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Abstract

Brain storm optimization (BSO) is an emerging global optimization algorithm. The primary idea is to divide the population into
different clusters, and offspring are generated within a cluster or between two clusters. However, the problems of inefficient
clustering strategy and insufficient exploration exist in BSO. In this paper, a novel and efficient BSO is proposed, called BSO20
(proposed in 2020). BSO20 pays attention to both the clustering strategy and the mutation strategy. First, we propose a hybrid
clustering strategy, which combines two clustering strategies, i.e., nearest-better clustering and random grouping strategy. The
size of the subpopulation clustered by two strategies is dynamically adjusted as the population evolves. Second, a modified
mutation strategy is used in BSO20 to share information within a cluster or among multiple clusters to enhance the ability
of exploration. BSO20 is tested on the problems of the 2017 IEEE Congress on Evolutionary Computation competition on
real parameter numerical optimization. BSO20 is compared with several variants of BSO and two variants of particle swarm
optimization, and the experimental results show that BSO20 is competitive.
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Introduction

In human society, brainstorming is an effective method when
a group of people is facing a difficult problem. People
with different backgrounds are gathered together to con-
stantly propose new ideas in the process of cooperation and
mutual inspiration and finally solve the problem. The brain
storm optimization (BSO) [29] is a novel swarm intelli-
Xin Lin gence (SI) for global optimization inspired by this process,
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tion clustering strategy and the solution mutation strategy.
k-means is the clustering strategy used in the classic BSO.
However, the role of k-means for BSO is worth discussing.
First, k-means is suitable for spherical clustering, and can-
not deal with the clusters with arbitrary shapes. Second,
the expensive time complexity of k-means affects the effi-
ciency of BSO. Especially in the early stage of evolution,
it is meaningless to cluster by k-means when the individu-
als are scattered. Third, for the problem with D-dimensional
solution space and single objective space, k-means only con-
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siders clustering the population in the solution space but not
using the information of the objective space.

There has been a lot of work trying to improve the cluster-
ing strategy of BSO in different ways. First, researchers have
tried to improve the time efficiency of BSO from two per-
spectives. On the one hand, different grouping algorithms
were proposed to replace k-means, such as simple group-
ing method (SGM) [40], random grouping strategy (RGS)
[4]. Besides, a class of objective space-based grouping algo-
rithms [11,19,30] could greatly reduce the time cost, which
was first used in BSO-OS (BSO in objective space) proposed
by Shi [30]. On the other hand, some work tried to reduce the
times of calling for k-means [3,5] or controlled the number
of iterations of k-means [43]. Second, some researchers have
considered the fitness and the position of solutions simul-
taneously and proposed new clustering strategies, such as
fitness-guided clustering strategy [41], and the role-playing
strategy [6]. Third, some well-known clustering strategies
were also used in BSO, such as affinity propagation [8] and
agglomerative hierarchical clustering [7].

The mutation strategy is also the focus of BSO. In the clas-
sic BSO, the Gaussian mutation is performed on the selected
individual or combined individual, and a transfer function is
used to update the step size of the mutation. However, one
of the obvious defects of this mutation strategy is that the
mutation step size is a fixed schema. It does not depend on
the problem and the current population distribution.

The improvements of the mutation strategy mainly include
three categories. The first is based on the mutation strat-
egy of the classic BSO, such as the improvements of the
update strategy of step size [4,10,24,42], the mutation strat-
egy adaptive selection [38]. The second contains several new
mutation strategies, such as modified BSO (MBSO) [40],
advanced discussion mechanism-based BSO (ADMBSO)
[35], BSO with learning strategy (BSOLS) [32], adaptive
BSO with multiple strategies (AMBSO) [9], active learning
BSO (ALBSO) [5]. The third is hybrid algorithms formed
by BSO and existing algorithms, such as BSO with a chaotic
operation (BSO-CO) [36], BSO with differential evolution
[2], hybrid BSO and simulate annealing [16], and hybrid
covariance matrix adaptive evolution strategy and global-best
BSO [13].

In this paper, we propose anovel and efficient BSO, termed
BS0O20 (proposed in 2020). BSO20 improves the classic BSO
from two aspects. First, regarding the clustering strategy, an
efficient hybrid clustering strategy is designed. Second, in
terms of the mutation strategy, a modified mutation strategy is
proposed to improve the exploration efficiency. In summary,
the main contributions of this paper are listed as follows.

1. We propose a hybrid clustering strategy, which combines
nearest-better clustering (NBC) [27,28] and RGS. NBC
is a competitive clustering strategy based on the objective
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space and the solution space, which could better reveal
the information of the landscape. Especially, NBC is suit-
able for clusters with arbitrary shapes. Moreover, RGS is
used to cluster the scattered population in the early stage
of the optimization, as well as poor individuals in the
evolution process. By RGS, the hybrid clustering strategy
could reduce the time cost of the algorithm and increase
the diversity within a cluster.

2. We propose a modified mutation strategy for intra-cluster
and inter-cluster mutation. The primary idea is to enhance
the ability of individuals to share information and to
improve the exploration efficiency of the population. In
the intra-cluster, each selected individual shares informa-
tion with one better individual, and in the inter-cluster,
each selected individual shares information with two indi-
viduals from the different clusters.

BSO20 is tested on the problems of the 2017 IEEE
Congress on Evolutionary Computation competition on real
parameter numerical optimization (CEC’17 RPNO) and
compared with several up-to-date BSOs as well as two vari-
ants of particle swarm optimization (PSO). The experimental
results show that the performance of BSO20 is competitive.

The organization of this paper is as follows. The next sec-
tion introduces the related work. The details of the proposed
BS020 algorithm are described in the following section. Next
section demonstrates the experimental results and the param-
eter analysis. Following section discusses the CPU time and
the convergence of BSO20. Finally, the last section concludes
this paper and introduces the future work.

Related work

In this section, BSO and some of its clustering strategies
are reviewed. Then, a competitive clustering strategy NBC
is introduced.

Brain storm optimization

BSO was proposed by Shi [29], which is inspired by human
being’s brainstorming process. The core operations of an iter-
ation of BSO include the following three parts.

1. Solution clustering: The cluster strategy is used for divid-
ing the population, and N P individuals in the population
are clustered into k clusters. In order to avoid the prema-
ture convergence of BSO, the replacing operator is used
to control the initialization of a random cluster center with
the probability p;yi;.

2. Solution generation: In the classic BSO, a new solution
Xnew 18 generated according to Formula (1), where y is
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a base individual, d is the dimension index, N4 (0, 1) is
a random number obeying standard normal distribution,
and £(¢) is the step size at ¢-iteration updated according
to Formula (2).

xiy =y + &40 - N0, 1), 1)
£4(t) = logsig (%) - rand?. )

In Formula (2), T is the maximum number of iterations,
¢ is the current number of iterations, rand? is a random
number between 0 to 1 following the uniform distribu-
tion, and the transfer function “logsig(-)” is described by
Formula (3).

1

I +exp(—a)’ ®)

logsig(a) =

There are two mutations in BSO, namely intra-cluster
mutation and inter-cluster mutation, where the probability
of the intra-cluster mutation is pone_cluster, and the proba-
bility of the inter-cluster mutation is (1 — pone_cluster)- In
the intra-cluster mutation, an individual is selected from
a random cluster as the base individual y, where y is the
center of the selected cluster with the probability pone_best-
In the inter-cluster mutation, the base individual y is gen-
erated according to Formula (4).

y=roxi+0=r) x, )

where r is arandom number between O to 1, x;, and x;, are
two different individuals coming from two randomly clus-
ters, as well as x;, and x;, are the centers of the respective
clusters with the probability piwo_best-

3. Solution selection: The new solution is compared with the
old solution with the same index, and the better solution
is retained in the population.

Clustering strategies in BSO

The solution clustering strategy is one of the primary steps
of BSO, which has many classification methods. In this sec-
tion, the existing clustering strategies are divided into four
categories according to the difference of clustering space:
the solution space-based clustering strategies represented by
k-means [29], the objective space-based clustering strategies
represented by BSO-OS [30], the clustering strategy based
on both the solution space and the objective space, such as
fitness-guided clustering [41], and other clustering strategies.

Solution space-based clustering strategies

The solution space-based clustering strategies are the main-
stream clustering strategies in BSO, which is to divide the
similar individuals into one cluster according to the distance.

k-means is a popular clustering strategy used in BSO, and
itsideais as follows. First, k cluster centers are randomly gen-
erated in the solution space, and each individual is grouped
to the nearest cluster center. Then, the new cluster centers
are recalculated, and the population is grouped again around
the new cluster centers. The above steps are repeated until
clusters tend to be stable. However, k-means requires multi-
ple iterations to update clusters, and the number of iterations
is related to the choice of the initial cluster centers. In order
to reduce the time cost brought by k-means in the classic
BSO, efforts were made in two aspects. On the one hand, the
number of calling for k-means in BSO is reduced, such as
k-means is called with probability p. in [3] and [5], where p,
is a constant value in [5], whereas is dynamically adjusted in
[3]. On the other hand, the number of iterations of k-means
is reduced. For example, in [43], the median is used in place
of the mean in k-means, which stabilizes the cluster centers
to reduce the number of iterations.

In addition to k-means, affinity propagation clustering [8]
and agglomerative hierarchical clustering [7] have also been
adopted in BSO. Compared with k-means, the time complex-
ity O(n*log n) of these are high.

Moreover, some new clustering algorithms have been pro-
posed for BSO. For example, Zhan et al. proposed SGM
in [40]. SGM first randomly selects M different individuals
from the population as cluster centers at first, and then each
individual is grouped into the nearest cluster center.

Objective space-based clustering strategies

On the single objective optimization problems, the objective
space-based clustering strategies group individuals accord-
ing to fitness. In [30], Shi first proposed this strategy called
BSO-OS. The solutions are divided into two clusters in BSO-
OS. One cluster of individuals with better fitness is called
elite solutions, and the other cluster is called normal solu-
tions. There is no need to calculate the distance between
individuals in BSO-OS, which greatly reduces the compu-
tational burden. Similarly, in [19], Li et al. proposed the
BSO based on a competition mechanism, which designed
two competing groups in the same way.

In [11], Mohammed proposed another objective space-
based clustering strategy called fitness-based grouping,
which ensured that the good and the poor individuals in the
population are evenly distributed in each cluster.
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Clustering strategy based on solution and objective space

There was a little work that considers clustering individuals
in both the solution space and the objective space. In [41],
Zhang et al. proposed the fitness-guided clustering strategy,
and the clusters are formed as follows. First, all individu-
als in the population are labeled as unprocessed individuals.
Then, the best individual x; among unprocessed individuals
is selected as the cluster center. Next, n individuals nearest to
xp are selected from unprocessed individuals and are grouped
into a new cluster with x,. These individuals are labeled
as processed individuals. The above steps are repeated for
unprocessed individuals until all individuals are processed.
In [6], Chen et al. proposed an enhanced BSO with a role-
playing strategy (PRBSO). The solutions are grouped into
three clusters according to the fitness difference and distance
between all solutions and the best solution. Among them,
good solutions closer to the best solution are called innovative
ideas, good solutions far from the best solution are called
conservative ideas, and others are called ordinary ideas.

Other clustering strategy

In [4], Cao et al. proposed a random grouping BSO
(RGBSO), in which RGS is adopted as the clustering strat-
egy. RGS randomly divides the population into k clusters
of the same size. The best individual in each cluster is the
cluster center. Compared with other clustering strategies, the
time complexity of RGS is lowest, because there is no need
to calculate distances and sort the population. Moreover, the
diversity of each group is stronger in RGS. In [33], Wang et
al. proposed to use orthogonal experiment design to improve
the distribution of individuals in clusters.

Nearest-better clustering

Nearest-better clustering (NBC) [20,22,27,28] is an excellent
clustering strategy based on the solution space and objective
space for the multimodal optimization. NBC relies upon the
assumption that the distance between the optimal solutions is
greater than the weighted average distance of all individuals
to their nearest better neighbors. The details of NBC are as
follows.

First, the population P is sorted according to the fitness
value from the superior to the poor, and the distance of each
pair of individuals is calculated. Then, an empty tree is cre-
ated, and the best individual becomes the root node. For the
remaining individuals, each individual is connected to its
nearest better neighbor, and the length of the edge is the
distance between two individuals. In [20], the parent node is
called the leader, and the child node is called a follower. Next,
each edge in the tree is traversed, and all edges whose length
of edge greater than the threshold ¢ are cut off. Generally, the
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Fig.1 The schematic of NBC

threshold ¢ is set to the weighted average of the length of all
edges. Finally, each connected component forms a cluster.
Figure 1 illustrates an example of clustering the popula-
tion P = {x1, x2, x3, x4, x5} using NBC. In the figure, each
individual looks for its nearest better neighbor to form a tree.
Then, the edge e(x3, x4) is cut off according to the threshold
&, and finally, the population P is divided into two clusters.

The proposed algorithm: BSO20
Motivation

The core parts of the classic BSO are the clustering strategy
and the mutation strategy. However, there are some deficien-
cies in the performance of clustering and exploration that
need to be improved.

First, in the classic BSO, the population is clustered by k-
means before each iteration, and the higher time complexity
of k-means affects the efficiency of the algorithm. Moreover,
k-means only makes use of the information of the solu-
tion space, whereas the information of the objective space
is ignored. Although there have been some studies on the
clustering strategy, the performance still could be improved.
Consequently, there is a need to introduce a novel and effi-
cient clustering strategy for BSO, and NBC is considered in
this paper.

The steps of NBC include three parts: sorting with time
complexity O(nlogn), distance calculation with time com-
plexity O(n?), and cluster partition with complexity O (n).
Therefore the time complexity of NBC is 0 (n?), where n



Complex & Intelligent Systems (2021) 7:2415-2436

2419

is the population size. NBC uses the distance information of
the solution space and the fitness information of the objec-
tive space, which is promising for obtaining more knowledge
about the landscape. However, Luo et al. pointed out that the
“long-tail phenomenon” exists in NBC [23], which means
that the NBC may be unreliable to deal with poor individuals
in some cases. Therefore, in this paper, NBC is considered
for clustering better individuals, while the clustering strategy
RGS is considered for clustering poor individuals.

Second, for the mutation strategy of the classic BSO, the
primary defect is that the update of the step size is indepen-
dent of the problem and the state of the current population,
which affects the exploration performance of BSO. For this
reason, an improved mutation strategy is proposed, and the
generation of the base individual is modified to improve the
exploration efficiency.

In summary, a novel and efficient variant of BSO, named
BS020, is proposed in this paper. In the rest of this section,
the clustering strategy and the mutation strategy of BSO20
are detailed, and the algorithm flow of BSO20 is described
at the end of this section.

Clustering strategy of BS020

A new hybrid clustering strategy combining NBC and RGS
is used in BSO20. The primary idea is that NBC is used to
cluster better individuals to exploit the potential of promis-
ing areas, while RGS is used to cluster poorer individuals to
increase the diversity within the cluster, and to further reduce
the time cost of BSO20. In the early stage of evolution, indi-
viduals are scattered randomly in the search space, and RGS
is the main clustering strategy at this time. Then, NBC is
used to cluster better individuals when the promising areas
could be found, and the other individuals are clustered by
RGS to explore the search space. As the population evolves,
the number of individuals using NBC for clustering is grad-
ually increased, and finally, all individuals are clustered by
NBC.

The number and the size of clusters need to be considered
when designing a clustering strategy because a smaller num-
ber of clusters could affect the performance of inter-cluster
mutation, and a smaller size of clusters could affect the per-
formance of intra-cluster mutation. In this paper, the size of
clusters generated by RGS is set to S, in BSO20, and the
total number of clusters is set to k in the hybrid clustering
strategy (Formula (5)).

k=— (5)

where NP is the population size.

During the population evolution, the number of clusters
generated by RGS decreases linearly with the number of iter-
ations (Formula (6)).

o)

where T is the maximum number of iterations, # is the current
number of iterations.

Therefore, the number of individuals clustered by NBC
can be calculated as Formula (7).

Nppe = NP — &, - S, @)

In order to ensure the total number of clusters is &, the
number of clusters formed by NBC, i.e., k;,, should be set
to k — k. Therefore, the partition condition of NBC should
be modified, that is, the longest k, — 1 edges are cut off to
generate k, clusters.

Overall, the pseudocode of the clustering strategy of
BSO20 is given as Algorithm 1. Among them, lines 3—
7 describe the clustering process of NBC, and lines 9—12
describe the clustering process of RGS.

Algorithm 1 Clustering Strategy of BSO20

1: Record the index of the all individuals as A;

2: Calculate the number of clusters k, and &, ;

3. if k,;, > 0 then

4:  Calculate Ny, according to Formula (7);

5:  Select the best Ny, individuals from the population P and form
ky, clusters by NBC;

6:  Remove the index of best N, individuals from A;

7: end if

8: Shuffle the index of remaining individuals A;

9: for j < k, + 1tokdo

10:  Form j-th cluster with the top S, index in A;

11:  Remove the top S, index from A;

12: end for

Mutation strategy of BS020

The mutation strategy of BSO20 is an improved version
based on the classic BSO. The main idea of the modified
mutation strategy is to promote the efficiency of informa-
tion exchange between individuals within a cluster or among
multiple clusters to improve the exploration performance of
BSO.

Before describing the modified mutation strategy, a con-
cept of the leader set needs to be briefly introduced. In the
clusters formed by NBC, the leader set of an individual x
includes its ancestor nodes. In the clusters formed by RGS,
the leader set of an individual x includes the individuals
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which are better than x. Particularly, if the leader set of an
individual x is empty, then the leader of x is itself.

In the intra-cluster mutation, each selected individual
shares information with its random leader to generate a base
individual y (Formula (8)). In the inter-cluster mutation, each
selected individual shares information with two individuals
from two different clusters (Formula (9)).

v =1 —=r) x? +r-leader?, ®)
yd=(1—r1—r2)~x§l+r1-xlf’;—i-rz-xidz. ©)]
where r, r1 and r; are random numbers uniformly distributed
between O and 1, x; is an individual randomly selected
from the population, leader; is a leader individual randomly
selected from the leader set of x;, x;, and x;, are randomly
selected from two randomly selected clusters, and d denotes
the dimension index.

The mutation of the base individual y is the same as that
in the classic BSO, except that ./\/lf (0, 1) is used instead
N4(0, 1) in BSO20 (Formula (10)). The random numbers
generated by Gaussian distribution are limited between [b
and ub.

by =y + &%) - N O, 1),
ub, if N0, 1) > ub,

NE©, 1) = {1b, if N4(0, 1) < Ib,
N4, 1), otherwise,

(10)

where ub and 1b are the upper bound and lower bound of the
search space, respectively, and £7(r) is updated as Formulas
(2) and (3).

BSO20

In the above parts, the clustering strategy and the mutation
strategy of BSO20 are introduced. Algorithm 2 shows the
pseudocode of BSO20, and the details are described as fol-
lows.

First, after the population and parameters are initialized
(i.e., lines 1-2), the population P is clustered by the hybrid
clustering strategy, and the leader set of each individual is
obtained (i.e., lines 4-5).

Then, from line 7 to line 16, an individual x; is randomly
selected from the population to generate a base individual y.
The intra-cluster mutation is performed with the probability
Pone_cluster> and the inter-cluster mutation is performed with
1 - Pone_cluster-

Finally, from line 17 to line 22, a new individual xpey is
obtained from the base individual y by Gaussian mutation,
and the population is updated.

In BSO20, the replacing operator is not considered, due to
its contributing less to the algorithm, and this was verified by
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Algorithm 2 BSO20

1: Initialize parameters;

2: Initialize and evaluate the population P;

3: while the terminal condition is not satisfied do

4:  Cluster population P by Algorithm 1;

5:  Get the leader set of each individual;

6: fori < 1to NP do

7: Randomly select x; from population P;

8: if rand < pone_ciuster then

9: Randomly select leader from leader set of x;;

10: Generate the base individual y using Formula (8);
11: else

12: Randomly select two clusters C;; and C,;

13: Randomly select x;, from C;;;

14: Randomly select x;, from C;,;

15: Generate base individual y using Formula (9);

16: end if

17: Calculate the update step size &;

18: Generate the new individual x,,.,, using Formula (10);
19: Evaluate the new individual x,,¢y;

20: if X,y 1S better than x; then

21: Update individual x; by Xyey;

22: end if

23:  end for

24: end while

the experiment in [39]. Moreover, the selection probabilities
of cluster center pone best and Prwo_best are not considered.
In the intra-cluster mutation, the selected individual moves
towards its leader, so there is a chance to explore near the
cluster center. In the inter-cluster mutation, the selected indi-
vidual shares information within two clusters. BSO20 only
retains one parameter of the classic BSO, i.e., the proba-
bility of the intra-cluster mutation pone_clsuter> and adds one
parameter S, i.e., the size of clusters generated by RGS,
which reduces the hassle of tuning many parameters. The
source codes of BSO20 are available at https://github.com/
squrriler-xu/BS0O20.

Experiments

In this section, BSO20 is tested on the CEC’17 RPNO, and
the parameters of BSO20 are analyzed at the end of the sec-
tion.

Experimental setting

In this paper, 29 global optimization problems in CEC’17
RPNO [1] are used as the benchmark, which includes four
types of functions: unimodal functions (F7, F3), simple mul-
timodal functions (F4—F19), hybrid functions (F}1—F3p), and
composition functions (F21—F3p). The problem F; has been
excluded according to the recommendation of [1].

The dimensions D of the benchmark include 30D, 50D,
and 100D. For each function, this benchmark suggests that
the algorithm runs 51 times independently to calculate the
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mean as well as the standard deviation of 51 results [1]. The
maximum number of evaluations for one run is 10* x D.

In order to verify the performance of BSO20, the classic
BSO [29] and several variants are used as compared algo-
rithms in this experiment, namely BSO-OS [30], RGBSO
[4], BSO with chaotic local search (CBSO) [37], active learn-
ing BSO (ALBSO) [5], and bare-bones global-best BSO
(BBGBSO) [12]. BSO-NBC is also adopted for compar-
isons, which is similar to the classic BSO, except that NBC
is used as a clustering strategy instead of k-means. The
clustering strategies of the classic BSO and BSO-OS are
based on the solution space and objective space, respec-
tively. The clustering strategy of RGBSO is RGS. Therefore,
the above four algorithms are used to compare the effect
of the clustering strategy on the performance of the pro-
posed algorithm. BSO20 is also compared with the latest
variants of BSO, such as CBSO, ALBSO, and BBGBSO, to
demonstrate its competitiveness. Moreover, two variants of
particle swarm optimization (PSO), i.e., scout particle swarm
optimization (ScPSO) [17] and phasor particle swarm opti-
mization (PPSO) [15], are also added as compared algorithms
for comparison experiments.

BSO20 only includes two parameters, which are set as fol-
lows. The size of the cluster formed by RGS S, is set to 20,
and the probability of the intra-cluster mutation pone_cluster
is set to 0.1. In contrast, the compared algorithms have more
parameters than BSO20. For example, the classic BSO has 5
main parameters, namely the number of clusters k, the prob-
ability of replacing operator pini;, the intra-cluster mutation
probability pone_cluster» @S well as the cluster center selec-
tion probabilities pope best and Prwo_best- In addition, the
number of main parameters of BSO-OS, RGBSO, CBSO,
ALBSO, and BBGBSO are 3, 4, 5, 5, and 8, respectively.
The parameters of the above compared algorithms all adopt
the parameter settings recommended in the original litera-
ture [4,5,12,29,30,37]. Moreover, the population size of all
algorithms is set to 4D.

For each algorithm, the mean and standard deviation of
each function in 51 runs are counted as experimental results.
Moreover, the Wilcoxon signed-rank test is used for verify-
ing significant differences between the statistical results of
BS020 and the compared algorithms.

Experimental results

The experimental results on 30D, 50D, 100D functions
are listed in Tables 1, 2, 3, 4, 5, 6, and In each line, the
bolded term is the best mean or standard deviation of the
fitness values found by algorithms. In the last row of Tables
2, 4, and 6, the comparison results of BSO20 on different
dimensions with each compared algorithm are given, where
the symbol “+/—"" indicates that BSO20 is better/worse than
the compared algorithms.

The statistical results show that the performance of BSO20
remains stable on different dimensions. Comparing BSO20
with the classic BSO, there are 23, 24, 25 functions better
than the classic BSO on 30D, 50D, and 100D problems,
respectively, which can also be seen at the bottom of the
second column of Tables 2, 4, and 6. The experimental results
indicate that the performance of the classic BSO decreases as
the dimension increases, while BSO20 can maintain better
performance. Similarly, the comparison results of “+/—"
between BSO20 and BSO-OS are “25/4,” “25/4,” and “26/3,”
which can also be seen at the bottom of the third column of
Tables 2, 4, and 6.

Then, from the results of RGBSO and BSO-NBC, it can
be seen that RGS is competitive on higher dimensional prob-
lems, and NBC is also more valuable than k-means for BSO.
Furthermore, as shown at the bottom of the fourth and fifth
columns of Tables 2, 4, and 6, BSO20 achieves better results
in different dimensions, outperforming RGBSO and BSO-
NBC on more than 20 functions, which demonstrates the
superiority of the hybrid clustering strategy.

From the sixth columns to the eighth columns of Tables
1-6, comparisons between BSO20 against the state-of-the-
art variants of BSO show that BSO20 is the best performer
overall. BSO20 has great superiority when comparing with
CBSO and ALBSO. In particular, it outperforms ALBSO on
all functions. Moreover, compared with BBGBSO, BSO20
also performed well on 30D problems, but as the dimen-
sion increases, the competitiveness of BSO20 gradually
decreases, especially on the composition functions.

Finally, the last two columns of the Tables 1,2, 3,4, 5, 6 list
the results of the performance comparison between BSO20
and two variants of PSO. The experimental results indicate
that the performance of BSO20 is inferior to ScPSO on
30D problems, but is better than ScPSO on 100D problems.
Moreover, compared with PPSO, BSO20 performs better on
different dimensional problems, and the comparison results
of “+/—"" between BSO20 and PPSO are “19/10,” “18/11,”
and “17/12.”

BSO20 performs better on the multimodal problems than
the unimodal problems, which is determined by the feature
of BSO. Furthermore, BSO20 also performs well on the uni-
modal problems, such as F;. On the multimodal problems,
the modified mutation strategy improves the exploration abil-
ity of BSO20 and enhances the chance of BSO20 to find
better solutions. Moreover, on the hybrid functions, BSO20
achieves better results on most functions, while it has general
performance on the composition functions.

Wilcoxon signed-rank test
In this section, Wilcoxon signed-rank test is carried to further

analyze the experimental results. The results of the Wilcoxon
signed-rank test between BSO20 and all compared algo-
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rithms on 30D, 50D, and 100D functions are shown in Table
7, which are obtained by the open source software KEEL 3.0
[31]. The details of related statistical indicators can be found
in [14]. In each pair of comparisons of Table 7, the bolded
R values emphasize that BSO20 outperforms the compared
algorithm with a level of significance of 0.05.

As can be seen from Table 7, BSO20 significantly outper-
forms the classic BSO, BSO-OS, BSO-NBC, CBSO, and
ALBSO with a level of significance of 0.05 on different
dimensions. Compered with RGBSO and BBGBSO, BSO20
has significant superiority on 30D problems, but not sig-
nificant on 50D and 100D. Nevertheless, BSO20 is still
better than RGBSO and BBGBSO from the value of R™.
Therefore, the statistical results demonstrate the competitive
performance of BSO20. From the last two rows of Table
7, the values of signed rank RT and R~ demonstrate that
BSO020 is better than ScPSO on 50D and 100D problems,
and better than PPSO on 30D and 50D problems. However,
the experimental results also indicate that the performance
difference between BSO20 and SCPSO as well as PPSO is
not significant at a level of significance of 0.05.

Parameter analysis

BSO20 contains only two parameters, the intra-cluster muta-
tion probability pone_cluster. and the cluster size S,. In this
section, the impact of the parameters pone_cluster and Sy on the
performance of BSO20 are analyzed. For the convenience of
presentation, the logarithm of the mean fitness, i.e., log; (fit),
is used as the ordinate.

Parameter analysis of pone_cluster

Figures 2 and 3 show the mean values of experimental
results of functions Fy, F3—F3y with different intra-cluster
mutation probability pone clusters Where Pone_cluster 1S et to
0,0.1,...,0.9,1, and S, is set to 20.

From Figs. 2 and 3, it can be seen that, for the same func-
tion in different dimensions (i.e, 30D and 50D), the trend of
the mean changing with the parameter pone_cluster are similar.
The experimental results also indicate that for most func-
tions, inter-cluster mutation with greater probability could
achieve better results, especially on functions Fjg, F2> and
F39. However, there are some functions that are not sensi-
tive to the parameter pone_cluster, Such as F11—F13, Fac—F27.
Moreover, BSO20 with greater probability of the intra-cluster
mutation is more effective on some functions, such as F3, Fi4
and Fig, where F3 is a unimodel function, and Fy4, Fig are
hybrid functions including unimodal components.

From the experimental results, the following conclusion
could be drawn. For most multimodal functions, the inter-
cluster mutation has more effect on the performance of
BS020, while for some unimodal functions, the inter-cluster

Dieliase ¢llodi ay .
bes Shenas Q) Springer

mutation may not be significant. One of the reasons for
this situation is that for global optimization problems, the
inter-cluster mutation helps share information between mul-
tiple clusters, and the clusters are gathered slowly, which is
beneficial to further exploitation of promising areas for the
algorithm.

Parameter analysis of S,

The parameter S, determines the total number of clus-
ters k in BSO20, and k determines whether BSO20 prefers
exploitation or exploration. If £ is small, the clusters gather
faster, and BSO20 tends to exploit. Conversely, BSO20 tends
to explore if there are many clusters. In order to ensure that
k is an integer, S, is set to {5, 10, 20, 24, 30, 40} for 30D
problems, and S, is set to {5, 10, 20, 25, 40, 50} for 50D
problems. Moreover, pone_cluster 15 set to 0.1.

Figures 4 and 5 show the mean values of experimental
results of functions F, F3—F30 with different clusters size S,..
There are trends in Figs. 4 and 5 to suggest that S, has a little
impact on the performance of the algorithm on most func-
tions, except for 50D function F3;. In other words, BSO20 is
not sensitive enough to the parameter S, on most functions.
Moreover, the results also reveal that the effect of S, on the
performance of the algorithm is related to the landscape of
functions. For example, BSO20 prefers a larger S, for func-
tions F»o and F>y, while a smaller S, for function F3 and
F3.

Discussion

BSO20 includes two improvements, i.e., the clustering strat-
egy and the mutation strategy. In this section, the impact
of the hybrid clustering strategy and the modified mutation
strategy of BSO20 in terms of CPU time consumption and
convergence are discussed.

CPU time consumption

The clustering strategy is one of the crucial parts that affects
the efficiency and performance of BSO. In this paper, the
hybrid clustering strategy combining NBC and RGS was pro-
posed. Compared with the classic BSO, the proposed hybrid
strategy improves the efficiency and performance of BSO. In
this section, CPU time consumption is used as an indicator
to compare the efficiency of BSO20 and the classic BSO.

The details of the platform we used are Intel(R) Xeon(R)
CPU E5-2640 v4 2.4 GHz processor, 32GB RAM, MATLAB
R2017b, and Windows Server 2012 R2. The experiments
open up a parallel pool, which processes 29 functions in par-
allel, and the algorithm runs independently on each function
51 times.
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Table 7 Results obtained by the

. . VS 30D 50D 100D
Wilcoxon signed-rank test for
BSO20 R* R~ pvalue R* R~ pvalue R* R~ p value
Classic BSO 369.0 66.0 0.001 355.0 80.0 0.002 342.0 93.0 0.006
BSO-0S 382.0 53.0 0.000 378.0 57.0 0.000 367.0 68.0 0.001
RGBSO 330.0 105.0 0.014 296.0 139.0 0.092 275.0 160.0 0.210
BSO-NBC 328.0 107.0 0.016 343.0 92.0 0.006 332.0 103.0 0.012
CBSO 384.0 51.0 0.000 361.0 74.0 0.001 343.0 92.0 0.006
ALBSO 435.0 0.0 0.000 435.0 0.0 0.000 435.0 0.0 0.000
BBGBSO 348.0 87.0 0.004 289.0 146.0 0.126 252.0 183.0 0.449
ScPSO 194.0 241.0 1.000 221.0 214.0 0.931 273.0 162.0 0.226
PPSO 230.0 205.0 0.779 243.0 192.0 0.574 187.5 247.5 1.000
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The Fig. 6 shows the experimental results on 30D and 50D
functions. The CPU time consumption of BSO20 on each
function is less than the classic BSO. It can be concluded that
the clustering strategy adopted by BSO20 is more efficient
than k-means adopted by classic BSO. Therefore, experimen-
tal results of the algorithm performance and the CPU time
consumption both support that the hybrid clustering strategy
is superior to k-means adopted by the classic BSO.

Convergence analysis

BSO020 is a variant of BSO, which has the advantage of BSO
exploring multiple promising regions in parallel. The novel
mutation strategy increases the step size of each mutation
and shares information among multiple clusters to improve
the exploration efficiency.

In this section, the functions Fi, Fs, Fi5 and F3q are
selected as the representatives of unimodal functions, sim-
ple multimodal, hybrid functions, and composition functions.
The population radius could be used to analyze the conver-
gence of the algorithm on these functions [18]. In this paper,
the population radius is calculated as Formula (11).

r = max {II%; — Xmeanll}, (11
1<i<n

where x; is the ith individual in the population, Xyean repre-
sents the center of the population, which is set to the mean of
all individuals, || - || represents the Euclidean distance, and n
is the population size. There is one difference from [18], we
adopt the maximum value of the distances between all indi-
viduals and the center of the population as the population
radius instead of the average.

Figure 7 shows the changing trends of the population
radius on 30D and 50D functions during evolution, where
the ordinate is the population radius and the abscissa is the
number of iterations. The experimental results reveal that
the population radius decreases significantly as the iteration
number increases. The changing trends of the population
radius shown in Fig. 7 could be divided into three stages.
In the early stage of the algorithm, multiple clusters are
distributed in different regions, and the population radius
is large. Subsequently, about 1200-1500 iterations, multi-
ple clusters gather, BSO20 focuses on exploiting the local
regions. Finally, the population will converge. However,
population convergence cannot always be guaranteed. For
example, the population radius of 50D function F3p eventu-
ally tends to 10~!. The reason for this situation is that there
are multiple clusters localized to local peaks.

Conclusions

In this paper, we have proposed BSO20 as the improvement
of the classic BSO for real-parameter numerical optimiza-

Dieliase ¢llodi ay .
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tion problems. The major changes of BSO20 include the
clustering strategy and the mutation strategy. First, a hybrid
clustering strategy was proposed in this paper for BSO20,
which combines NBC and RGS, and the subpopulation size
clustered by two strategies was dynamically adjusted as the
population evolves. The new clustering strategy not only has
superiority in time efficiency but also achieves good results
in experiments. Second, a modified mutation strategy was
also proposed for BSO20 to enhance the exploration ability.
Overall, BSO20 improves the time efficiency and the search
efficiency of BSO. Moreover, BSO20 reduces the number of
parameters of the classic BSO to ease the difficulty of tuning
parameters. BSO20 has been tested on CEC’17 RPNO and
compared with several other BSOs as well as two PSOs. The
experimental results have demonstrated the competitiveness
of the proposed algorithm.

In the future work, we will further improve the BSO20,
especially the adaptive strategy to adjust the parameters
dynamically to balance the convergence and diversity of
the population. Additionally, we will draw on the successful
experience of differential evolution (DE) and particle swarm
optimization (PSO), and strive to improve the performance
of BSO20 to achieve more highly-competitive results.
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