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Abstract
Evaluation of car damages from an accident is one of the most important processes in the car insurance business. Currently, it
still needs a manual examination of every basic part. It is expected that a smart device will be able to do this evaluation more
efficiently in the future. In this study, we evaluated and compared five deep learning algorithms for semantic segmentation of
car parts. The baseline reference algorithmwasMaskR-CNN, and the other algorithmswereHTC,CBNet, PANet, andGCNet.
Runs of instance segmentation were conducted with those five algorithms. HTC with ResNet-50 was the best algorithm for
instance segmentation on various kinds of cars such as sedans, trucks, and SUVs. It achieved a mean average precision at 55.2
on our original data set, that assigned different labels to the left and right sides and 59.1 when a single label was assigned to
both sides. In addition, the models from every algorithm were tested for robustness, by running them on images of parts, in
a real environment with various weather conditions, including snow, frost, fog and various lighting conditions. GCNet was
the most robust; it achieved a mean performance under corruption, mPC = 35.2, and a relative degradation of performance on
corrupted data, compared to clean data (rPC), of 64.4%, when left and right sides were assigned different labels, and mPC
= 38.1 and rPC = 69.6% when left- and right-side parts were considered the same part. The findings from this study may
directly benefit developers of automated car damage evaluation system in their quest for the best design.

Keywords Semantic segmentation · Object detection · Car parts segmentation · Deep learning

Introduction

Recently, the insurance business has grown rapidly because
more people have started to insure their life and property
seriously to control the risks of extensive repair costs for a
damaged car or property, after an accident. Car insurance is
a major insurance business; it is mandatory for cars that have
not been fully paid off yet. A crucial process in the operation
of a car insurance company is the intricate car damage evalu-
ation process, that requires evaluators to have comprehensive
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experience and skills in handling car damage. The evaluators
will base their task on evidence, e.g., video recorded from
car’s camera, photos taken from mobile phones showing the
damages as pieces of evidence of the accident and log data
from IoT devices—for example telematics [1,2]. They must
also present their damage evaluation to several parties and
estimate the repair cost. This process not only takes a long
time, but is also prone to human errors, fatigue or bias. Insur-
ance companies desire to make this process more accurate,
without needing to hire many highly paid damage evaluators.

New technology has made computers more powerful:
machine learning enables a computer to learn from big data
and provide clues for decision makers; computer vision
enables a computer to recognize objects in an image or a
video clip, which is directly applicable to the business. Edge
computing enables front-end devices, e.g., smartphones, to
analyze images in real time. This applies to the insurance
business too. This technique pushes the heavy computation
tasks, e.g., artificial intelligence, computer vision and com-
plex algorithms, from centralized computing to the edge of
the network—a front-end device. The front-end device will
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benefit from privacy, reliability and lower network latency
[3–5]. Evaluators can use a smartphone to capture complete
views of a car and analyze the captured image or video, in
real-time, to evaluate damages and estimate the repair cost
instantly. Any insurance company requires photos of dam-
ages to an insured car or property as pieces of evidence.
Therefore, we brought in the new computer technologies to
automate some steps of damage evaluation from photos of
the damaged car—(1) identification of car parts; (2) identifi-
cation of damaged parts; (3) damage evaluation for each part;
and (4) repair cost estimation. These steps are illustrated in
the schematic diagram in Fig. 1.

Here, we used image segmentation to automatically iden-
tify car parts. An image segmentation technique is similar
to object detection; it detects where, in an image, an object
is located, but adds recognition of the context of the object.
An essential difference between the two techniques is that
image segmentation works at the pixel level, whereas object
detection works at the level of bounding boxes around the
object. Image segmentation can be either semantic segmen-
tation, where identical objects in the image are considered to
be the same object, or instance segmentation, where identical
objects are recognized as different instances. In particular, we
used instance segmentation, since we wanted to differentiate
different instances of the same object. For example, some
car parts come in a left and right pair; instance segmenta-
tion enabled us to differentiate between the two members of
this pair. A literature review showed that papers on car part
segmentation are still limited, and no standards or criteria
for this process have been established. Therefore, we tested
a set of state-of-the-art deep-learning algorithms on a self-
developed car part data set, containing images annotatedwith
descriptions of the object in them. Our contributions are:

1. Development of an extensive car part data set—annotated
images of car parts from multiple viewpoints—some
were taken from the Internet and some were taken by
our team.

2. Comparative evaluation in terms of mean average pre-
cision between Mask R-CNN (baseline technique) with
ResNet Backbone and four state-of-the-art instance seg-
mentation algorithms—the top four algorithms reported
by paperswithcode.com [6].

3. Robustness testing in terms of mPC and rPC of models
from four state-of-the-art instance segmentation algo-
rithms and the baseline model against real weather
elements and lighting conditions in the photos.

The rest of this paper is arranged as follows: the sec-
ond section briefly describes related works; the third section
briefly describes the tested algorithms; the fourth section dis-
cusses the experimental setup and the data sets; the fifth

section reports and discusses results, and the final section
concludes.

Related works

Edge computing has emerged to push the computation capa-
bility closer to end-devices. It can improve response times
and reduce required network bandwidth. With a combina-
tion of front-end devices, edge nodes and cloud computing,
many applications that use machine learning and computer
vision techniques have been successfully deployed. Many
researchers developed their algorithms to fully operate on
front-end devices to enhance system efficiency. Velichko
et al. [7] proposed a lightweight neural network algorithm
called “LogNNet”, that used filters based on logistic map-
ping for image recognition task. It can be employed in
low-memory devices. Howard et al. [8] and Sandler et al. [9]
developedMobileNets andMobileNetV2,which are efficient
lightweight Convolution Neural Network (CNN) models,
designed to work onmobile device. Tuli et al. [10] developed
an object detection framework, EdgeLens, that integrated
IoT, fog and cloud computing.

Applications of instance segmentation have included
detection of individual humans in an image based on their
posture. In addition, Zhang et al. [11] presented an instance
segmentation method for human detection based on a human
pose skeleton. It enabled recognition of the context of a pos-
ture even though, in the image, there was another human
nearby or an overlapwith another human. This capability dif-
ferentiated it from other instance segmentation algorithms,
e.g., Mask R-CNN [12]. Other instance segmentation appli-
cations include identification of biological objects in an
image. In one instance, Yi et al. [13] presented an instance
segmentation method for biological objects, that worked on
heat map images.

Currently, several new instance segmentation algorithms
have been proposed. For instance, CenterMask [14] did not
use a bounding box but used a spatial attention-guided mask.
It differed from algorithms that use a fully connected layer,
e.g., Mask R-CNN. In addition, it used a fully convolutional
one-stage object detector (FCOS) [15] rather than Faster R-
CNN [16] in the object detection task, resulting in a higher
detection accuracy of both still images and video frames.
In another example, Wang et al. [17] developed an instance
segmentation algorithm, “SOLO”, a one-step algorithm, that
did not use bounding box in object detection but, instead,
divided an image into a number of squares and detected
the interested object in each square. It used a semantic cat-
egory branch technique to determine semantic category as
well as an instance mask branch to determine instance cate-
gory. SOLOwas improved into SOLOv2 [18].Mask learning
was developed based on dynamic convolution. No weights
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Fig. 1 Car damage evaluation steps

or parameters in the model were set as a fixed value, so that
the feature map could be adjusted to various kinds of input.
The model had two types of mask branch: a Mask Kernel
Branch for learning the convolution kernel and a Mask Fea-
ture Branch for learning convoluted features. Non-Maximum
Suppression Matrix was used to reduce processing time,
which was shorter than any other tested algorithms.

Recently, one-stage instance segmentation methods, that
do not have different branches for performing different func-
tions, have gained more attention from researchers than
two-stage methods, e.g., PolarMask [19], RDSNet [20] and
YOLACT++ [21]. A two-stage method performs object
detection first, then constructs a mask branch to predict each
mask in a bounding box. Example of these methods are
Mask R-CNN, PANet [22] and Mask Scoring R-CNN [23].
Chen et al. [24] proposed a BlendMask with an improved
FCOS Object Detector. They added a blender module to an
attention map. The blender module included both high- and
low-resolution masks in every bounding box mask, enabling
the model to predict the mask more accurately and rapidly
than Mask R-CNN or other two-stage algorithms.

In a review of studies on car part segmentation, Lu et al.
[25] presented a semantic segmentation method for car parts,
based on landmark assignment and boundaries of each part.
They used a graphicalmodel to find relationships between car
parts, then a segmentation by aweighted aggregationmethod
(SWA) [26] to pair two nearby landmarks, then a Segment
Appearance Consistency (SAC) technique, to connect seg-
ments of nearby landmarks, in every level of a hierarchical
segmentation and to determine whether the same segment
was represented in every hierarchical level. The outcomewas
a group of pixels that could classify various car parts. Nev-
ertheless, in SAC and hierarchical segmentation for every
hierarchical level, the meanings of a car part of different lev-
els differed. In other words, an SAC, after only one round
of SWA, was not able to segment all car parts in an image.
Singh et al. [27] built a system to detect different car parts and
localize their damages. However, the algorithms used in their

system—Mask R-CNN, PANet and an ensemble model, that
was based on Mask R-CNN and PANet—did not perform
well. The MAP was lower than 0.5 across all algorithms.
Dhieb et al. [28] used Inception-ResNetV2 to classify dam-
age severity level, localize and detect part damage. Patil et
al. [29] and Dwivedi et al. [30] used various CNN models to
classify the car part damage, but these works only focused
on a small set of car parts.

A website, paperswithcode.com, ranked all instance seg-
mentation methods and determined the state-of-the-art ones
[6]. They were benchmarked on various data sets, e.g., PAS-
CAL VOC [31] and Common Objects in Context (COCO)
Challenge [32]. Since we needed the best model for instance
segmentation of car parts, we evaluated several algorithms on
a large COCO Test-dev Task data set with a large number of
categories, usingMask R-CNNwith ResNet as baseline. The
evaluatedmethodswere the top four, as ranked by paperwith-
code.comon30/09/2019, that also usedResNet asBackbone:
HTC [33], CBNet [34], PANet [22] and GCNet [35]. These
algorithms are briefly described in the next section.

Methodology

The top-ranked algorithms from paperwithcode.com, on
30/09/2019, are briefly described here.

Mask region-based convolutional neural network
(Mask R-CNN)

Instance segmentation Mask R-CNN algorithm [12] was a
development of Faster R-CNN [16]. Faster R-CNNwas only
able to detect, where a target object was in an image and rec-
ognize it, butMask R-CNNwas also able to perform instance
segmentation. Mask R-CNN had two main parts: (1) a back-
bone that extracted features from an image with Residual
Neural Network (ResNet), a CNN 50–101 layers deep [36],
in combination with Feature Pyramid Network (FPN) [37]
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Fig. 2 Mask R-CNN

and (2) a head that constructed a bounding box around a
Region of Interest (ROI) and predicted the type of object in
the box. The additional step of Mask R-CNN over Faster R-
CNNconstructed amask for eachROI. InMaskR-CNN, after
the backbone extracted features froman image, these features
were input into a Region Proposal Network (RPN), which
constructed anchor boxes of various sizes, that contained an
object of interest and passed them to an ROI Extractor, that
extracted the features from each ROI. Each ROI Map was
forwarded to fully connected layers, consisting of two par-
allel components: the original components of Faster R-CNN
for predicting bounding boxes and objects of interest (classi-
fication) and an additional component for predicting a mask
in a bounding box. The flowchart of Mask R-CNN is illus-
trated in Fig. 2. Mask R-CNN was ranked number five by
paperswithcode.com.

Global context network (GCNet)

GCNet [35] had a similar structure to Mask R-CNN, as
can be seen in Fig. 2. However, the ResNet-FPN backbone
was augmented with a global context block (Fig. 3). The
Non-local Network (NLNet), a part of the block, solved the
long-range dependency issue of deep neural networks [38].
NLNet worked in combination with a Squeeze-Excitation
Network (SENet) to find the relationships between chan-
nels of each feature [39]. GCNet was as effective as NLNet,
but computed faster, because it used fewer convolution and
operation layers than NLNet. It was ranked number four by
paperwithcode.com.

Path aggregation network (PANet)

PANet was developed by Liu et al. [22]. It had a similar struc-
ture toMaskR-CNN, as shown inFig. 4, but theRPNandROI
Extractorwere replaced by bottom-up path augmentation and
adaptive feature pooling components. The bottom-up path
augmentation component took an input from the previous
stage and processed it together with an output of each FPN
layer to generate feature maps. Those maps were used to
better mix high and low-level features. Then, the adaptive
feature pooling component processed the feature maps from
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Fig. 3 Global context (GC) block. The feature map has size, C × H ×
W—channel number C , height H and width W . ⊗ denotes matrix
multiplication and ⊕ denotes broadcast element-wise addition. r is the
bottleneck ratio and C/r denotes the hidden representation dimension
of the bottleneck
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Class

Box

(B) (C) (E)

(D)

Mask

Fig. 4 PANet A FPN backbone, B bottom-up path augmentation, C
adaptive feature pooling, D Box branch, E fully-connected fusion

every layer, concatenated all of its output, then sent them to
the head component, consisting of many fully connected lay-
ers, to detect objects, construct masks and bounding boxes
and classify detected objects. Because of those processes,
PANet was highly accurate. It was able to take advantage of
all levels of feature maps, from low to high level features in
each feature map. PANet was ranked number three by paper-
swithcode.com.

Cascademask R-CNNwith composite backbone
network (CBNet)

Thismethod combinedCascadeMaskR-CNN[40] andCom-
posite Backbone Network [34]. First, CBNet improved the
feature extraction step, using a number of connected back-
bones calledAssistant Backbones. Each connected backbone
extracted some features and sent a feature map to the next
backbone, which also extracted some features and sent a new
feature map to the next-to-next backbone and so on. The last
backbone was called a ‘Lead Backbone’. It generated the
final feature map, that was consecutively concatenated with
features extracted from all previous backbones in the con-
nection. Because of this repeated extraction step, low-level
and high-level features were extracted into a more effective
mix than a mix that Mask R-CNN generated. Second, Cas-
cade Mask R-CNN, whose head was modified from that of
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Fig. 6 Hybrid task cascade for instance segmentation

Mask R-CNN, improved prediction accuracy. The bounding
box head in a previous branch was forwarded to the ROI
Extractor of the next branch to improve prediction accuracy,
as illustrated in Fig. 5. This method was ranked number two
by paperswithcode.com.

Hybrid task cascade for instance segmentation (HTC)

This algorithm was developed by Chen et al. [33] improving
the efficiency of instance segmentation task. In this algo-
rithm, the bounding box head, mask head and ROI extractor
were interleaved in a cascade, illustrated in Fig. 6, and so
bounding box prediction and mask prediction tasks pro-
ceeded in parallel instead of independently. A multi-stage
mask branch technique was introduced. It took into account
the mask from a previous branch in the generation of a
mask in the current branch to improve information flow.
Lastly, a semantic mask branch was connected to the head
of every mask to enable the model to understand the context
of the information in every mask better. All of these features
improved the information flow in every task. This method
was the top in the paperswithcode.com ranking.

Experimental framework

Data set

The data set contained 500 images of sedans, pickups and
sports utility vehicles (SUVs) collected from the Internet
and taken from public parking spaces. Images of these vehi-
cles were taken in multiple views—front, back and angled
views. The car identification numberwas blurred to hide indi-
vidual vehicle details. Each image was annotated by the 18
listed instance masks and bounding boxes: back_bumper,
back_glass,back_left_door,back_left_light,
back_right_door, back_right_light,
front_bumper,front_glass,front_left_door,
front_left_light, front_right_door,
front_right_light, hood, left_mirror,
right_mirror,tailgate,trunk (of trucks andSUVs),
and wheel (wheel and tire). The number of instances per
category is shown in Fig. 7 and examples of the images in
the data set are in Fig. 8. The DSMLR Car Part data set con-
tains images and annotation in COCO Challenge format and
is available for download at https://github.com/dsmlr/Car-
Parts-Segmentation.

Experimental procedures and settings

We evaluated five algorithms: Mask R-CNN [12], HTC [33],
CBNet [34], PANet [22] and GCNet [35], that used ResNet-
50 and ResNet-101 as backbones, in terms of correctness
and robustness on the car part data set. The algorithms were
implemented with anMMDetection toolbox [41]. The exper-
imental steps are described next. First, we resized all input
images to 1024 × 1024 pixels, while maintaining the aspect
ratio by zero-padding. Next, we randomly partitioned the car
part data set into a training set (80% of the entire data set) and
a test data set (20%). Then, since it was necessary to deter-
mine the best number of epochs for training the model for
every evaluated algorithm,we ran a five-fold cross-validation
by training for 200 epochs on each fold. The best number of
epochs for each algorithm was the number that provided the
lowest average five-fold validation loss. Validation loss was
computed from 5 types of loss: (1) loss in classification task,
(2) loss in bounding box task, (3) loss in segmentation task
(Loss mask), (4) RPN loss in classification task and (5) RPN
loss in bounding box task. Validation losses (4) and (5) were
calculated by a Cross Entropy loss algorithm, embedded in
theRPN.Next,we used aStochasticGradientDescent (SGD)
to finding optimal parameters, setting the learning rate at 0.02
andweight decay at 0.0001. The optimalmodelswere trained
with the training set for the optimal number of epochs. The
experiment was run five times with different random splits.

Furthermore, we evaluated the robustness of algorithm
for semantic segmentation and object detection tasks on
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Fig. 7 Number of annotated instances per category for the DSMLR Car Part data set

(a)

(b)

(c)

Front Side Back

Fig. 8 Samples of pair images and instance mask from the DSMLR Car Part data set: a sedan, b pickup and c sports utility vehicle (SUV)

corrupted data, simulating four real weather conditions and
lighting, i.e., snow, frost, fog and ambient light at five levels
of severity. The corrupted examples were generated bymeth-
ods described by Hendrycks and Dietterich [42] (visualized
in Fig. 10).

Performance evaluation

Correctness

Each algorithm was evaluated for average precision (AP),
based on the COCO Challenge, an established evaluation

method for object detection tasks. AP was calculated from
the Intersection over Union (IoU) of each interested object.
IoU was calculated by

IoU = Area of Overlap

Area of Union
. (1)

A model was considered to successfully detect an object,
if the IoU was equal to or higher than a threshold that we
assigned. The AP50 and AP75 means that the IoU are greater
than or equal to the threshold at 0.50 and 0.75, respectively.
Then, the mean average precision (mAP), based on COCO
Challenge, is the average over IoUs between the threshold at
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0.50 and 0.95, computed as:

mAP =
∑9

i=0 AP50+5·i
10

. (2)

Since car parts take different sizes, we also evaluated the AP
across scale of the car part, i.e.,APS for small parts with an
area lower that 322 pixels, APM for medium parts, with area
between 322 and 962 pixels, and APL for large parts, with
area greater than 962 pixels. It is noted that AP on the COCO
Challenge was reported in percent.

Robustness

Robustness was measured using two metrics—mean per-
formance under corruption (mPC) and relative performance
under corruption (rPC) metrics [43].

mPC is calculated:

mPC = 1

Nc

Nc∑

c=1

1

Ns

Ns∑

s=1

Pc,s, (3)

where Nc = 4 indicates the number of corruptions and Ns =
5 the number of severity levels (as set in this work), and
Pc,s is the performance measure evaluated on test data, that
was corrupted with corruption type, c, under severity level, s.
Although several metrics could be used for P , in this work,
P levels were calculated usingmAP. A higher mPC indicates
a more robust algorithm.

rPC measured the relative degradation of performance on
corrupted data compare to original data. It was calculated by

rPC = mPC

Poriginal
, (4)

where Poriginal is the performance of algorithmon the original
data, that is mAP of the original data, rPC ∈ [0, 1]. rPC = 1
represents ‘perfect’ robustness, while 0 represents negligible
robustness.

Experimental results and discussion

In this section, several comparisons were made and dis-
cussed:

1. We compared overall algorithm performance based on
two tasks—object detection and semantic segmentation
tasks.

2. We discussed robustness in potential real weather ele-
ments and lighting conditions.

3. We further discussed performance and robustness, when
left- and right-side parts were grouped under one label.

Overall performance of object detection
and semantic segmentation tasks

The performances of all the algorithms are illustrated in
Table 1, that includes mAP andAPwith different thresholds.
It can be seen that HTC with ResNet-101 encoder achieved
the best mAP at 54.3 in object detection. In addition, it
worked best on small and medium car parts, resulting in APS
andAPM at 35.6 and 52.0, respectively. This was followed by
HTC with ResNet-50 encoder at 54.1 of mAP. The stricter
metric, AP at IoU ∈ (0.75, 0.95], came in second at 62.4,
while HTC with ResNet-50 was the best contender at 63.6.
Further, HTC with ResNet-50 performed best on large car
parts, resulting in APL at 61.1. Surprisingly, Mask R-CNN
with ResNet-50—the baseline—scored highest on AP50 at
77.0, but it did not perform well on the stricter metric. This
was because Mask R-CNN tried to detect, classify and seg-
ment the car parts with low-level features, whereas other
algorithms used global features or high-level features for seg-
mentation tasks. On the other hand, Mask R-CNN, with the
ResNet-101 encoder, achieved the highest mAP at 55.4 in the
semantic segmentation task, as well as in the strictest metric,
AP75, at 65.2, which is in-line with HTC with ResNet-50
encoder. Here, HTC, with the ResNet-50 encoder, secured
the second best mAP at 55.2, with a small difference in
mAP from Mask R-CNN with ResNet-101 encoder. It also
worked best with the large car parts—APL at 63.6. In addi-
tion, PANet performed best on small car parts, yielding APS
at 38.5.

In terms of performance related to the size of the car
part, the models performed better on large parts followed by
medium and small parts. The average APL, APM and APS
across all the models in the object detection task were 55.3,
46.9, and 32.1, respectively, and, in semantic segmentation,
the scores were 59.2, 48.7, and 33.2, respectively. Larger
parts led to better performance. Figure 9 shows a sample of
object detection and semantic segmentation by the models
with ResNet-50 and ResNet-101 encoders.

To determine which combination of model and encoder
achieved the best overall performance, we used Kendall’s
coefficient of concordance (W ) tomeasure agreement between
evaluationmetrics.We rank the 10 candidate models (5mod-
els with 2 encoders each) on 12 performance metrics (2 tasks
with 6 metrics each). Then, we reported sum of the ranks of
each candidate model as shown in Table 1 that leads to the
ranking of the candidate models. Next, we calculate W by

W =
12

(∑k
i=1 R

2
i

)
− 3k2n(n + 1)2

k2n(n2 − 1) − k
∑k

j=1(Tj )
, (5)

where n is the number of candidate models, R is the sum of
ranks for the i-th candidate, k is the number of the perfor-
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Table 1 Overall model performance on object detection and semantic segmentation tasks

Model Encoder Object detection Semantic segmentation Sum rank Rank

mAP AP50 AP75 APS APM APL mAP AP50 AP75 APS APM APL

Mask R-CNN ResNet-50 50.4 77.0 56.8 30.9 47.7 55.2 54.0 77.5 62.5 34.3 51.0 59.4 64.5 6

ResNet-101 50.8 75.4 59.2 35.4 49.1 54.9 55.4 77.0 65.2 33.0 53.0 60.6 45.5 3

GCNet ResNet-50 50.9 76.8 57.7 32.3 45.6 56.7 54.6 78.2 63.9 34.9 48.3 61.7 52.5 4

ResNet-101 48.5 63.8 45.1 27.3 35.7 45.6 43.0 64.9 49.6 34.0 40.7 49.2 115.0 10

PANet ResNet-50 48.8 76.5 56.4 32.9 48.6 51.8 54.0 77.3 63.5 38.5 51.4 58.7 63.5 5

ResNet-101 49.6 73.9 59.8 31.0 46.1 54.2 54.3 75.1 64.8 30.4 49.5 58.9 76.0 8

CBNet ResNet-50 51.9 71.6 60.8 28.6 48.3 57.9 53.0 72.2 63.0 28.6 48.3 61.7 74.5 7

ResNet-101 49.5 67.5 58.3 32.2 45.6 55.5 49.5 67.1 57.8 29.6 44.7 56.1 96.5 9

HTC ResNet-50 54.1 75.7 63.6 34.4 50.4 61.1 55.2 76.1 65.2 36.1 50.2 63.6 29.0 1

ResNet-101 54.3 74.8 62.4 35.6 52.0 60.0 54.5 75.2 63.0 32.6 50.2 52.0 43.0 2

Average 49.9 73.3 58.0 32.1 46.9 55.3 52.8 74.1 61.9 33.2 48.7 59.2 –

Bold—best

(a)

(b)Ground Truth

Mask R-CNN CBNet GCNet PANet HTC

Fig. 9 Sample of object detection and semantic segmentation results: a ResNet-50 Encoder and b ResNet-101 Encoder

mance metrics, and T is a correction factor, based on tied
ranks (see [44] for more details). Here, n = 10 and k = 12.
Thus, W=0.5079 that is transformed to a χ2 value of W for
significance testing against a null hypothesis of no agree-
ment,

χ2 = k(n − 1)W . (6)

Thus, X2 = 54.8350 leads to p < 0.01 for 9 degrees of
freedom. the led to p < 0.01. Thus, we rejected the null
hypothesis. Therefore, we confirmed that HTCwith ResNet-
50 and HTC with ResNet-101 are the first and the second
rank, respectively.

Robustness

In this section, the models used in the previous subsection
were further evaluated. They were tested on the modified
test data, including the set of real weather elements and
lighting conditions, with different severity levels as shown
in Fig. 10. We illustrate the overall robustness test results,
showing results for different types of noise for object detec-
tion and semantic segmentation tasks in Table 2. GCNet with
the ResNet-50 encoder was the best contender; it achieved

the highest robustness, based on rPC, in object detection at
64.8% and semantic segmentation at 64.4%. It yielded the
best mPC in all weather conditions for both object detection
and semantic segmentation tasks, except brightness changes
in object detection task. Itwas clear that theworstwasCBNet,
with the ResNet-50 encoder, as it retained only 48.1% and
47.3% of the performance in object detection and semantic
segmentation tasks, respectively. HTC, with ResNet-101, in
the object detection task, achieved the highest mAP, with
the normal condition image, but although it only retained
53.2% of the performance, when the images were corrupted,
its mPC was still ranked second at mPC= 28.9, after GCNet
with ResNet-50. Moreover, HTC with ResNet-101 obtained
the highest mPC with the brightness changes at 42.4. This
also applied to the semantic segmentation task, HTC, with
ResNet-101, ranked second in overall performance, based
on mPC = 29.3, similar to Mask R-CNN with ResNet-101.
We also found that the factors, that degraded performance
for all algorithms, were snow and frost conditions, because
they degraded the performance to less than 50% of the per-
formance without corruption in both tasks. However, the
algorithms tolerated changes in brightness and fog condi-
tions well: they were still able to keep performance at 79.3%
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Snow Frost Fog Brightness

Severity = 1

Severity = 2

Severity = 3

Severity = 4

Severity = 5

Fig. 10 Images in real environments and varied lighting conditions

(light changes) and 63.0% (fog) in the object detection, and
78.4% and 63.0% in semantic segmentation.

Merging left- and right-side car part as one label

After evaluating overall performance and robustness, we
ran an error analysis to seek a way to improve the task.
We found that the algorithms were usually confused with
left- or right-side parts, e.g., predicting left_mirror as a
right_mirror or vice versa. Therefore, we created a new
set of data, that assigned a single label to left and right sides
of a part. Then we fine-tuned each pre-trained model from
the original labels at 100 epochs—other settings remained
the same.

Table 3 shows the overall performance on both object
detection and semantic segmentation, with left- and right-
side part labels merged. All performances were higher than
when left- and right-side parts were considered separately

(Table 1): mAP increased by 5.76% for object detection and
5.27% for semantic segmentation for all models. The table
shows that HTC, with the ResNet-101 encoder, yielded the
highest mAP = 59.4, followed by HTC, with the ResNet-50
encoder, with mAP = 59.1 in object detection. HTC, with
ResNet-101, performed best on large car parts—the highest
value of APL at 65.4—while HTC, with ResNet-50, encoder
achieved the best performance on small and medium car
parts, resulting in APS = 34.5 and APM = 53.5. In addi-
tion, HTC, with ResNet-50, was the best contender with the
most strict metric AP75 = 68.6. AlthoughMask R-CNN,with
ResNet-50, received the highest AP50 score, it was still worse
than HTC, with ResNet-50 or ResNet-101, using the strictest
metric. In semantic segmentation, HTC, with ResNet-101,
also ranked first with mAP = 60.1, followed by Mask R-
CNN, with ResNet-50 or ResNet-101. Apparently, Mask
R-CNN performed well in semantic segmentation, resulting
in the highest performance on AP50 = 81.9, AP75 = 71.3, and
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Table 2 Performance of eachmethod for object detection and semantic segmentation, including a robustness test with challenging real environments

Model Encoder P Overall Snow Frost Fog Brightness

mPC rPC [%] mPC rPC [%] mPC rPC [%] mPC rPC [%] mPC rPC [%]

Object detection

Mask R-CNN ResNet-50 50.4 27.4 54.3 19.1 37.6 21.5 42.6 31.8 63.0 41.2 81.7

ResNet-101 50.8 28.3 55.7 20.7 40.7 19.9 39.1 30.7 60.4 42.1 82.8

GCNet ResNet-50 50.9 33.0 64.8 24.4 63.4 26.8 52.6 38.8 76.2 41.8 82.1

ResNet-101 38.5 24.3 63.1 17.3 35.5 17.0 44.1 30.9 80.2 31.0 80.5

PANet ResNet-50 48.8 26.6 54.5 18.7 37.7 21.0 43.0 26.9 55.1 38.2 78.2

ResNet-101 49.6 26.9 54.2 20.5 39.5 23.1 46.5 28.8 58.0 40.8 82.2

CBNet ResNet-50 51.9 25.0 48.1 16.9 34.1 15.3 29.4 29.3 56.4 38.3 73.7

ResNet-101 49.5 25.7 51.9 18.0 33.3 18.7 37.7 26.4 53.3 37.9 76.5

HTC ResNet-50 54.1 28.1 51.9 19.8 36.5 18.5 34.1 34.8 64.3 41.9 77.4

ResNet-101 54.3 28.9 53.2 18.7 34.4 19.3 35.5 34.4 63.3 42.4 78.0

Average 48.9 27.4 55.2 19.4 39.3 20.1 40.5 31.3 63.0 39.6 79.3

Semantic segmentation

Mask R-CNN ResNet-50 54.0 28.5 52.7 20.0 37.0 21.2 39.2 33.5 62.0 43.2 80.0

ResNet-101 55.4 29.3 52.8 21.0 37.9 20.0 36.1 33.0 59.5 44.2 79.7

GCNet ResNet-50 54.6 35.2 64.4 26.4 48.4 28.4 52.0 41.7 76.3 44.2 80.9

ResNet-101 43.0 25.9 60.2 17.5 40.7 17.6 40.9 33.7 78.3 33.7 78.3

PANet ResNet-50 54.0 28.7 53.1 19.9 36.9 21.9 40.5 30.3 56.1 41.7 77.2

ResNet-101 54.3 29.2 53.7 22.1 40.7 23.1 42.5 31.4 57.8 44.1 81.2

CBNet ResNet-50 53.0 25.1 47.3 17.1 32.3 15.3 28.8 29.4 55.4 38.7 73.0

ResNet-101 49.5 26.0 52.5 18.4 37.2 18.7 37.7 27.5 55.5 38.3 77.3

HTC ResNet-50 55.2 28.9 52.3 20.3 36.8 18.5 33.5 35.7 64.6 43.0 77.8

ResNet-101 54.5 29.3 53.7 19.5 35.8 19.3 35.4 34.9 64.0 42.6 78.1

Average 52.8 28.6 54.3 20.2 38.4 20.4 38.7 33.1 63.0 41.4 78.4

Bold—best

APM = 55.2. Again, we used Kendall’s coefficient of con-
cordance (W ) to evaluate agreements between algorithms.
The overall performance rank changed: Mask R-CNN, with
ResNet-50, was now the first ranked, followed by HTC, with
ResNet-50 andResNet-101. The rankings in the table are sig-
nificant at p < 0.01 for 11 degrees of freedom (W = 0.4905
and χ2 = 52.9691).

We also evaluated algorithms robustness in the merged
sides of a car part scenario on both tasks as shown in Table 4.
The overall picture was very much the same as considering
left side and right side separately. GCNet was still the most
robust algorithm, while the worst was CBNet. Moreover,
snow and frost were still the top most challenging conditions
to corrupt the data, that impacted the algorithms.

Conclusion

Computer network technology and end-devices are becom-
ingmore powerful. Also, the car insurance business is rapidly

growing. Thus, an automated system for damage evalua-
tion is necessary. In this work, we describe an automatic car
part identification system based on images by deep learning
techniques. We compared the performance of several state-
of-the-art deep learning algorithms on a part segmentation
task, using a car part data set, created for this work, that is
now publicly available. Our experiments showed that HTC
was the best model, followed by Mask R-CNN and GCNet,
in both object detection and semantic segmentation tasks in
normal weather conditions. Also, we evaluated algorithm
robustness in real environmental and lighting conditions,
simulating conditions that would occur in the field, when we
take a photo using a smartphone. GCNet was the most robust
model, because it achieved the best performance in overall
pictures and in real conditions, except in varying brightness.
Currently, edge computing has become more practical and
able to overcome limitations of end-devices. Therefore, edge
computing enabled the models to operate in the end-device,
leading to a solution for real-time image analysis.
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Table 3 Overall performances of the selected models on object detection and semantic segmentation tasks with merged side of the car part scenario

Model Encoder Object Detection Semantic segmentation Sum Rank Rank

mAP AP50 AP75 APS APM APL mAP AP50 AP75 APS APM APL

Mask R-CNN ResNet-50 56.5 81.0 67.7 33.3 52.2 60.1 59.4 81.9 70.4 35.0 55.2 64.7 36 1

ResNet-101 55.0 79.0 64.6 33.3 51.3 59.2 59.3 80.4 71.3 32.6 54.9 63.8 53.5 4

GCNet ResNet-50 55.1 79.8 65.1 32.0 50.9 58.7 58.9 81.4 70.7 51.6 53.9 63.1 55.5 5

ResNet-101 51.1 75.7 60.9 30.6 49.2 56.4 54.7 76.8 64.7 42.8 52.7 60.6 102.5 10

PANet ResNet-50 53.5 78.9 61.8 31.4 50.1 58.4 57.9 80.6 68.3 30.7 50.6 66.2 83.5 7

ResNet-101 55.7 78.9 65.5 31.7 51.1 62.1 59.0 80.2 69.1 31.2 52.3 68.1 62 6

CBNet ResNet-50 56.9 74.6 64.4 32.5 49.2 64.7 56.9 75.8 65.9 30.5 49.2 64.7 86 8

ResNet-101 54.1 71.8 62.2 31.1 52.5 58.7 54.8 73.3 64.2 28.6 52.1 61.7 101 9

HTC ResNet-50 59.1 78.4 68.6 34.5 53.5 64.9 59.2 80.3 69.6 34.5 53.7 65.7 38 2

ResNet-101 59.4 78.1 68.0 33.9 52.5 65.4 60.1 80.2 68.6 32.7 52.8 66.1 42 3

Average 55.6 77.6 64.9 32.4 51.3 60.9 58.0 79.1 68.3 35.0 52.7 64.5 –

Bold—best

Table 4 Performance of eachmethod for object detection and semantic segmentation onmerged part sides, including a robustness test with different
real environments

Model Encoder P Overall Snow Frost Fog Brightness

mPC rPC [%] mPC rPC [%] mPC rPC [%] mPC rPC [%] mPC rPC [%]

Object detection

Mask R-CNN ResNet-50 56.5 29.8 52.7 19.6 34.6 20.4 36.1 33.9 60.0 45.5 80.3

ResNet-101 55.0 28.8 52.3 19.9 36.1 14.5 26.3 32.6 59.2 46.5 84.5

GCNet ResNet-50 55.1 39.3 71.3 30.5 55.3 33.8 61.3 46.1 83.6 39.3 71.3

ResNet-101 51.1 36.5 71.4 30.4 59.4 31.5 61.6 42.9 83.9 37.2 72.7

PANet ResNet-50 52.5 28.4 53.0 21.5 40.1 16.3 30.4 29.6 55.3 43.0 80.3

ResNet-101 55.7 31.2 56.0 23.5 42.1 21.1 37.8 31.0 55.6 46.7 83.8

CBNet ResNet-50 56.9 28.3 49.7 20.0 35.1 13.8 24.2 31.4 55.1 43.7 76.8

ResNet-101 54.1 27.6 51.0 21.7 40.1 17.4 32.1 28.0 51.7 43.9 81.1

HTC ResNet-50 59.1 32.2 54.4 22.3 37.7 20.7 35.0 37.9 64.1 46.7 79.0

ResNet-101 59.4 31.9 53.7 21.0 35.3 20.3 34.1 38.7 65.1 47.1 79.2

Average 55.6 30.4 56.6 23.0 41.6 21.0 37.9 35.2 63.4 44.0 78.9

Semantic segmentation

Mask R-CNN ResNet-50 59.4 30.7 51.6 20.3 34.1 20.3 34.1 35.6 59.9 46.7 78.6

ResNet-101 59.3 29.5 49.7 20.4 34.4 14.7 24.7 34.0 57.3 48.1 81.1

GCNet ResNet-50 58.9 40.9 69.4 31.5 53.4 33.5 56.8 48.2 81.8 40.8 69.2

ResNet-101 54.7 38.1 69.6 31.3 57.2 32.3 59.0 45.3 82.8 38.3 70.0

PANet ResNet-50 57.9 30.6 52.8 23.1 39.8 17.1 29.5 32.1 55.4 46.5 80.3

ResNet-101 59.0 32.5 55.0 23.3 39.4 20.7 35.0 33.4 56.6 49.4 83.7

CBNet ResNet-50 56.9 28.2 49.5 19.9 34.9 14.1 24.7 31.2 54.8 43.2 75.9

ResNet-101 54.8 27.8 50.7 21.5 39.2 17.5 31.9 28.3 51.6 44.4 81.0

HTC ResNet-50 59.2 32.2 54.3 22.2 37.5 20.5 34.6 38.4 64.8 47.2 79.7

ResNet-101 60.1 32.2 53.5 21.1 35.1 20.7 34.4 38.3 63.7 47.5 79.0

Average 58.0 32.3 55.6 23.5 40.5 21.1 36.5 36.5 62.9 45.2 77.9

Bold—best
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In future work, we will focus on developing a lighter
weight model for semantic segmentation to ease the load on
the end-device, without sacrificing its accuracy and robust-
ness. We also aim to extend the work to detect, localize and
estimate the severity of damage on different parts.

Acknowledgements This work was supported by King Mongkut’s
Institute of Technology Ladkrabang under grant agreement number
2564-02-06-002.

Author contributions KP conceived the original idea of the method,
validation, and revised the final manuscript. NH carried out the software
implementation. KP and PK performed formal analysis, investigation,
and writing the original draft. KP and KW conceived the initial concept
of the study, review and editing the draft. All authors read and approved
the final manuscript.

Funding The funder had no role in the study design, data collection and
analysis, decision to publish or preparation of the manuscript.

Availability of data and material The data set generated and analyzed
in this study is available in the GitHub repository, https://github.com/
dsmlr/Car-Parts-Segmentation.

Declarations

Conflicts of interest We declare that we have no competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Handel P, Skog I, Wahlstrom J, Bonawiede F, Welch R, Ohlsson J
et al (2014) Insurance telematics: opportunities and challengeswith
the smartphone solution. IEEE Intell Transp Syst Mag 6(4):57–70
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