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Abstract

Computed Tomography (CT) is a widely use medical image modality in clinical medicine, because it produces excellent
visualizations of fine structural details of the human body. In clinical procedures, it is desirable to acquire CT scans by
minimizing the X-ray flux to prevent patients from being exposed to high radiation. However, these Low-Dose CT (LDCT)
scanning protocols compromise the signal-to-noise ratio of the CT images because of noise and artifacts over the image
space. Thus, various restoration methods have been published over the past 3 decades to produce high-quality CT images
from these LDCT images. More recently, as opposed to conventional LDCT restoration methods, Deep Learning (DL)-based
LDCT restoration approaches have been rather common due to their characteristics of being data-driven, high-performance,
and fast execution. Thus, this study aims to elaborate on the role of DL techniques in LDCT restoration and critically review
the applications of DL-based approaches for LDCT restoration. To achieve this aim, different aspects of DL-based LDCT
restoration applications were analyzed. These include DL architectures, performance gains, functional requirements, and
the diversity of objective functions. The outcome of the study highlights the existing limitations and future directions for
DL-based LDCT restoration. To the best of our knowledge, there have been no previous reviews, which specifically address
this topic.

Keywords Deep Learning - Generative adversarial networks - Optimization - Medical datasets - Structure preservation -
Denoising

Introduction

Computed Tomography (CT) is one of the reliable and non-
invasive medical image modalities that help to detect patho-
logical abnormalities in the human body such as tumors,
vascular diseases, lung nodules, internal injuries, and bone
fractures. In addition to the diagnostic support, CT is also
useful in guiding various clinical procedures, including
interventions, radiation therapies, and surgeries [38]. How-
ever, repeated CT scans may reveal that the patient may be
exposed to radiation enormously. Overexpose to the radia-
tion would cause the development of metabolic abnormali-
ties, radiation-induced cancer, and other genetic disorders
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that fall the patients’ quality of life rapidly [75]. Therefore,
low-dose CT (LDCT) scanning protocols have been pro-
posed to minimize patients’ exposure to radiation while
maintaining adequate diagnostic accuracy.

Usually, to obtain the LDCT images, the X-ray flux is
being reduced deliberately during the clinical procedures
[55, 57]. The reduction of X-ray flux will degrade the
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Signal-to-Noise Ratio (SNR) of the X-ray signals and result
in low-contrast CT images with noise and artifacts. These
visual degradation cause blurring of the edges and losses
of contrast within the organs and textures [11]. As a result,
the reliability of both the clinical diagnostic procedures
and automated analysis tasks such as segmentation, feature
extraction, and classification of these LDCT images are dete-
riorated [38]. However, to overcome these visual degrada-
tions and improve the clinical usability of the LDCT images,
there are various denoising algorithms have been proposed
over the past 5 decades. Overall, those algorithms can be
divided into three categories, such as sinogram domain fil-
tering, iterative reconstruction, and image domain process-
ing [52].

In general, the CT restoration methods map the LDCT
images back to their’ Normal-Dose CT (NDCT) repre-
sentations. However, the limited access to projection data
in the sinogram domain and high computation cost in the
iterative reconstruction domain make the LDCT restora-
tion restricted. Compared to this, image domain processing
follows the image post-processing approach and does not
rely on projection data. However, the mage domain-based
algorithm degrades its performance by estimating the noise
distribution according to a specific noise model as part of the
noise reduction process. Recently, Deep Learning (DL) has
become state-of-the-art in medical imaging. It plays a vital
role in solving various problems, including image denois-
ing, super-resolution, detection, and recognition [64, 88].
The rapid growth of hardware technology, the rising need
for high-performance processing, data-driven execution, and
the ability to crack the previously resolvable problems have
dramatically accelerated the resurgence of DL in medical
imaging [43]. Hence, much attention has recently been paid
to proposing new LDCT restoration algorithms using vari-
ous DL techniques.

Our survey of relevant works has revealed that very few
reviews have recently been published to discuss the con-
ventional general CT denoising methods [11, 38]. With the
emergence of DL techniques, most of these conventional
denoising algorithms discussed in those reviews are tech-
nically obsolete concerning the several LDCT restoration
aspects such as accuracy of noise reduction, the ability of
lesion discrimination, and the preservation of the fine struc-
ture and texture details. Also, to the best of our knowledge,
there is no previous study done to date for reviewing the
role of DL on LDCT restoration and how those restoration
aspects impact in LDCT restoration. Thus, this study reviews
DL-based LDCT restoration articles published on the web
of science indexed journals starting from the first article
published in 2017.

The main contributions of this review are fourfold:
(1) analyzing the potentials of DL techniques and archi-
tectures used in LDCT restoration; (2) highlighting the
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specific contributions of DL-based LDCT restoration
applications concerning the model performance, structure
preservation, and lesion discrimination; (3) reviewing the
diversity of objective functions for making different LDCT
restoration decisions; (4) discussing the limitations and
future research directions to emphasize the existing knowl-
edge gaps.

The rest of the article is organized as follows. The sec-
tion “Overview of LDCT restoration” provides a brief
overview of the degradations in LDCT images. The section
“DL architectures” elaborates on different DL techniques
and their architectures that were used in LDCT restoration
applications. The section “Datasets and methods to deal
with data related issues” presents the commonly used data-
sets and the methods used to overcome some shortcomings
of these datasets for DL-based LDCT reconstruction. The
section “Diversity of loss functions” discusses the diversity
of loss functions in this domain of research. The section
“Functional aspects” presents the performance and results
of different functional requirements of the proposed appli-
cations. The section “Methods for fine-tuning the perfor-
mance” describes the most commonly used methods for
fine-tuning proposed LDCT restoration models. Finally, the
section “Future research directions” presents the limitations
and future research directions.

Overview of LDCT restoration
LDCT imaging

CT scan is an X-ray procedure that creates 2D or 3D cross-
sectional images with the help of computer processing. CT
scans are more detailed than the conventional X-ray and can
reveal shape, dimensions, density, and internal defects of the
various anatomies [11]. Figure 1 depicts a diagram of the
CT imaging. Accordingly, the CT scanner uses a motorized
X-ray source that shoots narrow beams of X-rays as it rotates
around the patient. There are special digital X-ray detectors
located directly opposite the X-ray source. As the X-rays
pass through the patient, they are picked up by the detectors
and transmitted to a computer. These transmitted projection
data are further processed through radon and inverse radon
transform. Also, the back-projection algorithm is applied
during this process to reconstruct as CT images. Finally,
the reconstructed image slices can either be displayed indi-
vidually in 2D form or stacked together to generate a 3D
image. Analyzing and correcting the CT image quality after
reconstruction are a mandatory post-processing task. This
is mainly caused by the reduced reconstruction quality that
is affected by the reduction of X-ray tube current which is
done to prevent patients from adverse radiation exposure.
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Fig. 1 A diagram of the CT
imaging

X- Ray Source

LDCT Acquisition

Degradations in LDCT

In general, CT images are degraded by quantum noise
and various artifacts during LDCT acquisition. Among
them, the quantum noise is embedded in LDCT due to
the X-ray photon starvation during the image acquisition
[11]. Disconnecting the edges, smoothing the target sub-
tle structures and forming the low-contrast visuals due
to lack of X-ray photons are the visual degradations of
quantum noise. Figure 2b depicts the consequences of
quantum noise in the real abdomen quarter dose CT image
for further clarifications. Physically, the quantum noise

Fig.2 Visuals of CT degrada-
tions. a, b Normal dose and
quantum noise corrupted abdo-
men CT image (The metastasis
in of liver lesion marked in a
red circle is unclear.) [77]; ¢, d
normal dose and quantum noise
corrupted abdomen CT images
with streak artifacts [73]

Projection Data Sinogram Reconstructed Image

-7

Projection Domain Image Domain

- 3E-
—

presents non-uniform distribution over the image space.
As a result, validation and learning of the LDCT restora-
tion algorithms become challenging due to the difficulty of
distinguishing the actual noise content in CT images [45].
Usually, the quantum noise is approximated by Poisson
distribution during experimenting [11]. In addition to that,
there are some applications in which the noise distribution
of CT images is estimated by considering the Mixed Pois-
son Gaussian distribution (MPGD) [38]. In MPGD, both
the electronic noise and quantum noise components will
be modeled using the Gaussian and Poisson distributions,
respectively [10].
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Apart from the noise, the LDCT images are degraded by
blurring [13, 60, 73] and streaking artifacts [28, 34, 50, 71,
75, 81, 91]. Lack of X-ray photons during the CT scanning
and patient motion cause blurring. Furthermore, it makes
some obstructions in the detection of subtle structures, for
instance, liver lesions [73]. The streaking artifact presents
as several dark streaking bands placed between two solid
objects in the LDCT image (Fig. 2d). Usually, it occurs
along the long axis of a high attenuation object. The X-ray
beam hardening is the root cause of the streaking artifact.

A brief overview of conventional methods

Many LDCT restoration methods have been proposed over
the past few decades and all of those can be categorized
into three groups, namely sinogram domain filtering, itera-
tive reconstruction, and image domain restoration [52]. In
general, the sinogram domain filtering-based restoration
methods directly work out on the raw projection data that
formed before the back-projection. Hence, the restoration
algorithms are efficient and can compute the noise statistics
accurately. Structural adaptive filtering [37, 70], bilateral
filtering [47], and penalized likelihood method [68] are the
popular sinogram domain filtering methods. However, these
projection data are vender specific and cannot be publicly
accessed. Also, the LDCT images restored through sinogram
domain filtering suffer from edge blurring and low contrast.

Iterative reconstruction depends on the image’s prior
information and performs noise reduction by iterating
between the sinogram and image domain. Non-local means
[5], total variation [89], dictionary learning [74], and low-
rank approximation [2] are some of the priors used within
the iterative reconstruction-based restoration category. Even
though this LDCT restoration category outputs exciting CT
enhancement results, the high computation cost and content
loss are the reported drawbacks of iterative reconstruction-
based CT restoration.

Compared to the first two restoration categories, image
domain-based restoration is considered as a post-processing
method. Thus, the restoration algorithms are directly applied
to reconstructed images instead of raw data. Conventional
image denoising methods such as non-local means [84,
90], total variation [32], Block Matching Three Dimension
(BM3D) [26], and statistics-based algorithms [19] are well-
known algorithms grouped under this category. Even though
the image domain restoration methods are flexible enough
to be implemented, the inability to compute the noise statis-
tics due to its non-uniformity will deprive the accuracy of
the proposed CT restoration applications. Furthermore, it
obscures the structural information of the CT images enor-
mously. Hence, the current LDCT restoration methods and
their limitations have paved the direction for proposing novel
LDCT restoration methods.
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Emergence of Machine Learning

Machine Learning (ML) is a branch of Artificial Intelli-
gence that facilitates the application to automatically learn
and improve through experience rather than using the user-
defined programs. ML achieves this automatic learning via
a technique called feature learning. The objective of feature
learning is to assist the ML application in automatically find-
ing the representations required for solving the target ML
problem. It refers to the determination of the optimal model
parameter set 6 that contains a set of candidate solutions
(weights) w and bias f (i.e., 8=(w, f8)) [45]. Generally, this
goal is achieved through an objective function that is specifi-
cally developed for the target ML model.

Initially, shallow neural networks, such as functional link
artificial neural network models, were proposed for medical
image restoration. Relying on prior domain knowledge of the
problem to be solved is a special feature of those models.
However, determining this prior knowledge was somewhat
challenging when applying these models for CT restoration.
The main reason for that is there was no specific way to
determine the noise distribution across the image domain.
Thus, there was no any LDCT restoration application has
reported based on the shallow neural networks. Later, the
DL has become the state-of-the-art of ML in parallel to the
improvement of GPU technology and the growing demand
for high-performance processing. As a result of this progres-
sive technology development, LDCT restoration has also
recently undergone a revolutionary change.

DL is known as the representation-learning method. It
lets the computer automatically find the representations
from the raw data required for classification and detection.
Thus, the DL model consists of multiple levels of feature
representations (multiple hidden layers except for the input
and output layers) starting with raw input to a more abstract
higher level [41]. Thus, this high-level feature capturing
of DL models demonstrates its ability to learn the uncer-
tain noise distributions over the LDCT images throughout
the data-driven learning. Besides, the data-driven learning
method can adapt to any noise type effectively [83]. Hence,
it improves the overall performance of LDCT restoration and
possesses a novel advantage over other LDCT restoration
methods [6, 46].

DL architectures

Depending on the network model adopted, DL-based LDCT
restoration methods surveyed in this study can be divided
into three sub-categories, namely discriminative, generative,
and hybrid (generative and discriminative) [61]. Figure 3
depicts the classification of various DL models used for
LDCT restoration.
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Fig.3 Classification of DL
methods used for LDCT restora-
tion

Deep Learning Models for LDCT Restoration
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Discriminative models

The network models based on the discriminative approach
represent bottom—up execution to separate learned data
based on a decision boundary [61]. Figure 4a depicts the
functional aspect of a typical discriminative model. Also,
the training strategy of the discriminative approach follows
the supervised learning that relies on labeled or annotated
data to determine the learning function or prediction model
that maps input data to output. Furthermore, in this review,
Convolutional Neural Networks (CNN) and their vari-
ant have been found as the discriminative models used in
LDCT restoration. Table 1 summarizes the discriminative

model-based LDCT restoration applications for further
information.

CNN

Due to the recent advancement in high-performance com-
puting and hardware resources, CNN-based denoising
applications have popular in medical imaging [65]. It takes
2D or 3D images as input and better utilize the structural
details greatly for feature extraction and processing. As
shown in Fig. 5, CNN is organized based on three con-
secutive implementation components, namely the convo-
lutional layer, the pooling layer, and the fully connected

Fig.4 Functional difference of
DL techniques: a model based ° ® Probability
on the discriminative approach; R
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approach e o0 ©0 7
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Fig.5 Generic architecture of the CNN model

layer [59]. The convolution layers apply the mathematical
operation called “convolution” over the image to generate
the feature maps. These generated feature maps consist of
local features such as edges, object boundaries, and vari-
ous texture patterns that are spatially distributed within
LDCT images. To achieve this, the convolutional layer
uses multiple filters which are deployed as stacked layers,
in the same layer. Thus, CNN helps to enhance the input
noisy images by focusing on the local image details. This
spatially adaptive enhancement reduces the noise embed-
ded in the processed images. The main function of the
pooling layer is to effectively reduce the dimensions of
the generated feature maps. These are kept robust to the
geometry and position of the detected features within the
processed image. Finally, the output of CNN is generated
by fully connected layers. This is achieved by integrating
all the feature maps or responses formed by the previous
processing steps [29].

In LDCT restoration, CNN attempts to learn a mapping
function between LDCT and NDCT images by optimizing
the objective function on a training dataset [18]. Thus, the
convolution layers with multiple filters and pooling lay-
ers are common in CNN-based LDCT restoration models.
Furthermore, in LDCT restoration, the densely connected
layers found in the generic CNN model are replaced with
an output layer followed by a suitable activation function.
Chen et al. [4] have proposed a simple and effective CNN-
based LDCT restoration method that works on LDCT
images (CNN200). It has performed patch-by-patch-based
mapping between LDCT and NDCT images during the
restoration.

@ Springer

Variants of CNN

Improving visual performance and gaining optimal network
training are the ever-growing requirements in LDCT resto-
ration. However, it has been revealed that the generic CNN
model has a lack of architectural support to achieve these
requirements. As a solution for this, the variants of CNN
architectures have been published. The following sections
briefly explain the significant aspects of those CNN archi-
tectures for further clarifications.

Stacked Competitive Network (SCN): The SCN consists
of a multi-stacked layered architecture that is formed by a set
of successive competitive blocks [13]. This feature empha-
sizes the main difference between SCN and generic CNN.
Furthermore, as shown in Fig. 6, each competitive block in
SCN has introduced multi-scale processing. The objective of
a single competitive block is to enhance the local structural
details within the competitive block with a certain sparsity.
Thus, it has increased the width of the CNN and enabled to
extract of more low-level details in the LDCT images.
Multi-scale conventional filters that operate within com-
peting blocks can capture information about the multi-scale
structural features and textures of the same LDCT image
region. Furthermore, a combination function is implemented
in each block to minimize the redundant feature capturing
and reduce the computational load. The objective function
of the proposed network was designed to minimize the com-
petitive mapping of each layer of the proposed SCN network.
Furthermore, it consists of a regularization term to control
over-fitting. Reconstructed CT images through this proposed



Complex & Intelligent Systems (2023) 9:2713-2745

2721

Input Layer

Hidden Layer 1

Hidden Layer 2

Output Layer

LDCT Image
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Fig.6 Generic architecture of the SCN model

SCN model visualize sharp edges and better distinguish low-
contrast structures effectively.

Residual Network (ResNet): Stacking more layers in the
CNN model is one of the basic techniques for improving
the performance of the CNN model. However, increasing
the depth of the network will always not influence CNN
positively due to the issue called gradient diffusion [20, 50].
Also, gradient diffusion might result in failures in network
training. As a solution for this issue, He et al. [27] have
proposed the multi-branch network called ResNet. Figure 7
depicts the generic architecture of the ResNet for further
clarification. The most notable aspects in the ResNet archi-
tecture are the skip connections and residue estimation
strategy in which are not common in generic CNNs. Skip
connections found in ResNet models transfer the extracted
features from the previous layers to the subsequent layers
to preserve the structural details. Figure 8a and b depicts
this architectural difference between the generic CNN and
ResNet with skip connection for further clarifications. The
2D-ResNet proposed by Yang et al. [78] have followed this
basic ResNet architecture, and later, they enhanced this
network to its 3D version to preserve the spatial co-rela-
tion of tissues and organs. Apart from that, the two-stage

Input Layer Hidden Layer 1

LDCT Image

Hidden Layer 2

N TR T Mt

ResNet (DP-ResNet) published in [81] has implemented
two ResNets that performed the LDCT restoration in both
the projection domain and image domain. Processing the
sinogram data in the first stage of this application enables
it to enormously suppress the noise in low-dose projection
data. Later, processing the already restored projection data
in the image domain has reduced the remaining residues and
streaking artifacts greatly.

This study revealed that some of the LDCT restoration
applications reported in [20, 23, 71, 73] followed the same
ResNet model published by Zhang et al. [86]. Accordingly,
a cascaded ResNet-based LDCT restoration model published
by Wu et al. [73] has the strength to restore the noise pat-
terns that would rarely encounter in the training datasets via
iterative cascaded learning. In addition to that, Gou et al.
[23] (GRCNN) has proposed a gradient regularization-based
objective function to the model suggested in [86]. Hence, the
proposed GRCNN has gained the training effectiveness and
ability to preserve the sharpness of features of the processed
LDCT images. In addition to these applications, the ResNet
published by Gholizadeh-Ansari et al. [20] (DRL-E-MP)
has some unique features compared to other applications
that followed the model in Zhang et al. [86]. Those are edge-
detection-based image restoration and the application of

Hidden Layer n

Restored Image

Skip Connections

Batch Normalization

Fig. 7 Generic architecture of the ResNet model

ReLU N Convolution Layer Summation Layer
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Fig.8 Different shortcut con- Y.
nections. a CNN with sequential
convolution layers, b ResNet

with convolution block and skip

connection. Y, —input from the CONVOLUTION

z residual unit, Y, ,—output RELU
from [+ I unit, F(Y)—residual
mapping of the stacked convo-
lutional layer. ¢ DenseNet with RELU

dense connections. DenseNet

concatenates the output passed

from previous layers, d incep-

tion ResNet connection, and Y,

C, I, F represent the input, con- H(Y)
volution, inception filtering, and (a)
network operations, respectively

CONVOLUTION

BN/ RELU

\Cf
H(Y) =F[Y,,Yy...Y,]

(©

dilated convolution operations. In addition to that, the study
done by Shiri et al. [60] has also used dilation convolution
for the ResNet proposed to enhance the COVID-19 CT data.
Moreover, the multi-scale parallel CNN model proposed by
Jiang et al. [33] has also used the dilated convolution to
denoise the lung images. This model not only reduces the
noise but also preserves the detailed features of the low-dose
lung CT with texture details. The implementation of two par-
allel networks, three different sized convolution kernels, and
residual connections are the significant architectural aspects
that support gaining this visual performance. The ability to
increase the receptive field of dilation convolution impact
these studies positively to preserve more contextual details
in the LDCT images.

Except for pure ResNet-based LDCT restoration appli-
cations, some studies have been published that combine
ResNet with wavelets. The prime objective of such an inte-
gration is to restore the texture details and eliminate the
noise-induced artifacts in ultra-LDCT images. Among them,
the AAPM-Net model in [36] has been developed based
on the high-frequency channels obtained after contourlet
transformation on the LDCT images. Furthermore, in this
application, the lower frequency wavelet coefficients were
then integrated with the denoised frequency bands to reduce
unnecessary load on the model. Later, the Wave-ResNet
has been published as an extension to the AAPM-Net [34].

@ Springer
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Estimating the residuals at each sub-band by the ResNet and
implementation of concatenation later in the network are
the specific features in Wave-ResNet in contrast to AAPM-
Net. Apart from that, the two-stage denoising model (TS-
RCNN2) in [30] has been trained using the stationary wave-
let transformed LDCT and averaged-NDCT images. The two
ResNets in this application have performed texture preserva-
tion and structure enhancement, respectively.

Contrary to the above-mentioned ResNets, the TLR-CNN
published in [91] was free from bypass connections. Instead
of that, it has fine-tuned the network via a two-stage transfer
learning strategy in which the first stage uses the natural
images with blind Gaussian noise, and the second stage uses
the LDCT images.

Dense Network (DenseNet): Similar to ResNets, DenseNets
are also another way that can use to increase the depth of the
network [29]. DenseNet simplifies the connectivity pattern
between the input and output layers, so that it can minimize
the gradient diffusion issue of the CNNs. In contrast to the
ResNet that skips signal from one layer to the next through
summation, DenseNet surges information exchange among
the layers in the neural network via a simple connectivity
model layers of the same feature map size (as shown in
Fig. 9). Thus, each layer receives inputs from all preceding
layers and sends on its feature maps to all successive layers.
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Hidden Layer 3

Hidden Layer 4

LDCT Image

Restored Image

Skip Connections

Batch Normalization

Fig.9 Generic architecture of the DenseNet model

Moreover, it boosts the network’s feature learning capabil-
ity and the reusability of feature maps. Because of that, the
subsequent layers of the network can use the full feature
maps of all initial layers. Therefore, this aspect in DenseNet
will tremendously help to reduce the information loss during
the training. Figure 8c depicts the functional point of view
of a typical dense connection in a network. Contrary to the
DenseNet in [29], Ming et al. [50] have proposed a DenseNet
for LDCT restoration by reducing the connectivity pattern to
gain computational efficiency in each block while training
the network.

VGG19: VGGI19 is a pre-trained CNN published by Simon-
yan, Zisserman [63], which consists of 16 convolutional lay-
ers followed by the three fully connected layers. The output
of the last convolutional layer of the VGG19 is the feature
map of the input image. In LDCT restoration, the VGG net-
work is used for computing the perceptual loss [12, 58, 78,
79].

As a summary of the facts mentioned in Table 1, it can
be stated that the discriminative models preserve the fine
structures in the restored CT images and reduce the streaking
artifacts greatly. However, the structures are over-smoothed
due to the MSE-based objective function. Also, the ResNet-
based studies have degraded the results due to the lack of
generalizability.

Generative models

DL models categorized under the generative approach deter-
mine the probabilistic distribution of data. Compared to the
discriminative approach, the generative approach shows the
top—down execution. Furthermore, it follows the unsuper-
vised learning strategy for feature learning (Un-supervised
learning performs learning on the input data itself rather
than using annotated data.). Figure 4b depicts the functional
aspect of a typical generative model for further clarifica-
tions. In this study, the autoencoder and U-net models were
identified as the widely used generative models for LDCT
restoration.

ReLU N Convolution Layer Concatenation Layer

Autoencoder

Autoencoder learns how to compress and encode input data
and then learns how to reconstruct the output data back from
the compressed encoded representation. Hence, it gets the
output representations that are much similar to the original
data. As shown in Fig. 10a, the architecture of the autoen-
coder consists of two components, namely encoder, and
decoder. Out of these two components, the encoder is made
up of a set of fully connected or convolutional layers. In
LDCT restoration, the encoder performs the feature extrac-
tion from noisy LDCT images and transforms the image
data into a low-dimensional compressed representation
called a bottleneck. After that, the decoder up-samples the
low-dimensional representation to reconstruct the denoised
image using fully connected layers or convolutional layers.
In training, autoencoders regenerate the input data itself
using the backpropagation algorithm [61]. Like ResNet,
the autoencoder network has also connected correspond-
ing encoder and decoder layers with skip connections. As a
result, the network depth has increased and minimized the
gradient diffusion that happens during the training.
Recently, Mao et al. [49] have published an autoencoder
(RED-Net) that can restore natural images degraded by
different noise levels. Based on that, later, Chen et al. [3]
have published an RED-CNN model by combining autoen-
coder with CNN for LDCT restoration. Unlike the refer-
ence model in [49], this RED-CNN model has removed the
Rectified Linear Unit (ReLU) layers before the summation
with residuals to ignore the positivity constraint on learned
residuals. In addition to that, Liu, Zhang [45] proposed an
LDCT restoration method based on the Stacked Sparse
Denoising Autoencoder (SSDA) model. On the contrary
to the autoencoders, SSDA adds a sparsity component
based on the Kulback—Leibler divergence to the learning
model. Thus, it supports content preservation optimally.
Moreover, the proposed SSDA model did not contain any
down-sampling layer and was made up of using a shallow
network structure. Different from all the CNN-based DL
models published for LDCT restoration, Fan et al. [16]
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Fig. 10 Generic architecture of generative models used for LDCT restoration: a autoencoder; b U-Net

have proposed a stacked autoencoder model based on the
quadratic neurons (Q-AE). The replacement of the con-
ventional neurons with quadratic neurons in this Q-AE has
motivated to represent complex data, and it has positively
influenced to enhance the robustness of LDCT restoration.
Also, the quadratic operation has boosted the processing
power of the individual neurons. Except for the applica-
tion of quadratic neurons, the proposed network model of

@ Springer

Q-AE is fundamentally similar to the RED-CNN. Also,
interested readers can find more information about quad-
ratic neurons from [14, 15, 17]. Overall, it is significant
to state that all the cited autoencoder applications in this
section have used MSE (LL3) as the loss function. Further-
more, Table 2 summarizes the autoencoder-based genera-
tive DL applications for further analysis.
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Table 2 Analysis of generative model-based LDCT restoration applications

References Model features Strength Weaknesses
Network design Input Model depth Shortcut
RED-CNN, Chen Residual EnDec LDCT images 5 Convolution and Long skip connec- Enhancing the Texture loss and

et al. [3]

Liu, Zhang [45] Stacked sparse

5 De-convolu- tions
tion layers

8x 8 sized patches 3 stacked sparse No

low-contrast
regions

blurring due to
the usage of MSE-
based objective
function

False lesion issue

Preserving the The proposed model

denoising denoising texture details still distorted
Autoencoder autoencoder (6 in which decays some subtle struc-
hidden layers) during the tures

Q-AE, Fan et al. Quadratic Autoen- 64 X 64 sized

5 quadratic

down-sampling

Bypass connec- Low computa- Determining the

[16] coder patches convolution tions tional cost due depth of the net-
and 5 quadratic to the lower work is laborious
deconvolution number of train-
layers ing parameters

U-Net Hybrid models

Ronneberger et al. [56] have proposed the U-net model,
which consists of symmetric architecture constructed
by a contracting path and expanding path. As shown in
Fig. 10b, the contraction path comprises convolution
operations and down-sampling layers, while the expand-
ing path consists of up-sampling layers. Hence, the
contracting and expanding paths resemble the encoder
and decoder layers, respectively. U-net consists of long
skip connections to transfer the feature details from the
encoder layers to the corresponding decoder layers.
Unlike the residual skip connections, these transferred
features finally concatenate at the corresponding decod-
ing layer. Different from residual connections, the con-
catenation type skip connections in U-net allow trans-
ferring of more feature information forward, and it is a
significant performance aspect in U-net architecture [44].
Furthermore, it has been observed that almost all of the
U-net-based LDCT restoration applications reviewed in
this study have been published by integrating U-net with
the Generative Adversarial Network (GAN) s [6, 45].
However, after publishing the Pix-to-Pix GAN by Isola
et al. [31], there were several LDCT restoration applica-
tions published based on it. The main reason for that is
the generator of the Pix-to-Pix GAN followed the U-net
architecture, and it accepts an image as the input instead
of the noise distribution in the latent space [75, 79]. The
deeper U-net published in [79] permits to retain of the
small details of the processed LDCT images.

The hybrid learning approach combines both the genera-
tive and discriminative network models to construct the
learning model. After introducing GAN by Goodfellow
et al. [22], this hybrid learning model has become popu-
lar in LDCT restoration. The GAN consists of two CNN
models, which are defined as the generator and the dis-
criminator [22]. In medical image denoising, the generator
synthesizes the samples from learning the distribution of
low-dose medical images. The discriminator receives both
the normal dose images and the synthetic images produced
by the generator and aims to distinguish them apart [8].
This basic structure of GAN is known as vanilla GAN.
Moreover, GAN is flexible to implement different genera-
tor models based on various CNN architectures, such as
the encoder—decoder [58, 67], U-Net [6, 53, 75, 79], and
ResNet [12, 28, 46]. Also, the discriminator mostly acts as
a binary classifier to distinguish the synthetic and NDCT
images apart. Depending on the adversarial learning
method and the objective function used, several variants
of GAN architectures have been published. Our review
of literature has revealed Wasserstein GAN, cycle GAN,
and least-square GAN as the variants of GAN which are
broadly used in LDCT restoration. Figure 11 depicts the
network model of each of these GANS and Table 3 sum-
marizes the important features of the GAN-based LDCT
restoration applications.
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Key: G, Gas, Gea- Generator, D, Da, Dg - Discriminator, Dr — Discriminator (regressor), X, X — noisy image set,
Xg — Unpaired ground truth image, X’, Xas, XaBa, XBa, XBap - Simulated image, Y- ground truth image, Y’, Ya,
Yg - real/fake sample, C- critic, AL- Adversarial Loss, WL- Wasserstein Loss, LSL — Least Square Loss.

Fig. 11 Variant of GAN architectures: a Vanilla GAN, b WGAN, ¢ Cycle-GAN, and d LS-GAN

Vanilla GAN

Vanilla GAN represents the simplest GAN model as depicted
in Fig. 11a. Wolterink et al. [72] have first applied the GAN
for resolving the limitation of voxel-wise regression in
LDCT noise reduction. Later, Yi, Babyn [79] have pro-
posed a GAN model by conditioning it with sharpness loss
to enhance the edges and boundaries of the structural details,
which are pathologically significant. Also, Shan et al. [58]
have proposed a conveying path-based GAN model that can
integrate the 3D spatial details via the adjacent 2D LDCT
slices. In this application, first, the 2D LDCT restoration
model has been proposed and the strong correlation of those
2D slices was used as a transfer learning to train the 3D
model. LDCT restoration application published in [53] is
significant, because it has addressed the issue of lacking the
paired medical image data (low-dose images and identical
ground truth images) for training the GAN models. The
fidelity embedded GAN model proposed by Park et al. [53]
for LDCT reconstruction has computed the Kullback—Lei-
bler divergence and L2 loss to generate the denoised CT
images by training the GAN through unpaired CT images.
The application of visual attention for image restoration is
still novel in the CT domain. Du et al. [12] were the first
team who have applied the attention network to overcome
the over-smoothing caused by MSE loss function in cur-
rent DL-based CT restoration models. The generated atten-
tion map of this study was used as prior knowledge about
noise distribution over the input image and the implemented
visual attention block sustained in the proposed restoration
model not only to preserve the fine structures (lesions and
other subtle structures) with perceptual similarity but also
to explicitly assess the local consistency of the recovered
regions [6].

@ Springer

Wasserstein GAN

In general, minimizing the generator of the vanilla GAN
is equivalent to minimizing the Jason—Shannon divergence
between noisy and ground truth data distribution. However,
it has been revealed that minimizing the Jason—Shannon
divergence has led to a vanishing gradient on the genera-
tor network and obstruct updating as the training continues.
To overcome this, Arjovsky et al. [1] proposed the Wasser-
stein distance between noisy and ground truth data, which
has been formulated based on the geodesic distance of the
degraded and ground truth data distributions. Later, with the
modification added by [25], Wasserstein distance was used
with GAN and has called WGAN (Fig. 11b). Furthermore, in
this study, several WGAN-based LDCT restoration models
have been analyzed. Those were performed various addi-
tional functional aspects such as enhancement of perceptual
similarity [77], preservation of structural details [83], and
reduction of low-dose artifacts in dental CT images [28].
In general, the CNN-based restoration methods are inher-
ently less efficient in modeling various structural information
in CT images due to the non-uniformity of noise distribution
and the mixture of texture and the geometric shapes of CT
images. Also, the fixed-size filtering in current CNN-based
restoration methods unavoidably keeps some irrelevant
pixels for the current response, especially for the regions
with complex structures and the edges. Besides, training
algorithms may have problems coordinating dependencies
across different layers, making weight learning inefficient
as a result. Li et al. [42] have proven the strength of solv-
ing the mentioned issues through a self-attention model
by establishing interactions between the local outputs and
all other pixels within one layer to guide the convolutional
filtering. The proposed method consists of two attention
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Table 3 (continued)

Weakness (s)

Losses in objec- Strength (s)

tive function

Discriminator

design

Generator design

Input

GAN Model

Publication

Shortcut

Depth

U-net generator By pass connec- No Patch-GAN L10,L11,L18 One generator, Structure preserva-

Patches of size

Cycle- GAN

Gu, Ye [24]

tion need to be

Stable training

structure with

tions to connect
encoder layers

with 10 convolu-
tion layers and
Adaln layers

128 x 128

with less number  improved further

of parameters

6 convolution

layers

with correspond-
ing decoder

layers

Perceptual loss is
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3 bypass connec-  Yes CNN with 6 con- L2, L6, L8*

CNN with 8

Patches of size

W-GAN
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natural images

(VGG-19 net)
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tions between
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128 x 128

Yin et al. [82]

ers. 2nd and 6th
layer consists of

dilated convolu-

tion

average perceptual loss of 5 levels in VGG-19 net

*Multi-perceptual loss

networks named plane attention and depth attention for deal-
ing with long-range dependencies within the CT slice and
among the CT slices, respectively. Furthermore, contrary
to the computing VGG-based [63] perceptual loss in [77],
the proposed model consists of a self-supervised learning
scheme for assessing perceptual similarity. The restored
CT images contain sharp edges, fine texture details, and no
waxy artifacts. Apart from that, Yin et al. [82] have proposed
a W-GAN model based on unpaired data to denoise Lung
CT images. Noise reduction and texture preservation of this
proposed GAN model were boosted by the residual connec-
tions and the multi-perceptual loss computed based on the
VGG-19 network.

Cycle GAN

Cycle-GAN(C-GAN) was proposed by Zhu et al. [92] and
has gained extensive attention in image enhancement. It
tends to focus on the spatial features of one collection of
images and decides on how to map those learned elements to
another image collection without the need for trained pair of
examples (degraded and corresponding terrain real images).
Different from other GAN models, C-GAN architecture con-
sists of two generators and two discriminators, as shown
in Fig. 11c. Unlike conventional GAN models, adversarial
learning is not useful for C-GAN. The main reasons for that
are, first, there was nothing to constraint the generator to
synthesize the final content irrespective of the ground truth
image, and second, whatever the image synthesized by the
generator was well enough to fool the discriminator best.
Thus, the objective of C-GAN would be extended to ensure
that the restored image still looks like the ground truth in
some way. As a consequence, the cycle consistency loss has
been added to the two generators in C-GAN. Thus, the first
generator restores the image according to the way it feels
necessary and the second generator learns alongside how
to restore that synthesized image to its original representa-
tion. In this learning process, both generators update their
weight based on the difference between the unpaired ground
truth image and the synthesized images. This way of learn-
ing ensures that the main generator does not disregard its
input completely, and using the second generator allows for
flexibility in that restoration process.

Literature has revealed the application of C-GAN-based
LDCT restoration models in the studies done by Kang et al.
[35] and Tang et al. [67] (CycleGAN-BM3D). Accordingly,
those studies tend to restore the LDCT images by learn-
ing the distributions of the unpaired collection of NDCT
images. Among them, the C-GAN model proposed by Tang
et al. [67] has applied a BM3D-based image before mini-
mizing the risk of synthesizing the false details by the first
generator. Furthermore, contrary to other GAN models, the
C-GAN can minimize the mode collapse due to the usage

@ Springer
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of inversion paths. Unlike the conventional C-GAN model
with two generators, the recent C-GAN model proposed by
Gu, Ye [24] has used U-net based single generator for LDCT
noise reduction. Using the Adaptive Instance Normalization
(AdalN) layers to execute the low-dose to high-dose image
translation by switching to the generator model is the sig-
nificant architectural improvement in this proposed model.

Least square GAN (LS-GAN)

Mao et al. [48] have proposed LS-GAN as an extension of
vanilla GAN by changing the loss function for the discrimi-
nator to least-square loss instead of binary cross-entropy.
Thus, except for the loss function, the network architecture
of the LS-GAN is exactly as same as the vanilla GAN as
shown in Fig. 11d. The binary cross-entropy loss function
is unable to evade the vanishing gradient issue in GAN due
to its failure to generate a strong signal to best update the
model. To overcome this issue, the least-square loss has been
used as the loss function, and it will penalize the synthesized
images according to their distance from the decision bound-
ary. Hence, the least-square loss objective function gains the
ability to generate a strong gradient signal for the generated
samples located far from the decision boundary. As a result
of the strong gradient, those samples distal to the decision
boundary are moved closer to the decision boundary and
form enhanced images as an output. Moreover, our study
of literature has clearly emphasized several LS-GAN-based
LDCT restoration applications [6, 46, 75].

Among these studies, Yang et al. [75] have implemented
two U-net-based generators for their application named
HFSGAN. The objective of the first generator of this study
is to process the high-frequency bands of LDCT to improve
the generators’ sensitivity for high-frequency details.
Then, the second generator of the HFSGAN synthesizes
the restored CT images by combining the priory processed
high-frequency bands and low-frequency bands of the LDCT
images. Also, different from other GAN-based applications,
HFSGAN has proposed a multi-scale discriminator with an
inception module [66], to extract the multi-scale features
of LDCT images. Apart from that, the LS-GAN suggested
by Chi et al. [6] has used inception residual blocks in the
generator network to prevent transferring noise in each con-
volution layer to the deconvolution layer via shortcut con-
nection. Moreover, Fig. 8d shows an architectural diagram
of how to connect the inception block to the bypass con-
nection for further explanation. Apart from that, to increase
the performance, this application has a discriminator with a
multi-level joint architecture.

Almost all of the GAN model presented in Table 3
consists of multi-objective functions. As a result, those
individual learning models can enhance the different fea-
tures during restoration. Furthermore, it can be observed

@ Springer

that most W-GAN-based DL models have not been used
the batch normalization during generator design. Also,
Patch-GAN and Cycle-GAN models have used U-net or
Encoder—Decoder type GAN models for generator design.
Overall, all of the GAN models were capable to restore the
fine details of the LDCT images and preserve the texture
and artifacts.

Datasets and methods to deal
with data-related issues

Techniques for boosting the training samples

DL relies heavily on large training datasets to reaching
high learning accuracy [45]. Table 4 summarizes the
standard datasets found in reviewed LDCT restoration
applications. However, the amount of data associated with
these datasets are not sufficient to gain high performance
in LDCT restoration. Therefore, various solutions have
been implemented to increase the availability of CT data
for effectively training and validation of DL models.

Paired CT datasets of normal dose and low dose are
essential for the training and validation of DL models. The
repetitive scanning of patients is the only possible way to
extract NDCT data in clinical procedures. However, this
is not permitted in clinical practice, because prolonged
exposure to radiation can adversely affect patients’ quality
of life. Also, CT sinogram data are vendor-specific and are
not permitted to be extracted from third parties. However,
to overcome this challenge, several applications have sug-
gested techniques to use unpaired training data and noise
priors for training the DL models [35, 53, 67]. In addition
to that, the non-reference metrics are suitable for quantita-
tive evaluations. The reason for that is those matrices are
free from measuring the similarity between LDCT and
NDCT images during the performance evaluation [7].

Also, recent DL applications have used simple geomet-
ric transformations-based data augmentation techniques
[3, 4, 45] and image patching methods as the techniques
for boosting the amount of training data in the limited
number of medical datasets. In data augmentation, the use
of scaling as a data augmentation technique may change
the size of the original image, resulting in the risk of los-
ing the CT image in detail [23]. Thus, some studies only
focused to apply rotation and flip to increase the number
of samples in training datasets [23, 34, 36, 50]. In contrast
to data augmentation, patch-based training increases the
network convergence [23]. Furthermore, it facilitates to
enhance the detection of the perceptual variances in local
regions and alternatively increases the number of training
samples [3].
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Table 4 Common datasets used in the reviewed literature

1D

Dataset

Anatomy

Remarks

Related studies

Public datasets

D01 NBIA/NCIA dataset [54] Many organs including, Chest
D02 AAPM-Mayo Abdomen

D03 Piglet dataset [79] Whole-body

D04 Data Science Bowl 2017 Lung

D05 3D-IRCADb Different organs

D06 Luna-16 Lung

Private datasets

D06 Cardiac CT Cardiac

D07 MGH dataset [76] Abdomen, chest, and head
D08 Cardiac CT Cardiac

D09 Dental CT Dental CT

D10 Liver simulated dataset ~ Liver and portal vein

D11 Brain clinical dataset Brain

D12 Piglet dataset Whole-body

D13 COVID-19 Lung

The National Biomedical Imaging
Archive consists of 7,015 total NDCT
images of 256 X256 size. URL: https://
imaging.nci.nih.gov/nbia-search-cover/

Mayo clinic AAPM Low- Dose CT
Grand Challenge dataset consists of
2378 full and quarter dose CT images
from 10 patients of 512 X512 size.
URL.: https://www.aapm.org/Grand
Challenge/LowDoseCT/

Images were obtained under four dose
levels and each dose level consists of
850 images of 512 %512 size

The dataset consists of over a thousand
high-resolution LDCT images of high-
risk lung cancer patients. https://www.
kaggle.com/c/data-science-bowl-2017/
data

1375 clinical NDCT images of 10
patients. URL: https://www.ircad.fr/
research/3dircadb/

888 clinical NDCT scans are available
with annotations. URL: https://lunal6.
grand-challenge.org/Data/

Cardiac CT scans of 28 patients

Massachusetts General Hospital (MGH)
dataset consists of 40 cadaver scans
obtained under four dose levels

Two sets of 50 CT scans of mitral valve
prolapse and coronary artery disease
patients

CT images were reconstructed using
sinogram data in axial, sagittal, and
coronal planes

2480 NDCT images of liver and portal
vein of 62 patients

200 brain CT images of two different
dose levels (100 from each.)

360 data were scanned under four dose
levels

1141 volumetric chest CT exams were
obtained from 9 medical centers.
Among them, 312 data were marked as
PCR-positive

[3, 4,6, 13,20, 45, 50,79, 91]

[3,6,12,13, 16, 23, 30, 34, 36,
42,46, 58,71,73,75,77,78, 81,
83, 91]

[20, 75, 79]

[79]

(30]

[82]

[72]
[58]

[35]

[28]

[53]

(53]

[67]

Methods for simulating LDCT

Supervised DL models must have NDCT and its low-dose
versions for training and validation. Since it is not prac-
tical to get the clinical data as a whole, the reconstruc-
tion of LDCT is the acceptable solution for generating
the LDCT data. Adding Poisson noise into the sinogram
obtained from NDCT is the main function of a typical

LDCT reconstruction algorithm, because Poisson noise is
the dominant noise type in the LDCT image in the sino-
gram domain [87]. Depending on the transformation meth-
ods used to simulate the sinogram data, there are three
main LDCT reconstruction algorithms widely used in
LDCT restoration. Those are Siddon ray-driven algorithm
[62], radon transformation-based algorithm, and forward
projection-based algorithm. Figure 12 depicts the steps

@ Springer
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of these three LDCT reconstruction methods for further
clarifications.

Among these LDCT reconstruction algorithms, the for-
ward projection-based algorithm depends on the external
toolbox called Astra [69] and performs well with GPU
support. In addition to that, this algorithm follows Zeng’s
method [85] to add the Poisson noise into the NDCT
sinogram. However, the Siddon ray-driven algorithm and
radon transformation-based algorithms simulate the Pois-
son noise into the low-dose transmission data as a product
of simulated low-dose scan incident flux and the exponen-
tial of inverse sinogram. The studies [20, 30] have used
the radon transform-based algorithm, whereas [91] has

@ Springer

used the forward projection-based algorithm for LDCT
reconstruction.

Diversity of loss functions

The objective function in the DL model represents the
basic formal specification of the problem to be solved.
It consists of two components, namely the regularization
term A and the loss function L(6). The regularization term
of the objective function is used for tolerating the over-
fitting of the model. In general, the loss function evalu-
ates how well the data can be modeled in a specific DL
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model according to the desired enhancement requirements.
Hence, an objective function would consist of single or
many loss functions. Table 5 lists the loss functions and
strength of each of them defined in the articles reviewed
in this study.

MSE is the widely used loss function in many genera-
tor and discriminator DL models. However, it has revealed
that MSE-based optimization consists of the regression-to-
mean problem [75]. Thus, it leads to texture information
loss, over-smoothing, and false lesion discrimination [3, 4,
36]. As an alternative for MSE, Least Absolute Error (LAE)
is ideal for optimizing the DL models. Even if the LAE is
also a mean-based matric, like MSE, experimental results
have proven that it can overcome the blurring issues caused
by the MSE loss [46]. However, restored images obtained
through the LAE-based optimized DL model still degrade
due to the blocky artifacts. After the publishing of the image
net [9] pre-trained networks, namely VGG-16 and VGG-
19 [63], the perceptual loss has been introduced to the DL
model optimization to overcome the issues raised by both
the MSE and LAE. The perceptual loss computes the feature
difference between generated and real CT images. However,
experiments on applications that rely solely on perceptual
loss have shown that restored images have grid-like artifacts.
Therefore, perceptual loss has usually used to optimize the
DL models by combining them with MSE [20].

Some studies use the Structural Similarity Index Matrix
(SSIM) as a loss function to assure the structure preservation
capability of the DL model [46, 83]. It performs better than
MSE by providing the highest quantitative values for Peak
Signal-to-Noise Ratio (PSNR) in visual assessments [46].
Also, computing the SSIM loss in multi-scale allows captur-
ing additional textual and structural details [12]. Similar to
the SSIM, sharpness is also another desired loss function in
LDCT restoration studies and determines how the learning
process optimally preserves the sharp edges [79]. However,
the sensitivity of the proposed sharpness loss function is
not up to the expected level for the treatment of blurring
in some low contrasting regions. Furthermore, it simulates
subtle structures as noise. As a result, the existing sharp-
ness loss function leads to erroneous decisions during lesion
discrimination [6].

GAN has also gained attention dramatically in recent
developments in LDCT restoration. Conventionally, GAN
models use the adversarial loss as its objective function and
determine how optimal the min—-max game between genera-
tor and discriminator. However, the empirical studies have
proven that the GAN based on adversarial loss resulted in
convergence issues [77]. Thus, inspired by [1] and [25], the
Wasserstein distance with the gradient penalty has been
introduced as the loss function to overcome the identi-
fied convergence issues [35, 42, 77]. Apart from that, the
LDCT restoration applications done based on cycle-GAN

@ Springer

or least-square GAN have used cycle consistency loss and
least-square loss as the loss functions [34, 67, 75].

Functional aspects
Noise and artifact suppression

Various DL architectures and performance trade-offs affect
the noise and artifact reductions in reviewed studies. In gen-
eral, noise and artifact reduction gained by various DL mod-
els have been quantitatively evaluated by the pixel domain-
based metrics, namely PSNR and Mean Structural Similarity
Index (MSSIM). Table 6 summarizes these aspects with the
average PSNR and MSSIM values reported in the reviewed
studies to compare the strengths of the reviewed restoration
algorithms.

Among various DL models that were developed for
LDCT restoration, cascaded CNN models leverage the noise
and artifact reduction far better than the deep CNN models.
The experimental results of the study [73] show that increas-
ing the number of cascades in cascaded CNN reduces the
blurring artifacts and remove the streak artifacts around the
lesions. The reason for that is, the noise embedded in the
NDCT images belongs to both training and validation data
get further smoothed by the cascaded network structure [73].
In addition to this, if an LDCT image is transformed into the
frequency domain, the noise content of the LDCT image will
distribute as the high frequencies in LDCT images. Thus, it
can be observed that some studies applied wavelet transfor-
mation to LDCT images for estimating and removing these
noise-induced frequencies iteratively [30, 36, 71, 75]. After
the noise frequency filtering, the residual low-frequency
information in the LDCT images can process through the
DL model.

Structure preservation

Developing the adaptive denoising algorithms with excellent
structure preservation is a significant function in medical
imaging, because it facilitates clinicians to interpret medical
images robustly [51]. Also, it improves the accuracy of com-
puter-aided diagnosis methods, such as feature recognition
and quantitative analysis. Table 6 summarizes the feasibility
of reviewed denoising applications for preserving various
clinically significant anatomical structures concerning the
validation datasets.

Discriminative model-based DL models have performed
quite acceptable improvements in organ and structure preser-
vation. Among them, CNN200 [4] and AAPM-Net [36] have
improved the visualization of the boundaries of the organs.
Also, AAPM-Net has preserved the textures in the liver
area. Hence, it made this application easy to locate the liver
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lesions and location. However, later studies have empirically
proven that both CNN200 and AAPM-Net can produce over-
smoothed results with loss of texture information [58]. It had
happened due to the regression-to-mean problem caused by
the MSE-based loss function used in those applications. The
SCN suggested in [13] has better distinguish the textures and
enhanced the contrast of inter-costal vein in chest images.
Apart from that, the Sobel operator used in the GRCNN
model helped to locate the edges and has preserved the soft
tissues of organs [23]. Furthermore, the implementation of
gradient regularization in the GRCNN model has sharped
the preserved edges. Out of the published ResNet-based
applications, the RED-CNN has preserved the borders of
different tissues [3]. Apart from that, the edge detection layer
in DRL-EMP added extra sharpness to the preserved edges
[20]. Moreover, the combined objective function of the
DRL-EMP has leveraged the preservation of more texture
details in the validated images. The DP-ResNet provided
acceptable texture preservation via the deep convolution
applied in the projection domain and image domain [81].
Hence, this application could be able to preserve the tex-
ture, especially in the pelvic bones that are degraded by the
artifacts. According to Table 6, all the ResNet-based LDCT
restoration applications have contributed to preserving vari-
ous organs and fine structural details.

The generative model-based DL applications have also
proven their capability for preserving the subtle structures
while restoring the LDCT images. Consequently, the stacked
sparse denoising autoencoder model published in [45] has
fully preserved the edges of the pelvis without having any
blocky or blurring artifact. Moreover, the RED-CNN [3]
and Q-AE [16] models have also successfully preserved the
texture information of the processed images.

The contribution of the GANs for structure preservation
in LDCT is significant in recent LDCT restoration studies
(Table 6). This fact is proven by many of the GAN-based
LDCT restoration methods reviewed in this study. The recent
GAN-based models have achieved this visual performance
through various model design aspects. Some of those sig-
nificant model design aspects were long skip connections in
SAGAN [79], content correspondence in WGAN-VGG [77],
the structure sensitive objective function in both SMGAN
[83] and [46], content fidelity assessed objective function
in [53], the structure-oriented gradient regularization in
GRCNN [23], and long-range dependencies maintained by
self-attention block in SACNN [42]. However, You et al.
[83] have proven that WGAN-VGG [77] suffers from con-
tent distortion, even though it can preserve structural details.
The content mismatch between the CT images and natu-
ral images in the VGG-19 pre-trained network [63] during
the calculation of perceptual loss was the main reason for
this limitation. Apart from the gradient regularization, the
application of edge detection has improved the sharpness of

the edges in GRCNN [23]. Besides, CycleGAN-BM3D has
proven the ability to prevent the generation of false details in
the restored LDCT images via the integration of BM3D prior
information [67]. Yang et al. [75] have shown that increasing
the receptive field of the network and extraction of multi-
scale features have positively affected preserving the texture
details. On contrary to this, Li et al. [42] have stated that
the perceptual loss computed in the attention network can
preserve more texture details in contrast to the VGG-loss-
based models. Although the GAN-based LDCT restoration
methods have gained a high performance in structure pres-
ervation, false lesion issue still affects to degrade the visual
quality of the restored LDCT images [6].

Lesion discrimination

Lesion discrimination is also one of the needful functional
requirements in LDCT restoration. It allows clinicians to
recognize the various characteristics of the lesion, including
the location, shape, border, and density. The improvement
of the contrast done by the DL-based restoration models
separates the lesion from both the background texture and
noise components effectively. Also, the results obtained from
qualitative evaluations (visual performance comparisons
and blind reader studies) have been used to elaborate on the
significance of the identification of lesions in past research
studies (Table 6).

Among the discriminative model-based LDCT restora-
tion models, AAPM-NET has first evaluated the detection
rate (73%) of focal hepatic lesions of abdomen CT images
via a blind reader study [36]. The stacked competitive CNN
model in [13] and the cascade CNN model in [73] have also
improved the contrast of the lesions in abdomen CT images.
Among them, the cascade CNN model [73] has greatly
improved the metastasis near the chest regions. In addition
to that, the GR-CNN model has improved the shape of the
lesion due to the usage of gradient regularization within
the CNN model [23]. Also, this study noted that the use of
MSE-based loss functions in CNN models has negative con-
sequences for locating the lesion. Also, the WaveResNet [34]
enables to locate the lesion due to its ability to preserve the
textures. Recently, Shiri et al. [60] have done experiments
based on the COVID-19 positive chest CT images. They
have proven that the proposed ResNet-based DL algorithm
was capable of enhancing the visual clarity of the nodular
and wedge shape lesions under ultra-low-dose cases.

The generative model-based LDCT restoration meth-
ods have also improved the visual clarity of the lesions.
Especially the focal hepatic lesions that appeared in abdo-
men CT images were enhanced and evaluated in Q-AE
[16]. Also, the empirical results have proven the ability
to do lesion discrimination by RED-CNN [3]. However,
Chi et al. [6] have proved that the lesions enhanced by
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RED-CNN looked over-smoothed. The main reason for
that is the MSE-based objective function used to train the
RED-CNN network.

The impact of the GAN for lesion discrimination in
LDCT restoration algorithms is outstanding. This state-
ment is proven by the first GAN-based LDCT restoration
method proposed by [69], because it has visualized the
cardiac artery calcification lesions. Also, the WGAN-
VGG [77] and SMGAN [83] models have successfully
visualized the metastasis of the liver lesions and cystic
lesions in the upper part of the kidney [77]. Moreover,
the SMGAN has improved the sharpness of the metastasis
in liver lesions due to the structure preservation-based
objective function. Apart from that, the validation results
of CPCD-3D [58] have proven the visual enhancement
of the focal hepatic lesions that appeared in abdomen CT
images due to the implementation of 2D-to-3D network-
based transfer learning. The attention networks introduced
to the GAN models were also supported to enhance the
visualization of low attenuation liver lesions. The main
reason for that is the efficient noise reduction ability of
those networks gained through the attentive blocks [12,
42]. Apart from that, the recent study, HFSGAN [75],
has validated the proposed GAN model for the real piglet
dataset [79] to show its ability to enhance visualization
of the lesions in the real CT images.

In LDCT restoration, generating false lesions is a com-
mon issue in ResNet and GAN-based LDCT restoration
models [6, 71, 81]. It happens due to the resembling of
some noise-induced artifact to view as lesions. In this
scenario, the DL model fails to distinguish the difference
between the artifact and the real lesion. As a consequence,
the diagnosis results might generate false-positive results.
WGAN-VGG [77] and SAGAN [79] are two such meth-
ods, which suffer from false lesion problem. As a solu-
tion, the study published in [6] has proposed inception
residual blocks and residual mapping to the U-net based
generator to overcome generating unnecessary artifacts.
Also, the multi-level joint discriminator introduced in the
same study [6] has maintained a constraint to detailed
reproduction. As a consequence, it results in better struc-
ture preservation excessively. Apart from that, the false
lesion issue can generate by the discriminator during the
computation of the similarity between the ground truth
images and generated images on one scale. This hap-
pens due to the tiny noise component distributed over the
Ulta-LDCT images. However, the study published in [6]
mentioned that simultaneously computing the difference
between the output from every down-sampling and cor-
responding deconvolution layer as a loss of whole U-net-
based generator model can also be used to overcome this
false lesion issue.

@ Springer

Methods for fine-tuning the performance
Shortcut connections

The main function of the shortcut connection (also known as
a bypass or skip connection) in the DL. model is to pass the
output of one layer as input feature maps to the subsequent
layers by skipping some layers in the model. Figure 8 depicts
those different shortcut connections for visually comparing
the architectural variances. Furthermore, Tables 1, 2, and 3
mention the different types of shortcut connections used in
the reviewed LCDT-restoration applications. In general, the
shortcut connection can preserve more structural informa-
tion and has a positive effect on improving the visual perfor-
mance of LDCT images. Furthermore, the skip connections
used in the ResNet model help to minimize the gradient
vanishing problem thoroughly [36, 81].

Adaptive learning rates

Learning rate is a critically important hyperparameter that
can leverage the optimizer for rapid converging of the DL
model. Choosing a too-small value for learning rate may
result in a long training process that could get stuck the
training process, whereas a too-large value may result in an
unstable training process. Thus selecting an optimal value
for learning rate is a challenging task. In LDCT restora-
tion applications, the learning rate is associated with the
well-known optimizers such as Stochastic Gradient Descent,
ADAM [39], and limited memory BFGS [40] algorithm.
Many of these LDCT restoration applications are designed
to dynamically update the learning rate while training the
DL model. These dynamic learning rates reduce the over-fit-
ting and speed up the network convergence [35]. This study
has revealed different learning rate scheduling techniques
used in LDCT restoration, namely time-based [3, 6, 50, 81],
drop-based [16, 20, 35, 78, 91], and exponential-based [58,
72] techniques. Dynamic learning rates reduce the over-
fitting and speed up the network convergence [36]. Table 7
summarizes the training and execution efficiency of some of
the reviewed studies.

Patch extraction

In LDCT restoration, patches can better represent the local
features of the image. Also, these patches will affect the
denoising performance. In addition to that, patches boost
the number of samples via the training data [45]. Therefore,
generating overlapped patches is encouraged in most of the
reviewed applications [3, 4]. Patches accelerate the conver-
gence of the learning model dramatically due to the ability
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0.08

32 20

4000 slices (140,000

patches)
4036 slices

Fixed

NVIDIA Titan V

Duetal. [12]

1.84

NVIDIA Titan Xp, Time-based

Chi et al. [6]

12 GB
NVIDIA RTX 2070

100 14

32

2400 slices (11,648

patches)

Fixed

Yin et al. [82]

to make full use of limited CT data [23]. Tables 1 and 3
emphasize the patch sizes used in various LDCT restoration
applications.

Transfer learning

Transfer learning is a machine learning technique used to
improve learning in a new learning model via the transmis-
sion of knowledge from another similar already learned
model. Transfer learning can dramatically reduce the train-
ing time and avoid over-fitting the LDCT restoration model
[30]. This study has revealed various transfer learning
approaches implemented in various LDCT restoration appli-
cations. Among them, using a pre-trained network for trans-
ferring knowledge has been reported in several studies [6,
12, 20, 30, 77]. The VGG-19 [63] of ImageNet [9] has been
used as the pre-trained network in those studies. However,
the features generated by the VGG-based transfer learning
approaches may not be relevant to the CT features. The main
reason for that is those models were trained using natural
images. Other than using a pre-trained model, Zhong et al.
[91] and Shan et al. [58] have used a self-supervised learn-
ing model as a transfer learning strategy. In this approach,
they have trained a CNN model using natural images with
Gaussian noise. However, it can be concluded that using a
self-supervised learning model to fine-tune the target model
overcomes the drawback of using VGG-based pre-trained
models.

Batch normalization

Batch normalization is another technique used in LDCT res-
toration. It is used to improve training efficiency by reduc-
ing the statistical difference between the CT images [81].
Also, batch normalization contributes to faster convergence
and reduce sensitivity to initiate the learning model [50].
Its ability to solve the internal covariate shift boosts the fast
network convergence.

Future research directions

Performance is an ever-growing requirement in LDCT
restoration. In this regard, several knowledge gaps exist to
address within the current LDCT restoration domain. First,
the article explains the main issue that exists in supervised
DL methods. Usually, NDCT data are used as the labeled
data in supervised DL methods which are not free from noise
and artifacts. Therefore, the denoising accuracy of most of
the current supervised learning-based LDCT restoration
algorithms is reduced by these retaining noise components
in NDCT images. However, the application of migration
learning can be declared as a potential technique to be
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experimented for restoring the noise and artifacts in NDCT
images [28].

Proposing novel methods for training the DL models
in an unsupervised manner is also considered as an open
area in LDCT restoration. Alternatively, this will address
the absence of paired data in the clinical setup. The litera-
ture emphasizes proposing the cyclic-GAN models and
the definition of denoising-prior images from the NDCT
as currently proposed solutions [35, 53, 67]. However, the
efficiency and effectiveness of the defined denoising-priors
depend on the quality of the training dataset. Moreover, a
low-quality training dataset leads to generate fake or struc-
ture fragile CT results [53]. Thus, selecting a suitable dataset
for defining denoising-priors is challenging and empirical
[46]. Also, it is worth exploring the features shared between
LDCT and NDCT images, such as sharpening and sparse
information, when declaring denoising-priors to enhance the
functionality of LDCT restoration.

Attention networks are a DL method for improving
the performance of LDCT restoration, which got popular
recently. Although the current attention-based DL methods
have gained an acceptable visual performance in CT resto-
ration, the quantitative results of those proposed methods
are not optimal in some cases when comparing them based
on PSNR and SSIM measurements. The main reason for
that is the lack of attention given to the structural feature
preservation and tolerate the pixel-wise loss functions dur-
ing the model training [12, 42]. Therefore, the noise and
structure deformation still appeared as the degradations in
the restored CTs. Hence, proposing a multiple enhancement
features attention-based DL models is significant as future
research attempts to overcome this issue.

Generalizability directly affects improving the adapt-
ability and clinical usability of the denoising application.
Generally, it emphasizes how the proposed model can adapt
to unseen data extracted from various generalizability levels,
including different anatomies, noise levels, dimensions (2D,
3D or multi-dimensional), noise distributions, and vendors’
devices. The LDCT restoration applications reviewed in
this study have been widely tested for different noise levels,
image formats, and multi-anatomies. Hence, improving the
generalizability of DL-based LDCT restoration algorithms
for multiple scanners, organs, and imaging protocols are
essential. Apart from that, exploring the ways to the reduc-
tion of metal artifacts and motion artifacts during the resto-
ration is an open-ended question [28, 53].

Overall, it can be stated that the DL-based denoising
techniques have provided benchmarked adaptive denois-
ing solutions with a high visual performance. However,
the hyper-parameters in DL networks such as the number
of layers, number of filters, and different DL architectures
are critical factors that affect the accuracy of the results.
Therefore, it is essential to find a mechanism to initialize

these hyper-parameters optimally to enhance the accu-
racy of LDCT restoration results. Also, the experiment on
exploring the DL models with optimal hyper-parameters
is an open research area [4].

In the context of medical imaging, the performance
gained through transfer learning using the natural image-
based pre-trained network is not optimal. The main rea-
son for this is, the medical images are usually represented
as texture-rich low-contrast images than natural images.
However, it is recommended that targeted networks be
trained with pre-trained task-specific networks to obtain
optimal results [42]. In this approach, the target network
can be trained with task-relevant similar images [12, 83].
However, developing a task-specific pre-trained network
is challenging due to the difficulty of extracting large
amounts of annotated medical image data. In addition to
that, to improve the performance of the target network,
cross-model transfer learning networks can also be rec-
ommended as a plausible solution. Finding the models
for both task-specific and cross-model transfer learning
has been still existed an open issue to address. Unlike
the conventional cross-domain transfer learning models,
task-specific or cross-modal transfer learning models will
be able to match the exact features of the same domain,
thereby improving the performance and accuracy of the
denoising process.

Conclusion

Noise and artifacts are one of the inevitable degradation
factors in CT imaging. It reduces the visual quality of CT
images by obstructing the accuracy of clinical judgments.
DL-based LDCT restoration provides promising solutions
to overcome this issue. Therefore, this study has presented
a comprehensive review of DL-based LDCT restoration by
focusing on several important themes. Initially, this review
provided an overview of degradations in LDCT images.
Then, it has emphasized the various DL techniques and
architectures used in recent applications for LDCT restora-
tion. Moreover, this study has presented sound comparisons
of performance and functional aspects of DL-based LDCT
restoration applications. Analysis results have shown that
the GAN-based applications outperform the other DL-based
LDCT restoration algorithms due to their multi-objective
functions, flexibility to upgrade the generator architectures,
and the multi-scale discriminator. Finally, this study has
emphasized the open research problems and future research
directions for prospective researchers to come up with new
CT restoration-based research proposals that can improve
computer-aided diagnostic accuracy.
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Glossary

CT Computed Tomography

LDCT Low-dose CT

SNR Signal to Noise Ratio

NDCT Normal-dose CT

DL Deep Learning

MPGD Mixed Poisson Gaussian distribution
BM3D Block Matching Three Dimension
ML Machine Learning

CNN Convolutional Neural Networks
ReLU Rectified Linear Unit

SCN Stacked Competitive Network
ResNet Residual Network

DenseNet Dense Network

SSDA Stacked Sparse Denoising Autoencoder
GAN Generative Adversarial Network
SSIM Structural Similarity Index Matrix
PSNR Peak Signal to Noise Ratio

MSSIM Mean Structural Similarity Index
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