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Abstract
Computed Tomography (CT) is a widely use medical image modality in clinical medicine, because it produces excellent 
visualizations of fine structural details of the human body. In clinical procedures, it is desirable to acquire CT scans by 
minimizing the X-ray flux to prevent patients from being exposed to high radiation. However, these Low-Dose CT (LDCT) 
scanning protocols compromise the signal-to-noise ratio of the CT images because of noise and artifacts over the image 
space. Thus, various restoration methods have been published over the past 3 decades to produce high-quality CT images 
from these LDCT images. More recently, as opposed to conventional LDCT restoration methods, Deep Learning (DL)-based 
LDCT restoration approaches have been rather common due to their characteristics of being data-driven, high-performance, 
and fast execution. Thus, this study aims to elaborate on the role of DL techniques in LDCT restoration and critically review 
the applications of DL-based approaches for LDCT restoration. To achieve this aim, different aspects of DL-based LDCT 
restoration applications were analyzed. These include DL architectures, performance gains, functional requirements, and 
the diversity of objective functions. The outcome of the study highlights the existing limitations and future directions for 
DL-based LDCT restoration. To the best of our knowledge, there have been no previous reviews, which specifically address 
this topic.

Keywords  Deep Learning · Generative adversarial networks · Optimization · Medical datasets · Structure preservation · 
Denoising

Introduction

Computed Tomography (CT) is one of the reliable and non-
invasive medical image modalities that help to detect patho-
logical abnormalities in the human body such as tumors, 
vascular diseases, lung nodules, internal injuries, and bone 
fractures. In addition to the diagnostic support, CT is also 
useful in guiding various clinical procedures, including 
interventions, radiation therapies, and surgeries [38]. How-
ever, repeated CT scans may reveal that the patient may be 
exposed to radiation enormously. Overexpose to the radia-
tion would cause the development of metabolic abnormali-
ties, radiation-induced cancer, and other genetic disorders 
that fall the patients’ quality of life rapidly [75]. Therefore, 
low-dose CT (LDCT) scanning protocols have been pro-
posed to minimize patients’ exposure to radiation while 
maintaining adequate diagnostic accuracy.

Usually, to obtain the LDCT images, the X-ray flux is 
being reduced deliberately during the clinical procedures 
[55, 57]. The reduction of X-ray flux will degrade the 
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Signal-to-Noise Ratio (SNR) of the X-ray signals and result 
in low-contrast CT images with noise and artifacts. These 
visual degradation cause blurring of the edges and losses 
of contrast within the organs and textures [11]. As a result, 
the reliability of both the clinical diagnostic procedures 
and automated analysis tasks such as segmentation, feature 
extraction, and classification of these LDCT images are dete-
riorated [38]. However, to overcome these visual degrada-
tions and improve the clinical usability of the LDCT images, 
there are various denoising algorithms have been proposed 
over the past 5 decades. Overall, those algorithms can be 
divided into three categories, such as sinogram domain fil-
tering, iterative reconstruction, and image domain process-
ing [52].

In general, the CT restoration methods map the LDCT 
images back to their’ Normal-Dose CT (NDCT) repre-
sentations. However, the limited access to projection data 
in the sinogram domain and high computation cost in the 
iterative reconstruction domain make the LDCT restora-
tion restricted. Compared to this, image domain processing 
follows the image post-processing approach and does not 
rely on projection data. However, the mage domain-based 
algorithm degrades its performance by estimating the noise 
distribution according to a specific noise model as part of the 
noise reduction process. Recently, Deep Learning (DL) has 
become state-of-the-art in medical imaging. It plays a vital 
role in solving various problems, including image denois-
ing, super-resolution, detection, and recognition [64, 88]. 
The rapid growth of hardware technology, the rising need 
for high-performance processing, data-driven execution, and 
the ability to crack the previously resolvable problems have 
dramatically accelerated the resurgence of DL in medical 
imaging [43]. Hence, much attention has recently been paid 
to proposing new LDCT restoration algorithms using vari-
ous DL techniques.

Our survey of relevant works has revealed that very few 
reviews have recently been published to discuss the con-
ventional general CT denoising methods [11, 38]. With the 
emergence of DL techniques, most of these conventional 
denoising algorithms discussed in those reviews are tech-
nically obsolete concerning the several LDCT restoration 
aspects such as accuracy of noise reduction, the ability of 
lesion discrimination, and the preservation of the fine struc-
ture and texture details. Also, to the best of our knowledge, 
there is no previous study done to date for reviewing the 
role of DL on LDCT restoration and how those restoration 
aspects impact in LDCT restoration. Thus, this study reviews 
DL-based LDCT restoration articles published on the web 
of science indexed journals starting from the first article 
published in 2017.

The main contributions of this review are fourfold: 
(1) analyzing the potentials of DL techniques and archi-
tectures used in LDCT restoration; (2) highlighting the 

specific contributions of DL-based LDCT restoration 
applications concerning the model performance, structure 
preservation, and lesion discrimination; (3) reviewing the 
diversity of objective functions for making different LDCT 
restoration decisions; (4) discussing the limitations and 
future research directions to emphasize the existing knowl-
edge gaps.

The rest of the article is organized as follows. The sec-
tion “Overview of LDCT restoration” provides a brief 
overview of the degradations in LDCT images. The section 
“DL architectures” elaborates on different DL techniques 
and their architectures that were used in LDCT restoration 
applications. The section “Datasets and methods to deal 
with data related issues” presents the commonly used data-
sets and the methods used to overcome some shortcomings 
of these datasets for DL-based LDCT reconstruction. The 
section “Diversity of loss functions” discusses the diversity 
of loss functions in this domain of research. The section 
“Functional aspects” presents the performance and results 
of different functional requirements of the proposed appli-
cations. The section “Methods for fine-tuning the perfor-
mance” describes the most commonly used methods for 
fine-tuning proposed LDCT restoration models. Finally, the 
section “Future research directions” presents the limitations 
and future research directions.

Overview of LDCT restoration

LDCT imaging

CT scan is an X-ray procedure that creates 2D or 3D cross-
sectional images with the help of computer processing. CT 
scans are more detailed than the conventional X-ray and can 
reveal shape, dimensions, density, and internal defects of the 
various anatomies [11]. Figure 1 depicts a diagram of the 
CT imaging. Accordingly, the CT scanner uses a motorized 
X-ray source that shoots narrow beams of X-rays as it rotates 
around the patient. There are special digital X-ray detectors 
located directly opposite the X-ray source. As the X-rays 
pass through the patient, they are picked up by the detectors 
and transmitted to a computer. These transmitted projection 
data are further processed through radon and inverse radon 
transform. Also, the back-projection algorithm is applied 
during this process to reconstruct as CT images. Finally, 
the reconstructed image slices can either be displayed indi-
vidually in 2D form or stacked together to generate a 3D 
image. Analyzing and correcting the CT image quality after 
reconstruction are a mandatory post-processing task. This 
is mainly caused by the reduced reconstruction quality that 
is affected by the reduction of X-ray tube current which is 
done to prevent patients from adverse radiation exposure.
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Degradations in LDCT

In general, CT images are degraded by quantum noise 
and various artifacts during LDCT acquisition. Among 
them, the quantum noise is embedded in LDCT due to 
the X-ray photon starvation during the image acquisition 
[11]. Disconnecting the edges, smoothing the target sub-
tle structures and forming the low-contrast visuals due 
to lack of X-ray photons are the visual degradations of 
quantum noise. Figure 2b depicts the consequences of 
quantum noise in the real abdomen quarter dose CT image 
for further clarifications. Physically, the quantum noise 

presents non-uniform distribution over the image space. 
As a result, validation and learning of the LDCT restora-
tion algorithms become challenging due to the difficulty of 
distinguishing the actual noise content in CT images [45]. 
Usually, the quantum noise is approximated by Poisson 
distribution during experimenting [11]. In addition to that, 
there are some applications in which the noise distribution 
of CT images is estimated by considering the Mixed Pois-
son Gaussian distribution (MPGD) [38]. In MPGD, both 
the electronic noise and quantum noise components will 
be modeled using the Gaussian and Poisson distributions, 
respectively [10].

Fig. 1   A diagram of the CT 
imaging

X- Ray Source

LDCT Acquisi�on Projec�on Domain Image Domain

Reconstructed ImageProjec�on Data Sinogram

Fig. 2   Visuals of CT degrada-
tions. a, b Normal dose and 
quantum noise corrupted abdo-
men CT image (The metastasis 
in of liver lesion marked in a 
red circle is unclear.) [77]; c, d 
normal dose and quantum noise 
corrupted abdomen CT images 
with streak artifacts [73]

(a) (b)

(c) (d)
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Apart from the noise, the LDCT images are degraded by 
blurring [13, 60, 73] and streaking artifacts [28, 34, 50, 71, 
75, 81, 91]. Lack of X-ray photons during the CT scanning 
and patient motion cause blurring. Furthermore, it makes 
some obstructions in the detection of subtle structures, for 
instance, liver lesions [73]. The streaking artifact presents 
as several dark streaking bands placed between two solid 
objects in the LDCT image (Fig. 2d). Usually, it occurs 
along the long axis of a high attenuation object. The X-ray 
beam hardening is the root cause of the streaking artifact.

A brief overview of conventional methods

Many LDCT restoration methods have been proposed over 
the past few decades and all of those can be categorized 
into three groups, namely sinogram domain filtering, itera-
tive reconstruction, and image domain restoration [52]. In 
general, the sinogram domain filtering-based restoration 
methods directly work out on the raw projection data that 
formed before the back-projection. Hence, the restoration 
algorithms are efficient and can compute the noise statistics 
accurately. Structural adaptive filtering [37, 70], bilateral 
filtering [47], and penalized likelihood method [68] are the 
popular sinogram domain filtering methods. However, these 
projection data are vender specific and cannot be publicly 
accessed. Also, the LDCT images restored through sinogram 
domain filtering suffer from edge blurring and low contrast.

Iterative reconstruction depends on the image’s prior 
information and performs noise reduction by iterating 
between the sinogram and image domain. Non-local means 
[5], total variation [89], dictionary learning [74], and low-
rank approximation [2] are some of the priors used within 
the iterative reconstruction-based restoration category. Even 
though this LDCT restoration category outputs exciting CT 
enhancement results, the high computation cost and content 
loss are the reported drawbacks of iterative reconstruction-
based CT restoration.

Compared to the first two restoration categories, image 
domain-based restoration is considered as a post-processing 
method. Thus, the restoration algorithms are directly applied 
to reconstructed images instead of raw data. Conventional 
image denoising methods such as non-local means [84, 
90], total variation [32], Block Matching Three Dimension 
(BM3D) [26], and statistics-based algorithms [19] are well-
known algorithms grouped under this category. Even though 
the image domain restoration methods are flexible enough 
to be implemented, the inability to compute the noise statis-
tics due to its non-uniformity will deprive the accuracy of 
the proposed CT restoration applications. Furthermore, it 
obscures the structural information of the CT images enor-
mously. Hence, the current LDCT restoration methods and 
their limitations have paved the direction for proposing novel 
LDCT restoration methods.

Emergence of Machine Learning

Machine Learning (ML) is a branch of Artificial Intelli-
gence that facilitates the application to automatically learn 
and improve through experience rather than using the user-
defined programs. ML achieves this automatic learning via 
a technique called feature learning. The objective of feature 
learning is to assist the ML application in automatically find-
ing the representations required for solving the target ML 
problem. It refers to the determination of the optimal model 
parameter set θ that contains a set of candidate solutions 
(weights) w and bias β (i.e., θ = (w, β)) [45]. Generally, this 
goal is achieved through an objective function that is specifi-
cally developed for the target ML model.

Initially, shallow neural networks, such as functional link 
artificial neural network models, were proposed for medical 
image restoration. Relying on prior domain knowledge of the 
problem to be solved is a special feature of those models. 
However, determining this prior knowledge was somewhat 
challenging when applying these models for CT restoration. 
The main reason for that is there was no specific way to 
determine the noise distribution across the image domain. 
Thus, there was no any LDCT restoration application has 
reported based on the shallow neural networks. Later, the 
DL has become the state-of-the-art of ML in parallel to the 
improvement of GPU technology and the growing demand 
for high-performance processing. As a result of this progres-
sive technology development, LDCT restoration has also 
recently undergone a revolutionary change.

DL is known as the representation-learning method. It 
lets the computer automatically find the representations 
from the raw data required for classification and detection. 
Thus, the DL model consists of multiple levels of feature 
representations (multiple hidden layers except for the input 
and output layers) starting with raw input to a more abstract 
higher level [41]. Thus, this high-level feature capturing 
of DL models demonstrates its ability to learn the uncer-
tain noise distributions over the LDCT images throughout 
the data-driven learning. Besides, the data-driven learning 
method can adapt to any noise type effectively [83]. Hence, 
it improves the overall performance of LDCT restoration and 
possesses a novel advantage over other LDCT restoration 
methods [6, 46].

DL architectures

Depending on the network model adopted, DL-based LDCT 
restoration methods surveyed in this study can be divided 
into three sub-categories, namely discriminative, generative, 
and hybrid (generative and discriminative) [61]. Figure 3 
depicts the classification of various DL models used for 
LDCT restoration.
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Discriminative models

The network models based on the discriminative approach 
represent bottom–up execution to separate learned data 
based on a decision boundary [61]. Figure 4a depicts the 
functional aspect of a typical discriminative model. Also, 
the training strategy of the discriminative approach follows 
the supervised learning that relies on labeled or annotated 
data to determine the learning function or prediction model 
that maps input data to output. Furthermore, in this review, 
Convolutional Neural Networks (CNN) and their vari-
ant have been found as the discriminative models used in 
LDCT restoration. Table 1 summarizes the discriminative 

model-based LDCT restoration applications for further 
information.

CNN

Due to the recent advancement in high-performance com-
puting and hardware resources, CNN-based denoising 
applications have popular in medical imaging [65]. It takes 
2D or 3D images as input and better utilize the structural 
details greatly for feature extraction and processing. As 
shown in Fig. 5, CNN is organized based on three con-
secutive implementation components, namely the convo-
lutional layer, the pooling layer, and the fully connected 

Fig. 3   Classification of DL 
methods used for LDCT restora-
tion

Deep Learning Models for LDCT Restoration

Discriminative

Deep CNN

Variants of 
Deep CNN

SCN

ResNet

DenseNet

Autoencoder Vanilla GAN

Wasserstein 
GAN

Cycle GAN

Least Square 
GAN

U-Net

Generative Hybrid (Discriminative 
and Generative)

Fig. 4   Functional difference of 
DL techniques: a model based 
on the discriminative approach; 
b model based on the generative 
approach

Probability 
Distribu�ons 
of Data

(a) (b)
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layer [59]. The convolution layers apply the mathematical 
operation called “convolution” over the image to generate 
the feature maps. These generated feature maps consist of 
local features such as edges, object boundaries, and vari-
ous texture patterns that are spatially distributed within 
LDCT images. To achieve this, the convolutional layer 
uses multiple filters which are deployed as stacked layers, 
in the same layer. Thus, CNN helps to enhance the input 
noisy images by focusing on the local image details. This 
spatially adaptive enhancement reduces the noise embed-
ded in the processed images. The main function of the 
pooling layer is to effectively reduce the dimensions of 
the generated feature maps. These are kept robust to the 
geometry and position of the detected features within the 
processed image. Finally, the output of CNN is generated 
by fully connected layers. This is achieved by integrating 
all the feature maps or responses formed by the previous 
processing steps [29].

In LDCT restoration, CNN attempts to learn a mapping 
function between LDCT and NDCT images by optimizing 
the objective function on a training dataset [18]. Thus, the 
convolution layers with multiple filters and pooling lay-
ers are common in CNN-based LDCT restoration models. 
Furthermore, in LDCT restoration, the densely connected 
layers found in the generic CNN model are replaced with 
an output layer followed by a suitable activation function. 
Chen et al. [4] have proposed a simple and effective CNN-
based LDCT restoration method that works on LDCT 
images (CNN200). It has performed patch-by-patch-based 
mapping between LDCT and NDCT images during the 
restoration.

Variants of CNN

Improving visual performance and gaining optimal network 
training are the ever-growing requirements in LDCT resto-
ration. However, it has been revealed that the generic CNN 
model has a lack of architectural support to achieve these 
requirements. As a solution for this, the variants of CNN 
architectures have been published. The following sections 
briefly explain the significant aspects of those CNN archi-
tectures for further clarifications.

Stacked Competitive Network (SCN): The SCN consists 
of a multi-stacked layered architecture that is formed by a set 
of successive competitive blocks [13]. This feature empha-
sizes the main difference between SCN and generic CNN. 
Furthermore, as shown in Fig. 6, each competitive block in 
SCN has introduced multi-scale processing. The objective of 
a single competitive block is to enhance the local structural 
details within the competitive block with a certain sparsity. 
Thus, it has increased the width of the CNN and enabled to 
extract of more low-level details in the LDCT images.

Multi-scale conventional filters that operate within com-
peting blocks can capture information about the multi-scale 
structural features and textures of the same LDCT image 
region. Furthermore, a combination function is implemented 
in each block to minimize the redundant feature capturing 
and reduce the computational load. The objective function 
of the proposed network was designed to minimize the com-
petitive mapping of each layer of the proposed SCN network. 
Furthermore, it consists of a regularization term to control 
over-fitting. Reconstructed CT images through this proposed 

Input Layer Convolu�onal  Layer 1 Convolu�onal  Layer n Fully Connected Layer

Convolu�on 
and Ac�va�on

Pooling Convolu�on 
and Ac�va�on

Pooling Vectoriza�on Output

Input Image

Filter Feature Maps

Pooled 
Feature 
Maps

Pooling Window

Feature Maps
Pooled 
Feature 
Maps

Factorized Feature Maps

Fig. 5   Generic architecture of the CNN model
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SCN model visualize sharp edges and better distinguish low-
contrast structures effectively.

Residual Network (ResNet): Stacking more layers in the 
CNN model is one of the basic techniques for improving 
the performance of the CNN model. However, increasing 
the depth of the network will always not influence CNN 
positively due to the issue called gradient diffusion [20, 50]. 
Also, gradient diffusion might result in failures in network 
training. As a solution for this issue, He et al. [27] have 
proposed the multi-branch network called ResNet. Figure 7 
depicts the generic architecture of the ResNet for further 
clarification. The most notable aspects in the ResNet archi-
tecture are the skip connections and residue estimation 
strategy in which are not common in generic CNNs. Skip 
connections found in ResNet models transfer the extracted 
features from the previous layers to the subsequent layers 
to preserve the structural details. Figure 8a and b depicts 
this architectural difference between the generic CNN and 
ResNet with skip connection for further clarifications. The 
2D-ResNet proposed by Yang et al. [78] have followed this 
basic ResNet architecture, and later, they enhanced this 
network to its 3D version to preserve the spatial co-rela-
tion of tissues and organs. Apart from that, the two-stage 

ResNet (DP-ResNet) published in [81] has implemented 
two ResNets that performed the LDCT restoration in both 
the projection domain and image domain. Processing the 
sinogram data in the first stage of this application enables 
it to enormously suppress the noise in low-dose projection 
data. Later, processing the already restored projection data 
in the image domain has reduced the remaining residues and 
streaking artifacts greatly.

This study revealed that some of the LDCT restoration 
applications reported in [20, 23, 71, 73] followed the same 
ResNet model published by Zhang et al. [86]. Accordingly, 
a cascaded ResNet-based LDCT restoration model published 
by Wu et al. [73] has the strength to restore the noise pat-
terns that would rarely encounter in the training datasets via 
iterative cascaded learning. In addition to that, Gou et al. 
[23] (GRCNN) has proposed a gradient regularization-based 
objective function to the model suggested in [86]. Hence, the 
proposed GRCNN has gained the training effectiveness and 
ability to preserve the sharpness of features of the processed 
LDCT images. In addition to these applications, the ResNet 
published by Gholizadeh-Ansari et al. [20] (DRL-E-MP) 
has some unique features compared to other applications 
that followed the model in Zhang et al. [86]. Those are edge-
detection-based image restoration and the application of 

Stacked Compe��ve Block Network

LDCT Image Restored Image

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer

Fig. 6   Generic architecture of the SCN model
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Fig. 7   Generic architecture of the ResNet model
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dilated convolution operations. In addition to that, the study 
done by Shiri et al. [60] has also used dilation convolution 
for the ResNet proposed to enhance the COVID-19 CT data. 
Moreover, the multi-scale parallel CNN model proposed by 
Jiang et al. [33] has also used the dilated convolution to 
denoise the lung images. This model not only reduces the 
noise but also preserves the detailed features of the low-dose 
lung CT with texture details. The implementation of two par-
allel networks, three different sized convolution kernels, and 
residual connections are the significant architectural aspects 
that support gaining this visual performance. The ability to 
increase the receptive field of dilation convolution impact 
these studies positively to preserve more contextual details 
in the LDCT images.

Except for pure ResNet-based LDCT restoration appli-
cations, some studies have been published that combine 
ResNet with wavelets. The prime objective of such an inte-
gration is to restore the texture details and eliminate the 
noise-induced artifacts in ultra-LDCT images. Among them, 
the AAPM-Net model in [36] has been developed based 
on the high-frequency channels obtained after contourlet 
transformation on the LDCT images. Furthermore, in this 
application, the lower frequency wavelet coefficients were 
then integrated with the denoised frequency bands to reduce 
unnecessary load on the model. Later, the Wave-ResNet 
has been published as an extension to the AAPM-Net [34]. 

Estimating the residuals at each sub-band by the ResNet and 
implementation of concatenation later in the network are 
the specific features in Wave-ResNet in contrast to AAPM-
Net. Apart from that, the two-stage denoising model (TS- 
RCNN2) in [30] has been trained using the stationary wave-
let transformed LDCT and averaged-NDCT images. The two 
ResNets in this application have performed texture preserva-
tion and structure enhancement, respectively.

Contrary to the above-mentioned ResNets, the TLR-CNN 
published in [91] was free from bypass connections. Instead 
of that, it has fine-tuned the network via a two-stage transfer 
learning strategy in which the first stage uses the natural 
images with blind Gaussian noise, and the second stage uses 
the LDCT images.

Dense Network (DenseNet): Similar to ResNets, DenseNets 
are also another way that can use to increase the depth of the 
network [29]. DenseNet simplifies the connectivity pattern 
between the input and output layers, so that it can minimize 
the gradient diffusion issue of the CNNs. In contrast to the 
ResNet that skips signal from one layer to the next through 
summation, DenseNet surges information exchange among 
the layers in the neural network via a simple connectivity 
model layers of the same feature map size (as shown in 
Fig. 9). Thus, each layer receives inputs from all preceding 
layers and sends on its feature maps to all successive layers. 

Fig. 8   Different shortcut con-
nections. a CNN with sequential 
convolution layers, b ResNet 
with convolution block and skip 
connection. Yl—input from the 
z residual unit, Yl+1—output 
from l + 1 unit, F(Y)—residual 
mapping of the stacked convo-
lutional layer. c DenseNet with 
dense connections. DenseNet 
concatenates the output passed 
from previous layers, d incep-
tion ResNet connection, and Yc, 
C, I, F represent the input, con-
volution, inception filtering, and 
network operations, respectively
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Moreover, it boosts the network’s feature learning capabil-
ity and the reusability of feature maps. Because of that, the 
subsequent layers of the network can use the full feature 
maps of all initial layers. Therefore, this aspect in DenseNet 
will tremendously help to reduce the information loss during 
the training. Figure 8c depicts the functional point of view 
of a typical dense connection in a network. Contrary to the 
DenseNet in [29], Ming et al. [50] have proposed a DenseNet 
for LDCT restoration by reducing the connectivity pattern to 
gain computational efficiency in each block while training 
the network.

VGG19: VGG19 is a pre-trained CNN published by Simon-
yan, Zisserman [63], which consists of 16 convolutional lay-
ers followed by the three fully connected layers. The output 
of the last convolutional layer of the VGG19 is the feature 
map of the input image. In LDCT restoration, the VGG net-
work is used for computing the perceptual loss [12, 58, 78, 
79].

As a summary of the facts mentioned in Table 1, it can 
be stated that the discriminative models preserve the fine 
structures in the restored CT images and reduce the streaking 
artifacts greatly. However, the structures are over-smoothed 
due to the MSE-based objective function. Also, the ResNet-
based studies have degraded the results due to the lack of 
generalizability.

Generative models

DL models categorized under the generative approach deter-
mine the probabilistic distribution of data. Compared to the 
discriminative approach, the generative approach shows the 
top–down execution. Furthermore, it follows the unsuper-
vised learning strategy for feature learning (Un-supervised 
learning performs learning on the input data itself rather 
than using annotated data.). Figure 4b depicts the functional 
aspect of a typical generative model for further clarifica-
tions. In this study, the autoencoder and U-net models were 
identified as the widely used generative models for LDCT 
restoration.

Autoencoder

Autoencoder learns how to compress and encode input data 
and then learns how to reconstruct the output data back from 
the compressed encoded representation. Hence, it gets the 
output representations that are much similar to the original 
data. As shown in Fig. 10a, the architecture of the autoen-
coder consists of two components, namely encoder, and 
decoder. Out of these two components, the encoder is made 
up of a set of fully connected or convolutional layers. In 
LDCT restoration, the encoder performs the feature extrac-
tion from noisy LDCT images and transforms the image 
data into a low-dimensional compressed representation 
called a bottleneck. After that, the decoder up-samples the 
low-dimensional representation to reconstruct the denoised 
image using fully connected layers or convolutional layers. 
In training, autoencoders regenerate the input data itself 
using the backpropagation algorithm [61]. Like ResNet, 
the autoencoder network has also connected correspond-
ing encoder and decoder layers with skip connections. As a 
result, the network depth has increased and minimized the 
gradient diffusion that happens during the training.

Recently, Mao et al. [49] have published an autoencoder 
(RED-Net) that can restore natural images degraded by 
different noise levels. Based on that, later, Chen et al. [3] 
have published an RED-CNN model by combining autoen-
coder with CNN for LDCT restoration. Unlike the refer-
ence model in [49], this RED-CNN model has removed the 
Rectified Linear Unit (ReLU) layers before the summation 
with residuals to ignore the positivity constraint on learned 
residuals. In addition to that, Liu, Zhang [45] proposed an 
LDCT restoration method based on the Stacked Sparse 
Denoising Autoencoder (SSDA) model. On the contrary 
to the autoencoders, SSDA adds a sparsity component 
based on the Kulback–Leibler divergence to the learning 
model. Thus, it supports content preservation optimally. 
Moreover, the proposed SSDA model did not contain any 
down-sampling layer and was made up of using a shallow 
network structure. Different from all the CNN-based DL 
models published for LDCT restoration, Fan et al. [16] 

C C C C C

C

Hidden Layer 1 Hidden Layer 2 Hidden Layer 3 Hidden Layer 4

Batch Normaliza�on ReLU Convolu�on Layer Concatena�on Layer

Skip Connec�ons

LDCT Image Restored Image

Fig. 9   Generic architecture of the DenseNet model
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have proposed a stacked autoencoder model based on the 
quadratic neurons (Q-AE). The replacement of the con-
ventional neurons with quadratic neurons in this Q-AE has 
motivated to represent complex data, and it has positively 
influenced to enhance the robustness of LDCT restoration. 
Also, the quadratic operation has boosted the processing 
power of the individual neurons. Except for the applica-
tion of quadratic neurons, the proposed network model of 

Q-AE is fundamentally similar to the RED-CNN. Also, 
interested readers can find more information about quad-
ratic neurons from [14, 15, 17]. Overall, it is significant 
to state that all the cited autoencoder applications in this 
section have used MSE (L3) as the loss function. Further-
more, Table 2 summarizes the autoencoder-based genera-
tive DL applications for further analysis.

(a)

(b)
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LDCT Image Restored Image
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Fig. 10   Generic architecture of generative models used for LDCT restoration: a autoencoder; b U-Net
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U‑Net

Ronneberger et al. [56] have proposed the U-net model, 
which consists of symmetric architecture constructed 
by a contracting path and expanding path. As shown in 
Fig.  10b, the contraction path comprises convolution 
operations and down-sampling layers, while the expand-
ing path consists of up-sampling layers. Hence, the 
contracting and expanding paths resemble the encoder 
and decoder layers, respectively. U-net consists of long 
skip connections to transfer the feature details from the 
encoder layers to the corresponding decoder layers. 
Unlike the residual skip connections, these transferred 
features finally concatenate at the corresponding decod-
ing layer. Different from residual connections, the con-
catenation type skip connections in U-net allow trans-
ferring of more feature information forward, and it is a 
significant performance aspect in U-net architecture [44]. 
Furthermore, it has been observed that almost all of the 
U-net-based LDCT restoration applications reviewed in 
this study have been published by integrating U-net with 
the Generative Adversarial Network (GAN) s [6, 45]. 
However, after publishing the Pix-to-Pix GAN by Isola 
et al. [31], there were several LDCT restoration applica-
tions published based on it. The main reason for that is 
the generator of the Pix-to-Pix GAN followed the U-net 
architecture, and it accepts an image as the input instead 
of the noise distribution in the latent space [75, 79]. The 
deeper U-net published in [79] permits to retain of the 
small details of the processed LDCT images.

Hybrid models

The hybrid learning approach combines both the genera-
tive and discriminative network models to construct the 
learning model. After introducing GAN by Goodfellow 
et al. [22], this hybrid learning model has become popu-
lar in LDCT restoration. The GAN consists of two CNN 
models, which are defined as the generator and the dis-
criminator [22]. In medical image denoising, the generator 
synthesizes the samples from learning the distribution of 
low-dose medical images. The discriminator receives both 
the normal dose images and the synthetic images produced 
by the generator and aims to distinguish them apart [8]. 
This basic structure of GAN is known as vanilla GAN. 
Moreover, GAN is flexible to implement different genera-
tor models based on various CNN architectures, such as 
the encoder–decoder [58, 67], U-Net [6, 53, 75, 79], and 
ResNet [12, 28, 46]. Also, the discriminator mostly acts as 
a binary classifier to distinguish the synthetic and NDCT 
images apart. Depending on the adversarial learning 
method and the objective function used, several variants 
of GAN architectures have been published. Our review 
of literature has revealed Wasserstein GAN, cycle GAN, 
and least-square GAN as the variants of GAN which are 
broadly used in LDCT restoration. Figure 11 depicts the 
network model of each of these GANS and Table 3 sum-
marizes the important features of the GAN-based LDCT 
restoration applications.

Table 2   Analysis of generative model-based LDCT restoration applications

References Model features Strength Weaknesses

Network design Input Model depth Shortcut

RED-CNN, Chen 
et al. [3]

Residual EnDec LDCT images 5 Convolution and 
5 De-convolu-
tion layers

Long skip connec-
tions

Enhancing the 
low-contrast 
regions

Texture loss and 
blurring due to 
the usage of MSE-
based objective 
function

False lesion issue
Liu, Zhang [45] Stacked sparse 

denoising 
Autoencoder

8 × 8 sized patches 3 stacked sparse 
denoising 
autoencoder (6 
hidden layers)

No Preserving the 
texture details 
in which decays 
during the 
down-sampling

The proposed model 
still distorted 
some subtle struc-
tures

Q-AE, Fan et al. 
[16]

Quadratic Autoen-
coder

64 × 64 sized 
patches

5 quadratic 
convolution 
and 5 quadratic 
deconvolution 
layers

Bypass connec-
tions

Low computa-
tional cost due 
to the lower 
number of train-
ing parameters

Determining the 
depth of the net-
work is laborious
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Vanilla GAN

Vanilla GAN represents the simplest GAN model as depicted 
in Fig. 11a. Wolterink et al. [72] have first applied the GAN 
for resolving the limitation of voxel-wise regression in 
LDCT noise reduction. Later, Yi, Babyn [79] have pro-
posed a GAN model by conditioning it with sharpness loss 
to enhance the edges and boundaries of the structural details, 
which are pathologically significant. Also, Shan et al. [58] 
have proposed a conveying path-based GAN model that can 
integrate the 3D spatial details via the adjacent 2D LDCT 
slices. In this application, first, the 2D LDCT restoration 
model has been proposed and the strong correlation of those 
2D slices was used as a transfer learning to train the 3D 
model. LDCT restoration application published in [53] is 
significant, because it has addressed the issue of lacking the 
paired medical image data (low-dose images and identical 
ground truth images) for training the GAN models. The 
fidelity embedded GAN model proposed by Park et al. [53] 
for LDCT reconstruction has computed the Kullback–Lei-
bler divergence and L2 loss to generate the denoised CT 
images by training the GAN through unpaired CT images. 
The application of visual attention for image restoration is 
still novel in the CT domain. Du et al. [12] were the first 
team who have applied the attention network to overcome 
the over-smoothing caused by MSE loss function in cur-
rent DL-based CT restoration models. The generated atten-
tion map of this study was used as prior knowledge about 
noise distribution over the input image and the implemented 
visual attention block sustained in the proposed restoration 
model not only to preserve the fine structures (lesions and 
other subtle structures) with perceptual similarity but also 
to explicitly assess the local consistency of the recovered 
regions [6].

Wasserstein GAN

In general, minimizing the generator of the vanilla GAN 
is equivalent to minimizing the Jason–Shannon divergence 
between noisy and ground truth data distribution. However, 
it has been revealed that minimizing the Jason–Shannon 
divergence has led to a vanishing gradient on the genera-
tor network and obstruct updating as the training continues. 
To overcome this, Arjovsky et al. [1] proposed the Wasser-
stein distance between noisy and ground truth data, which 
has been formulated based on the geodesic distance of the 
degraded and ground truth data distributions. Later, with the 
modification added by [25], Wasserstein distance was used 
with GAN and has called WGAN (Fig. 11b). Furthermore, in 
this study, several WGAN-based LDCT restoration models 
have been analyzed. Those were performed various addi-
tional functional aspects such as enhancement of perceptual 
similarity [77], preservation of structural details [83], and 
reduction of low-dose artifacts in dental CT images [28].

In general, the CNN-based restoration methods are inher-
ently less efficient in modeling various structural information 
in CT images due to the non-uniformity of noise distribution 
and the mixture of texture and the geometric shapes of CT 
images. Also, the fixed-size filtering in current CNN-based 
restoration methods unavoidably keeps some irrelevant 
pixels for the current response, especially for the regions 
with complex structures and the edges. Besides, training 
algorithms may have problems coordinating dependencies 
across different layers, making weight learning inefficient 
as a result. Li et al. [42] have proven the strength of solv-
ing the mentioned issues through a self-attention model 
by establishing interactions between the local outputs and 
all other pixels within one layer to guide the convolutional 
filtering. The proposed method consists of two attention 

(a) (b) (c) (d)
Key: G, GAB, GBA- Generator, D, DA, DB - Discriminator, DR – Discriminator (regressor), X, XA – noisy image set, 
XB – Unpaired ground truth image, X’, XAB, XABA, XBA, XBAB - Simulated image, Y- ground truth image, Y’, YA, 
YB – real/fake sample, C- critic, AL- Adversarial Loss, WL- Wasserstein Loss, LSL – Least Square Loss. 

G

D

X

X' Y

Y'

AL

G

DR

X

X' Y

C

WL

DA

YA

XBXA

YB

GAB GBA

DB

XBAXAB

GABGBA

XBABXABA

Cycle 1 Cycle 2

Viewer does not support 

G

D

X

X' Y

Y'

LSL

Fig. 11   Variant of GAN architectures: a Vanilla GAN, b WGAN, c Cycle-GAN, and d LS-GAN
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networks named plane attention and depth attention for deal-
ing with long-range dependencies within the CT slice and 
among the CT slices, respectively. Furthermore, contrary 
to the computing VGG-based [63] perceptual loss in [77], 
the proposed model consists of a self-supervised learning 
scheme for assessing perceptual similarity. The restored 
CT images contain sharp edges, fine texture details, and no 
waxy artifacts. Apart from that, Yin et al. [82] have proposed 
a W-GAN model based on unpaired data to denoise Lung 
CT images. Noise reduction and texture preservation of this 
proposed GAN model were boosted by the residual connec-
tions and the multi-perceptual loss computed based on the 
VGG-19 network.

Cycle GAN

Cycle-GAN(C-GAN) was proposed by Zhu et al. [92] and 
has gained extensive attention in image enhancement. It 
tends to focus on the spatial features of one collection of 
images and decides on how to map those learned elements to 
another image collection without the need for trained pair of 
examples (degraded and corresponding terrain real images). 
Different from other GAN models, C-GAN architecture con-
sists of two generators and two discriminators, as shown 
in Fig. 11c. Unlike conventional GAN models, adversarial 
learning is not useful for C-GAN. The main reasons for that 
are, first, there was nothing to constraint the generator to 
synthesize the final content irrespective of the ground truth 
image, and second, whatever the image synthesized by the 
generator was well enough to fool the discriminator best. 
Thus, the objective of C-GAN would be extended to ensure 
that the restored image still looks like the ground truth in 
some way. As a consequence, the cycle consistency loss has 
been added to the two generators in C-GAN. Thus, the first 
generator restores the image according to the way it feels 
necessary and the second generator learns alongside how 
to restore that synthesized image to its original representa-
tion. In this learning process, both generators update their 
weight based on the difference between the unpaired ground 
truth image and the synthesized images. This way of learn-
ing ensures that the main generator does not disregard its 
input completely, and using the second generator allows for 
flexibility in that restoration process.

Literature has revealed the application of C-GAN-based 
LDCT restoration models in the studies done by Kang et al. 
[35] and Tang et al. [67] (CycleGAN-BM3D). Accordingly, 
those studies tend to restore the LDCT images by learn-
ing the distributions of the unpaired collection of NDCT 
images. Among them, the C-GAN model proposed by Tang 
et al. [67] has applied a BM3D-based image before mini-
mizing the risk of synthesizing the false details by the first 
generator. Furthermore, contrary to other GAN models, the 
C-GAN can minimize the mode collapse due to the usage Ta
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of inversion paths. Unlike the conventional C-GAN model 
with two generators, the recent C-GAN model proposed by 
Gu, Ye [24] has used U-net based single generator for LDCT 
noise reduction. Using the Adaptive Instance Normalization 
(AdaIN) layers to execute the low-dose to high-dose image 
translation by switching to the generator model is the sig-
nificant architectural improvement in this proposed model.

Least square GAN (LS‑GAN)

Mao et al. [48] have proposed LS-GAN as an extension of 
vanilla GAN by changing the loss function for the discrimi-
nator to least-square loss instead of binary cross-entropy. 
Thus, except for the loss function, the network architecture 
of the LS-GAN is exactly as same as the vanilla GAN as 
shown in Fig. 11d. The binary cross-entropy loss function 
is unable to evade the vanishing gradient issue in GAN due 
to its failure to generate a strong signal to best update the 
model. To overcome this issue, the least-square loss has been 
used as the loss function, and it will penalize the synthesized 
images according to their distance from the decision bound-
ary. Hence, the least-square loss objective function gains the 
ability to generate a strong gradient signal for the generated 
samples located far from the decision boundary. As a result 
of the strong gradient, those samples distal to the decision 
boundary are moved closer to the decision boundary and 
form enhanced images as an output. Moreover, our study 
of literature has clearly emphasized several LS-GAN-based 
LDCT restoration applications [6, 46, 75].

Among these studies, Yang et al. [75] have implemented 
two U-net-based generators for their application named 
HFSGAN. The objective of the first generator of this study 
is to process the high-frequency bands of LDCT to improve 
the generators’ sensitivity for high-frequency details. 
Then, the second generator of the HFSGAN synthesizes 
the restored CT images by combining the priory processed 
high-frequency bands and low-frequency bands of the LDCT 
images. Also, different from other GAN-based applications, 
HFSGAN has proposed a multi-scale discriminator with an 
inception module [66], to extract the multi-scale features 
of LDCT images. Apart from that, the LS-GAN suggested 
by Chi et al. [6] has used inception residual blocks in the 
generator network to prevent transferring noise in each con-
volution layer to the deconvolution layer via shortcut con-
nection. Moreover, Fig. 8d shows an architectural diagram 
of how to connect the inception block to the bypass con-
nection for further explanation. Apart from that, to increase 
the performance, this application has a discriminator with a 
multi-level joint architecture.

Almost all of the GAN model presented in Table 3 
consists of multi-objective functions. As a result, those 
individual learning models can enhance the different fea-
tures during restoration. Furthermore, it can be observed 

that most W-GAN-based DL models have not been used 
the batch normalization during generator design. Also, 
Patch-GAN and Cycle-GAN models have used U-net or 
Encoder–Decoder type GAN models for generator design. 
Overall, all of the GAN models were capable to restore the 
fine details of the LDCT images and preserve the texture 
and artifacts.

Datasets and methods to deal 
with data‑related issues

Techniques for boosting the training samples

DL relies heavily on large training datasets to reaching 
high learning accuracy [45]. Table  4 summarizes the 
standard datasets found in reviewed LDCT restoration 
applications. However, the amount of data associated with 
these datasets are not sufficient to gain high performance 
in LDCT restoration. Therefore, various solutions have 
been implemented to increase the availability of CT data 
for effectively training and validation of DL models.

Paired CT datasets of normal dose and low dose are 
essential for the training and validation of DL models. The 
repetitive scanning of patients is the only possible way to 
extract NDCT data in clinical procedures. However, this 
is not permitted in clinical practice, because prolonged 
exposure to radiation can adversely affect patients’ quality 
of life. Also, CT sinogram data are vendor-specific and are 
not permitted to be extracted from third parties. However, 
to overcome this challenge, several applications have sug-
gested techniques to use unpaired training data and noise 
priors for training the DL models [35, 53, 67]. In addition 
to that, the non-reference metrics are suitable for quantita-
tive evaluations. The reason for that is those matrices are 
free from measuring the similarity between LDCT and 
NDCT images during the performance evaluation [7].

Also, recent DL applications have used simple geomet-
ric transformations-based data augmentation techniques 
[3, 4, 45] and image patching methods as the techniques 
for boosting the amount of training data in the limited 
number of medical datasets. In data augmentation, the use 
of scaling as a data augmentation technique may change 
the size of the original image, resulting in the risk of los-
ing the CT image in detail [23]. Thus, some studies only 
focused to apply rotation and flip to increase the number 
of samples in training datasets [23, 34, 36, 50]. In contrast 
to data augmentation, patch-based training increases the 
network convergence [23]. Furthermore, it facilitates to 
enhance the detection of the perceptual variances in local 
regions and alternatively increases the number of training 
samples [3].
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Methods for simulating LDCT

Supervised DL models must have NDCT and its low-dose 
versions for training and validation. Since it is not prac-
tical to get the clinical data as a whole, the reconstruc-
tion of LDCT is the acceptable solution for generating 
the LDCT data. Adding Poisson noise into the sinogram 
obtained from NDCT is the main function of a typical 

LDCT reconstruction algorithm, because Poisson noise is 
the dominant noise type in the LDCT image in the sino-
gram domain [87]. Depending on the transformation meth-
ods used to simulate the sinogram data, there are three 
main LDCT reconstruction algorithms widely used in 
LDCT restoration. Those are Siddon ray-driven algorithm 
[62], radon transformation-based algorithm, and forward 
projection-based algorithm. Figure 12 depicts the steps 

Table 4   Common datasets used in the reviewed literature

ID Dataset Anatomy Remarks Related studies

Public datasets
D01 NBIA/NCIA dataset [54] Many organs including, Chest The National Biomedical Imaging 

Archive consists of 7,015 total NDCT 
images of 256 × 256 size. URL: https://​
imagi​ng.​nci.​nih.​gov/​nbia-​search-​cover/

[3, 4, 6, 13, 20, 45, 50, 79, 91]

D02 AAPM-Mayo Abdomen Mayo clinic AAPM Low- Dose CT 
Grand Challenge dataset consists of 
2378 full and quarter dose CT images 
from 10 patients of 512 × 512 size. 
URL: https://​www.​aapm.​org/​Grand​
Chall​enge/​LowDo​seCT/

[3, 6, 12, 13, 16, 23, 30, 34, 36, 
42, 46, 58, 71, 73, 75, 77, 78, 81, 
83, 91]

D03 Piglet dataset [79] Whole-body Images were obtained under four dose 
levels and each dose level consists of 
850 images of 512 × 512 size

[20, 75, 79]

D04 Data Science Bowl 2017 Lung The dataset consists of over a thousand 
high-resolution LDCT images of high-
risk lung cancer patients. https://​www.​
kaggle.​com/c/​data-​scien​ce-​bowl-​2017/​
data

[79]

D05 3D-IRCADb Different organs 1375 clinical NDCT images of 10 
patients. URL: https://​www.​ircad.​fr/​
resea​rch/​3dirc​adb/

[30]

D06 Luna-16 Lung 888 clinical NDCT scans are available 
with annotations. URL: https://​luna16.​
grand-​chall​enge.​org/​Data/

[82]

Private datasets
D06 Cardiac CT Cardiac Cardiac CT scans of 28 patients [72]
D07 MGH dataset [76] Abdomen, chest, and head Massachusetts General Hospital (MGH) 

dataset consists of 40 cadaver scans 
obtained under four dose levels

[58]

D08 Cardiac CT Cardiac Two sets of 50 CT scans of mitral valve 
prolapse and coronary artery disease 
patients

[35]

D09 Dental CT Dental CT CT images were reconstructed using 
sinogram data in axial, sagittal, and 
coronal planes

[28]

D10 Liver simulated dataset Liver and portal vein 2480 NDCT images of liver and portal 
vein of 62 patients

[53]

D11 Brain clinical dataset Brain 200 brain CT images of two different 
dose levels (100 from each.)

[53]

D12 Piglet dataset Whole-body 360 data were scanned under four dose 
levels

[67]

D13 COVID-19 Lung 1141 volumetric chest CT exams were 
obtained from 9 medical centers. 
Among them, 312 data were marked as 
PCR-positive

[60]

https://imaging.nci.nih.gov/nbia-search-cover/
https://imaging.nci.nih.gov/nbia-search-cover/
https://www.aapm.org/GrandChallenge/LowDoseCT/
https://www.aapm.org/GrandChallenge/LowDoseCT/
https://www.kaggle.com/c/data-science-bowl-2017/data
https://www.kaggle.com/c/data-science-bowl-2017/data
https://www.kaggle.com/c/data-science-bowl-2017/data
https://www.ircad.fr/research/3dircadb/
https://www.ircad.fr/research/3dircadb/
https://luna16.grand-challenge.org/Data/
https://luna16.grand-challenge.org/Data/
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of these three LDCT reconstruction methods for further 
clarifications.

Among these LDCT reconstruction algorithms, the for-
ward projection-based algorithm depends on the external 
toolbox called Astra [69] and performs well with GPU 
support. In addition to that, this algorithm follows Zeng’s 
method [85] to add the Poisson noise into the NDCT 
sinogram. However, the Siddon ray-driven algorithm and 
radon transformation-based algorithms simulate the Pois-
son noise into the low-dose transmission data as a product 
of simulated low-dose scan incident flux and the exponen-
tial of inverse sinogram. The studies [20, 30] have used 
the radon transform-based algorithm, whereas [91] has 

used the forward projection-based algorithm for LDCT 
reconstruction.

Diversity of loss functions

The objective function in the DL model represents the 
basic formal specification of the problem to be solved. 
It consists of two components, namely the regularization 
term λ and the loss function L(θ). The regularization term 
of the objective function is used for tolerating the over-
fitting of the model. In general, the loss function evalu-
ates how well the data can be modeled in a specific DL 
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driven Algorithm 

Add Poisson Noise 

Inver�ng NDCT

LDCT

Projec�on Data

Steps of Siddon Ray-driven LDCT Reconstruc�on Algorithm

Compute HU values

Compute Linear 
A�enua�on Map

Add Poisson Noise 

Radon Transform 

Compute Inverse of HU 
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Compute Inverse of 
Linear A�enua�on Map

Radon Transform 

NDCT LDCT

Projec�on Data

Steps of Radon Transforma�on-based LDCT Reconstruc�on Method

Compute HU values
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Noise 
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Fig. 12   Steps of LDCT reconstruction algorithms
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model according to the desired enhancement requirements. 
Hence, an objective function would consist of single or 
many loss functions. Table 5 lists the loss functions and 
strength of each of them defined in the articles reviewed 
in this study.

MSE is the widely used loss function in many genera-
tor and discriminator DL models. However, it has revealed 
that MSE-based optimization consists of the regression-to-
mean problem [75]. Thus, it leads to texture information 
loss, over-smoothing, and false lesion discrimination [3, 4, 
36]. As an alternative for MSE, Least Absolute Error (LAE) 
is ideal for optimizing the DL models. Even if the LAE is 
also a mean-based matric, like MSE, experimental results 
have proven that it can overcome the blurring issues caused 
by the MSE loss [46]. However, restored images obtained 
through the LAE-based optimized DL model still degrade 
due to the blocky artifacts. After the publishing of the image 
net [9] pre-trained networks, namely VGG-16 and VGG-
19 [63], the perceptual loss has been introduced to the DL 
model optimization to overcome the issues raised by both 
the MSE and LAE. The perceptual loss computes the feature 
difference between generated and real CT images. However, 
experiments on applications that rely solely on perceptual 
loss have shown that restored images have grid-like artifacts. 
Therefore, perceptual loss has usually used to optimize the 
DL models by combining them with MSE [20].

Some studies use the Structural Similarity Index Matrix 
(SSIM) as a loss function to assure the structure preservation 
capability of the DL model [46, 83]. It performs better than 
MSE by providing the highest quantitative values for Peak 
Signal-to-Noise Ratio (PSNR) in visual assessments [46]. 
Also, computing the SSIM loss in multi-scale allows captur-
ing additional textual and structural details [12]. Similar to 
the SSIM, sharpness is also another desired loss function in 
LDCT restoration studies and determines how the learning 
process optimally preserves the sharp edges [79]. However, 
the sensitivity of the proposed sharpness loss function is 
not up to the expected level for the treatment of blurring 
in some low contrasting regions. Furthermore, it simulates 
subtle structures as noise. As a result, the existing sharp-
ness loss function leads to erroneous decisions during lesion 
discrimination [6].

GAN has also gained attention dramatically in recent 
developments in LDCT restoration. Conventionally, GAN 
models use the adversarial loss as its objective function and 
determine how optimal the min–max game between genera-
tor and discriminator. However, the empirical studies have 
proven that the GAN based on adversarial loss resulted in 
convergence issues [77]. Thus, inspired by [1] and [25], the 
Wasserstein distance with the gradient penalty has been 
introduced as the loss function to overcome the identi-
fied convergence issues [35, 42, 77]. Apart from that, the 
LDCT restoration applications done based on cycle-GAN 

or least-square GAN have used cycle consistency loss and 
least-square loss as the loss functions [34, 67, 75].

Functional aspects

Noise and artifact suppression

Various DL architectures and performance trade-offs affect 
the noise and artifact reductions in reviewed studies. In gen-
eral, noise and artifact reduction gained by various DL mod-
els have been quantitatively evaluated by the pixel domain-
based metrics, namely PSNR and Mean Structural Similarity 
Index (MSSIM). Table 6 summarizes these aspects with the 
average PSNR and MSSIM values reported in the reviewed 
studies to compare the strengths of the reviewed restoration 
algorithms.

Among various DL models that were developed for 
LDCT restoration, cascaded CNN models leverage the noise 
and artifact reduction far better than the deep CNN models. 
The experimental results of the study [73] show that increas-
ing the number of cascades in cascaded CNN reduces the 
blurring artifacts and remove the streak artifacts around the 
lesions. The reason for that is, the noise embedded in the 
NDCT images belongs to both training and validation data 
get further smoothed by the cascaded network structure [73]. 
In addition to this, if an LDCT image is transformed into the 
frequency domain, the noise content of the LDCT image will 
distribute as the high frequencies in LDCT images. Thus, it 
can be observed that some studies applied wavelet transfor-
mation to LDCT images for estimating and removing these 
noise-induced frequencies iteratively [30, 36, 71, 75]. After 
the noise frequency filtering, the residual low-frequency 
information in the LDCT images can process through the 
DL model.

Structure preservation

Developing the adaptive denoising algorithms with excellent 
structure preservation is a significant function in medical 
imaging, because it facilitates clinicians to interpret medical 
images robustly [51]. Also, it improves the accuracy of com-
puter-aided diagnosis methods, such as feature recognition 
and quantitative analysis. Table 6 summarizes the feasibility 
of reviewed denoising applications for preserving various 
clinically significant anatomical structures concerning the 
validation datasets.

Discriminative model-based DL models have performed 
quite acceptable improvements in organ and structure preser-
vation. Among them, CNN200 [4] and AAPM-Net [36] have 
improved the visualization of the boundaries of the organs. 
Also, AAPM-Net has preserved the textures in the liver 
area. Hence, it made this application easy to locate the liver 
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lesions and location. However, later studies have empirically 
proven that both CNN200 and AAPM-Net can produce over-
smoothed results with loss of texture information [58]. It had 
happened due to the regression-to-mean problem caused by 
the MSE-based loss function used in those applications. The 
SCN suggested in [13] has better distinguish the textures and 
enhanced the contrast of inter-costal vein in chest images. 
Apart from that, the Sobel operator used in the GRCNN 
model helped to locate the edges and has preserved the soft 
tissues of organs [23]. Furthermore, the implementation of 
gradient regularization in the GRCNN model has sharped 
the preserved edges. Out of the published ResNet-based 
applications, the RED-CNN has preserved the borders of 
different tissues [3]. Apart from that, the edge detection layer 
in DRL-EMP added extra sharpness to the preserved edges 
[20]. Moreover, the combined objective function of the 
DRL-EMP has leveraged the preservation of more texture 
details in the validated images. The DP-ResNet provided 
acceptable texture preservation via the deep convolution 
applied in the projection domain and image domain [81]. 
Hence, this application could be able to preserve the tex-
ture, especially in the pelvic bones that are degraded by the 
artifacts. According to Table 6, all the ResNet-based LDCT 
restoration applications have contributed to preserving vari-
ous organs and fine structural details.

The generative model-based DL applications have also 
proven their capability for preserving the subtle structures 
while restoring the LDCT images. Consequently, the stacked 
sparse denoising autoencoder model published in [45] has 
fully preserved the edges of the pelvis without having any 
blocky or blurring artifact. Moreover, the RED-CNN [3] 
and Q-AE [16] models have also successfully preserved the 
texture information of the processed images.

The contribution of the GANs for structure preservation 
in LDCT is significant in recent LDCT restoration studies 
(Table 6). This fact is proven by many of the GAN-based 
LDCT restoration methods reviewed in this study. The recent 
GAN-based models have achieved this visual performance 
through various model design aspects. Some of those sig-
nificant model design aspects were long skip connections in 
SAGAN [79], content correspondence in WGAN-VGG [77], 
the structure sensitive objective function in both SMGAN 
[83] and [46], content fidelity assessed objective function 
in [53], the structure-oriented gradient regularization in 
GRCNN [23], and long-range dependencies maintained by 
self-attention block in SACNN [42]. However, You et al. 
[83] have proven that WGAN-VGG [77] suffers from con-
tent distortion, even though it can preserve structural details. 
The content mismatch between the CT images and natu-
ral images in the VGG-19 pre-trained network [63] during 
the calculation of perceptual loss was the main reason for 
this limitation. Apart from the gradient regularization, the 
application of edge detection has improved the sharpness of 

the edges in GRCNN [23]. Besides, CycleGAN-BM3D has 
proven the ability to prevent the generation of false details in 
the restored LDCT images via the integration of BM3D prior 
information [67]. Yang et al. [75] have shown that increasing 
the receptive field of the network and extraction of multi-
scale features have positively affected preserving the texture 
details. On contrary to this, Li et al. [42] have stated that 
the perceptual loss computed in the attention network can 
preserve more texture details in contrast to the VGG-loss-
based models. Although the GAN-based LDCT restoration 
methods have gained a high performance in structure pres-
ervation, false lesion issue still affects to degrade the visual 
quality of the restored LDCT images [6].

Lesion discrimination

Lesion discrimination is also one of the needful functional 
requirements in LDCT restoration. It allows clinicians to 
recognize the various characteristics of the lesion, including 
the location, shape, border, and density. The improvement 
of the contrast done by the DL-based restoration models 
separates the lesion from both the background texture and 
noise components effectively. Also, the results obtained from 
qualitative evaluations (visual performance comparisons 
and blind reader studies) have been used to elaborate on the 
significance of the identification of lesions in past research 
studies (Table 6).

Among the discriminative model-based LDCT restora-
tion models, AAPM-NET has first evaluated the detection 
rate (73%) of focal hepatic lesions of abdomen CT images 
via a blind reader study [36]. The stacked competitive CNN 
model in [13] and the cascade CNN model in [73] have also 
improved the contrast of the lesions in abdomen CT images. 
Among them, the cascade CNN model [73] has greatly 
improved the metastasis near the chest regions. In addition 
to that, the GR-CNN model has improved the shape of the 
lesion due to the usage of gradient regularization within 
the CNN model [23]. Also, this study noted that the use of 
MSE-based loss functions in CNN models has negative con-
sequences for locating the lesion. Also, the WaveResNet [34] 
enables to locate the lesion due to its ability to preserve the 
textures. Recently, Shiri et al. [60] have done experiments 
based on the COVID-19 positive chest CT images. They 
have proven that the proposed ResNet-based DL algorithm 
was capable of enhancing the visual clarity of the nodular 
and wedge shape lesions under ultra-low-dose cases.

The generative model-based LDCT restoration meth-
ods have also improved the visual clarity of the lesions. 
Especially the focal hepatic lesions that appeared in abdo-
men CT images were enhanced and evaluated in Q-AE 
[16]. Also, the empirical results have proven the ability 
to do lesion discrimination by RED-CNN [3]. However, 
Chi et al. [6] have proved that the lesions enhanced by 
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RED-CNN looked over-smoothed. The main reason for 
that is the MSE-based objective function used to train the 
RED-CNN network.

The impact of the GAN for lesion discrimination in 
LDCT restoration algorithms is outstanding. This state-
ment is proven by the first GAN-based LDCT restoration 
method proposed by [69], because it has visualized the 
cardiac artery calcification lesions. Also, the WGAN-
VGG [77] and SMGAN [83] models have successfully 
visualized the metastasis of the liver lesions and cystic 
lesions in the upper part of the kidney [77]. Moreover, 
the SMGAN has improved the sharpness of the metastasis 
in liver lesions due to the structure preservation-based 
objective function. Apart from that, the validation results 
of CPCD-3D [58] have proven the visual enhancement 
of the focal hepatic lesions that appeared in abdomen CT 
images due to the implementation of 2D-to-3D network-
based transfer learning. The attention networks introduced 
to the GAN models were also supported to enhance the 
visualization of low attenuation liver lesions. The main 
reason for that is the efficient noise reduction ability of 
those networks gained through the attentive blocks [12, 
42]. Apart from that, the recent study, HFSGAN [75], 
has validated the proposed GAN model for the real piglet 
dataset [79] to show its ability to enhance visualization 
of the lesions in the real CT images.

In LDCT restoration, generating false lesions is a com-
mon issue in ResNet and GAN-based LDCT restoration 
models [6, 71, 81]. It happens due to the resembling of 
some noise-induced artifact to view as lesions. In this 
scenario, the DL model fails to distinguish the difference 
between the artifact and the real lesion. As a consequence, 
the diagnosis results might generate false-positive results. 
WGAN-VGG [77] and SAGAN [79] are two such meth-
ods, which suffer from false lesion problem. As a solu-
tion, the study published in [6] has proposed inception 
residual blocks and residual mapping to the U-net based 
generator to overcome generating unnecessary artifacts. 
Also, the multi-level joint discriminator introduced in the 
same study [6] has maintained a constraint to detailed 
reproduction. As a consequence, it results in better struc-
ture preservation excessively. Apart from that, the false 
lesion issue can generate by the discriminator during the 
computation of the similarity between the ground truth 
images and generated images on one scale. This hap-
pens due to the tiny noise component distributed over the 
Ulta-LDCT images. However, the study published in [6] 
mentioned that simultaneously computing the difference 
between the output from every down-sampling and cor-
responding deconvolution layer as a loss of whole U-net-
based generator model can also be used to overcome this 
false lesion issue.

Methods for fine‑tuning the performance

Shortcut connections

The main function of the shortcut connection (also known as 
a bypass or skip connection) in the DL model is to pass the 
output of one layer as input feature maps to the subsequent 
layers by skipping some layers in the model. Figure 8 depicts 
those different shortcut connections for visually comparing 
the architectural variances. Furthermore, Tables 1, 2, and 3 
mention the different types of shortcut connections used in 
the reviewed LCDT-restoration applications. In general, the 
shortcut connection can preserve more structural informa-
tion and has a positive effect on improving the visual perfor-
mance of LDCT images. Furthermore, the skip connections 
used in the ResNet model help to minimize the gradient 
vanishing problem thoroughly [36, 81].

Adaptive learning rates

Learning rate is a critically important hyperparameter that 
can leverage the optimizer for rapid converging of the DL 
model. Choosing a too-small value for learning rate may 
result in a long training process that could get stuck the 
training process, whereas a too-large value may result in an 
unstable training process. Thus selecting an optimal value 
for learning rate is a challenging task. In LDCT restora-
tion applications, the learning rate is associated with the 
well-known optimizers such as Stochastic Gradient Descent, 
ADAM [39], and limited memory BFGS [40] algorithm. 
Many of these LDCT restoration applications are designed 
to dynamically update the learning rate while training the 
DL model. These dynamic learning rates reduce the over-fit-
ting and speed up the network convergence [35]. This study 
has revealed different learning rate scheduling techniques 
used in LDCT restoration, namely time-based [3, 6, 50, 81], 
drop-based [16, 20, 35, 78, 91], and exponential-based [58, 
72] techniques. Dynamic learning rates reduce the over-
fitting and speed up the network convergence [36]. Table 7 
summarizes the training and execution efficiency of some of 
the reviewed studies.

Patch extraction

In LDCT restoration, patches can better represent the local 
features of the image. Also, these patches will affect the 
denoising performance. In addition to that, patches boost 
the number of samples via the training data [45]. Therefore, 
generating overlapped patches is encouraged in most of the 
reviewed applications [3, 4]. Patches accelerate the conver-
gence of the learning model dramatically due to the ability 
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to make full use of limited CT data [23]. Tables 1 and 3 
emphasize the patch sizes used in various LDCT restoration 
applications.

Transfer learning

Transfer learning is a machine learning technique used to 
improve learning in a new learning model via the transmis-
sion of knowledge from another similar already learned 
model. Transfer learning can dramatically reduce the train-
ing time and avoid over-fitting the LDCT restoration model 
[30]. This study has revealed various transfer learning 
approaches implemented in various LDCT restoration appli-
cations. Among them, using a pre-trained network for trans-
ferring knowledge has been reported in several studies [6, 
12, 20, 30, 77]. The VGG-19 [63] of ImageNet [9] has been 
used as the pre-trained network in those studies. However, 
the features generated by the VGG-based transfer learning 
approaches may not be relevant to the CT features. The main 
reason for that is those models were trained using natural 
images. Other than using a pre-trained model, Zhong et al. 
[91] and Shan et al. [58] have used a self-supervised learn-
ing model as a transfer learning strategy. In this approach, 
they have trained a CNN model using natural images with 
Gaussian noise. However, it can be concluded that using a 
self-supervised learning model to fine-tune the target model 
overcomes the drawback of using VGG-based pre-trained 
models.

Batch normalization

Batch normalization is another technique used in LDCT res-
toration. It is used to improve training efficiency by reduc-
ing the statistical difference between the CT images [81]. 
Also, batch normalization contributes to faster convergence 
and reduce sensitivity to initiate the learning model [50]. 
Its ability to solve the internal covariate shift boosts the fast 
network convergence.

Future research directions

Performance is an ever-growing requirement in LDCT 
restoration. In this regard, several knowledge gaps exist to 
address within the current LDCT restoration domain. First, 
the article explains the main issue that exists in supervised 
DL methods. Usually, NDCT data are used as the labeled 
data in supervised DL methods which are not free from noise 
and artifacts. Therefore, the denoising accuracy of most of 
the current supervised learning-based LDCT restoration 
algorithms is reduced by these retaining noise components 
in NDCT images. However, the application of migration 
learning can be declared as a potential technique to be Ta
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experimented for restoring the noise and artifacts in NDCT 
images [28].

Proposing novel methods for training the DL models 
in an unsupervised manner is also considered as an open 
area in LDCT restoration. Alternatively, this will address 
the absence of paired data in the clinical setup. The litera-
ture emphasizes proposing the cyclic-GAN models and 
the definition of denoising-prior images from the NDCT 
as currently proposed solutions [35, 53, 67]. However, the 
efficiency and effectiveness of the defined denoising-priors 
depend on the quality of the training dataset. Moreover, a 
low-quality training dataset leads to generate fake or struc-
ture fragile CT results [53]. Thus, selecting a suitable dataset 
for defining denoising-priors is challenging and empirical 
[46]. Also, it is worth exploring the features shared between 
LDCT and NDCT images, such as sharpening and sparse 
information, when declaring denoising-priors to enhance the 
functionality of LDCT restoration.

Attention networks are a DL method for improving 
the performance of LDCT restoration, which got popular 
recently. Although the current attention-based DL methods 
have gained an acceptable visual performance in CT resto-
ration, the quantitative results of those proposed methods 
are not optimal in some cases when comparing them based 
on PSNR and SSIM measurements. The main reason for 
that is the lack of attention given to the structural feature 
preservation and tolerate the pixel-wise loss functions dur-
ing the model training [12, 42]. Therefore, the noise and 
structure deformation still appeared as the degradations in 
the restored CTs. Hence, proposing a multiple enhancement 
features attention-based DL models is significant as future 
research attempts to overcome this issue.

Generalizability directly affects improving the adapt-
ability and clinical usability of the denoising application. 
Generally, it emphasizes how the proposed model can adapt 
to unseen data extracted from various generalizability levels, 
including different anatomies, noise levels, dimensions (2D, 
3D or multi-dimensional), noise distributions, and vendors’ 
devices. The LDCT restoration applications reviewed in 
this study have been widely tested for different noise levels, 
image formats, and multi-anatomies. Hence, improving the 
generalizability of DL-based LDCT restoration algorithms 
for multiple scanners, organs, and imaging protocols are 
essential. Apart from that, exploring the ways to the reduc-
tion of metal artifacts and motion artifacts during the resto-
ration is an open-ended question [28, 53].

Overall, it can be stated that the DL-based denoising 
techniques have provided benchmarked adaptive denois-
ing solutions with a high visual performance. However, 
the hyper-parameters in DL networks such as the number 
of layers, number of filters, and different DL architectures 
are critical factors that affect the accuracy of the results. 
Therefore, it is essential to find a mechanism to initialize 

these hyper-parameters optimally to enhance the accu-
racy of LDCT restoration results. Also, the experiment on 
exploring the DL models with optimal hyper-parameters 
is an open research area [4].

In the context of medical imaging, the performance 
gained through transfer learning using the natural image-
based pre-trained network is not optimal. The main rea-
son for this is, the medical images are usually represented 
as texture-rich low-contrast images than natural images. 
However, it is recommended that targeted networks be 
trained with pre-trained task-specific networks to obtain 
optimal results [42]. In this approach, the target network 
can be trained with task-relevant similar images [12, 83]. 
However, developing a task-specific pre-trained network 
is challenging due to the difficulty of extracting large 
amounts of annotated medical image data. In addition to 
that, to improve the performance of the target network, 
cross-model transfer learning networks can also be rec-
ommended as a plausible solution. Finding the models 
for both task-specific and cross-model transfer learning 
has been still existed an open issue to address. Unlike 
the conventional cross-domain transfer learning models, 
task-specific or cross-modal transfer learning models will 
be able to match the exact features of the same domain, 
thereby improving the performance and accuracy of the 
denoising process.

Conclusion

Noise and artifacts are one of the inevitable degradation 
factors in CT imaging. It reduces the visual quality of CT 
images by obstructing the accuracy of clinical judgments. 
DL-based LDCT restoration provides promising solutions 
to overcome this issue. Therefore, this study has presented 
a comprehensive review of DL-based LDCT restoration by 
focusing on several important themes. Initially, this review 
provided an overview of degradations in LDCT images. 
Then, it has emphasized the various DL techniques and 
architectures used in recent applications for LDCT restora-
tion. Moreover, this study has presented sound comparisons 
of performance and functional aspects of DL-based LDCT 
restoration applications. Analysis results have shown that 
the GAN-based applications outperform the other DL-based 
LDCT restoration algorithms due to their multi-objective 
functions, flexibility to upgrade the generator architectures, 
and the multi-scale discriminator. Finally, this study has 
emphasized the open research problems and future research 
directions for prospective researchers to come up with new 
CT restoration-based research proposals that can improve 
computer-aided diagnostic accuracy.
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Glossary

CT		�  Computed Tomography
LDCT		�  Low-dose CT
SNR		�  Signal to Noise Ratio
NDCT		�  Normal-dose CT
DL		�  Deep Learning
MPGD		�  Mixed Poisson Gaussian distribution
BM3D		�  Block Matching Three Dimension
ML		�  Machine Learning
CNN		�  Convolutional Neural Networks
ReLU		�  Rectified Linear Unit
SCN		�  Stacked Competitive Network
ResNet		�  Residual Network
DenseNet		� Dense Network
SSDA		�  Stacked Sparse Denoising Autoencoder
GAN		�  Generative Adversarial Network
SSIM		�  Structural Similarity Index Matrix
PSNR		�  Peak Signal to Noise Ratio
MSSIM		�  Mean Structural Similarity Index
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