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Abstract
This work proposes a population evolution algorithm to deal with optimization problems based on the evolution characteristics
of the Phasmatodea (stick insect) population, called the Phasmatodea population evolution algorithm (PPE). The PPE imitates
the characteristics of convergent evolution, path dependence, population growth and competition in the evolution of the stick
insect population in nature. The stick insect population tends to be the nearest dominant population in the evolution process,
and the favorable evolution trend is more likely to be inherited by the next generation. This work combines population growth
and competition models to achieve the above process. The implemented PPE has been tested and analyzed on 30 benchmark
functions, and it has better performance than similar algorithms. This work uses several engineering optimization problems
to test the algorithm and obtains good results.

Keywords Phasmatodea population evolution algorithm · Population competition model · Population growth model ·
Optimization problems

Introduction

Most of the engineering fields have complex optimization
problems, which needs to be abstracted into specific mod-
els based on the existing problems, and specific methods are
designed to get the optimal solution of themodel [6,8,39,46].
Although there are different methods in many broader fields
[5,30,48,49], includingmachine learningmethods, data min-
ing methods, complex network methods, etc., for problems
in the optimization field, more and more different optimiza-
tion algorithms are proposed [14,47,50]. Some engineering
optimization problems need to obtain an accurate optimal
solution. But for problems that cannot find the global opti-
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mal solution in a finite time, a meta-heuristic algorithm is
usually used to obtain an approximate optimal solution [17].
Meta-heuristic algorithm is an effective and widely applica-
ble stochastic optimization algorithm. It is widely used in
industrial and economic issues to handle complex optimiza-
tion problems [3,25,27,33].

After a long period of development, the meta-heuristic
algorithm has been continuously developed from the clas-
sic Particle Swarm Optimization (PSO) [7,20,38], Genetic
Algorithms (GA) [15], Simulated Annealing algorithm (SA)
[22] and other algorithms, and there have been many other
different types of algorithms applied to different problems,
including Ant Colony Optimization (ACO) [10], Artificial
Bee Colony algorithm(ABC) [18], Cuckoo Search algo-
rithm(CS) [51], Gravitational Search Algorithm (GSA) [40],
Butterfly Optimization Algorithm (BOA) [1],Fish Migra-
tion Optimization (FMO) [4], Grey Wolf Optimizer (GWO)
[16,29], Charged System Search algorithm (CSS) [19],
Atom Search Optimization (ASO) [53] and other algo-
rithms [28]. According to different sources of inspiration,
meta-heuristic algorithms can be divided into biological
inspiration, physical inspiration, and evolutionary inspira-
tion, etc. [13] Different meta-heuristic algorithms can also
deal with problems in different fields and have achieved
good results, such as digital watermarking [37], wireless
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sensor network [11,23,26,32,34,43], vehicle routing prob-
lem [36,54], hydropower station optimization problem [44],
remote sensing image contrast [45], classification ofmultiple
power quality disturbances [52], etc.

The different algorithms mentioned above have different
principles, but they are all based on the interaction between
individuals to achieve different behaviors, and each itera-
tion tries to find a better solution. The movement of an
individual is mainly affected by the global optimum or the
individual’s historical optimum. The main information inter-
action is one or several good solutions that affect all other
solutions [20,29]. There are fewer data interaction methods
between two arbitrary individuals [1,51]. The movement of
the individual is mainly achieved by approaching the global
optimal or random movement, and the individual lacks cer-
tain autonomous decision-making ability [20]. In addition,
the individual in the algorithm is usually directly expressed
as the solution in the decision space, which corresponds to
the fitness value of the solution. The individual can only rely
on the fitness value or other solutions to judge the next move
direction, and there is no other basis. Moreover, the way an
individual calculates the direction of movement is usually a
fixed formula, mostly based on the location of other individ-
uals or random changes, and rarely chooses based on their
own conditions.

Based on the above, this paper refers to the evolution char-
acteristics of the stick insect population, and proposes the
Phasmatodea population evolution algorithm (PPE) to deal
with optimization problems in the N -dimensional decision
space. In the following statement, stick insects have the same
meaning as Phasmatodea.

Different from other algorithms that treat individuals as a
solution in the decision space, this paper treats a solution as a
stick insect population, and this population has the attribute
of population size in addition to the corresponding calcu-
lable fitness value. The evolution of the population will be
reflected in the change of the population, and the trend of
population evolution will also be affected by the number of
its own population. It is equivalent to providing an additional
data support for the change of the solution. A population will
make different decisions based on its own population size,
and the change in population size is the result of all previ-
ous decisions of the population. The size of the population is
also affected by environmental changes to a certain extent.
An earlier version of this work was presented at the 2nd
International Conference on Industrial Artificial Intelligence
[42].

The PPE algorithm introduces a population competition
model to realize themutual influence of any two populations.
In the real world, differences and barriers in geographic envi-
ronments will affect population evolution, and there aremore
interactions between different populations in close and sim-
ilar geographic environments. Therefore, the PPE algorithm

uses multiple nearest optimal solutions to replace the global
optimal solution, increasing the diversity of population evo-
lution trends. The algorithm mainly draws on the convergent
evolution, path dependence,mutation, and population growth
and competition models in the evolution of the stick insect
population. The algorithm is built according to the above-
mentioned characteristics, and the performance of the PPE is
tested using the benchmark functions. Finally, the proposed
algorithm is used to deal with some application problems,
and good results are achieved.

The article is organized as follows. Section “Inspiration”
introduces the related algorithms and the evolution model of
the stick insect population. Section “Simplified Phasmatodea
population evolution optimization algorithm” introduces the
specific composition and steps of the PPE algorithm. Section
“Experimental results” tests and analyzes the performance
of the PPE algorithm. The PPE is proposed to deal with dif-
ferent application problems and demonstrated in “PPE for
engineering problems”. Section “Conclusion” summarizes
and discusses this paper.

Inspiration

The evolution of the stick insect population is closely related
to themimic adaptation to the environment [2]. The evolution
trend of the stick insect population is to change with envi-
ronmental changes and integrate itself into the surrounding
environment [12,21]. Therefore, the movement of the solu-
tion in the decision space can be regarded as the evolutionary
trend of the stick insect population, and the change in fitness
value before and after the solutionmovement can be regarded
as the change of the environment. The stick insect population
is affected by the environmental change and will produce the
next evolutionary trend.

The next evolutionary trend is affected by many charac-
teristics. By studying the evolution process of stick insects,
this article mainly chooses the following characteristics to
construct the next evolutionary trend. It mainly includes con-
vergent evolution, evolutionary path dependence, population
mutation, population growth and competition models.

(1) Convergent evolution considers the impact of the envi-
ronment, and information exchange is blocked by the
geographical environment.

(2) Pathdependence considers environmental changes,which
will affect population evolution trends.

(3) The population has a certain degree of initiative and will
respond to changes in the environment.

(4) Population size and competition between populations
will affect population evolution.
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The first is the concept of convergent evolution. For
populations, similar living environments are more likely to
produce similar evolutions. Due to the barrier of the geo-
graphical environment (the fitness landscape), the evolution
of the population is closer to the nearest optimal solution, but
not necessarily to the global optimal.

The second is the path dependence in the evolution of the
population. If the population has better survival conditions
after evolution, the population will generally continue the
previous evolution trend. This is a relatively labor-saving
evolution, but if the survival conditions become worse after
the population evolves, Then the population may change the
evolutionary trend.

Path dependence is similar to the greedy algorithm, which
seeks the next position by continuing the previous movement
trend. The underlying assumption is that the environment
changes monotonously in a certain direction. The path in
this article refers to the evolutionary trend of the population,
and the population tends to continue the evolutionary path
that achieved better results before.

The last is the population growth and competition model.
In this paper, each population has two attributes: popula-
tion quantity and growth rate. Population competition and
changes in the environment will affect the population quan-
tity and growth rate. When the population of a species is
not restricted by the environment and resources, its popu-
lation increases exponentially, but in the real environment,
resources and space are limited, so the population growth
model is often described by the following formula

dp

dt
= rp(1 − p

K
) (1)

For Eq. (1), p is the population quantity, r means the effec-
tive growth rate of the population, K represents themaximum
environmental capacity of the population of a species.

In thePPEalgorithm, this paper uses the logistic difference
equation, let K = 1 [31]. Then, using the population quantity
at t can calculate the population quantity at t + 1 as

pt+1 = apt (1 − pt ) (2)

For Eq. (2), a represents the growth rate, p is between 0
and 1, and the value of a is between 0 and 4.When a exceeds
the interval 0–4, it is meaningless. If a < 1, it means that the
population quantity p is gradually decreasing, and eventually
the population quantity will decrease to 0, and the population
will disappear. If 1 < a < 3, the population quantity will
slowly converge to a stable value p = (a − 1)/a. If a > 3,
the population quantity will become unstable and fall into
chaos.

In addition to the impact of environment and resources
on population growth, competition between different pop-

ulations will also affect the number and growth rate of
populations, and the disadvantaged populations may disap-
pear. The population competition model is usually described
by the following equation:

dp

dt
= r1 p

(
1 − p

n1
− s1

q

n2

)
(3)

In Eq. (3), q represents the population quantity of another
population. r1 represents the effective growth rate of the pop-
ulation p. n1 is the maximum environmental capacity of
population p, n2 is the maximum environmental capacity of
population q. s1 means that relative to the resources support-
ing p, a unit quantity of q consumes s1 times more resources
than a unit quantity of p.

Based on the above description of the evolution char-
acteristics of the stick insect population, combined with
the population growth and competition model, this paper
attempts to implement the PPE algorithm and improve its
performance.

Simplified Phasmatodea population
evolution optimization algorithm

In this paper, an improved stick insect population evolution
algorithm is designed to deal with the minimization of n-
dimensional space. This section attempts to design a new
heuristic optimization algorithm, trying to integrate historical
population decision data, population autonomous decision-
making ability, and interaction between arbitrary populations
into the algorithm framework.

The algorithm mainly includes three parts: initialization,
population position update, and population evolution trend
update. Next, the three parts are introduced separately.

Initialization

Suppose there are Np solutions in the n-dimensional space,
and each solution is represented by x , and x is a point in
the n-dimensional space, that is, x = [x1, x2, . . . , xn]. We
regard a solution x as a stick insect population, assuming
that it has certain autonomous decision-making ability. Each
population has twoattributes: population quantity andgrowth
rate, pi (1 ≤ i ≤ Np) represents the quantity of the i-th
population (solution), and ai means the growth rate of the
i-th population.

First, randomly generate Np populations (solutions) x ,
and the population quantity of each population x is calculated
by

pi = 1

Np
(4)
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For later use, the population quantity pi of the i-th pop-
ulation is initialized to a decimal in Eq. (4). In addition, the
growth rate a of each population is set to a fixed value of 1.1,
whichmeans that all populations have a good survival state in
the initial situation, and then as the environment changes (the
population position x changes), the quantity of populations
will change.

Based on the introduction in “Inspiration”, for population
x , its evolution process is more similar to the dominant pop-
ulation with similar living environment and closer distance,
and it is not necessarily able to achieve convergent evolution
to the global optimal population. This is not only due to the
barrier of the geographical environment, but also because the
characteristics of the global optimal population cannot make
the population x find a better position in the current area.

Therefore, this article selects k historical optimal solutions
to guide the movement of the surrounding solutions, stored
in Ho, Ho = [xh1, . . . , xhi , . . . , xhk]. Among them, xhi is
the i-th optimal solution that has appeared, xh1 is the optimal
solution of all the solutions that have appeared, and xh2 is the
optimal solution that has appeared only after xh1. If a total
of Np solutions are generated, then the number of k is

k = �log(Np)� + 1 (5)

Ho uses the Np solutions generated by the initialization
process to select k optimal solutions, and its fitness value is
stored in the corresponding array.

Ho is used to store the best first k solutions in the past
search process, and the judgment of the quality of the solution
is obtainedby calculating thefitness value. Ho is used to store
the nearest optimal solution to guide the movement of other
solutions around.

Population position update

After the population is initialized, the population position
needs to be updated. After the update of the population posi-
tion xt at time t , it will move to a new position xt + 1 and
in a new environment, this position change is represented by
the evolution trend ev. The position update formula is

xt+1 = xt + ev (6)

For Eq. (6), ev is the evolutionary trend of stick insect
populations. After the population position changes, it is
necessary to re-evaluate all populations, update the global
optimal solution gbest and k optimal solutions Ho.

Population evolution trend

The update of the population trend mainly includes three
parts. The first two parts choose different ways to update

according to the comparisonof the quality before and after the
trend update. The third part uses the population competition
model to update. The first two parts represent the choice of
the autonomous decision-making strategy of the population,
there are two kinds, and the third part represents the mutual
influence between the population.

The first is the update of the first two parts, which mainly
use the characteristics of population growth model, conver-
gent evolution and path dependence. After the population
position is updated, the updated population is evaluated. If
it is better than before, then the first part of the population
trend update is performed, otherwise the second part of the
population trend update method is performed.

The first part first updates the population quantity, and the
update equation is

pt+1 = at+1 pt (1 − pt ) (7)

After using Eq. (7) to update p, the population trend ev
needs to be updated. The update method mainly contains
three parts.

The first is the convergence to the nearest optimal, and
secondly, because the previous evolutionary trend evt has
obtained better results, then the next update is more likely
to continue the previous evolutionary trend, which is called
path dependence. Path dependence is similar to the greedy
algorithm, which seeks the next position by continuing the
previous movement trend. The underlying assumption is
that the environment changes monotonously in a certain
direction. Finally, there are mutations within the population.
Therefore, the update equation of population trend is as fol-
lows:

evt+1 = (1 − pt+1)A + pt+1(evt + m) (8)

For Eq. (8), A represents the degree of approach to the
nearest optimal, and the calculation formula is

A = (s(Ho, xt ) − xt ) · c (9)

For Eq. (9), s(Ho, xt ) is used to find the historical optimal
solution that is closest to xt in Ho, c is the coefficient of the
influence degree of the nearest optimal solution on the current
population, usually less than 1, which is a fixed value of 0.2
in this article. m represents the mutation of the population in
some dimensions, first randomly select w dimension (w ≤
n), then use the standard normal distribution to generate a
random number. Finally, an n-dimensional mutation vector
m is formed by m = m(Ub − Lb) × 0.2, Lb is the lower
limit andUb is the upper limit of n-dimensional space, Lb =
[lb1, . . . , lbn], Ub = [ub1, . . . , ubn].

The second part is that the population position does not
obtain a better value after the previous update, then the pop-
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ulation will no longer maintain the original trend, but tend to
the nearest optimal solution, and at the same time produce
unpredictable disturbances. However, before this, the pop-
ulation has a certain probability to maintain the relatively
poor situation after the update, so as to have the opportunity
to jump out of the current area. In the process, the population
size will change according to Eq. (7).

Based on the above description, the probability that the
population accepts a poor solution is set to pi , that is, the
quantity of current population. And the population trend
update formula in the second part is

evt+1 = rand · A + st · B (10)

For Eq. (10), rand represents an n-dimensional ran-
dom vector generated using a uniform distribution, and
each dimension is between 0 and 1, and B represents an
n-dimensional randomvector generated using a standard nor-
mal distribution. st is initially set to (Ub−Lb)×0.1, andwith
each iteration of the algorithm, st is updated to st = st×0.99.

The third part is the impact of the competition between
populations on the evolution trend of the population. The
population competition model refers to Eq. (3), and a simple
modification is made here. The revised formula is

pi = pi + ai pi

(
1 − pi − f (x j )

f (xi )
p j

)
(11)

When the population xi is competing with x j , the popu-
lation quantity of xi is calculated using Eq. (11). Compared
to Eq. (3), both n1 and n2 are 1, and s1 is calculated as the
ratio of the fitness values between the xi and x j .

Where xi is the current population, x j is randomly selected
fromother Np−1 populations, and then the distance between
the two populations needs to be judged and compared with a
given threshold G. The calculation formula for G is

G = 0.1 × (Ub − Lb)
Max_gen + 1 − t

Max_gen
(12)

For Eq. (12), Max_gen means the number of iterations,
and t represents the current number of iterations. The thresh-
old G will become smaller and smaller as the number of
iterations increases.

If the distance between the current population xi and other
randomly selected population x j is less than the thresholdG,
then it is considered that the two populations have competed.
Competition will have an impact on the evolution trend of the
current population xi , which is described by the following
formula

evt+1 = evt+1 + f (x j ) − f (xi )

f (x j )
(x j − xi ) (13)

In addition, when the population is too small or the pop-
ulation growth rate exceeds the normal range, the solution
needs to be eliminated, and a new population is generated
to replace, indicating that the current stick insect population
disappears due to poor adaptability to the environment.

Based on the above statement, the pseudo-code of the PPE
is shown in Algorithm 1.

Algorithm 1: PPE

1

Initialize Np populations;
Initialize ev, p, k use Eq 4, Eq 5;
Calculate fitness f (x), set gbest and Ho;
for t = 2 to Max_gen do

Update each x to newx use Eq 6;
Calculate new fitness f (newx), update gbest and Ho;
for i = 1 to Np do

if f (newx) ≤ f (x) then
Update x = newx , update f (x);
Update pi use Eq 7;
Update evi use Eq 8 and 9;

else
if rd < pi then

Update x = newx , update f (x);
Update pi use Eq 7;

Update evi use Eq 10;

Randomly choose a solution x j , ( j �= i);
if dist(x j , xi ) < G then

Update pi use Eq 11, update evi use Eq 13;

In Algorithm 1, rd means a random number generated
using a uniform distribution, and the range is 0–1. The dist
function is used to calculate the Euclidean distance between
two n-dimensional vectors. Algorithm code is exposed on
the website (https://github.com/Spacewe-outlook/PPE).

Experimental results

Benchmark function and parameter settings

Based on the previous introduction, this section tests the per-
formance of the proposed PPE. This article uses benchmark
functions to test the performance of the PPE and analyzes the
performance of the PPE algorithm in different dimensions.

There are many test functions for related algorithms, but
there are some common test suites in the CEC competition.
This paper uses CEC2014 [24] benchmark suites for testing.
All the benchmark functions include 3 unimodal functions
(F1–F3), 13 simple multimodal functions (F4–F16), 6 mixed
functions (F17–F22) and 8 composition functions (F23–
F30).

To show the performance of the proposed PPE algorithm
more objectively and truthfully, the more classic PSO [20]
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Table 1 Parameters setting of every different algorithm

Algorithm Parameter

PSO Np = 20, c1 = 2, c2 = 2, inertia constant: 0.8–0.2 linearly
decreasing

SLPSO Np = 20 (m = 20), M = 100, α = 0.5, β = 0.01

GA Np = 20, crossover rate = 0.4, mutation rate = 0.1

SA Np = 1, initial temp = 0.1, temp reduction rate = 0.99,
mutation rate = 0.5

GSA Np = 20, initial gravitational constant = 100, decreasing
coefficient = 20

GWO Np = 20

BOA Np = 20, power exponent = 0.1, modular modality =
0.01, probabibility switch = 0.8

ASO Np = 20, depth weight = 50, multiplier weight = 0.2

PPE Np = 20

and GA [15] algorithms are selected in the manuscript, and
then several other algorithms proposed in recent years are
selected, including the GSA algorithm in 2009 [40] and
the GWO algorithm in 2014 [29], Social Learning Particle
Swarm Optimization (SLPSO) algorithm in 2015 [7], BOA
[1] and ASO [53] algorithms in 2019. The parameter settings
of related algorithms are shown in Table 1.

Table 1 shows the parameter settings of different algo-
rithms and the number of solutions Np generated in each
iteration.

Comparison with other algorithms

After determining the algorithm to be compared with and the
parameters of the corresponding algorithm, for a fairer com-
parison, it is also necessary to ensure that different algorithms
perform the same function evaluation times. Therefore, the
function evaluation times of all algorithms in this article
are 40,000. The dimension is 30, each different algorithm
is run 30 times on different functions and the average value
is recorded. The overall performance of each different algo-
rithm compared with the PPE was measured at a significant
levelα =0.05 under theWilcoxon’s sign rank test. The results
are shown in Table 4.

Table 2 is the test results of the proposed PPE and other
algorithms on 30 benchmark functions. The symbol (<)

means that the algorithm does not perform as well as the
PPE on the current benchmark function. And the symbol
(=) means that the two algorithms perform similarly on the
current benchmark function. And the symbol (>)means that
the PPE performs poorly. In the last row of the table, the
comparison results on all functions are summarized.

Shown in Table 4 are the Wilcoxon’s sign rank test results
of each algorithm compared with the PPE algorithm at a
significant level of 0.05. The symbol (+) indicates that the

performance of the algorithm under the current benchmark
function is significantly worse than that of the PPE algo-
rithm, the symbol (−) indicates that the performance of the
current algorithm is stronger than the PPE algorithm, and the
symbol (≈) indicates that there is no significant difference
between the performance of the current algorithm and the
PPE algorithm.

For Table 2, the overall performance of the PPE on the
30 functions of CEC2014 is better than SLPSO, GA, SA,
BOA, GSA, GWO algorithms, and similar to the overall per-
formance of PSO and ASO algorithms. Compared with SA
algorithm, the performance of PPE on 25 benchmark func-
tions is better than SA algorithm. Compared with the PSO,
the PPE only has better performance on 16 benchmark func-
tions than the PSO, and cannot achieve an overwhelming
advantage. At the same time, the performance of the PPE is
better than that of the ASO on only 15 benchmark functions.
Due to the randomness of the algorithm test, the PPE cannot
achieve an overwhelming advantage.

To compare the performance of different algorithms on
different types of benchmark functions more clearly, this
paper sorts out the data in Table 2, finds out which algorithm
obtains the optimal solution for each benchmark function,
and summarizes according to the type of benchmark func-
tion. The results are shown in Table 3.

Table 3 shows and compares the performance of the algo-
rithm on different types of benchmark functions.

Table 3 compares how many functions the current algo-
rithm has achieved the best results in each type of function
compared to all other algorithms.

In Table 3, the PPE has achieved the best solution among
all algorithms on seven functions, and at the same time,
stronger than all other algorithms. The BOA algorithm per-
forms well on the composition function, which is stronger
than other algorithms, but the effect is worse than other algo-
rithms on other types of functions.

Convergence evaluation

For meta-heuristic algorithms, it is not only necessary to
compare the final results of different algorithms, but also to
consider the convergence of the algorithm. Algorithms with
different convergence speeds may eventually obtain similar
results, so this article shows the convergence of the proposed
PPE algorithm, as shown in Figs. 1 and 2.

Due to space limitations, only partial results are shown
here. The type of the selected functions are different, the
performance of the algorithms are also different, and all the
test results are displayed on the website (https://github.com/
Spacewe-outlook/PPE).

In Figs. 1 and 2, the horizontal axis is the number of func-
tion evaluations. To show the difference between different
curves more clearly, the vertical axis is Log( f − f ∗). f
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Table 3 Performance of
different algorithms on different
types of functions

Function type PSO SLPSO GA SA BOA GSA GWO ASO PPE

Unimodal 1 0 0 0 0 0 0 0 2 3

Multimodal 0 0 2 0 0 2 2 4 3 13

Hybrid 2 0 0 1 0 1 0 0 2 6

Composition 1 0 0 0 5 0 0 2 0 8

Win 4 0 2 1 5 3 2 6 7 30

represents the final result obtained by the algorithm on a
benchmark function. f ∗ represents the minimum value of
the current benchmark function.

In Fig. 1, the final results of the PPE algorithm on the
benchmark functions F1 and F3 are better than other algo-
rithms, but in the early stage of algorithm execution, the
PPE algorithm’s convergence speed is slower than other
algorithms. The final results of the PPE algorithm on the
benchmark functions F5 and F10 are worse than other algo-
rithms, but in the early stage of the algorithm execution, the
convergence speed of the algorithm is better than that of the
PSO, GWO, and GSA algorithms.

According to Fig. 2, the proposed PPE algorithm has con-
tinuous convergence ability on the benchmark functions F17
and F20. In the later stage of the algorithm execution, the pro-
posed PPE algorithm is not easy to fall into a local optimum
compared to other algorithms, but the convergence speed
is slower. The PPE algorithm has better performance on the
benchmark function F21, and the final result is slightly better
than all other algorithms, but the performance on the bench-
mark function F30 is more general.

Compared with other algorithms, the PPE algorithm has a
downward trendwithin the given evaluation times.Compared
with other algorithms, most of them no longer continue to
converge, and the convergence curve tends to be stable in the
later stage. It can be seen that it cannot find a better result
and falls into a local optimum.

Since the number of the nearest optimal solutions in the
PPE algorithm is calculated by Eq. (5), when Np is equal to
20, k is 3.

In the case of keeping Np equal to 20, this paper tests
whether the number of the nearest optimal solutions will
affect the convergence speed of the algorithm and how it
will affect. This article selected several different results, and
the test results are shown in Fig. 3.

It can be seen from Fig. 3 that when k is different, the
convergence curve of the PPE algorithm is also different. For
the benchmark function F2, when k is smaller, the algorithm
converges faster and the result is the best. As k increases, the
performance of the algorithm keeps getting worse. For the
benchmark functions F6 and F14, the smaller the k, the faster
the algorithm converges, but the final results of different k

are closer. But for the benchmark function F19, the smaller
the k, the faster the algorithm converges, but the final result
is not as good as when k is larger. It can be seen that when
k is relatively small, it is helpful for the rapid convergence
of the algorithm, but the diversity of the solution cannot be
fully guaranteed, and it is still possible to fall into a local
optimum.

Scalability analysis

Since the above test mainly uses a benchmark function with
a dimension of 30 for testing, in practical applications, the
dimension of the optimization problem is not necessarily 30.
Therefore, to show the performance of the PPE algorithm
more comprehensively, it is necessary to display and analyze
the performance of the algorithm in different dimensions.
The comparison results are shown in Figs. 4 and 5.

According to Fig. 4, the performance of the PPE algorithm
on the 10-, 30-, 50- and 100-dimensional benchmark func-
tion F1 is better than other algorithms. On the F3, the PPE
algorithm can obtain better results when the dimension is
relatively low, but when the dimension is 100, the algorithm
performance is worse than the GA and ASO algorithms. The
performance of the algorithm PPE on the benchmark func-
tions F6 and F7 is worse than the ASO and PSO algorithms.

According to Fig. 5, the PPE algorithm benchmark func-
tions F14, F17, F18, and F29 have achieved good results,
but they do not have advantages in every dimension. On the
benchmark function F14, the PPE algorithm has a poor effect
when the dimension is 10. But the effect is better when the
dimension becomes higher. The PPE algorithm has certain
advantages in different dimensions on the benchmark func-
tion F29, but it is worse than the BOA algorithm.

Visualization of algorithm changes

To show the internal changes of the PPE algorithm more
clearly, this paper selects the benchmark functions F1 and
F8 to visualize the internal changes of the PPE algorithm
during the execution of the algorithm. The results are shown
in Figs. 6 and 7.
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Fig. 1 Convergence test results in 30 dimensions (F1, F3, F5, F10)

Figure 6 shows the characteristics of different aspects of
the algorithm PPE in the process of iterating 1000 times on
the benchmark function F1.

The first picture is a three-dimensionalmap of the function
F1 in two dimensions.

The second figure shows the changes in the best fitness
value and the worst fitness value obtained in all populations
throughout the iteration process. It can be seen that the best
fitness value of Np populations has been changing, but the
relative change is relatively small, and the worst fitness value
gradually becomes better with relatively small changes, but
the fluctuation of each iteration process is large.

The third picture shows the change process of the popu-
lation number of the first population in the iteration process.
It can be seen that the change of the population number p is
irregular.

According to Algorithm 1, since the PPE algorithm will
first judge whether a better solution can be obtained after the
population position is updated, if a better solution is obtained,
the first part will be executed, otherwise the second part will
be executed. Therefore, the fourth picture compares the ratio
of the number of times the first part and the second part are
executed to the total number of times in the entire iteration
process. Therefore, the fourth picture compares the ratio of
the number of times the first part and second part is executed
to the total number of times.

It can be seen from the fourth figure that in the six test
results, the ratio of PPE algorithm obtaining better results
on the benchmark function F1 is higher than the ratio of
obtaining worse results.

Figure 7 shows the internal changes of the PPE algorithm
when iterating on the benchmark function F8. Different from
Fig. 6, according to the fourth picture of Fig. 7, the ratio of the
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Fig. 2 Convergence test results in 30 dimensions (F17, F20, F21, F30)

PPE algorithm to obtain a worse position in the whole itera-
tive process is higher than that of a better position. According
to the second picture, the worst fitness values obtained by Np
populations have not gradually improved and the fluctuations
are relatively stable, and the best fitness values have also con-
verged slowly.

PPE for engineering problems

This section tests the application of the proposed PPE algo-
rithm on engineering optimization problems, and selects
several well-known engineering problems, including welded
beam design, compression spring design and pressure vessel
design and drone logistics hub location.

The parameter settings of all algorithms and the number
of generated solutions are shown in Table 1, and are not mod-

ified in this section. The evaluation times of all algorithms
in different engineering problems are 40,000. All algorithms
are run five times in different problems, recording the aver-
age, best value, standard deviation and worst value. At the
same time, the paper gives the rank-sum test results of the
best values obtained by different algorithms.

Welded beam design

Welding beamdesign problem is a basic and classic engineer-
ing optimization problem, often used to test the performance
of optimization algorithms. This problem is a minimization
problem, which minimizes the manufacturing cost of the
welded beam [9].

Four variables need to be considered when optimizing this
problem, including thickness of weld (h), height of the bar
(t), length of the clamped bar (l) and thickness of the bar (b).
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Fig. 3 Convergence test result when k is different (F2, F6, F14, F19)

In addition to this,multiple constraints need to be considered,
the mathematical representation is as follows

Consider g = [g1, g2, g3, g4] = [h, l, t, b]
min f (g) = g21g21.10471

+ (14.0 + g2)g3g40.04811

st . y1(g) = τ(g) − τmax ≤ 0

y2(g) = σ(g) − σmax ≤ 0

y3(g) = δ(g) − δmax ≤ 0

y4(g) = g1 − g4 ≤ 0

y5(g) = P − Pc(g) ≤ 0

y6(g) =0.125 − g1 ≤ 0

y7(g) =1.10471g21 + 0.0481g3g4

× (14.0 + g2) − 5.0 ≤ 0

Variable constraint interval 0.1 ≤ g1 ≤ 2,

0.1 ≤ g2 ≤ 10,

0.1 ≤ g3 ≤ 10,

0.1 ≤ g4 ≤ 2

where

τ(l) =
√

τ ′2 + 2τ ′τ ′′ (g2/R) + (τ ′′)2

τ ′ = P/
√
2g1g2, τ ′′ = MR/J,M = p (L + g2/2)

R =
√
g22
4

+ (g1 + g3/2)2

J = 2

{√
2g1g2

[(
g22
4

)
+

(
g1 + g3

2

)2
]}

Pc(l) = 4.013E
√

g23g
6
4

36

L2

(
1 − g3

2L

√
E/4G

)

σmax = 30000psi,P = 6000lb,L = 14in.,
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Fig. 4 Comparison of different algorithms with different dimensions in different functions (F1, F3, F6, F7)

δmax = 0.25in.,E = 3 × 106psi, τmax = 13600psi

G = 12 × 106psi

Based on the above description, this paper uses different
algorithms to test, the results are shown in Table 5.

Compression spring design

This problem is also a minimization engineering problem
often used to test optimization algorithms. This problem
requires minimizing the weight of tension and compression
springs [41]. The three variables to be considered in the prob-
lem optimization process are the diameter of the wire (d),
mean coil diameter (D) and the number of the active coils
(N ). In addition to this, multiple constraints need to be con-

sidered, the mathematical representation of the problem is as
follows

Consider g = [g1, g2, g3] = [d, D, N ]
min f (g) = (g3 + 2)g2g

2
1

st . y1(g) = 1 − g32g3
71785g41

≤ 0,

y2(g) = 4g22 − g1g2
12566

(
g2g31 − g41

) + 1

5108g21
≤ 0,

y3(g) = 1 − 140.45g1
g22g3

≤ 0,

y4(g) = g1 + g2
1.5

− 1 ≤ 0

Variable range 0.05 ≤ g1 ≤ 2.00, 0.25 ≤ g2 ≤ 1.30,

2.00 ≤ g3 ≤ 15.00
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Fig. 5 Comparison of different algorithms with different dimensions in different functions (F14, F18, F20, F29)

Combined with the above description of the problem, this
paper uses related algorithms to test the problem, the results
are shown in Table 6. Compared with other algorithms, the
best value obtained by the PPE algorithm is better than other
algorithms.

Pressure vessel design

The goal of the pressure vessel design problem is tominimize
the total cost of the cylindrical pressure vessel. Variables to
consider include the shell thickness (Ts), the thickness of
the head (Th), the inner radius (R), the section length of the
vessel (L). In addition to this, multiple constraints need to be
considered, the mathematical representation is as follows

Consider g = [g1, g2, g3, g4]
= [Ts , Th, R, L]

min f (g) = 0.6224g1g3g4 + 1.7781g2g
2
3

+ 3.1661g21g4 + 19.84g21g3

st . y1(g) = −g1 + 0.0193g3 ≤ 0,

y2(g) = −g3 + 0.00954g3 ≤ 0,

y3(g) = −πg23g4 − 4

3
πg33

+ 1296000 ≤ 0,

y4(g) = g4 − 240 ≤ 0

Variable constraint interval 0 ≤ g1 ≤ 99,

0 ≤ g2 ≤ 99,

10 ≤ g3 ≤ 200,

10 ≤ g4 ≤ 200

This article uses the engineering problem to test the PPE
and other algorithms, the results are shown in Table 7. Com-
pared with other algorithms, the PPE algorithm can obtain
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Fig. 6 Analysis of the algorithm execution process in F1

better results, but it is not as stable as the GWO algorithm.
Since the algorithm is not specifically designed for the above
application problems, the performance gap between PPE
algorithm and GWO, ASO and other algorithms is not obvi-
ous. Based on the above comparison results, although the
proposed PPE algorithm does not have an overwhelming
advantage on a specific problem, it still has similar perfor-
mance compared with existing algorithms.

Drone logistics hub location

This paper uses the Drone logistics hub location model pro-
posed in [35] to test the proposed PPE algorithm.

This model considers the situation where the drone logis-
tics hub serves the surrounding villages. Each village is in
charge of a logistics hub, and each logistics hub is responsible
formultiple villages. The locationof the drone logistics hub is
selected considering the location of the surrounding villages
and the population size and the difficulty of transportation

from the current location to the village. The objective func-
tion constructed by the model is

min F =
∑

k=1,k∈N
(Hk − Rk) · cpk ·

(
L1k
L2k

)
, (14)

where N means the number of villages, k means the k-
th village, cpk is represented as the population of the k-th
village, Rk means the radius of a village, and Hk represents
the straight-line distance from a village to the nearest logis-
tics hub. L2k is the same as Hk , and L1k represents the
land distance from the current village to the nearest logis-
tics hub. This paper randomly generates several models. The
two-dimensional area simulated by the model is 50,000 m
× 50,000 m. The village size and population are randomly
generated. The radius of the village ranges from 200 to 900,
and the village population ranges from 300 to 3000.

Table 8 is the test results of different algorithms when
using different models. Table 8 is the test results of different
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Fig. 7 Analysis of the algorithm execution process in F8

Fig. 8 PPE algorithm test results on Model 1 (D = 4, N = 20) and Model 2 (D = 8, N = 30)
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Table 5 Results of different algorithms for welded beam design problem

Algorithm h l t b Best Mean Std Worst rank-sum(Best)

PSO 0.205734 3.253034 9.036624 0.20573 1.695245 1.695245 2.49E−08 1.695245 0.007937

GA 0.300352 2.600315 6.964762 0.34635 2.185657 2.652367 0.40979 3.116103 0.007937

GSA 2.050336 2.050336 2.050336 2.050336 2.050336 2.33331 0.172526 2.484519 0.015873

GWO 0.205331 3.261676 9.037218 0.205729 1.695921 1.697652 0.001629 1.699825 0.690476

BOA 0.175872 4.775395 7.16808 0.363982 2.519892 3.413816 0.58865 4.080176 0.007937

ASO 0.137484 5.081883 9.036624 0.20573 1.812825 1.89355 0.100337 2.01839 0.150794

PPE 0.205722 3.253798 9.035708 0.205777 1.695528 1.770569 0.166447 2.068318 –

Table 6 Results of different algorithms for compression spring design problem

Algorithm d D N Best Mean Std Worst rank-sum(Best)

PSO 0.139131 1.299956 11.89605 3.661977 3.662078 9.13E−05 3.662223 0.007937

GA 0.13412 1.163302 14.32213 3.723919 4.368244 0.841057 5.750541 0.007937

GSA 3.674108 3.674108 3.674108 3.674108 4.360719 1.132282 6.331865 0.007937

GWO 0.139154 1.3 11.89367 3.661894 3.661896 1.66E−06 3.661899 0.015873

BOA 0.093774 0.822113 9.914266 13.8017 39.08341 33.43898 89.13724 0.007937

ASO 0.138787 1.286613 12.13466 3.667751 3.690985 0.021613 3.713126 0.007937

PPE 0.139149 1.3 11.89239 3.661893 3.661894 8.82E−07 3.661896 –

Table 7 Results of different algorithms for pressure vessel design problem

Algorithm Ts Th R L Best Mean Std Worst rank-sum(Best)

PSO 0.964351 0.022456 63.43148 39.60738 3630.935 4626.963 777.1485 5695.286 0.007937

GA 0.790107 0 52.51519 79.56467 3361.681 3484.05 86.83775 3577.926 0.007937

GSA 3588.093 3588.093 3588.093 3588.093 3588.093 6708.446 5900.806 17227.85 0.007937

GWO 1.093367 0 65.22536 10 2302.559 3053.841 1678.047 6055.622 0.150794

BOA 0.922636 0 66.24475 10 2792.724 7020.761 5341.769 16060.67 0.055556

ASO 0.539805 2.1E−11 42.97202 175.6732 3785.204 5326.184 2494.587 9756.325 0.007937

PPE 1.112585 2.37E−05 65.24628 10.02023 2309.667 2854.043 484.4381 3220.821 –

Table 8 The results of the PPE
algorithm and other algorithms
on the location of the drone
logistics hub in Model 1 and 2

M D N PPE PSO GSA BOA

Model 1 4 20 3.717E+08 3.741E+08 6.623E+08 5.163E+08

Model 1 5 20 2.935E+08 2.996E+08 5.208E+08 4.378E+08

Model 1 7 20 2.097E+08 2.111E+08 4.447E+08 3.602E+08

Model 1 9 20 1.920E+08 2.015E+08 3.889E+08 3.330E+08

Model 2 6 30 5.050E+08 5.424E+08 7.934E+08 7.497E+08

Model 2 8 30 3.632E+08 3.741E+08 6.871E+08 6.966E+08

algorithms when using different models, M means the num-
ber of models, D means the number of drone hubs, and N
means the number of villages generated. And the number of
iterations is 1000.

In Table 8, the algorithm can get better results than other
algorithms in the two generated models, and the generated
results are shown in Fig. 8.
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Conclusion

By imitating the evolution law of stick insect population,
this paper proposes and implements a population evolution
algorithm for optimization problems. The proposed PPE
algorithm realizes convergent evolution, path dependence
and intra-population mutation, and combines population
growth and competition models. In this paper, the perfor-
mance of the proposed PPE is tested, compared with classic
and newer similar algorithms, and the algorithm effect is
tested on several engineering problems. The results show
that the PPE algorithm has better performance, and It can be
further optimized. Since the PPE algorithm is not specifically
applied to a certain type of practical problems, it is necessary
to improve the algorithm for practical application problems
in the next work to get better performance and achieve more
practical results.
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