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Abstract
With the introduction of the Internet to the mainstream like e-commerce, online banking, health system and other day-to-day 
essentials, risk of being exposed to various are increasing exponentially. Zero-day attack(s) targeting unknown vulnerabili-
ties of a software or system opens up further research direction in the field of cyber-attacks. Existing approaches either uses 
ML/DNN or anomaly-based approach to protect against these attacks. Detecting zero-day attacks through these techniques 
miss several parameters like frequency of particular byte streams in network traffic and their correlation. Covering attacks 
that produce lower traffic is difficult through neural network models because it requires higher traffic for correct prediction. 
This paper proposes a novel robust and intelligent cyber-attack detection model to cover the issues mentioned above using 
the concept of heavy-hitter and graph technique to detect zero-day attacks. The proposed work consists of two phases (a) 
Signature generation and (b) Evaluation phase. This model evaluates the performance using generated signatures at the train-
ing phase. The result analysis of the proposed zero-day attack detection shows higher performance for accuracy of 91.33% 
for the binary classification and accuracy of 90.35% for multi-class classification on real-time attack data. The performance 
against benchmark data set CICIDS18 shows a promising result of 91.62% for binary-class classification on this model. 
Thus, the proposed approach shows an encouraging result to detect zero-day attacks.

Keywords Cyber-attacks · Zero-day attack · Heavy-hitters · Signature generation · Token extraction · High volume attack · 
Low volume attack

Introduction

The digitization of service and other activities turned the 
Internet into an inevitable part in various tasks. It makes 
a more significant proportion of the population dependent 
on the Internet for their daily activities (e.g., gaming, shop-
ping, chatting, financial activities, study, etc.), making them 
prone to several threats and attacks. A person sitting at one 
end can easily access others’ information at different ends 
within a fraction of a second due to the Internet’s globaliza-
tion. Detecting malicious activities and offering a secure 
environment against the Internet’s sophisticated traffic of a 
diverse set of users are the top priorities of security firms.

Today, the world is going through a COVID-19 pandemic. 
Attackers are looking for every possible way to execute their 
malicious intent. As per the report published in [1], dur-
ing the COVID-19 crisis, attackers targeted consumers and 
enterprises through a themed attack. Reports from [2] show 
the rise in different types of cyber threats during the COVID-
19 pandemic. The phishing attack variants have the highest 
occurrence followed by malware/ ransomware attacks. The 
cost of ransomware is spiked to US$ 20 Billion against US$ 
11.5 Billion in 2019 [3]. According to the Cisco reported by 
cyber defense magazine, [3] the trend in the growth of ran-
somware attack is 350% annually and the expected expen-
ditures on cyber-security are to reach $1 trillion by 2024. 
Providing security to a network or organization is becoming 
arduous with time due to the increasing traffic complexity. 
For the real-time environment, protecting against threats is a 
sufficient task and minimizing the false alarm rate is another 
inevitable part of the cyber defense mechanism. According 
to IBM [3], only 38% of global organizations claim that they 
can handle sophisticated cyber-attacks. Many approaches 
[4–6] work efficiently for the attacks whose signatures are 
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available publicly to the security experts. Along with that, 
an appreciable amount of researches are ongoing to defend 
and mitigate unknown threats or zero-day attacks (ZAs). 
Here, ZA refers to those malicious activities that involve 
exploiting an unknown vulnerability of a system or soft-
ware. In [7], authors reviewed existing works, mainly aiming 
to detect clone attacks performed through clone nodes. All 
these attack detection schemes are analyzed and compared 
for static and dynamic wireless sensor networks (WSNs). 
The vulnerabilities in zero-day threats are only known to 
the black-hat community. They exploit them until the ven-
dor provides a patch to install on all the systems. Figure 1 
explains the different phases of the ZA scenario. Here the 
developers first release software with overlooked glitches/ 
vulnerabilities. The Black-hat community discovers those 
vulnerabilities or glitches present in the software and then 
performs a zero-day exploit against those vulnerabilities. 
Once the developers become aware of any such exploits, 
they develop a patch for those vulnerabilities. They release 
a patch to all users to avoid further attack possibilities due 
to that particular glitch.

Motivation: Recently, in 2020, Microsoft has faced ZA 
[8] caused by the Adobe Type Manager (ATM) library. This 
attack targeted the remote code execution vulnerabilities in 
ATM. It gives attackers to run malicious scripts remotely 
that are sent through spam or downloaded unknowingly. The 

ATM mentioned above vulnerability mentioned above could 
lead to a ransomware attack by executing some malicious 
code. Another one is the CVE-2020-0674 [9] vulnerability, 
whose source is the Internet Explorer scripting engine. The 
attack due to this vulnerability affected IE v9-11 through 
phishing emails or link redirection. The other ZA, whose 
victim itself is a security software firm Sophos. The attack 
executed against Sophos XG firewall due to the CVE-2020-
12271 [10] vulnerability. This attack can change firewall 
settings, grant unauthorized access to a system, or uses mal-
ware installation. There are many more ZAs that are being 
performed and still unobserved. According to report [1] 
during the covid period, different types of unknown cyber-
attacks are increasing rapidly. It motivates authors to design 
a novel technique to prevent zero-day cyber-attacks.

This paper proposes a framework to detect unknown 
cyber-attacks (ZAs) by introducing a robust intelligent, 
novel approach that combines the concept of heavy-hitters 
(HH) and graph technique. This model covers unknown high 
volume attacks (HVA), i.e., variants of DoS/DDoS attacks 
and unknown low volume attacks (LVA), i.e., variants of 
data-theft attack, scanning, etc. Signatures or patterns of 
those attacks are unknown to the vendors. Based on study 
[11] this paper concludes that it is complicated and chal-
lenging to ensure that an attack comprises a sequence of all 
unknown exploits [11]. A ZA usually consists of both known 
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and unknown exploits [11]. Hence, the ZA detection can 
be achieved through known exploit signatures discovered 
in any traffic.

Contribution: Contributions of the proposed work can be 
summarized as follows- 

1. An integration of HH and graph-based technique is pro-
posed to design a robust intelligent system that enables 
on-the-fly detection of ZAs.

2. The proposed system can cover the detection of broader 
categories of ZAs by utilizing up-to-date network traffic 
of known attacks.

3. The model is designed based on a raw byte stream of 
captured real-time network traffic.

4. The proposed model is independent of network, source 
and destination-specific information.

5. Performance of proposed model compared to existing 
approaches for both binary and multi-class classification 
show better result.

6. The proposed system evaluates ZAs detection’s perfor-
mance based on the real-time traffic logged by the net-
work and the latest benchmark data set CICIDS18.

Paper Organization: The paper is organized in the follow-
ing sections as Sect. 2 deals with the preliminary concepts 
required to design the proposed work. It reviews in brief 
recent contributions in the field of ZA detection Sect. 3. Sec-
tion 4 discusses other threat models and solutions by the 
proposed work. Section 5 gives a detailed analysis of the 
proposed work. Section 6 provides details of the experimen-
tal setup to generate test data for the proposed work is dis-
cussed. Section 7 explains the different performance metrics 
and result analysis, followed by Sect. 8 which concludes the 
piece by highlighting the advantages and limitations of the 
proposed framework.

Preliminaries

Two preliminary techniques applied to detect zero-day 
threats in our proposed approach are (A) HH problem and 
(B) Graph-based approach.

Explanation the above two approaches are as follow: 

A.  HH problem It is a frequency estimation problem for 
a stream of data where the goal is to find tokens out of 
input data stream � that qualify the cut-off frequency. 
Here, the token refers to fixed length (say k) sequences 
of characters for a given string � . Let’s assume, 
� = {s1s2s3...si} is a set of tokens obtained from � con-
sisting with u unique elements.If initially, total of N 
tokens are present in the input stream not necessarily 

distinct with each ith token in S having a frequency fi , 
then we say, 

 Several algorithms exist for frequency estimation problems 
[12–15]. Metwally et al. [13] are one of them. Algorithm 1 
describes the modified version of the algorithm mentioned 
above. This algorithm estimates the frequency of tokens in 
the proposed approach. It is a space-saving algorithm and 
provides a more accurate estimator than other existing meth-
ods [12, 14, 15]. It returns the top pre-specified number (z) 
of frequent tokens. freq[], cutoff_freq and y are the list of 
frequent tokens, minimum cutoff on the number of occur-
rences of each token and sliding window size respectively.
  

  

B.  Graph A graph G(V,E) is a set of vertices V and edges 
E where the members of set E represent the intercon-
nection between set V nodes.

Definition 1  Token Graph G(I, E) :  Tokens set I is a vari-
able-length unique sequence of hexadecimal characters . A 
token graph is a graph whose vertices are a set of tokens and 
the connectivity among those vertices is shown by directed 
edges ei ∈ E.

Definition 2 Adjacency Matrix (Adj): For the token 
graph, it is a two-dimensional matrix. Figure 2 shows the 
‘to’and‘from’ relation using green and red encircled ver-
tices respectively for dependency in a graph with an edge 
“ from → to ”. The value 1 and 0 indicate the presence and 
absence of a directed edge between vertices, respectively. 
Let’s assume, I1 → I2, I1 → I3, I3 → I2 , are three connectiv-
ity present in an token graph. Figure 2 shows the adjacency 
matrix for the presence of connections.

f1 + f2 + ... + fl = N
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Definition 3 Vertex score function: A function fx is assigned 
a score value to each vertex or tokens in an token graph and 
is defined by Eq. 1

Where x is a particular token,
d1, d2 are the set of different input stream files.

Related work

Detection of ZA has recently gained tremendous attention. 
Several solutions exist, ranging from behavioral-based to 
graph-based approaches from packet-level to kernel-level. 
Table 1 shows the summary of different ZAs detection 
approaches.

Anomaly-based
An anomaly detection approach in [16] is presented 

using logistic regression for chaotic in-variants, i.e., cor-
relation dimensions, entropy, etc., which are intrinsically 
non-linear features. According to the authors, these proper-
ties produce highly discriminating attributes that machine 
learning algorithms can use. The proposed scheme is not 
suitable for anomalous attacks that target packets’ content, 
buffer overflow or attacks associated with exploiting vulner-
abilities. In [17], Duessel et al. have proposed a ZA detec-
tion technique at the application layer by presenting a new 
data representation called cn−gram. It allows the fusion of 
syntactic and sequential attributes of the packet payloads 
in combined feature space. The similarity of mapped byte 
messages combined with syntax-level attributes using the 
data representation is calculated after the detection algo-
rithm’s training to learn the global normality. Detection is 
done by comparing the learned model’s message and assign-
ing a score for the extent of anomalous behavior. In [18], 
Moon et al. have proposed a host-based detection system for 

(1)fx(x, d1, d2) =
estimated counter of x in d1

estimated counter of x in d2 + 1

secure human-centric computation. To detect whether a pro-
cess executes on the host PC is malicious or not, they define 
39 features under seven categories (i.e., process, thread, 
file system, registry, etc.). They also create a database for 
these features collected from the host PC. These features 
are mapped to a feature vector used by the decision tree to 
classify malware and benign programs.

In [19], Moustafa et al. have proposed an Outlier Dir-
ichlet Mixture (ODM) based detection system for fog. In 
[20], authors have proposed an architecture to detect zero-
day polymorphic worms attack using signature, behavior, 
and anomaly-based technique. The proposed architecture 
consists of three layers, namely: detection, analysis and 
resource layer. The detection engine uses good traffic and 
malicious traffic and for ZA detection. In [21], Khan et al. 
have proposed a multilevel anomaly detection for supervi-
sory control and data acquisition systems (SCADA). Their 
model is based on the expected and consistent communica-
tion structure that takes place among devices in setup. To 
build the model, they have preprocessed the data applying 
dimensionality reduction technique and then create the sig-
nature database using Bloom filter. Contents-level detec-
tion is integrated with an instance-based learner to make 
the model hybrid ZAs detection.

The above state-of-the-arts focused on generating dis-
criminating features, new data representation to combine the 
byte-level information with syntax-level information and the 
consistent behavior analysis for anomaly detection. Hence, 
somehow these techniques rely on the normal behavior of 
network traffic to detect any ZA activity.

Graph-based
Attack detection through graphical models has shown 

a significant improvement over the behavioral-based (or, 
anomaly-based) attack detection. Recent works [11, 22–26] 
have used different concepts to implement graphical models. 
In [27], authors have proposed an anomaly detector using 
the likelihood ratio of network attacks. They treat a com-
puter network as a directed graph where a node refers to 
hosts and the edge between them represents communica-
tion taking place. They first introduce a stochastic attacker 
behavior model and then use the detector to compare net-
work behavior probability when the attacker compromises 
the hosts under the normal condition. In [23], Wang et al. 
have proposed the DaMask architecture to detect the vari-
ants of DDoS attack, which uses Bayesian network infer-
ence in which the model gets auto-update according to new 
observations. In [25], Singh et al. have proposed a layered 
architecture for ZA detection using an attack graph. The 
layers of the architecture are the ZA path generator, risk 
analyzer, and physical layer. This architecture of a central-
ized database and server used for other layers. They have 
proposed an algorithm called “AttackRank” to find the like-
lihood of exploits in the graph. In [26], Yichao et al. have 

Fig. 2  Example of the adjacency matrix for the above connectivity
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proposed a solution that discovers the effective attack path 
through compact graph planning. The solution consists of 
three steps which are formalism and closure calculation, 
graph construction and finally, the attack path extraction. In 
[22], Bayoglu et al. have proposed a content-based graphi-
cal framework to classify polymorphic worm’s signature 
by Conjunction of Combinational Motifs (CCM). Invariant 
parts of worms are used as vertices of the graph. This CCM 
automatically generates signatures for unseen polymorphic 
worms and detects them.

In [11], Sun et al. have proposed a graph-based tech-
nique ZePro, to identify the ZA path. This technique uses 
the Bayesian network to assign probabilities to each vertex 
based on the intrusion evidence. The proposed solution is 
implemented at the kernel level using the object instances 
as vertex and is the modification of the Patrol technique 
[28]. The system’s accuracy towards the finding of a ZA 
path depends on the evidence provided. In [24], AlEroud 
et al. have proposed an approach to detect cyber-attacks on 
software-defined networks. This approach is based on the 

Table 1  Summary of key-state-of-the-arts

Author & Year Methodology Summary

Blaise et al. [44],2020 Statistical approach ∙Port uses profile based detection
Based on analysis ∙Distributed collection of host traffic
of ports ∙ Focused on high volume attacks

∙Does not cover low volume attacks
R.M. et al. [38],2020 DNN based approach ∙PCA & GWO for dimensionality reduction and optimization

∙ Accuracy is enhanced more than 15% applying dimensionality reduction 
technique

Javed et al. [40],2020 LSTM based CNN Model ∙Applied voting scheme to detect abnormality in data generated
through automotive vehicles on different classifier to make final decision

Sameera & Shashi et al. [41],2020 DNN ∙Used manifold alignment to get rid of different feature space
∙Applied soft labeling to get the label to the unlabeled data
∙Zero-day LVA (probe and R2L) detection by using HVAs (DoS) training phase
∙NSL-KDD to CIDD ZA detection analysis shows lower performance

Hindy et al. [43],2020 DNN ∙Proposed optimized DNN architecture for autoencoder to detect ZAs
∙Analyzed performance on CICIDS2017 and NSL-KDD data set

Alauthman et al. [45], Reinforcement learning ∙Model features are selected using CART 
2020 -based detection ∙ Bots detection

∙Evaluated on real-time captured network traffic
Singh et al. [25], 2019 Hybrid approach using ∙Ranking algorithm assigns the likelihood of exploits based on frequency

Snort IDS ∙Builds attack graph for specific time stamps
∙Focused on HVAs
∙LVAs are not taken into consideration

Tang et al. [39],2019 Statistical Model ∙Aims to disclose the relation between different vulnerability and exploits
∙Used Gaussian and Student-t distribution as copula function

Khan et al. [21], 2019 Hybrid approach using ∙Captures benign traffic signatures using bloom filter and KNN
Bloom filter & KNN ∙Bloom filter poses high FPs

∙Detects LVA and HVA ZAs through Anomaly-based approach
Kumar et al. [46],2019 Deep Learning ∙Malware detection is implemented through static, dynamic and image analysis

approach ∙Works on malware executable binaries
∙Host-based technique
∙Works at kernel level to detect ZAs

Sun et al. [11], 2018 Bayesian networks ∙Graph nodes consist of instances of file, process etc.
based approach ∙Performance depends on availability of accurate evidences

∙ Host oriented technique
Kim et al. [37], 2018 GAN based on deep ∙ Zero-day detection works by adding noise to existing malware

autoencoder ∙Fixed length zero-day malware detection
Duessel et al. [17], 2017 One class SVM ∙Combines protocol context with sequential features

∙Covers application layer attacks only
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inference mechanism to reduces false predictions. To detect 
ZAs, a run-time graph is created based on the similarity 
of the network flow based on labels (i.e., target class). The 
node represents the type of alerts or benign activity and the 
relationship between them is the similarity of the features 
of nodes. Those alerts are generated using rules accessed 
and updated by the network administrator. A graph is used 
to retrieve related nodes that produce a higher rate of attack 
detection. In [29], authors have proposed an approach to 
detect botnet in the IoT environment which is based on 
extracting high-level features through function-call graphs. 
Their approach consists of four steps which are- (a) Generat-
ing function-calls (b) Generating PSI-Graph (c) Preprocess-
ing and (d)Classification. Here, processing and converting 
the PSI-Graph into a numeric vector and then a CNN is used 
to classify it into two classes non − attack and botnet.

The basic building block of the frameworks reviewed 
in this subsection is the graph where nodes and edges are 
treated according to the implementation. E.g., few works 
treated hosts as nodes and communication between nodes 
as edges. On the other hand, some treat nodes as an instance 
of file structures and edges as an ordinal relationship. A 
few of them are based on external evidence that assigns a 
likelihood of a node as malicious. In contrast, others give 
the likelihood by comparing network behavior under normal 
conditions and attack conditions. Overall, these approaches 
extract the signature through the graph by applying specific 
criteria to detect ZAs.

ML and deep learning based
This section describes the approaches that apply ML and 

DNN techniques to propose their framework.
Tran et al. [30] have proposed a Cyber Resilience Recov-

ery Model (CRRM) which handles the outbreaks in closed 
networks. The NIST SP 800-61 incident response framework 
for standard and resilience is integrated with Susceptible-
Infected-Quarantined-Recovered (SIQR) model [31] to 
capture ZAs and recovery. In [32], authors have proposed a 
detection technique using a fog ecosystem for the Internet of 
Things (IoT) environment using a deep learning approach. 
Due to the fog network’s closeness to the smart infrastruc-
tures, fog nodes are accountable for training the models 
and performing attack detection. The training model results 
in attack detection models and associated native learning 
parameters used by fog nodes for global update and propaga-
tion. In [33], Saied et al. have proposed a detection approach 
using Artificial Neural Network (ANN) for known and 
unknown DDoS attacks based on specific features that can 
distinguish DDoS from genuine traffic. The model is trained 
using Java Neural Network Simulator (JNNS) on preproc-
essed data and integrated with Snort-AI. A Gated Recurrent 
Unit (GRU) based approach is proposed in [34]. The main 
objective of the work is to detect new DDoS attacks. As per 
the claim made by the authors, the proposed model shows 

higher accuracy. CANintelliIDS [35], an approach proposed 
to mitigate the security issue of the in-vehicle communica-
tion that are prone to various attacks. It combines concur-
rent neural network (CNN) and GRU techniques to detect 
possible attacks.

In [36], Afek et al. have proposed a signature extraction 
technique for high volume ZAs by using the concept of 
heavy-hitters. They have particularly followed Metwally’s 
heavy-hitter algorithm with slight modifications and gener-
ated all possible sets of k-grams from the input data. The 
idea behind detecting zero-day DDoS attacks is to find 
heavy-hitters in attack data and genuine data. Now, heavy 
hitters are compared in each data and placed in a different 
category based on their extent of being malicious based on a 
predefined threshold. Finally, by filtering out the most prob-
able malicious heavy-hitters, they can find out the attacks.

In [37], Kim et al. have proposed a malware detection sys-
tem using deep learning called “transferred deep- convolu-
tion generative adversarial networks (tDCGAN)”. The deep 
auto-encoder is used to learn the malware characteristics 
and used decoder to produce new data. Then transfer these 
to the adversarial network generator. The proposed system 
has three parts: compression and reconstruction of data, gen-
erating fake malware data, and finally detecting malware. 
In [38] authors have proposed a DNN based approach to 
detect cyber-attacks. It uses a hybrid technique using PCA 
and GWO algorithm where first PCA reduces the dimension 
of the data set and GWO is used to optimize the transformed 
data set to reduce the redundancy in the transformed data set. 
This approach mainly focuses on reducing the dimension-
ality to make DNN-based IDS detection more responsive.

In [39], authors have proposed a framework that can effi-
ciently handle the volatility of historical attack data and also 
the multivariate dependency among the attacks. The main 
objective is to disclose the dependence and trend among 
various vulnerabilities and exploits on volatile historical 
data using copula. Gaussian and Student-t are used as the 
copula function. This function gives the joint property of 
attack risks. In [40], authors propose an anomaly detection 
approach using a multi-stage attention mechanism along 
with LSTM based CNN model. The proposed method spe-
cifically covers the abnormality in data generated through 
various sensors in automated vehicles. They also proposed 
an ensemble approach that uses a voting technique to decide 
on anomalous data from different classifiers.

In [41], authors addressed the issue with detecting ZAs 
due to the lack of labeled attack data. They use a manifold 
alignment approach that maps the source and target data 
domain into the same latent space. It assists in getting rid 
of the different feature spaces and probability distribution 
within domains. The generated space is also subject to a 
newly proposed technique that produces soft labels to cope 
with the lack of labels used to create the DNN model for 



2217Complex & Intelligent Systems (2021) 7:2211–2234 

1 3

ZA detection. In [42], authors have proposed an intrusion 
detection and prevention system for the cloud using classifi-
cation and one-time signature (OTS) technique. The OTS is 
used to access the data on the cloud, which is different from 
one-time password OTP. They have used hybrid classifica-
tion by combining normalized k-means with the recurrent 
neural network. In [43], authors have proposed an autoen-
coder-based deep approach for ZA detection. The authors 
demonstrate the performance of the proposed method using 
two well-known data sets, NSL-KDD and CICIDS2017. The 
performance is compared with the one-class SVM outlier 
detection.

Most of the work reviewed in this subsection applies a 
deep learning approach and very few worked with classical 
ML techniques. The advantage of the deep learning tech-
nique is that it requires minimal or no feature engineering 
and learns the distribution of data sets. The disadvantage of 
deep learning is that it needs massive data samples to learn 
the prediction model correctly. Hence, these approaches 
overlook attack categories that generate low traffic or whose 
samples are meager in number.

Limitations of State-of-arts: Review of state-of-the-arts 
conclude that the existing works apply ML/DNN technique, 
graph and anomaly-based approaches for ZAs detection. 
Most of them are only considering HVA detection. Though 
zero-day LVAs are harmful for a system or organization, 
the existing methods overlooked them by focusing on DoS/
DDoS attacks’ variants. It is also observed that the NN 
model is not suitable for covering attacks that produce lower 
volume traffic. Most of the approaches mentioned above 
also have constraints like network source and destination 
or topology specific. They are not generic models for ZAs 
prevention. As a whole, it is tough to design a generic model 
with higher accuracy and lower FAR to defend zero-day 
HVA and LVA exploits.

These limitations motivate the authors to propose a model 
that detects high and low volume ZAs with higher perfor-
mance by applying HH and graph-based approaches. This 
generic model is independent of any specific assumption 
regarding source and destination, topology, etc.

Risk observations (attack analysis)

Detecting known attacks is comparatively more straight-
forward due to the availability of signatures in the public 
domain. On the other hand, exploits whose signatures are 
unknown to the developer-defined as zero-day exploit or 
attack. It is tough to design a model with higher accuracy 
and a lower false alarm rate to defend against these attacks. 
Security persons or the public are unaware of the attacks 
that executes on their system. As a result, the cost of pen-
alty can range from moderate to high. The proposed work 

broadly divides the ZAs into two categories (a) Zero-day 
HVAs and (b) Zero-day LVAs. The following subsection 
describes these two types of ZAs.

Case 1: zero‑day high volume attacks (HVA)

Heavy traffics generated using botnets or by distributed 
systems encounter HVAs. These attacks include the vari-
ants of Dos/DDoS attacks [36, 47–49], where adversaries 
either try to overflow the objective services or exploit a 
vulnerability in the software of the server to exhaust sys-
tem resources and make it inaccessible for the legitimate 
users. Techniques of performing these types of attacks can 
be either traffic-based, bandwidth-based or application-
based. Zero-day HVAs are those attacks that fall under 
this category, but the signature or behavior is not available 
in advance. Thus, it is difficult to capture those attacks 
because what you don’t know, you can’t predict. DoS/
DDoS attack is treated as zero-day if the attack is per-
formed using methods that are not utilized earlier before 
[50].

Solution: Proposed work includes a module to detect 
zero-day variant of HVAs where two different pools of 
HVA and non-attack (or normal) traffic are maintained. 
First, the HVA pool finds the frequent strings present in 
the pool with an estimated counter value. Again, the same 
strings are used to find the estimated count in the normal 
pool. Suppose the estimated counter of a string against the 
attack and normal pool’s differences exceeds some thresh-
old (discussed in Sect. 5.1.1). The string is stored as an 
HVA signature in a knowledge base (KB) (for detail, refer 
to Algorithm 2). Detector passively monitors the real-time 
traffic for any matching signature generated at the training 
phase. If any match is detected, the traffic is blocked.

Some genuine events also behave like a variant of DoS/
DDoS ZAs. These events are known as flash events [51]. 
Due to these events, the traffic load on a server suddenly 
increases. The sudden spike in traffic may result in server 
failure in the system and inaccessibility to users. These 
events behave similarly to the HVAs. But, here, the inten-
tion of the users to play the discriminating factor. E.g., the 
traffic load on a university server at the time of results is 
high. The ticket booking load on railway server in some 
festive season are also the example of flash events. To 
avoid such an ambiguous case, plenty of work exists spe-
cifically to detect whether the network traffic is due to 
a flash event or not [51]. If that is the case, the detector 
module will allow the traffic to pass through. In this paper, 
it is assumed that a flash event is already a detector which 
is implemented separately using existing methods [51–55]. 
It is placed in the network to detect whether traffic load is 
due to a flash event or HVA.
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Case 2: zero‑day low volume attack (LVA)

Apart from HVAs, several other ZAs don’t produce heavy 
traffic at the victim node, but the consequences can range 
from mild to severe. Those attacks execute silently to gain 
access control, data theft, or to perform malicious activi-
ties. Generally, variants of backdoor, scanning, generic, 
etc., are termed as LVAs. These attacks pose unknown pat-
terns or behavior used for information gathering, data theft, 
etc. There is an exception with the low-volume DoS attack 
case where it seems to belong to the LVA module, but the 
HVA module covers it. The main reason behind this is that 
the proposed framework inherently works on the stream 
of byte sequence of payloads captured from attack traffic. 
Few streams in the LVA DoS attack are by default gener-
ated through the HVA module. At the time of detection for 
ZAs, the model works on individual packets independently. 
Thus, even a DoS attack is getting executed in LVA mode, 
the HVA module will detect it.

Solution: To defend these attack categories, this apaper 
designs an LVA module that maintains pools of LVAs and 
non-attack. Now, following the steps similar to the HVA 
module, LVA strings are generated. The unqualified strings 
(or tokens) from the HVA module are forwarded to this 
module. If the forwarded strings are already in the LVA, 
this module assigns extra weights to the strings already pre-
sent in the LVA to refer to the higher likelihood of being 
malicious. Now, a graph is constructed by applying all the 
strings generated by the LVA module, and each vertex of the 
graph is assigned a score (Eq. 5) discussed in Sect. 5.1.2. A 
sequence of vertices (signatures) with a cumulative score 
higher than the threshold is considered zero-day LVAs sig-
natures. A knowledge base of LVA signatures is produced 
to accumulate those LVA signatures. Algorithm 3 explains 
the procedure of signature generation for the LVA module. 
If any signature from the knowledge base matches the traf-
fic, the detection module triggers an alarm for the malicious 
traffic.

Proposed framework

In this section, the proposed framework for detecting ZA 
consists of two phases-(a) signature generation and (b) 
evaluation. The following subsections depict the proposed 
framework.

Signature generation phase

This phase consists of two modules where module 1 shows 
the signature generation for high volume attacks (HVA), 
i.e., variants of DoS/DDoS attack [36, 47–49] and module 
2 shows the signature generation for low volume attacks 

(LVA) [56]. LVAs include variants of service scanning, data 
theft, OS fingerprinting etc. Strings obtained at the end of 
each module are considered as ZAs signatures.

Figure 3 shows that each module uses two pools that 
maintains records in hexadecimal byte format. In the first 
module, pools consist of HVAs and non-attack records. Non-
attack refers to genuine traffic reflecting the normal work-
ing environment. The second module, i.e., the LVA module, 
consists of the LVA pool, including scan, data theft attack 
and genuine traffic records. Figure 4 shows the example of a 
pool that stores raw data in a hexadecimal format. Each mod-
ule is explained in Sects. 5.1.1 and 5.1.2. Section 6 explains 
the process of generating raw data for each category. Table 2 
depicts all the abbreviations used to describe the proposed 
framework.

HVA module

All signatures present in known attack variations are gener-
ated to detect ZA consisting of unknown variants of DoS/
DDoS or similar attacks. This module performs all the steps 
required to create HVAs signatures. It consists of two pools 
of raw packet byte streams merged in a single text file. Traf-
fic captured through Wireshark in pcap format of different 
attack categories is used to generate variable length fre-
quent string tokens consisting of hexadecimal characters. 
These strings are subject to merging and optimization that 
finally pave the way to form the HVA signatures. This pro-
cess involves a direct extraction of data packet array (i.e., 
byte stream � ) from pcap file. After removing the redundant 
information, all packets are merged into one file. This � is 
used to extract the tokens of size k by sequentially sliding 
the k-gram window with a fixed step size y. Fig. 5 shows this 
process. Hence, tokens initially represent the k-grams of a 
byte stream and store it in a file S.

Suppose m, k and y are the size of a raw stream, token 
length (or window size) and sliding step size, respectively. 
These variables are always of even length because each byte 
of data packets is converted to its hexadecimal represen-
tation. Here, y is always less than k. So,in byte form, the 
stream size becomes m/2 byte, window size becomes k/2 and 
similarly, the step size becomes y/2. As a whole, the total 
number of tokens possible in byte form is {m − (k − y)}∕2.

E.g., let’s assume the stream shown in Fig. 5. We need to 
extract all 4-grams of this stream. Now referring to the fig-
ure, the first 4-gram is a0ef and is represented by the first red 
box. The others are described in sequence within individual 
boxes by sliding the window one byte, i.e., two hexadecimal 
characters to the right.

Following procedure describes extraction of HVA token:

– After extracting all k-grams (i.e., 16), the heavy-hitter 
algorithm with cutoff frequency (i.e., 2) is applied to 
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derive all the frequent tokens (or k-grams) (i.e., 8) pre-
sent in S.

– z is calculated using Eq. 2. 

 where M is the size of tokens set, frequency indicates 
a constant value for the minimum occurrence of each 
token, and z is the ceil value of the ratio of the number of 
tokens M and the frequency(cutoff_freq ). The values of 
M and frequency are considered as 16 and 2, respectively, 
for the above example.

(2)z = ⌈
M

cutoff_freq
⌉
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Fig. 3  Building signature-base for ZA detection

Table 2  Abbreviations used in algorithms of the proposed work

Notation Description

nonatkpool Non-attack or Genuine traffic pool
HVApool HVA pool
hkb High volume attack signature knowledge base
Thu Unqualified heavy-hitter tokens
m_token[] Merged tokens list
ca Count of token in attack pool
cn Count of token in genuine pool
thresholdH Threshold value for HVA signature qualification
LVAPool LVA pool
adj Adjacency matrix of generated graph
Tl Merged tokens of LVA module
score[] Array of score value assigned to each vertex in the 

graph
� Constant value for tuning score value
WA..B Weight of path from vertex A to B
Wavg Average path weight
thresholL Threshold value for LVA signature qualification

Fig. 4  Pool example
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– Algorithm  2 guarantees that the z frequent tokens 
obtained from S must contain the top frequent k-grams. 
But the converse is not valid, i.e., z can contain k-grams 
which have a frequency less than the cutoff frequency.

– Finally, those top k tokens are merged to reduce the 
redundancy, which generates variable-length tokens.

– Merging of tokens refers to the process, where two 
frequent tokens found by the Algorithm 2 which have 
some parts matching from either end of the token. They 
fall within some specified ratio(r) (given by Eq. 3) of 
estimated occurrence with the other. 

 From Fig. 14, the value of r is assumed ∈(0.5,1].
– The newly merged token is placed on the list and the 

count is set to the minimum of the estimated counter 
of individual tokens.

– It checks whether any existing token contains in the 
merged token or not. If it is found, the existing token is 
removed from the list.

– Now, rather than directly using these merged token lists 
as attack signatures, each one is validated using HVA 
and non-attack pool.

– If the count of token in HVA pool is higher than that 
of in non-attack pool by thresholdH given by Eq. 4, 
that token is kept in HVA knowledge base as the final 
signature. Otherwise, the token is considered as a non-
HVA token set ( Thu).

– The threshold thresholdH is computed using Eq. 4. 

(3)r =
min(estimated count of first and second token)

max(estimated count of first and second token)

 Where � ∈[0,1] and N is the total number of tokens.
– The best value of � is decided by plotting the ROC 

curve for various attacks for different value of � (shown 
in Fig. 14 of Sect. 7).

– After completing the execution of this module, non-
HVA token ( Thu ) is passed to LVA module.

Algorithm  2 describes the concept of deriving HVA 
signatures where extract_Token(�, k) is  a method 
used to extract all possible tokens from input stream 
f_tokenh[1… z] . It is the list of top z frequent tokens. The 
merge_Token(�, f_token[]) method is used to merge tokens 
obtained by extract_Token() method and returns the merged 
frequent token ( f_token ) array.

LVA module

This module generates signatures for low-volume ZAs. It 
takes non-HVA tokens ( Thu ) from the HVA module and 
generates k-grams. Those k-grams are merged by follow-
ing the similar process as in the HVA module to produce a 
set of tokens Tl . The zero-day LVA attack signature extrac-
tion procedure is shown in Fig. 6.

The signatures are generated in the following way:

(4)thresholdH = � ∗ Na0ef3112b401312b40a0ef2b40a0ef2b40Data Stream:

Tokenization
k=4, y=2

K-gram Tokens (|S|=M):

Heavy Hitters
Cutoff_freq=2 ->z=8

Tokens:

Count:

M=16

Merging
ratio=min(estimated count of first token, second

token)/min(estimated count of first token, second token), (0.5,1]

2b40a0ef2b 12b401312b

2 1

a0ef ef31 12b4 2b40 40a0

2b4040a0 a0ef ef2b

3112 b401

2b40

0131 312b

ef2ba0ef

a0ef 2b4040a0 ef2b 12b4 b4010131312b

3 2 2 1 1 1 1 3

2b40a0ef2b 12b401312b

2 1

Fig. 5  Extraction of tokens from input stream



2221Complex & Intelligent Systems (2021) 7:2211–2234 

1 3

– Frequent tokens are found in the LVA module by apply-
ing the same procedure as in the HVA token generation 
and is used to construct a graph.

– These frequent tokens are used as vertices of the graph 
and the edges between them represent the consecutive 
occurrence of those tokens in attack pool.

– Score is assigned to each vertex by a score function 
vscore() given by Eq. 5. It takes x, aPool,  and nPool as 
input. 

 where, x is a token from array a[] representing a vertex. 
The aPool, and nPool represent attack pool and normal 
pool respectively. The numerator and denominator are 
the proportion of token x in attack and normal pool cal-
culated by Eqs. 6 and 7. 

 Count refers to the estimated count produced by heavy 
hitter algorithm.

– Every qualified tokens are checked against the Thu . Any 
token contained in Thu is assigned some extra weight 

(5)vscore(x, aPool, nPool) =
fraction of x in aPool

fraction of x in nPool + 1

(6)fraction of x in aPool =
count(x) in aPool

�∀ a[i]count(a[i], aPool)

(7)fraction of x in nPool =
count(x) in nPool

�∀ a[i]count(a[i], nPool)

(refer to Algorithm 3) to reflect higher likelihood of 
being malicious for that vertex.

– The coefficient � in Algorithm 3 denotes a value in range 
[0,1].

– The weight of the path represents the average path score 
from one vertex to another and is calculated using Eq. 8. 

 Where, wA...B = weight of path AB , and SA, SB are the 
scores of vertices involved in path A to B.

– Based on the weight of the path or by using the score 
itself in case of isolated vertices, the final signatures are 
extracted by setting up appropriate threshold thresholdL 
given by Eq. 9. The vertices of a path that qualifies the 
threshold are merged to represent LVA signatures. They 
are used to detect zero-day LVA attacks. 

 Where, Wavg is the average weight of all the edges and 
calculated by Eq. 10. 

(8)wA...B =
SA + ... + SB

number of vertices involved in path AB

(9)thresholdL = � ∗ Wavg

(10)Wavg =
sum of all weights of a path

total number of edges
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Let’s assume that in Fig. 7 the vertices with green color 
indicate the vertices that qualify for signature. The edges 
between them are indicated by blue color and are assigned 
with some weight wi . These directed edges between vertices 
show an ordering relation among them along with the possi-
ble matching eat either end of tokens. For e.g., s3 → s9 → s10 
and s6 → s8 showing the qualified paths for attack signatures. 

The vertices are merged for the selected paths, referring to 
the zero-day LVA attack’s final signature. As a result, the 
final signature of zero-day LVA attack at any time instant 
includes “cy5a0ef3d1” and “b3dcgf1”.

Attack detection Phase

After completion of the signature generation phase, the next 
stage is the attack detection phase. The system generates a 
knowledge base consisting of attack signatures. These signa-
tures represent the lowest unit which could be a significant 
deciding factor of whether a flow is malicious. This phase 
consists of attacks signature knowledge bases, a data cap-
turing and preprocessing unit and an attack detection unit. 
The detection module takes real-time traffic as input and 
transforms the data into requisite form to detect ZA traces 
using knowledge bases. Even if one signature matches the 
flow, the system generates the alarm to the security experts 
for further analysis and temporarily blocks that flow. If the 
expert confirms the attack, the model uses that traffic to dis-
cover other new signatures.

Now to avoid the ambiguity between the signatures pre-
sent in both flash events and actual attack events, a com-
plementary module for detecting flash events (discussed in 
Sect. 4.1) is implemented before the data processing unit. 
This flash event module helps to reduce the FAR. This 
module first checks any incoming traffic is a flash event 
or not. If it finds any flash event on the network, network 
load sharing or other techniques [51–55] is triggered to 
prevent the network failure. Otherwise, the traffic is sent 
to the detection module for any ZA detection. If the flash 
event detector is not there, traffics like connection requests 
to a particular service may show a similar surge in the 
case of HVAs. E.g., simultaneous TCP syn requests from 
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a vast number of legitimate users on a network can mimic 
the SYN flood attack. Thus, the detection module may 
detect it as attack traffic wrongly. As a result, it increases 
False Alarm Rate (FAR). Flash Event detector removes 
this problem. Figure 8 describes the attack detection phase 
with flash event detection.

In the proposed work, we aim to detect the ZA and 
achieve this; the test data set comprises a different set of 
attacks that are not present in the signature generation 
phase. The basic idea behind it is that every new attack 
inherently poses a few known attack patterns that act as 
the critical factor for detecting a ZA [11]. Algorithm 4 dis-
cusses the process to generate the detection matrix used to 
analyze the system’s performance. Input to the algorithm 
is the array of signatures (i.e., sign[]), packets (i.e., p[]) 
and the output is an array of detected packets d[], where 
the indices represent the packet number. The correspond-
ing value is the count of signatures found for each packet. 
The value zero for any index indicates that the packet is 
not malicious, i.e., it belongs to a normal category. A value 
greater than zero indicates the packet is malicious. For multiclass classification, the Algorithm 4 is slightly 

modified to generate the detection matrix for multiclass 
(i.e., HVA, LVA, & Normal) by providing separate input 
packets for each class and applying signatures separately 
for HVA and LVA to each input class. The algorithm for 
multiclass generates two output arrays d1, d2 for each 
attack class HVA and LVA respectively and is explained 
in Algorithm 5.
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Fig. 8  Detecting ZA by applying signature knowledge base
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Working procedure

The proposed work’s working procedure is shown in 
Fig. 9, where the detection module is placed on the server. 
A copy of all the communication traffic goes through this 
module. The collected copy of the traffic is preprocessed 
and fed into the detection module, which is responsible for 
detecting malicious traffics. The records corresponding to 
the detection of malicious activities are logged. Also, an 
alert for the same is sent to the administrator to validate it.

Experimental setup

For demonstrating the efficiency of the proposed work in 
detecting ZAs, the experimental setup is divided into two 
parts.

Real‑time data set

Here, the data set is generated by setting up a virtual envi-
ronment. The setup consists of 10 genuine, 10 HVA, and 5 
LVA nodes to generate traffic. Table 3 lists system speci-
fication of individual application and platform used in the 
proposed work.

The data generated through this virtual environment con-
sists of the variation of the attack categories considered in 
the signature generation phase. A setup consisting of Kali 
Linux, ubuntu server machine and client ubuntu shown in 
Fig. 10. Here, ubuntu server/client, windows and metas-
ploitable act as victim nodes. The Linux operating system 
acts as an attacker node. It provides several inbuilt tools 
to perform different attacks. But in some cases, we have 
to use python scripts to perform attacks. All the generated 
traffic is captured through the Wireshark tool. An example 
of data capturing through Wireshark shown in Fig. 11. The 
attack performance procedures for DoS/DDoS, probe, data 

Fig. 9  Working procedure of the proposed work

Table 3  System Specification Operating System Version System Specification

Kali Linux 64-bit 2020-3, 2019-4 CPU: Intel Core i5 Processor
Ubuntu Server/Client 14.04.5 LTS, 16.04 LTS         : Intel Core i3 Proces-

sor
Metasploitable v4.11.4-2015071402 RAM: 4/8 GB DDR4 2400
Windows 32/64-bit NT 6.1, NT 6.3, NT 10.0 HDD: 500 GB/ 1 TB SATA 
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exfiltration and keylogging attacks are discussed in the fol-
lowing subsections.

A.  DoS/DDoS attack

  This attack is performed for three different catego-
ries: HTTP, TCP, and UDP, through other tech-
niques available in the Kali Linux platform, e.g., 
Ettercap, Metasploit framework SlowHTTPTest, 
etc. Figure 12 shows the snapshot of running a 
DoS attack. The procedure to perform the attack 
through Ettercap is explained below. 

 −  Open terminal and type - sudo ettercap − G

−  Select sniff menu under that select unified sniffing
−  In the pop-up window, go to the plugin
−  Choose the appropriate option to start the attack.

B.  Probe This attack is used to find all the open ports, 
system information. Different operating systems run-
ning, etc. Zenmap, a popular GUI-based scanning tool 
in Kali Linux, is used to perform this attack through 

which OS, service, and other information from destina-
tion hosts are collected. Figure 13 shows a snapshot of 
performing probe to a particular host “192.168.56.1”.

C.  Data exfiltration To perform the attack, cloakify-fac-
tory [57] a python script is used, works in several steps 
which are as follows:

−  Run the python script
−  Select file option
−  Specify the source file path
−  Specify the destination file path to save the output
−  Select the ciphering option to convert the file into 

ciphertext and to add noise
D.  Keylogging To perform the keylogging attack, Beelog-

ger [58], a python script is used. All the data is cap-
tured by the Wireshark at the victim’s side and stored 
in a .pcap file. These files are then processed to evaluate 
the proposed work explained in Sect. 5.2.

 
There is no way to test the ZA on the run because those 

attacks are precise to particular zero-day vulnerabilities and 
not known or just disclosed to a fraction of users. Dem-
onstration of the working of proposed method against ZAs 
assumes that, at a specific instance of time, known attacks 
are available for the signature generation phase. On the 
other hand, a set of attacks absent in the signature genera-
tion phase are assumed to be ZAs. It is believed that they are 
not known to the system at that particular time instance. The 
distribution of attack data in training and testing is shown 
in Table 4.

CICIDS18 benchmark data set

We have additionally used a subset of the latest benchmark 
data set CICIDS18 in pcap format for two different days cov-
ering bruteforce and DDoS attacks. The purpose of selecting 
these two attack traffic is that both these attack categories 
are not considered at the signature generation phase. The 
number of normal traffic packets (6032) is kept the same as 
earlier during the real-time analysis. The DDoS pcap file 
used from this data set is different from how DDoS attack 

Subnet 1 Subnet 2

Attacker
Node

Attacker
Node

Pcap file
capturing

Router

192.168.41.248/28
192.168.41.240/28

192.168.43.1 192.168.43.31

Fig. 10  System setup to generate data for the proposed work

Fig. 11  Wireshark window capturing DoS attack
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Fig. 12  Performing DoS attack using ettercap

Fig. 13  Performing probe on a target host



2227Complex & Intelligent Systems (2021) 7:2211–2234 

1 3

is generated through virtual setup during real-time traffic 
capturing in the proposed work. The number of packets in 
the HVA and LVAs is 273605 and 69656, respectively, for 
analysis. Now, the performance of the model is evaluated 
on both real-time and the CICIDS18 benchmark data set.

Performance analysis

In this section, the performance of the proposed approach 
is discussed for the binary and multi-class test scenarios. At 
the first time and space complexity of the proposed model 
is discussed in the following subsection.

Complexity analysis

The summary of abbreviations used to analyze the time and 
space complexity of the proposed work is listed in Table 5. 
This analysis is divided into four phases.

– Data Collection:

a Time Complexity: In the proposed work total data 
packet is captured on the run-time through virtual 
setup. Hence, the time complexity for this is nearer 
to the real-time required for capturing the data pack-
ets.

b Space Complexity: The storage complexity is pro-
portional to store the HVA, LVA and genuine pack-
ets in pools. It is in the order of O(PH + PL + PN) , 
where PH ,PL and PN are defined in 5.

– HVA Signature Generation: Algorithm 2 explains HVA 
signature generation. 

a. Time Complexity

 i. Token Extraction: According to algo-
rithm 2, extracting possible number of 
tokens from merged input stream of all 
packets with m characters, k token length 
and y sliding step size is m − (k − y) . 
Hence, the time taken for execution is the 

linear order of m i.e., O(m).
 ii. Finding top z frequent tokens from m-(k-

y) is bounded by the size O(m). Hence, 
replacing the element with minimum 
count to find the top z token applying 
Min heap sorting requires O(z log(z)) 
time. Hence, the total time require is 
O(m ∗ z log(z)).

 iii. Token optimization: Merging of tokens 
that matches patterns at either end by ap-
plying LCP merge takes O(z log(z)).

 iv. Finally, finding heavy hitters will take 
time O(z).

   Hence, the overall time complexity for algo-
rithm 2 is:

  O(m) + O(m ∗ z log(z)) + O(z log(z)) + O(z)  , 
which is the time complexity of HH signature gen-
eration.

Table 4  Class distribution among training and testing data

Attack Type Training Data Testing Data

TCP SYN Yes No
UDP Flood No Yes
HTTP Flood Yes No
Probe Yes (Service scan) Yes (OS,Network scan)
Data Theft HTTP FTP

Table 5  Abbreviations used for the complexity analysis

Notation Description

TH Number of tokens generated using HVA pool
TL Number of tokens generated using LVA pool
TN Number of tokens generated using genuine pool
PH Number of packets in HVA pool
PL Number of packets in LVA pool
PN Number of packets in genuine traffic pool
N Total number of tokens extracted from traffic
z Number of frequent tokens
Ts Total signatures
E Edge set
l LVA signatures
T Vertex set comprising of LVA qualified tokens
p number of test packets

Fig. 14  Roc curve to decide the best value of �
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b. Space Complexity: For maintaining pool to store 
traffic requires storage of order O(PH + PN) and O(z) 
to store the z frequent tokens. So, the overall space 
complexity of the algorithm is: O(PH + PN) + O(z)

– LVA Signature Generation: Algorithm 3 describes the 
process of LVA signature generation process. 

a. Time Complexity

 i. Extracting Tokens: Similar to the Algo-
rithm 2, extracting and optimization of 
tokens take O(m) + O(z log(z)) time.

 ii. Creation of adjacency matrix with z to-
kens requires O(z2) time.

 iii. The assignment of score of the z ver-
tices of the graph require a time of 
O(z ∗ (TL + TN)).

 iv. Creating a signature by assigning weight 
to each path and checking each path for 
threshold qualification is a graph traversal 
that takes O(E + T).

   H e n c e ,  t h e  o ve r a l l  t i m e  c o m -
p l e x i t y  o f  A l g o r i t h m   3  i s : 
O(m) + O(z log(z)) + O(z2) + O(z ∗ (TL + TN)) + O(E + T)

b. Space Complexity: Storage require to store frequent 
token is O(z), adjacency matrix is O(z2) and for LVA 
signature O(l).

   Hence, the overall space complexity of the algorithm 
is: O(z) + O(z2) + O(l)

– Performance Metrics: Algorithm 4 and 5 specifies the 
matrix generation for binary and multi-class classifica-
tion to evaluate the performance of the proposed model. 

a. Time Complexity: Generating detection metric takes 
O(Ts ∗ m) time.

b. Space Complexity:Since the matrix keeps the count 
of the number of tokens matching with each packet 
p, space complexity to store the detection matrix is 
O(p).

Determination of � for signature extraction

Now, before analyzing the performance of the proposed 
work, it is necessary to identify the best possible value of � 
(see Eqs. 4 and 9), which is used to extract signatures. Sev-
eral values of � are used to select HVA and LVA signatures. 
A ROC curve (Fig. 14) shows the (FPR, TPR) pair value 
for different thresholds obtained by varying the value of � . 
FPR and TPR are also known as FAR and Recall. The � 
corresponding to the point, which shows the best result of 
TPR and FPR in the ROC curve, is selected for the proposed 

framework. � for HVA is considered as 0.5 and for LVA, it 
is 0.7. In Fig. 14 these values are corresponding to the FPR 
range [0.2,0.4) and TPR range (0.8,1.0).

Performance metrics

The performance metrics used to evaluate the proposed work 
are discussed below for binary classification (bin) and multi-
class classification (mul).

– Accuracy: It is the measure of correctness in the detec-
tion of different classes to the total input given to the 
system and is given by Eqs. 11a and 11b. 

– Recall: It is defined as the number of packets of each 
class predicted correctly over the total packets of that 
class and is mathematically calculated by Eq. 12a and 
12b. 

– Precision:It is defined as the number of predicted packets 
that are correct over the total predicted packets for each 
class and is given by Eq. 13a and 13b. 

– F-measure:It shows the balance between the precision 
and recall of each class and is given by Eq. 14. We have 
used the mean F-measure (MFM) for multiclass classifi-
cation by taking the average of F-measures for all classes. 

– False alarm rate (FAR):It is the rate of false alarm gener-
ated by the model for non-attack data and is calculated by 
Eq. 15a and 15b. 

(11a)Accbin =
TP + TN

TP + TN + FP + FN

(11b)Accmul =
packets correctly classified

Total number of packets

(12a)recallbin =
TP

TP + FN

(12b)

recallmul =
correctly predicted instances of input class

Total instances of input class

(13a)Precisionbin =
TP

TP + FP

(13b)

precisionmul =
correct instances in predicted class

Total instances of predicted class

(14)F-measure =
2 ∗ precision ∗ recall

precision + recall
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There are other metrics mainly used for multiclass classifica-
tion are- average accuracy, attack accuracy, and attack detec-
tion rate (ADR) discussed below.

– Average accuracy (AvgAcc): It is the average of recalls of 
all classes and is given by Eq. 16. 

– Attack accuracy (AttAcc): It is an average of recalls of all 
classes except the genuine (normal) class and is given by 
Eq. 17. 

– Attack detection rate (ADR): It is the rate of correct predic-
tion of attack categories excluding the normal category and 
is given by Eq. 18. 

Performance evaluation

On Real-time data set: According to the proposed framework 
discussed in Sect. 5 and the experimental setup to generate 
synthetic test data, the system is evaluated using unknown 
attack categories, which refer to the variant attacks not used 
in the signature generation phase. The distribution of test data 
sets under different categories is shown in Table 6. In the pro-
posed work, the HVA class consists of DoS and DDoS vari-
ants and LVA has other attack variants except those present in 
HVA, and finally, the Normal class consists of benign packets.

The Confusion matrix for binary classification is shown 
in the Table 7. The first category is the attack category that 
includes all attack categories and the other is the normal cat-
egory. The metrics corresponding to the Table 7 are shown in 
Fig. 15 with accuracy 91.33% and lower FAR of only 0.6% 
and optimal values for the precision recall is 99.77% and 89% 
respectively.

(15a)FARbin =
FP

FP + TN

(15b)

FARmul =
misclassified instances of genuine class

Total instances of genuine class

(16)AvgAcc =
�∀ class irecalli

Total number of classes

(17)AttAcc =
�∀ class i except for i=genuinerecalli

Total number of classes − 1

(18)

ADR =
correct predicted instances of attack classes

Total instances of attack classes

Table 8 shows the confusion matrix corresponding to the 
multi-class classification. The precision and recall under multi-
class classification are shown in Fig. 16, and performance 
metrics generated for the corresponding matrix are shown in 
Fig. 17.

It is observed that the multi-class performance has slightly 
decremented compared to binary class in terms of accuracy. 
The reason is that, in the case of multi-class classification, the 
prediction is more specific to each class. But, in binary class 
classification, all attack classes are predicted under the single 
aggregated attack class. E.g., assume that the misclassifica-
tion of prediction in Table 8 occurred between HVA and LVA 
attacks i.e., 78 instances of HVA predicted as LVA and 166 
instances of LVA predicted as HVA. But this misclassification 
is absent in the binary classification because HVA and LVA 
are merged into a single class.

On CICIDS18 Dataset: Confusion matrix for the binary and 
multi-class classification is given by Table 9 and 10. Figure 18 
and 19 show the accuracy for binary and multi-class classifica-
tion using the confusion matrix described above shows 91.62% 
and 88.98% respectively on the CICIDS18 data set. A lower 
precision against the normal category in multi-class classifica-
tion is due to the lower number of normal packets considered 
for analysis against the attack packets. Hence, for the number 
of other categories, the packets predicted as normal category 
dominates the true prediction of normal packets. Figures 18 
and 19 show the performance on CICIDS18 benchmark data 
for binary and multi-class classification.

Comparison of performance with existing state-of-the-art: 
The framework provided by Sameera and Shashi [41] used 
DNN to detect ZAs. Before detection, all the traffics first 
undergo soft-labeling through clustering, which further gives 
the facility to make the detection supervised. They use labeled 
attack and normal data along with the unlabeled data whose 
label is generated using clustering. In Fig. 20, the accuracy 
of model [41] and proposed approach are compared for both 
intra-domain and inter-domain detection. The intra-domain 
detection of [41] is 91.71%, which is the average attack 
detection accuracy of DoS-to-probe and DoS-to-R2L of the 
NSL-KDD data set. In the proposed approach, intra-domain 
detection accuracy is 91.62% for binary class classification on 
real-time captured traffic. In [41], all the performance analysis 

Table 6  Distribution of 
instances in different classes

Classes DoS DDoS OS scan Network scan Data theft Normal

Instances 5000 4000 5000 3400 1600 6032

Table 7  Confusion matrix for 
real-time test data set under 
binary-class classification

Classes Attack Normal

Attack 16867 2133
Normal 38 5994
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is done on binary class classification. So, only binary classifi-
cation of the proposed framework is considered for compara-
tive analysis.

On the other hand, in [41] inter-domain detection accu-
racy is 78.85% where the model is trained on the NSL-KDD 
data set and tested on the CIDD data set. In our approach, 
inter-domain detection accuracy is 88.98% where the model 
is trained and signature is generated on real-time captured 
traffic and tested on the CICIDS18 data set. So, compar-
ing the performance of inter-domain of both models, the 

proposed model slightly shows an improvement in the accu-
racy. Unlike [41], the proposed work does not require any 
feature and labeling process.

Conclusion

This paper proposes a novel robust intelligent approach to 
detect the signatures of ZAs. The proposed work is divided 
into two modules (a) HVA to derive high volume ZAs using 
heavy-hitter and (b) LVA to derive signatures for low vol-
ume ZAs using graph technique. The data is captured by 
setting up a virtual environment that consists of 10 genuine, 
10 high volume attack nodes and 3 low volume attack nodes. 
The proposed approach works on the raw hexadecimal byte 
format and successfully captures unknown attacks. The 
result analysis of the proposed work is done for binary and 

Fig. 15  Performance evalua-
tion of the proposed system for 
binary class

Table 8  Confusion matrix for 
real-time test data set under 
multi-class classification

HVA LVA Normal

HVA 6960 78 1962
LVA 166 9663 171
Normal 21 17 5994

Fig. 16  Precision recall 
comparison for multi-class clas-
sification
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multi-class classification. The binary classification perfor-
mance for real-time attack data shows an accuracy of 91.33% 
and 90.35% for binary and multi-class classification. On the 
other hand, for the CICIDS18 benchmark data set, binary 
and multi-class classification shows the accuracy of 91.62% 
and 88.98%, respectively.

Several recent works are restricted to high volume ZAs 
[36, 59] or use an anomaly-based approach discussed in 
Sect. 3. This paper designs a model which detects not only 
high volume ZAs but also zero-day LVAs. This approach 
is independent of source/destination-specific information 
like IP address, port, etc., and can be configured to cover 
broader variants of ZAs.

Fig. 17  Performance matrices 
for multiclass classification on 
real-time data

Table 9  Confusion matrix for 
CICIDS18 under binary-class 
classification

Classes Attack Normal

Attack 314018 29243
Normal 38 5994

Table 10  Confusion matrix for CICIDS18 data set under multi-class 
classification

HVA LVA Normal

HVA 242014 8054 23537
LVA 1183 62764 5706
Normal 21 17 5994

Fig. 18  Performance matrices 
for binary-class classification on 
CICIDS18 data
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Limitations and Future Work of the Proposed Frame-
work: In the future, we would like to improve the robust-
ness of our approach by detecting those types of ZAs 
whose behaviors are independent of existing attacks. 
We will perform tests to improve accuracy in the case 
of multi-class classification. We will optimize the time 
complexity of LVA signature generation and scan for the 
intrusive pattern. The limitation of the proposed work is 
that the exact category of LVA and HVA attack variants 
is not detected due to its implementation approach which 
will be explored in the future too.
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