the move from (y, z) to (y′, z)′ to the tabu list;
12 if the tabu list length exceeds the capacity tlen then
13 Remove the first element from the tabu list;

14 if (y′, z′) is better than (y, z) then
15 Set (y, z) ← (y′, z′);
16 if (y, z) is better than (y∗, z∗) then
17 Set (y∗, z∗) ← (y, z);

18 return (y∗, z∗).

Fig. 6 Wave propagation in WWO [50]

Water wave optimization for order selection

For order selection optimization, we propose an evolu-
tionary algorithm based on the WWO metaheuristic [50]
that takes inspiration from shallow water wave models for
solving optimization problems. In particular, WWO has
demonstrated superior performance on a variety of selec-
tion problems that have same or similar structure of solution
space [3,8,24,41,49,53]. InWWO, each solution is analogous
to a wave and is assigned with a wavelength inversely pro-
portional to the solution fitness. The key principle of WWO
is that the higher (lower) the solution fitness, the smaller
(larger) the wavelength, and the smaller (larger) range the
solution explores (as illustrated in Fig. 6), which results in a
good balance of global search and local search.
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WWO starts by initializing a population of solutions,
which are then evolved by three operators named propa-
gation, refraction, and breaking. As the original WWO is
proposed for continuous optimization, here we need to adapt
the algorithm to evolve solutions in the discrete search space
[52]. First, we adapt the propagation to perform a number of
local search steps on each solution x, where each local search
step changes a random dimension xk from 0 to 1 or from 1 to
0. The maximum number of local search steps is controlled
by the wavelength λ(x), which is an integer calculated as

λ(x) = �n( f (x)− fmin)+ε)/( fmax− fmin+ε) (15)

where �· denotes rounding to the nearest integer, and fmax

and fmin are the maximum and minimum fitness among the
population, respectively.

After propagation, if the new solution is better than the
original one, it will replace the original one in the population.

Second, we adapt the breaking operator on each newly
found best solution x∗ by generating n∗ one-step neighboring
solutions around x∗. Here we introduce an adaptive method
for controlling the number n∗ of neighboring solutions as
follows:

n∗ = rnd_int

(
1, n̂

f ∗
old + ε

f (x∗) + ε

)
(16)

where n̂ is a control parameter, and f ∗
old is the objective func-

tion value of the old best solution. In this way, the more
improvement of the new best over the old one, the larger
number of neighboring solutions exploited.

Following the work of simplified WWO [55], we replace
the refraction operator with a population reduction strategy
in order to accelerate convergence. The strategy iteratively
decreases the population size NP from an upper limit NPmax

to a lower limit NPmin as follows:

NPg = NPmax − (NPmax − NPmin)
g

gmax
(17)

where g is the current number of generations (or function
evaluations), and gmax is the maximum allowable number of
the generations (or function evaluations). Whenever the size
is decreased by one, the worst solution in the population is
removed.

Algorithm 2 presents the pseudo-code of the WWO algo-
rithmwith adaptive breaking (denoted byWWO-AB) for the
main problem of order selection.

Algorithm 2:WWO algorithm with adaptive breaking
for order selection optimization.

1 Randomly initialize a population of NP solutions to the main
problem;

2 Let x∗ be the best among the solutions;
3 while the stopping condition is not satisfied do
4 Calculate the solution wavelengths according to (15);
5 foreach x in the population do
6 Let K = rnd_int(1, λ(x));
7 for k = 1 to K do
8 randomly choose and reverse a dimension of x;

9 if the new x′ is better than x then
10 Replace x with x′ in the population;
11 if x is better than x∗ then
12 Set x∗ ← x;
13 Calculate n∗ according to Eq. (16);
14 for k = 1 to n∗ do
15 Generate a one-step neighbor by

reversing a random dimension of x∗;
16 if the neighbor is better than x∗ then
17 Set x∗ to the neighbor;

18 Update the population size according to (17);
19 if the population size is decreased by one then
20 Remove the worst solution from the population;

21 return x∗.

Computational experiments

Experimental results of machine learning

We train the ANNs to predict the two uncertain factors for
each order based on historical data of two popular food deliv-
ery applications. For predicting order ready time, we use a
dataset of 1330 samples related to 121 takeaway stores. For
predicting five-star scoring probability, we use a dataset of
1750 samples related to 204 customers. We use a fivefold
cross-validation, that is, we partition each dataset into five
equal-size pieces and run validation five times, each using
four pieces as the training set and the remaining piece as the
test set.

We also employ WWO to tune the ANN parameters [56],
and compare the performance of ANN with linear regres-
sion and logistic regression. Figure 7 presents the root mean
squared errors (RMSE) of the three models as well as the
RMSE of the order ready time estimated by the store. The
results show that the average deviation of the order ready
time estimated by the store to the actual order ready time is
about 15.37 min, which will not only delay the delivery of
current order, but also have a knock-on effect on all remaining
orders. The three machine-learning models utilize historical
data to predict the order ready time. However, the error of
linear regression model is only slightly lower than that of the
manual estimation. The logistic regression model is more
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Fig. 7 RMSE of order ready times predicted by the three machine-
learning models and the stores

accurate than the linear one, but its average deviation is still
more than 11 min. Compared to the two regression mod-
els, the ANN achieves a significant lower error of 7.88 min,
which can effectively reduce the side effect on the delivery
plan.

For five-star scoring probability prediction, we use two
metrics. The first is the success rate, i.e., the percentage of
successful predictions, where a probability larger than 0.5
for a five-star scoring or a probability smaller than 0.5 for a
non-five-star scoring is considered successful. The second is
the deviation of the sum of probabilities to the actual num-
ber of five-star scoring. Figure 8 presents the results, where
the orange line denotes the actual number (646) of five-star
scoring of the three models as well as the RMSE of the order
ready times estimated by the stores. The results show that
ANN achieves the highest success rate, while the success
rates of the two regression models are not much lower. How-
ever, the differences among the deviations of the number
of five-star scoring obtained by the three models are rela-
tively big. The linear regression model overestimates 126
five-star scoring, and the logistic regression model under-
estimates 73; in comparison, ANN only underestimates 24,
and such a small deviation will make the calculation of the
revenue of the deliveryman (i.e., objective function of the
problem) much more accurate.

Experimental results of evolutionary optimization

To test the performance of solving the takeaway order selec-
tion and delivery path planning problem, we construct a test
set of 11 instances, which are generated based on histor-
ical data of two popular food delivery applications. Table
2 describes numbers of orders and points of each instance,
which represent the size/difficulty of the instance. Someother
important parameters of the instances are set as e1 = 0.3,
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Fig. 8 Success rate and deviation of the number of five-star scoring of
the three machine-learning models

Table 2 Numbers of orders and
points of the problem instances

No. instance n n p ns

#1 25 3 8

#2 25 6 17

#3 25 9 26

#4 50 9 26

#5 50 12 35

#6 50 20 59

#7 75 20 59

#8 75 27 81

#9 100 20 59

#10 100 32 95

#11 100 36 121

n: number of the candidate
orders; n p: number of the pickup
points; ns : number of the service
points; MNFEs: maximum num-
ber of fitness evaluations

e2 = 0.5, e3 = 0.7, e= 1, ε1 = 0.5, ε2 = 0.5, ε3 = 1, na = 5,
n†a =12, and n‡a =16.

To validate the performance of proposedWWO-AB algo-
rithm, we compare it with the following eight popular
metaheuristic evolutionary algorithms for subset selection
optimization:

– GA [10];
– ACO [21];
– PSO [5];
– Differential evolution (DE) [2];
– Biogeography-based optimization (BBO) [34,47];
– Ecogeography-based optimization (EBO) [51];
– Artificial algae algorithm (AAA) [45];
– Basic WWO, where the number of neighboring solu-
tions generated by a breaking operation is a random value
between 1 and a fixed threshold [41].
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Table 3 Comparative results on
the test instances

# Metric GA ACO PSO DE BBO EBO AAA WWO WWO-AB

1 med †10.91 †10.27 †9.84 †11.00 †11.25 11.25 11.25 †10.87 11.25

std 0.51 0.82 0.92 0.77 0.10 0.41 0.79 0.51 0.20

2 med †7.12 †7.24 †5.75 †5.82 8.73 †8.73 †8.25 †8.25 8.73

std 1.15 1.01 1.08 0.51 0.24 0.42 0.67 0.71 0.00

3 med †6.46 †5.91 †5.56 †4.80 7.18 7.16 †6.72 †6.86 7.21

std 0.77 0.64 0.67 0.67 0.38 0.46 0.49 0.44 0.33

4 med †7.05 †6.85 †6.16 †7.20 †8.45 8.82 †7.83 †7.77 8.85

std 0.63 0.59 0.67 0.48 0.29 0.39 0.56 0.53 0.35

5 med †5.53 †5.62 †4.29 †4.35 7.33 †6.88 †6.59 †5.90 7.31

std 0.57 0.60 0.55 0.26 0.82 1.03 0.70 0.73 0.99

6 med †4.37 †4.50 †3.85 †3.86 †5.64 †5.68 5.73 †4.74 5.82

std 0.41 0.45 0.42 0.21 0.29 0.35 0.35 0.41 0.32

7 med †5.40 †5.63 †4.97 †5.35 †7.00 †7.17 †8.15 †7.99 8.56

std 0.68 0.85 0.96 0.49 0.72 0.74 0.52 0.36 0.30

8 med †5.96 †5.96 †5.19 †5.45 †8.02 †7.77 †7.04 †9.60 10.43

std 0.78 0.97 0.90 0.48 0.41 0.84 0.51 0.81 0.36

9 med †5.19 †5.33 †3.93 †4.55 †7.24 †6.73 †6.91 †5.70 7.89

std 0.70 0.85 0.51 0.34 0.67 0.67 0.65 0.66 0.62

10 med †4.39 †4.61 †3.79 †3.39 †5.32 †5.24 †5.22 †4.55 5.64

std 0.44 0.54 0.36 0.31 0.16 0.28 0.30 0.39 0.17

11 med †5.64 †5.95 †5.21 †5.9 †7.45 †7.58 †7.50 †7.37 8.70

std 0.46 0.52 0.38 0.40 0.28 0.37 0.45 0.26 0.21

WWO-AB and the eight comparative algorithms invoke
the same tabu search procedure given in Algorithm 1 for
path planning optimization for each main solution. The con-
trol parameters of tabu search are set as len = 7, nb = 10,
and tmax = 10 for instances #1 and #2, 20 for #3–#5, and
30 for #6–#11. The control parameters of the nine evolution-
ary algorithms are first set as suggested in the literature and
then tuned on the whole test set. For WWO-AB, the control
parameters are set as NPmax = 30, NPmin = 6, and n̂ = 12.
The computational environment is a computer with Intel core
i7-8700 3.20GHzCPU, and 16GBDDR4memory. For a fair
comparison, all algorithms use the same stopping condition
that the number of fitness evaluations reaches the maximum
allowable number, which is set to 4000 for instances #1–#3,
8000 for #4–#6, 12000 for #7 and #11, and 16000 for #9–#11.
In this setting, the CPU time consumed to solve the largest-
size instance #11 is less than one second, which makes it
appropriate to employ the algorithms to work out solutions
for deliverymen selection and path planning in practice.

On each test instance, each algorithm is run 30 times,
and the performance is evaluated based on the results over
the 30 runs. Table 3 presents the median (med) and stan-
dard deviation (std) of the objective function values obtained
by the algorithms on each test instance. For each instance,
the best median value among the nine algorithms is shown

in bold. A superscript † indicates that there is a statistically
significant difference (at 95% confidence level). We conduct
Wilcoxon rank sum tests to compare the result ofWWOwith
that of each other algorithm, and use a superscript † before
the median value of the corresponding algorithm to indicate
that there is a statistically significant difference (at 95% con-
fidence level). Moreover, we present the median, maximum,
minimum, first quartile (25%) and third quartile (75%) of the
objective function values obtained by each algorithm among
30 runs on each instance in the box plots in Fig. 9.

Among the 11 test instances, WWO-AB obtains the best
median value on 10 instances except instance #5. On the
smallest-size instances #1,WWO-AB,BBO,EBO, andAAA
obtain the same best median value; on instance #2, WWO-
AB, BBO and EBO obtain the same best median value; on
the instance #5, BBO obtains the best median value, while
WWO-AB obtains the second best; on each of the remaining
eight instances, WWO-AB uniquely obtains the best median
value. According to the statistical test results, the results of
WWO-AB are significantly better than GA, ACO, PSO, DE,
and the basic WWO on all 11 instances, significantly better
than AAA on nine instances, and significantly better than
BBO and EBO on eight instances. On the contrary, none
of the other algorithms performs significantly better than
WWO-AB on any instance. Although BBO achieves the best
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Fig. 9 Box plots of the objective function values of obtained by the nine algorithms on the test instances. Max: maximum; Min: minimum, Q1: the
first quartile (25%); Q3: the third quartile (75%)
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Fig. 10 Revenues obtained by
the method with machine
learning and the method without
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median value on instance #5, there is no significant difference
between the results of BBO and WWO-AB on this instance.

Among the other eight comparative algorithms, the overall
performance of PSO is the worst, mainly because the PSO’s
learning-from-historymechanism often causes the algorithm
to be trapped in local optima. The crossover operators of
GA and DE and the pheromone accumulation mechanism
of ACO have similar negative effects on the search abilities
of the algorithms. Therefore, in general, the performances
of these four algorithms are significantly worse than those
of the other five algorithms that have special mechanisms
for balancing global exploration and local exploitation. Such
mechanisms include migration operations of BBO and EBO,
helical movement of AAA, and propagation ofWWO,which
can effectively maintain solution diversity, and therefore,
suppress premature convergence. Compared to the basic
WWO, WWO-AB uses adaptive breaking and population
size reduction, which can further improve solution accuracy
and accelerate the search process.

Moreover, the box plots in Fig. 9 and the standard devi-
ation values in Table 3 show that, on most instances, the
variance of the objective function values obtained byWWO-
AB over 30 runs is much smaller than those of the other
comparative algorithms. This indicates that, compared to the
other algorithms, the results ofWWO-ABalgorithmaremore
robust. That is, when a deliveryman employs an algorithm to
solve a problem instance, different runs of WWO-AB typi-
cally result in similar solutions, which helps to improve the
user confidence to the algorithm.

In summary, WWO-AB exhibits the best overall perfor-
mance among the nine algorithms on the test instances,which
validates the effectiveness of the WWO evolutionary opera-
tors adapted to solve the considered takeaway order selection
and delivery path planning problem. As the maximum run-
ning time to produce a solution is less than one second, it
is practical for deliverymen to use the proposed WWO-AB
to optimize order selection and delivery path planning to
improve their performance and the corresponding revenue.

Contributions of machine learning to optimization

Finally, we test the effects of the data-driven machine learn-
ing on the revenues of deliverymen. On the 11 test instances,
we compare our method using machine learning to esti-
mate order ready time and customer satisfaction level with
the method without machine learning, i.e., simply using the
expected order ready timegiven by the store and assuming the
middle-level customer satisfaction. Figure 10 compares the
revenues obtained by the two methods on the instances. As
we can observe, on each instance, the method using machine
learning achieves a higher revenue than that without machine
learning. The higher the revenue, the larger the percentage
of improvement of the method using machine learning over
that without is. The results demonstrate that, using machine
learning to estimate order ready time and customer satisfac-
tion level more accurately, the deliverymen can select the
orders and plan the routes in a more cost-effective manner to
improve their revenues. The average revenue obtained by the
method using machine learning is 8.22 yuan per hour, signif-
icantly better than the 6.47 of the method without machine
learning. Such a significant improvement can greatly help
both the takeaway deliverymen and company.

Conclusion

The last years have observed a rapid growth of the take-
away delivery market. The increasing number of candidate
orders and the corresponding pickup and service points has
made order selection and path planning a key challeng-
ing problem to deliverymen. In this article, we formulate
an integrated takeaway order selection and delivery path
optimization problem, which involves uncertain order ready
time and customer satisfaction level. We employ a machine-
learning approach to infer the uncertain factors based on habit
data of takeaway stores and customers. To efficiently solve
the problem, we propose a hybrid evolutionary algorithm
that adapts the WWO metaheuristic to solve the main prob-
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lem of order selection and employs the tabu search method
to quickly optimize the delivery path for each main solution.
Experimental results on test instances constructed based on
real food delivery application data demonstrate the perfor-
mance advantages of the proposed algorithm compared to a
set of popular evolutionary algorithms.

Our future work will be devoted to three aspects. First, the
present work takes the uncertainty of order ready time into
consideration, but assumes that the delivery time can be esti-
mated in an accurate manner. However, in practice, the deliv-
ery time is also significantly affected by external factors such
as traffic conditions. Therefore, we will consider the uncer-
tain delivery time in the problem, and utilize interfaces from
map navigation applications such as Baidu andGaode to esti-
mate the delivery time. Second, the delivery path is limited
by themaximum distance of the vehicle (typically, electronic
bicycle) usedby thedeliveryman.Therefore,wewill consider
the capacity of battery and its recharging in the problem and
solution method [57]. Third, we will extend the problem and
algorithm to enable dynamical order selection and path re-
planning for deliverymen when they are on the way.
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