
Vol.:(0123456789)1 3

Complex & Intelligent Systems (2021) 7:2211–2234
https://doi.org/10.1007/s40747-021-00396-9

ORIGINAL ARTICLE

A robust intelligent zero‑day cyber‑attack detection technique

Vikash Kumar1 · Ditipriya Sinha1

Received: 21 January 2021 / Accepted: 10 May 2021 / Published online: 28 May 2021
© The Author(s) 2021

Abstract
With the introduction of the Internet to the mainstream like e-commerce, online banking, health system and other day-to-day
essentials, risk of being exposed to various are increasing exponentially. Zero-day attack(s) targeting unknown vulnerabili-
ties of a software or system opens up further research direction in the field of cyber-attacks. Existing approaches either uses
ML/DNN or anomaly-based approach to protect against these attacks. Detecting zero-day attacks through these techniques
miss several parameters like frequency of particular byte streams in network traffic and their correlation. Covering attacks
that produce lower traffic is difficult through neural network models because it requires higher traffic for correct prediction.
This paper proposes a novel robust and intelligent cyber-attack detection model to cover the issues mentioned above using
the concept of heavy-hitter and graph technique to detect zero-day attacks. The proposed work consists of two phases (a)
Signature generation and (b) Evaluation phase. This model evaluates the performance using generated signatures at the train-
ing phase. The result analysis of the proposed zero-day attack detection shows higher performance for accuracy of 91.33%
for the binary classification and accuracy of 90.35% for multi-class classification on real-time attack data. The performance
against benchmark data set CICIDS18 shows a promising result of 91.62% for binary-class classification on this model.
Thus, the proposed approach shows an encouraging result to detect zero-day attacks.

Keywords Cyber-attacks · Zero-day attack · Heavy-hitters · Signature generation · Token extraction · High volume attack ·
Low volume attack

Introduction

The digitization of service and other activities turned the
Internet into an inevitable part in various tasks. It makes
a more significant proportion of the population dependent
on the Internet for their daily activities (e.g., gaming, shop-
ping, chatting, financial activities, study, etc.), making them
prone to several threats and attacks. A person sitting at one
end can easily access others’ information at different ends
within a fraction of a second due to the Internet’s globaliza-
tion. Detecting malicious activities and offering a secure
environment against the Internet’s sophisticated traffic of a
diverse set of users are the top priorities of security firms.

Today, the world is going through a COVID-19 pandemic.
Attackers are looking for every possible way to execute their
malicious intent. As per the report published in [1], dur-
ing the COVID-19 crisis, attackers targeted consumers and
enterprises through a themed attack. Reports from [2] show
the rise in different types of cyber threats during the COVID-
19 pandemic. The phishing attack variants have the highest
occurrence followed by malware/ ransomware attacks. The
cost of ransomware is spiked to US$ 20 Billion against US$
11.5 Billion in 2019 [3]. According to the Cisco reported by
cyber defense magazine, [3] the trend in the growth of ran-
somware attack is 350% annually and the expected expen-
ditures on cyber-security are to reach $1 trillion by 2024.
Providing security to a network or organization is becoming
arduous with time due to the increasing traffic complexity.
For the real-time environment, protecting against threats is a
sufficient task and minimizing the false alarm rate is another
inevitable part of the cyber defense mechanism. According
to IBM [3], only 38% of global organizations claim that they
can handle sophisticated cyber-attacks. Many approaches
[4–6] work efficiently for the attacks whose signatures are

 * Vikash Kumar
 vika96snz@gmail.com

 Ditipriya Sinha
 ditipriyasinha87@gmail.com

1 Department of Computer Science and Engineering, National
Institute of Technology Patna, Patna 800005, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-021-00396-9&domain=pdf

2212 Complex & Intelligent Systems (2021) 7:2211–2234

1 3

available publicly to the security experts. Along with that,
an appreciable amount of researches are ongoing to defend
and mitigate unknown threats or zero-day attacks (ZAs).
Here, ZA refers to those malicious activities that involve
exploiting an unknown vulnerability of a system or soft-
ware. In [7], authors reviewed existing works, mainly aiming
to detect clone attacks performed through clone nodes. All
these attack detection schemes are analyzed and compared
for static and dynamic wireless sensor networks (WSNs).
The vulnerabilities in zero-day threats are only known to
the black-hat community. They exploit them until the ven-
dor provides a patch to install on all the systems. Figure 1
explains the different phases of the ZA scenario. Here the
developers first release software with overlooked glitches/
vulnerabilities. The Black-hat community discovers those
vulnerabilities or glitches present in the software and then
performs a zero-day exploit against those vulnerabilities.
Once the developers become aware of any such exploits,
they develop a patch for those vulnerabilities. They release
a patch to all users to avoid further attack possibilities due
to that particular glitch.

Motivation: Recently, in 2020, Microsoft has faced ZA
[8] caused by the Adobe Type Manager (ATM) library. This
attack targeted the remote code execution vulnerabilities in
ATM. It gives attackers to run malicious scripts remotely
that are sent through spam or downloaded unknowingly. The

ATM mentioned above vulnerability mentioned above could
lead to a ransomware attack by executing some malicious
code. Another one is the CVE-2020-0674 [9] vulnerability,
whose source is the Internet Explorer scripting engine. The
attack due to this vulnerability affected IE v9-11 through
phishing emails or link redirection. The other ZA, whose
victim itself is a security software firm Sophos. The attack
executed against Sophos XG firewall due to the CVE-2020-
12271 [10] vulnerability. This attack can change firewall
settings, grant unauthorized access to a system, or uses mal-
ware installation. There are many more ZAs that are being
performed and still unobserved. According to report [1]
during the covid period, different types of unknown cyber-
attacks are increasing rapidly. It motivates authors to design
a novel technique to prevent zero-day cyber-attacks.

This paper proposes a framework to detect unknown
cyber-attacks (ZAs) by introducing a robust intelligent,
novel approach that combines the concept of heavy-hitters
(HH) and graph technique. This model covers unknown high
volume attacks (HVA), i.e., variants of DoS/DDoS attacks
and unknown low volume attacks (LVA), i.e., variants of
data-theft attack, scanning, etc. Signatures or patterns of
those attacks are unknown to the vendors. Based on study
[11] this paper concludes that it is complicated and chal-
lenging to ensure that an attack comprises a sequence of all
unknown exploits [11]. A ZA usually consists of both known

Software Server

Uploading Patch
Uploading

Softw
are to

 server

A
tt

ac
ke

r

Probing for zero-day
Vulnerabilities

Exploiting zero-day

Vulnerabilities

S
of

tw
ar

e
D

ev
el

op
er

1
2

3

4

Disclosure of
Vulnerabilities 5

6

Internet

Public access to
software release

Fig. 1 Different phases of ZA

2213Complex & Intelligent Systems (2021) 7:2211–2234

1 3

and unknown exploits [11]. Hence, the ZA detection can
be achieved through known exploit signatures discovered
in any traffic.

Contribution: Contributions of the proposed work can be
summarized as follows-

1. An integration of HH and graph-based technique is pro-
posed to design a robust intelligent system that enables
on-the-fly detection of ZAs.

2. The proposed system can cover the detection of broader
categories of ZAs by utilizing up-to-date network traffic
of known attacks.

3. The model is designed based on a raw byte stream of
captured real-time network traffic.

4. The proposed model is independent of network, source
and destination-specific information.

5. Performance of proposed model compared to existing
approaches for both binary and multi-class classification
show better result.

6. The proposed system evaluates ZAs detection’s perfor-
mance based on the real-time traffic logged by the net-
work and the latest benchmark data set CICIDS18.

Paper Organization: The paper is organized in the follow-
ing sections as Sect. 2 deals with the preliminary concepts
required to design the proposed work. It reviews in brief
recent contributions in the field of ZA detection Sect. 3. Sec-
tion 4 discusses other threat models and solutions by the
proposed work. Section 5 gives a detailed analysis of the
proposed work. Section 6 provides details of the experimen-
tal setup to generate test data for the proposed work is dis-
cussed. Section 7 explains the different performance metrics
and result analysis, followed by Sect. 8 which concludes the
piece by highlighting the advantages and limitations of the
proposed framework.

Preliminaries

Two preliminary techniques applied to detect zero-day
threats in our proposed approach are (A) HH problem and
(B) Graph-based approach.

Explanation the above two approaches are as follow:

A. HH problem It is a frequency estimation problem for
a stream of data where the goal is to find tokens out of
input data stream � that qualify the cut-off frequency.
Here, the token refers to fixed length (say k) sequences
of characters for a given string � . Let’s assume,
� = {s1s2s3...si} is a set of tokens obtained from � con-
sisting with u unique elements.If initially, total of N
tokens are present in the input stream not necessarily

distinct with each ith token in S having a frequency fi ,
then we say,

 Several algorithms exist for frequency estimation problems
[12–15]. Metwally et al. [13] are one of them. Algorithm 1
describes the modified version of the algorithm mentioned
above. This algorithm estimates the frequency of tokens in
the proposed approach. It is a space-saving algorithm and
provides a more accurate estimator than other existing meth-
ods [12, 14, 15]. It returns the top pre-specified number (z)
of frequent tokens. freq[], cutoff_freq and y are the list of
frequent tokens, minimum cutoff on the number of occur-
rences of each token and sliding window size respectively.

B. Graph A graph G(V,E) is a set of vertices V and edges
E where the members of set E represent the intercon-
nection between set V nodes.

Definition 1 Token Graph G(I, E) : Tokens set I is a vari-
able-length unique sequence of hexadecimal characters . A
token graph is a graph whose vertices are a set of tokens and
the connectivity among those vertices is shown by directed
edges ei ∈ E.

Definition 2 Adjacency Matrix (Adj): For the token
graph, it is a two-dimensional matrix. Figure 2 shows the
‘to’and‘from’ relation using green and red encircled ver-
tices respectively for dependency in a graph with an edge
“ from → to ”. The value 1 and 0 indicate the presence and
absence of a directed edge between vertices, respectively.
Let’s assume, I1 → I2, I1 → I3, I3 → I2 , are three connectiv-
ity present in an token graph. Figure 2 shows the adjacency
matrix for the presence of connections.

f1 + f2 + ... + fl = N

2214 Complex & Intelligent Systems (2021) 7:2211–2234

1 3

Definition 3 Vertex score function: A function fx is assigned
a score value to each vertex or tokens in an token graph and
is defined by Eq. 1

Where x is a particular token,
d1, d2 are the set of different input stream files.

Related work

Detection of ZA has recently gained tremendous attention.
Several solutions exist, ranging from behavioral-based to
graph-based approaches from packet-level to kernel-level.
Table 1 shows the summary of different ZAs detection
approaches.

Anomaly-based
An anomaly detection approach in [16] is presented

using logistic regression for chaotic in-variants, i.e., cor-
relation dimensions, entropy, etc., which are intrinsically
non-linear features. According to the authors, these proper-
ties produce highly discriminating attributes that machine
learning algorithms can use. The proposed scheme is not
suitable for anomalous attacks that target packets’ content,
buffer overflow or attacks associated with exploiting vulner-
abilities. In [17], Duessel et al. have proposed a ZA detec-
tion technique at the application layer by presenting a new
data representation called cn−gram. It allows the fusion of
syntactic and sequential attributes of the packet payloads
in combined feature space. The similarity of mapped byte
messages combined with syntax-level attributes using the
data representation is calculated after the detection algo-
rithm’s training to learn the global normality. Detection is
done by comparing the learned model’s message and assign-
ing a score for the extent of anomalous behavior. In [18],
Moon et al. have proposed a host-based detection system for

(1)fx(x, d1, d2) =
estimated counter of x in d1

estimated counter of x in d2 + 1

secure human-centric computation. To detect whether a pro-
cess executes on the host PC is malicious or not, they define
39 features under seven categories (i.e., process, thread,
file system, registry, etc.). They also create a database for
these features collected from the host PC. These features
are mapped to a feature vector used by the decision tree to
classify malware and benign programs.

In [19], Moustafa et al. have proposed an Outlier Dir-
ichlet Mixture (ODM) based detection system for fog. In
[20], authors have proposed an architecture to detect zero-
day polymorphic worms attack using signature, behavior,
and anomaly-based technique. The proposed architecture
consists of three layers, namely: detection, analysis and
resource layer. The detection engine uses good traffic and
malicious traffic and for ZA detection. In [21], Khan et al.
have proposed a multilevel anomaly detection for supervi-
sory control and data acquisition systems (SCADA). Their
model is based on the expected and consistent communica-
tion structure that takes place among devices in setup. To
build the model, they have preprocessed the data applying
dimensionality reduction technique and then create the sig-
nature database using Bloom filter. Contents-level detec-
tion is integrated with an instance-based learner to make
the model hybrid ZAs detection.

The above state-of-the-arts focused on generating dis-
criminating features, new data representation to combine the
byte-level information with syntax-level information and the
consistent behavior analysis for anomaly detection. Hence,
somehow these techniques rely on the normal behavior of
network traffic to detect any ZA activity.

Graph-based
Attack detection through graphical models has shown

a significant improvement over the behavioral-based (or,
anomaly-based) attack detection. Recent works [11, 22–26]
have used different concepts to implement graphical models.
In [27], authors have proposed an anomaly detector using
the likelihood ratio of network attacks. They treat a com-
puter network as a directed graph where a node refers to
hosts and the edge between them represents communica-
tion taking place. They first introduce a stochastic attacker
behavior model and then use the detector to compare net-
work behavior probability when the attacker compromises
the hosts under the normal condition. In [23], Wang et al.
have proposed the DaMask architecture to detect the vari-
ants of DDoS attack, which uses Bayesian network infer-
ence in which the model gets auto-update according to new
observations. In [25], Singh et al. have proposed a layered
architecture for ZA detection using an attack graph. The
layers of the architecture are the ZA path generator, risk
analyzer, and physical layer. This architecture of a central-
ized database and server used for other layers. They have
proposed an algorithm called “AttackRank” to find the like-
lihood of exploits in the graph. In [26], Yichao et al. have

Fig. 2 Example of the adjacency matrix for the above connectivity

2215Complex & Intelligent Systems (2021) 7:2211–2234

1 3

proposed a solution that discovers the effective attack path
through compact graph planning. The solution consists of
three steps which are formalism and closure calculation,
graph construction and finally, the attack path extraction. In
[22], Bayoglu et al. have proposed a content-based graphi-
cal framework to classify polymorphic worm’s signature
by Conjunction of Combinational Motifs (CCM). Invariant
parts of worms are used as vertices of the graph. This CCM
automatically generates signatures for unseen polymorphic
worms and detects them.

In [11], Sun et al. have proposed a graph-based tech-
nique ZePro, to identify the ZA path. This technique uses
the Bayesian network to assign probabilities to each vertex
based on the intrusion evidence. The proposed solution is
implemented at the kernel level using the object instances
as vertex and is the modification of the Patrol technique
[28]. The system’s accuracy towards the finding of a ZA
path depends on the evidence provided. In [24], AlEroud
et al. have proposed an approach to detect cyber-attacks on
software-defined networks. This approach is based on the

Table 1 Summary of key-state-of-the-arts

Author & Year Methodology Summary

Blaise et al. [44],2020 Statistical approach ∙Port uses profile based detection
Based on analysis ∙Distributed collection of host traffic
of ports ∙ Focused on high volume attacks

∙Does not cover low volume attacks
R.M. et al. [38],2020 DNN based approach ∙PCA & GWO for dimensionality reduction and optimization

∙ Accuracy is enhanced more than 15% applying dimensionality reduction
technique

Javed et al. [40],2020 LSTM based CNN Model ∙Applied voting scheme to detect abnormality in data generated
through automotive vehicles on different classifier to make final decision

Sameera & Shashi et al. [41],2020 DNN ∙Used manifold alignment to get rid of different feature space
∙Applied soft labeling to get the label to the unlabeled data
∙Zero-day LVA (probe and R2L) detection by using HVAs (DoS) training phase
∙NSL-KDD to CIDD ZA detection analysis shows lower performance

Hindy et al. [43],2020 DNN ∙Proposed optimized DNN architecture for autoencoder to detect ZAs
∙Analyzed performance on CICIDS2017 and NSL-KDD data set

Alauthman et al. [45], Reinforcement learning ∙Model features are selected using CART
2020 -based detection ∙ Bots detection

∙Evaluated on real-time captured network traffic
Singh et al. [25], 2019 Hybrid approach using ∙Ranking algorithm assigns the likelihood of exploits based on frequency

Snort IDS ∙Builds attack graph for specific time stamps
∙Focused on HVAs
∙LVAs are not taken into consideration

Tang et al. [39],2019 Statistical Model ∙Aims to disclose the relation between different vulnerability and exploits
∙Used Gaussian and Student-t distribution as copula function

Khan et al. [21], 2019 Hybrid approach using ∙Captures benign traffic signatures using bloom filter and KNN
Bloom filter & KNN ∙Bloom filter poses high FPs

∙Detects LVA and HVA ZAs through Anomaly-based approach
Kumar et al. [46],2019 Deep Learning ∙Malware detection is implemented through static, dynamic and image analysis

approach ∙Works on malware executable binaries
∙Host-based technique
∙Works at kernel level to detect ZAs

Sun et al. [11], 2018 Bayesian networks ∙Graph nodes consist of instances of file, process etc.
based approach ∙Performance depends on availability of accurate evidences

∙ Host oriented technique
Kim et al. [37], 2018 GAN based on deep ∙ Zero-day detection works by adding noise to existing malware

autoencoder ∙Fixed length zero-day malware detection
Duessel et al. [17], 2017 One class SVM ∙Combines protocol context with sequential features

∙Covers application layer attacks only

2216 Complex & Intelligent Systems (2021) 7:2211–2234

1 3

inference mechanism to reduces false predictions. To detect
ZAs, a run-time graph is created based on the similarity
of the network flow based on labels (i.e., target class). The
node represents the type of alerts or benign activity and the
relationship between them is the similarity of the features
of nodes. Those alerts are generated using rules accessed
and updated by the network administrator. A graph is used
to retrieve related nodes that produce a higher rate of attack
detection. In [29], authors have proposed an approach to
detect botnet in the IoT environment which is based on
extracting high-level features through function-call graphs.
Their approach consists of four steps which are- (a) Generat-
ing function-calls (b) Generating PSI-Graph (c) Preprocess-
ing and (d)Classification. Here, processing and converting
the PSI-Graph into a numeric vector and then a CNN is used
to classify it into two classes non − attack and botnet.

The basic building block of the frameworks reviewed
in this subsection is the graph where nodes and edges are
treated according to the implementation. E.g., few works
treated hosts as nodes and communication between nodes
as edges. On the other hand, some treat nodes as an instance
of file structures and edges as an ordinal relationship. A
few of them are based on external evidence that assigns a
likelihood of a node as malicious. In contrast, others give
the likelihood by comparing network behavior under normal
conditions and attack conditions. Overall, these approaches
extract the signature through the graph by applying specific
criteria to detect ZAs.

ML and deep learning based
This section describes the approaches that apply ML and

DNN techniques to propose their framework.
Tran et al. [30] have proposed a Cyber Resilience Recov-

ery Model (CRRM) which handles the outbreaks in closed
networks. The NIST SP 800-61 incident response framework
for standard and resilience is integrated with Susceptible-
Infected-Quarantined-Recovered (SIQR) model [31] to
capture ZAs and recovery. In [32], authors have proposed a
detection technique using a fog ecosystem for the Internet of
Things (IoT) environment using a deep learning approach.
Due to the fog network’s closeness to the smart infrastruc-
tures, fog nodes are accountable for training the models
and performing attack detection. The training model results
in attack detection models and associated native learning
parameters used by fog nodes for global update and propaga-
tion. In [33], Saied et al. have proposed a detection approach
using Artificial Neural Network (ANN) for known and
unknown DDoS attacks based on specific features that can
distinguish DDoS from genuine traffic. The model is trained
using Java Neural Network Simulator (JNNS) on preproc-
essed data and integrated with Snort-AI. A Gated Recurrent
Unit (GRU) based approach is proposed in [34]. The main
objective of the work is to detect new DDoS attacks. As per
the claim made by the authors, the proposed model shows

higher accuracy. CANintelliIDS [35], an approach proposed
to mitigate the security issue of the in-vehicle communica-
tion that are prone to various attacks. It combines concur-
rent neural network (CNN) and GRU techniques to detect
possible attacks.

In [36], Afek et al. have proposed a signature extraction
technique for high volume ZAs by using the concept of
heavy-hitters. They have particularly followed Metwally’s
heavy-hitter algorithm with slight modifications and gener-
ated all possible sets of k-grams from the input data. The
idea behind detecting zero-day DDoS attacks is to find
heavy-hitters in attack data and genuine data. Now, heavy
hitters are compared in each data and placed in a different
category based on their extent of being malicious based on a
predefined threshold. Finally, by filtering out the most prob-
able malicious heavy-hitters, they can find out the attacks.

In [37], Kim et al. have proposed a malware detection sys-
tem using deep learning called “transferred deep- convolu-
tion generative adversarial networks (tDCGAN)”. The deep
auto-encoder is used to learn the malware characteristics
and used decoder to produce new data. Then transfer these
to the adversarial network generator. The proposed system
has three parts: compression and reconstruction of data, gen-
erating fake malware data, and finally detecting malware.
In [38] authors have proposed a DNN based approach to
detect cyber-attacks. It uses a hybrid technique using PCA
and GWO algorithm where first PCA reduces the dimension
of the data set and GWO is used to optimize the transformed
data set to reduce the redundancy in the transformed data set.
This approach mainly focuses on reducing the dimension-
ality to make DNN-based IDS detection more responsive.

In [39], authors have proposed a framework that can effi-
ciently handle the volatility of historical attack data and also
the multivariate dependency among the attacks. The main
objective is to disclose the dependence and trend among
various vulnerabilities and exploits on volatile historical
data using copula. Gaussian and Student-t are used as the
copula function. This function gives the joint property of
attack risks. In [40], authors propose an anomaly detection
approach using a multi-stage attention mechanism along
with LSTM based CNN model. The proposed method spe-
cifically covers the abnormality in data generated through
various sensors in automated vehicles. They also proposed
an ensemble approach that uses a voting technique to decide
on anomalous data from different classifiers.

In [41], authors addressed the issue with detecting ZAs
due to the lack of labeled attack data. They use a manifold
alignment approach that maps the source and target data
domain into the same latent space. It assists in getting rid
of the different feature spaces and probability distribution
within domains. The generated space is also subject to a
newly proposed technique that produces soft labels to cope
with the lack of labels used to create the DNN model for

2217Complex & Intelligent Systems (2021) 7:2211–2234

1 3

ZA detection. In [42], authors have proposed an intrusion
detection and prevention system for the cloud using classifi-
cation and one-time signature (OTS) technique. The OTS is
used to access the data on the cloud, which is different from
one-time password OTP. They have used hybrid classifica-
tion by combining normalized k-means with the recurrent
neural network. In [43], authors have proposed an autoen-
coder-based deep approach for ZA detection. The authors
demonstrate the performance of the proposed method using
two well-known data sets, NSL-KDD and CICIDS2017. The
performance is compared with the one-class SVM outlier
detection.

Most of the work reviewed in this subsection applies a
deep learning approach and very few worked with classical
ML techniques. The advantage of the deep learning tech-
nique is that it requires minimal or no feature engineering
and learns the distribution of data sets. The disadvantage of
deep learning is that it needs massive data samples to learn
the prediction model correctly. Hence, these approaches
overlook attack categories that generate low traffic or whose
samples are meager in number.

Limitations of State-of-arts: Review of state-of-the-arts
conclude that the existing works apply ML/DNN technique,
graph and anomaly-based approaches for ZAs detection.
Most of them are only considering HVA detection. Though
zero-day LVAs are harmful for a system or organization,
the existing methods overlooked them by focusing on DoS/
DDoS attacks’ variants. It is also observed that the NN
model is not suitable for covering attacks that produce lower
volume traffic. Most of the approaches mentioned above
also have constraints like network source and destination
or topology specific. They are not generic models for ZAs
prevention. As a whole, it is tough to design a generic model
with higher accuracy and lower FAR to defend zero-day
HVA and LVA exploits.

These limitations motivate the authors to propose a model
that detects high and low volume ZAs with higher perfor-
mance by applying HH and graph-based approaches. This
generic model is independent of any specific assumption
regarding source and destination, topology, etc.

Risk observations (attack analysis)

Detecting known attacks is comparatively more straight-
forward due to the availability of signatures in the public
domain. On the other hand, exploits whose signatures are
unknown to the developer-defined as zero-day exploit or
attack. It is tough to design a model with higher accuracy
and a lower false alarm rate to defend against these attacks.
Security persons or the public are unaware of the attacks
that executes on their system. As a result, the cost of pen-
alty can range from moderate to high. The proposed work

broadly divides the ZAs into two categories (a) Zero-day
HVAs and (b) Zero-day LVAs. The following subsection
describes these two types of ZAs.

Case 1: zero‑day high volume attacks (HVA)

Heavy traffics generated using botnets or by distributed
systems encounter HVAs. These attacks include the vari-
ants of Dos/DDoS attacks [36, 47–49], where adversaries
either try to overflow the objective services or exploit a
vulnerability in the software of the server to exhaust sys-
tem resources and make it inaccessible for the legitimate
users. Techniques of performing these types of attacks can
be either traffic-based, bandwidth-based or application-
based. Zero-day HVAs are those attacks that fall under
this category, but the signature or behavior is not available
in advance. Thus, it is difficult to capture those attacks
because what you don’t know, you can’t predict. DoS/
DDoS attack is treated as zero-day if the attack is per-
formed using methods that are not utilized earlier before
[50].

Solution: Proposed work includes a module to detect
zero-day variant of HVAs where two different pools of
HVA and non-attack (or normal) traffic are maintained.
First, the HVA pool finds the frequent strings present in
the pool with an estimated counter value. Again, the same
strings are used to find the estimated count in the normal
pool. Suppose the estimated counter of a string against the
attack and normal pool’s differences exceeds some thresh-
old (discussed in Sect. 5.1.1). The string is stored as an
HVA signature in a knowledge base (KB) (for detail, refer
to Algorithm 2). Detector passively monitors the real-time
traffic for any matching signature generated at the training
phase. If any match is detected, the traffic is blocked.

Some genuine events also behave like a variant of DoS/
DDoS ZAs. These events are known as flash events [51].
Due to these events, the traffic load on a server suddenly
increases. The sudden spike in traffic may result in server
failure in the system and inaccessibility to users. These
events behave similarly to the HVAs. But, here, the inten-
tion of the users to play the discriminating factor. E.g., the
traffic load on a university server at the time of results is
high. The ticket booking load on railway server in some
festive season are also the example of flash events. To
avoid such an ambiguous case, plenty of work exists spe-
cifically to detect whether the network traffic is due to
a flash event or not [51]. If that is the case, the detector
module will allow the traffic to pass through. In this paper,
it is assumed that a flash event is already a detector which
is implemented separately using existing methods [51–55].
It is placed in the network to detect whether traffic load is
due to a flash event or HVA.

2218 Complex & Intelligent Systems (2021) 7:2211–2234

1 3

Case 2: zero‑day low volume attack (LVA)

Apart from HVAs, several other ZAs don’t produce heavy
traffic at the victim node, but the consequences can range
from mild to severe. Those attacks execute silently to gain
access control, data theft, or to perform malicious activi-
ties. Generally, variants of backdoor, scanning, generic,
etc., are termed as LVAs. These attacks pose unknown pat-
terns or behavior used for information gathering, data theft,
etc. There is an exception with the low-volume DoS attack
case where it seems to belong to the LVA module, but the
HVA module covers it. The main reason behind this is that
the proposed framework inherently works on the stream
of byte sequence of payloads captured from attack traffic.
Few streams in the LVA DoS attack are by default gener-
ated through the HVA module. At the time of detection for
ZAs, the model works on individual packets independently.
Thus, even a DoS attack is getting executed in LVA mode,
the HVA module will detect it.

Solution: To defend these attack categories, this apaper
designs an LVA module that maintains pools of LVAs and
non-attack. Now, following the steps similar to the HVA
module, LVA strings are generated. The unqualified strings
(or tokens) from the HVA module are forwarded to this
module. If the forwarded strings are already in the LVA,
this module assigns extra weights to the strings already pre-
sent in the LVA to refer to the higher likelihood of being
malicious. Now, a graph is constructed by applying all the
strings generated by the LVA module, and each vertex of the
graph is assigned a score (Eq. 5) discussed in Sect. 5.1.2. A
sequence of vertices (signatures) with a cumulative score
higher than the threshold is considered zero-day LVAs sig-
natures. A knowledge base of LVA signatures is produced
to accumulate those LVA signatures. Algorithm 3 explains
the procedure of signature generation for the LVA module.
If any signature from the knowledge base matches the traf-
fic, the detection module triggers an alarm for the malicious
traffic.

Proposed framework

In this section, the proposed framework for detecting ZA
consists of two phases-(a) signature generation and (b)
evaluation. The following subsections depict the proposed
framework.

Signature generation phase

This phase consists of two modules where module 1 shows
the signature generation for high volume attacks (HVA),
i.e., variants of DoS/DDoS attack [36, 47–49] and module
2 shows the signature generation for low volume attacks

(LVA) [56]. LVAs include variants of service scanning, data
theft, OS fingerprinting etc. Strings obtained at the end of
each module are considered as ZAs signatures.

Figure 3 shows that each module uses two pools that
maintains records in hexadecimal byte format. In the first
module, pools consist of HVAs and non-attack records. Non-
attack refers to genuine traffic reflecting the normal work-
ing environment. The second module, i.e., the LVA module,
consists of the LVA pool, including scan, data theft attack
and genuine traffic records. Figure 4 shows the example of a
pool that stores raw data in a hexadecimal format. Each mod-
ule is explained in Sects. 5.1.1 and 5.1.2. Section 6 explains
the process of generating raw data for each category. Table 2
depicts all the abbreviations used to describe the proposed
framework.

HVA module

All signatures present in known attack variations are gener-
ated to detect ZA consisting of unknown variants of DoS/
DDoS or similar attacks. This module performs all the steps
required to create HVAs signatures. It consists of two pools
of raw packet byte streams merged in a single text file. Traf-
fic captured through Wireshark in pcap format of different
attack categories is used to generate variable length fre-
quent string tokens consisting of hexadecimal characters.
These strings are subject to merging and optimization that
finally pave the way to form the HVA signatures. This pro-
cess involves a direct extraction of data packet array (i.e.,
byte stream �) from pcap file. After removing the redundant
information, all packets are merged into one file. This � is
used to extract the tokens of size k by sequentially sliding
the k-gram window with a fixed step size y. Fig. 5 shows this
process. Hence, tokens initially represent the k-grams of a
byte stream and store it in a file S.

Suppose m, k and y are the size of a raw stream, token
length (or window size) and sliding step size, respectively.
These variables are always of even length because each byte
of data packets is converted to its hexadecimal represen-
tation. Here, y is always less than k. So,in byte form, the
stream size becomes m/2 byte, window size becomes k/2 and
similarly, the step size becomes y/2. As a whole, the total
number of tokens possible in byte form is {m − (k − y)}∕2.

E.g., let’s assume the stream shown in Fig. 5. We need to
extract all 4-grams of this stream. Now referring to the fig-
ure, the first 4-gram is a0ef and is represented by the first red
box. The others are described in sequence within individual
boxes by sliding the window one byte, i.e., two hexadecimal
characters to the right.

Following procedure describes extraction of HVA token:

– After extracting all k-grams (i.e., 16), the heavy-hitter
algorithm with cutoff frequency (i.e., 2) is applied to

2219Complex & Intelligent Systems (2021) 7:2211–2234

1 3

derive all the frequent tokens (or k-grams) (i.e., 8) pre-
sent in S.

– z is calculated using Eq. 2.

 where M is the size of tokens set, frequency indicates
a constant value for the minimum occurrence of each
token, and z is the ceil value of the ratio of the number of
tokens M and the frequency(cutoff_freq). The values of
M and frequency are considered as 16 and 2, respectively,
for the above example.

(2)z = ⌈
M

cutoff_freq
⌉

HVA Pool Non-attack
Pool

Processing Attack and Non-
attack Traffic

Generate k-grams

Finding
ECount(Thn)

ECount(Th -Thn)>thresholdh

HVA
Knowledge

base

LVA Pool Non-attack
Pool

Finding ECount(Tln)

Unqualified
Tokens (Thu)

Is Thu contains Tl
i

Assign Extra
Weight to Vertex

Tl
i

Construct Graph
and Assign

Vertex Token

Calculate Path
Weight

Weight(Pi)>thresholdlLVA
Knowledge

base

Generate k-grams

HVA Module LVA Module

No

Yes

Yes

Yes

Tl

No

Applying Heavy
Hitters Algorithm
and Optimizing k-

grams

EC
ou

nt
(T

h)

Th
Applying Heavy Hitters

Algorithm and
Optimizing k-grams

ECount(Tl -
Tln)>thresholdl

Tl

ECount(Tl)
Tl

Fig. 3 Building signature-base for ZA detection

Table 2 Abbreviations used in algorithms of the proposed work

Notation Description

nonatkpool Non-attack or Genuine traffic pool
HVApool HVA pool
hkb High volume attack signature knowledge base
Thu Unqualified heavy-hitter tokens
m_token[] Merged tokens list
ca Count of token in attack pool
cn Count of token in genuine pool
thresholdH Threshold value for HVA signature qualification
LVAPool LVA pool
adj Adjacency matrix of generated graph
Tl Merged tokens of LVA module
score[] Array of score value assigned to each vertex in the

graph
� Constant value for tuning score value
WA..B Weight of path from vertex A to B
Wavg Average path weight
thresholL Threshold value for LVA signature qualification

Fig. 4 Pool example

2220 Complex & Intelligent Systems (2021) 7:2211–2234

1 3

– Algorithm 2 guarantees that the z frequent tokens
obtained from S must contain the top frequent k-grams.
But the converse is not valid, i.e., z can contain k-grams
which have a frequency less than the cutoff frequency.

– Finally, those top k tokens are merged to reduce the
redundancy, which generates variable-length tokens.

– Merging of tokens refers to the process, where two
frequent tokens found by the Algorithm 2 which have
some parts matching from either end of the token. They
fall within some specified ratio(r) (given by Eq. 3) of
estimated occurrence with the other.

 From Fig. 14, the value of r is assumed ∈(0.5,1].
– The newly merged token is placed on the list and the

count is set to the minimum of the estimated counter
of individual tokens.

– It checks whether any existing token contains in the
merged token or not. If it is found, the existing token is
removed from the list.

– Now, rather than directly using these merged token lists
as attack signatures, each one is validated using HVA
and non-attack pool.

– If the count of token in HVA pool is higher than that
of in non-attack pool by thresholdH given by Eq. 4,
that token is kept in HVA knowledge base as the final
signature. Otherwise, the token is considered as a non-
HVA token set (Thu).

– The threshold thresholdH is computed using Eq. 4.

(3)r =
min(estimated count of first and second token)

max(estimated count of first and second token)

 Where � ∈[0,1] and N is the total number of tokens.
– The best value of � is decided by plotting the ROC

curve for various attacks for different value of � (shown
in Fig. 14 of Sect. 7).

– After completing the execution of this module, non-
HVA token (Thu) is passed to LVA module.

Algorithm 2 describes the concept of deriving HVA
signatures where extract_Token(�, k) is a method
used to extract all possible tokens from input stream
f_tokenh[1… z] . It is the list of top z frequent tokens. The
merge_Token(�, f_token[]) method is used to merge tokens
obtained by extract_Token() method and returns the merged
frequent token (f_token) array.

LVA module

This module generates signatures for low-volume ZAs. It
takes non-HVA tokens (Thu) from the HVA module and
generates k-grams. Those k-grams are merged by follow-
ing the similar process as in the HVA module to produce a
set of tokens Tl . The zero-day LVA attack signature extrac-
tion procedure is shown in Fig. 6.

The signatures are generated in the following way:

(4)thresholdH = � ∗ Na0ef3112b401312b40a0ef2b40a0ef2b40Data Stream:

Tokenization
k=4, y=2

K-gram Tokens (|S|=M):

Heavy Hitters
Cutoff_freq=2 ->z=8

Tokens:

Count:

M=16

Merging
ratio=min(estimated count of first token, second

token)/min(estimated count of first token, second token), (0.5,1]

2b40a0ef2b 12b401312b

2 1

a0ef ef31 12b4 2b40 40a0

2b4040a0 a0ef ef2b

3112 b401

2b40

0131 312b

ef2ba0ef

a0ef 2b4040a0 ef2b 12b4 b4010131312b

3 2 2 1 1 1 1 3

2b40a0ef2b 12b401312b

2 1

Fig. 5 Extraction of tokens from input stream

2221Complex & Intelligent Systems (2021) 7:2211–2234

1 3

– Frequent tokens are found in the LVA module by apply-
ing the same procedure as in the HVA token generation
and is used to construct a graph.

– These frequent tokens are used as vertices of the graph
and the edges between them represent the consecutive
occurrence of those tokens in attack pool.

– Score is assigned to each vertex by a score function
vscore() given by Eq. 5. It takes x, aPool, and nPool as
input.

 where, x is a token from array a[] representing a vertex.
The aPool, and nPool represent attack pool and normal
pool respectively. The numerator and denominator are
the proportion of token x in attack and normal pool cal-
culated by Eqs. 6 and 7.

 Count refers to the estimated count produced by heavy
hitter algorithm.

– Every qualified tokens are checked against the Thu . Any
token contained in Thu is assigned some extra weight

(5)vscore(x, aPool, nPool) =
fraction of x in aPool

fraction of x in nPool + 1

(6)fraction of x in aPool =
count(x) in aPool

�∀ a[i]count(a[i], aPool)

(7)fraction of x in nPool =
count(x) in nPool

�∀ a[i]count(a[i], nPool)

(refer to Algorithm 3) to reflect higher likelihood of
being malicious for that vertex.

– The coefficient � in Algorithm 3 denotes a value in range
[0,1].

– The weight of the path represents the average path score
from one vertex to another and is calculated using Eq. 8.

 Where, wA...B = weight of path AB , and SA, SB are the
scores of vertices involved in path A to B.

– Based on the weight of the path or by using the score
itself in case of isolated vertices, the final signatures are
extracted by setting up appropriate threshold thresholdL
given by Eq. 9. The vertices of a path that qualifies the
threshold are merged to represent LVA signatures. They
are used to detect zero-day LVA attacks.

 Where, Wavg is the average weight of all the edges and
calculated by Eq. 10.

(8)wA...B =
SA + ... + SB

number of vertices involved in path AB

(9)thresholdL = � ∗ Wavg

(10)Wavg =
sum of all weights of a path

total number of edges

Path Extraction Qualify
ThresholdL?

Token
Matching

Yes

Ignore

Update LVA
Signature
Database

Yes

No

No

Graph
Construction &

Score
Assignment

1a3cy

b3cg

afc1 b3dfg

cy5a

w3

w1

w
2

Build
Signature b3dfgae35

3cya0ef1a3cy5a

.....

Non-HVA Tokens

a0ef, bcdfg,
1a3cy,

LVA Tokens

cy5a, b3cg, afc1,
b3dfg, 1a3cy

.......

Fig. 6 Advancing of LVA signature extraction phase

2222 Complex & Intelligent Systems (2021) 7:2211–2234

1 3

Let’s assume that in Fig. 7 the vertices with green color
indicate the vertices that qualify for signature. The edges
between them are indicated by blue color and are assigned
with some weight wi . These directed edges between vertices
show an ordering relation among them along with the possi-
ble matching eat either end of tokens. For e.g., s3 → s9 → s10
and s6 → s8 showing the qualified paths for attack signatures.

The vertices are merged for the selected paths, referring to
the zero-day LVA attack’s final signature. As a result, the
final signature of zero-day LVA attack at any time instant
includes “cy5a0ef3d1” and “b3dcgf1”.

Attack detection Phase

After completion of the signature generation phase, the next
stage is the attack detection phase. The system generates a
knowledge base consisting of attack signatures. These signa-
tures represent the lowest unit which could be a significant
deciding factor of whether a flow is malicious. This phase
consists of attacks signature knowledge bases, a data cap-
turing and preprocessing unit and an attack detection unit.
The detection module takes real-time traffic as input and
transforms the data into requisite form to detect ZA traces
using knowledge bases. Even if one signature matches the
flow, the system generates the alarm to the security experts
for further analysis and temporarily blocks that flow. If the
expert confirms the attack, the model uses that traffic to dis-
cover other new signatures.

Now to avoid the ambiguity between the signatures pre-
sent in both flash events and actual attack events, a com-
plementary module for detecting flash events (discussed in
Sect. 4.1) is implemented before the data processing unit.
This flash event module helps to reduce the FAR. This
module first checks any incoming traffic is a flash event
or not. If it finds any flash event on the network, network
load sharing or other techniques [51–55] is triggered to
prevent the network failure. Otherwise, the traffic is sent
to the detection module for any ZA detection. If the flash
event detector is not there, traffics like connection requests
to a particular service may show a similar surge in the
case of HVAs. E.g., simultaneous TCP syn requests from

c1a3cy

b3cg

afc1

b3dcg

cy5a
w1

w5

5a0ef

cgf1a

3dfc1

ef3d1

w9

w8

w7

w6
w3

w
2

w4 e50f1

s2

s1

s3

s 4

s5

s6

s7

s8

s9

s10

w10

afc1
e50f1
cy5a
b3cg
3dfc1
b3dcg
c1a3cy
cgf1a
5a0ef
ef3d1.....

Graph
Construction

& Score
Assignment

Tokens
Buffer

Signature
Extraction

cy5a0ef3d1
b3dcgf1a

Fig. 7 Analogy graph used in the proposed work

2223Complex & Intelligent Systems (2021) 7:2211–2234

1 3

a vast number of legitimate users on a network can mimic
the SYN flood attack. Thus, the detection module may
detect it as attack traffic wrongly. As a result, it increases
False Alarm Rate (FAR). Flash Event detector removes
this problem. Figure 8 describes the attack detection phase
with flash event detection.

In the proposed work, we aim to detect the ZA and
achieve this; the test data set comprises a different set of
attacks that are not present in the signature generation
phase. The basic idea behind it is that every new attack
inherently poses a few known attack patterns that act as
the critical factor for detecting a ZA [11]. Algorithm 4 dis-
cusses the process to generate the detection matrix used to
analyze the system’s performance. Input to the algorithm
is the array of signatures (i.e., sign[]), packets (i.e., p[])
and the output is an array of detected packets d[], where
the indices represent the packet number. The correspond-
ing value is the count of signatures found for each packet.
The value zero for any index indicates that the packet is
not malicious, i.e., it belongs to a normal category. A value
greater than zero indicates the packet is malicious. For multiclass classification, the Algorithm 4 is slightly

modified to generate the detection matrix for multiclass
(i.e., HVA, LVA, & Normal) by providing separate input
packets for each class and applying signatures separately
for HVA and LVA to each input class. The algorithm for
multiclass generates two output arrays d1, d2 for each
attack class HVA and LVA respectively and is explained
in Algorithm 5.

HVA
Knowledge

base

LVA
Knowledge

base

R
eal-tim

e Traffic

Data
Preprocessing

Alarm

Flash Event
Detector Attack Detector

YesNo

Detection Module

Fig. 8 Detecting ZA by applying signature knowledge base

2224 Complex & Intelligent Systems (2021) 7:2211–2234

1 3

Working procedure

The proposed work’s working procedure is shown in
Fig. 9, where the detection module is placed on the server.
A copy of all the communication traffic goes through this
module. The collected copy of the traffic is preprocessed
and fed into the detection module, which is responsible for
detecting malicious traffics. The records corresponding to
the detection of malicious activities are logged. Also, an
alert for the same is sent to the administrator to validate it.

Experimental setup

For demonstrating the efficiency of the proposed work in
detecting ZAs, the experimental setup is divided into two
parts.

Real‑time data set

Here, the data set is generated by setting up a virtual envi-
ronment. The setup consists of 10 genuine, 10 HVA, and 5
LVA nodes to generate traffic. Table 3 lists system speci-
fication of individual application and platform used in the
proposed work.

The data generated through this virtual environment con-
sists of the variation of the attack categories considered in
the signature generation phase. A setup consisting of Kali
Linux, ubuntu server machine and client ubuntu shown in
Fig. 10. Here, ubuntu server/client, windows and metas-
ploitable act as victim nodes. The Linux operating system
acts as an attacker node. It provides several inbuilt tools
to perform different attacks. But in some cases, we have
to use python scripts to perform attacks. All the generated
traffic is captured through the Wireshark tool. An example
of data capturing through Wireshark shown in Fig. 11. The
attack performance procedures for DoS/DDoS, probe, data

Fig. 9 Working procedure of the proposed work

Table 3 System Specification Operating System Version System Specification

Kali Linux 64-bit 2020-3, 2019-4 CPU: Intel Core i5 Processor
Ubuntu Server/Client 14.04.5 LTS, 16.04 LTS : Intel Core i3 Proces-

sor
Metasploitable v4.11.4-2015071402 RAM: 4/8 GB DDR4 2400
Windows 32/64-bit NT 6.1, NT 6.3, NT 10.0 HDD: 500 GB/ 1 TB SATA

2225Complex & Intelligent Systems (2021) 7:2211–2234

1 3

exfiltration and keylogging attacks are discussed in the fol-
lowing subsections.

A. DoS/DDoS attack

 This attack is performed for three different catego-
ries: HTTP, TCP, and UDP, through other tech-
niques available in the Kali Linux platform, e.g.,
Ettercap, Metasploit framework SlowHTTPTest,
etc. Figure 12 shows the snapshot of running a
DoS attack. The procedure to perform the attack
through Ettercap is explained below.

 − Open terminal and type - sudo ettercap − G

− Select sniff menu under that select unified sniffing
− In the pop-up window, go to the plugin
− Choose the appropriate option to start the attack.

B. Probe This attack is used to find all the open ports,
system information. Different operating systems run-
ning, etc. Zenmap, a popular GUI-based scanning tool
in Kali Linux, is used to perform this attack through

which OS, service, and other information from destina-
tion hosts are collected. Figure 13 shows a snapshot of
performing probe to a particular host “192.168.56.1”.

C. Data exfiltration To perform the attack, cloakify-fac-
tory [57] a python script is used, works in several steps
which are as follows:

− Run the python script
− Select file option
− Specify the source file path
− Specify the destination file path to save the output
− Select the ciphering option to convert the file into

ciphertext and to add noise
D. Keylogging To perform the keylogging attack, Beelog-

ger [58], a python script is used. All the data is cap-
tured by the Wireshark at the victim’s side and stored
in a .pcap file. These files are then processed to evaluate
the proposed work explained in Sect. 5.2.

There is no way to test the ZA on the run because those

attacks are precise to particular zero-day vulnerabilities and
not known or just disclosed to a fraction of users. Dem-
onstration of the working of proposed method against ZAs
assumes that, at a specific instance of time, known attacks
are available for the signature generation phase. On the
other hand, a set of attacks absent in the signature genera-
tion phase are assumed to be ZAs. It is believed that they are
not known to the system at that particular time instance. The
distribution of attack data in training and testing is shown
in Table 4.

CICIDS18 benchmark data set

We have additionally used a subset of the latest benchmark
data set CICIDS18 in pcap format for two different days cov-
ering bruteforce and DDoS attacks. The purpose of selecting
these two attack traffic is that both these attack categories
are not considered at the signature generation phase. The
number of normal traffic packets (6032) is kept the same as
earlier during the real-time analysis. The DDoS pcap file
used from this data set is different from how DDoS attack

Subnet 1 Subnet 2

Attacker
Node

Attacker
Node

Pcap file
capturing

Router

192.168.41.248/28
192.168.41.240/28

192.168.43.1 192.168.43.31

Fig. 10 System setup to generate data for the proposed work

Fig. 11 Wireshark window capturing DoS attack

2226 Complex & Intelligent Systems (2021) 7:2211–2234

1 3

Fig. 12 Performing DoS attack using ettercap

Fig. 13 Performing probe on a target host

2227Complex & Intelligent Systems (2021) 7:2211–2234

1 3

is generated through virtual setup during real-time traffic
capturing in the proposed work. The number of packets in
the HVA and LVAs is 273605 and 69656, respectively, for
analysis. Now, the performance of the model is evaluated
on both real-time and the CICIDS18 benchmark data set.

Performance analysis

In this section, the performance of the proposed approach
is discussed for the binary and multi-class test scenarios. At
the first time and space complexity of the proposed model
is discussed in the following subsection.

Complexity analysis

The summary of abbreviations used to analyze the time and
space complexity of the proposed work is listed in Table 5.
This analysis is divided into four phases.

– Data Collection:

a Time Complexity: In the proposed work total data
packet is captured on the run-time through virtual
setup. Hence, the time complexity for this is nearer
to the real-time required for capturing the data pack-
ets.

b Space Complexity: The storage complexity is pro-
portional to store the HVA, LVA and genuine pack-
ets in pools. It is in the order of O(PH + PL + PN) ,
where PH ,PL and PN are defined in 5.

– HVA Signature Generation: Algorithm 2 explains HVA
signature generation.

a. Time Complexity

 i. Token Extraction: According to algo-
rithm 2, extracting possible number of
tokens from merged input stream of all
packets with m characters, k token length
and y sliding step size is m − (k − y) .
Hence, the time taken for execution is the

linear order of m i.e., O(m).
 ii. Finding top z frequent tokens from m-(k-

y) is bounded by the size O(m). Hence,
replacing the element with minimum
count to find the top z token applying
Min heap sorting requires O(z log(z))
time. Hence, the total time require is
O(m ∗ z log(z)).

 iii. Token optimization: Merging of tokens
that matches patterns at either end by ap-
plying LCP merge takes O(z log(z)).

 iv. Finally, finding heavy hitters will take
time O(z).

 Hence, the overall time complexity for algo-
rithm 2 is:

 O(m) + O(m ∗ z log(z)) + O(z log(z)) + O(z) ,
which is the time complexity of HH signature gen-
eration.

Table 4 Class distribution among training and testing data

Attack Type Training Data Testing Data

TCP SYN Yes No
UDP Flood No Yes
HTTP Flood Yes No
Probe Yes (Service scan) Yes (OS,Network scan)
Data Theft HTTP FTP

Table 5 Abbreviations used for the complexity analysis

Notation Description

TH Number of tokens generated using HVA pool
TL Number of tokens generated using LVA pool
TN Number of tokens generated using genuine pool
PH Number of packets in HVA pool
PL Number of packets in LVA pool
PN Number of packets in genuine traffic pool
N Total number of tokens extracted from traffic
z Number of frequent tokens
Ts Total signatures
E Edge set
l LVA signatures
T Vertex set comprising of LVA qualified tokens
p number of test packets

Fig. 14 Roc curve to decide the best value of �

2228 Complex & Intelligent Systems (2021) 7:2211–2234

1 3

b. Space Complexity: For maintaining pool to store
traffic requires storage of order O(PH + PN) and O(z)
to store the z frequent tokens. So, the overall space
complexity of the algorithm is: O(PH + PN) + O(z)

– LVA Signature Generation: Algorithm 3 describes the
process of LVA signature generation process.

a. Time Complexity

 i. Extracting Tokens: Similar to the Algo-
rithm 2, extracting and optimization of
tokens take O(m) + O(z log(z)) time.

 ii. Creation of adjacency matrix with z to-
kens requires O(z2) time.

 iii. The assignment of score of the z ver-
tices of the graph require a time of
O(z ∗ (TL + TN)).

 iv. Creating a signature by assigning weight
to each path and checking each path for
threshold qualification is a graph traversal
that takes O(E + T).

 H e n c e , t h e o ve r a l l t i m e c o m -
p l e x i t y o f A l g o r i t h m 3 i s :
O(m) + O(z log(z)) + O(z2) + O(z ∗ (TL + TN)) + O(E + T)

b. Space Complexity: Storage require to store frequent
token is O(z), adjacency matrix is O(z2) and for LVA
signature O(l).

 Hence, the overall space complexity of the algorithm
is: O(z) + O(z2) + O(l)

– Performance Metrics: Algorithm 4 and 5 specifies the
matrix generation for binary and multi-class classifica-
tion to evaluate the performance of the proposed model.

a. Time Complexity: Generating detection metric takes
O(Ts ∗ m) time.

b. Space Complexity:Since the matrix keeps the count
of the number of tokens matching with each packet
p, space complexity to store the detection matrix is
O(p).

Determination of � for signature extraction

Now, before analyzing the performance of the proposed
work, it is necessary to identify the best possible value of �
(see Eqs. 4 and 9), which is used to extract signatures. Sev-
eral values of � are used to select HVA and LVA signatures.
A ROC curve (Fig. 14) shows the (FPR, TPR) pair value
for different thresholds obtained by varying the value of � .
FPR and TPR are also known as FAR and Recall. The �
corresponding to the point, which shows the best result of
TPR and FPR in the ROC curve, is selected for the proposed

framework. � for HVA is considered as 0.5 and for LVA, it
is 0.7. In Fig. 14 these values are corresponding to the FPR
range [0.2,0.4) and TPR range (0.8,1.0).

Performance metrics

The performance metrics used to evaluate the proposed work
are discussed below for binary classification (bin) and multi-
class classification (mul).

– Accuracy: It is the measure of correctness in the detec-
tion of different classes to the total input given to the
system and is given by Eqs. 11a and 11b.

– Recall: It is defined as the number of packets of each
class predicted correctly over the total packets of that
class and is mathematically calculated by Eq. 12a and
12b.

– Precision:It is defined as the number of predicted packets
that are correct over the total predicted packets for each
class and is given by Eq. 13a and 13b.

– F-measure:It shows the balance between the precision
and recall of each class and is given by Eq. 14. We have
used the mean F-measure (MFM) for multiclass classifi-
cation by taking the average of F-measures for all classes.

– False alarm rate (FAR):It is the rate of false alarm gener-
ated by the model for non-attack data and is calculated by
Eq. 15a and 15b.

(11a)Accbin =
TP + TN

TP + TN + FP + FN

(11b)Accmul =
packets correctly classified

Total number of packets

(12a)recallbin =
TP

TP + FN

(12b)

recallmul =
correctly predicted instances of input class

Total instances of input class

(13a)Precisionbin =
TP

TP + FP

(13b)

precisionmul =
correct instances in predicted class

Total instances of predicted class

(14)F-measure =
2 ∗ precision ∗ recall

precision + recall

2229Complex & Intelligent Systems (2021) 7:2211–2234

1 3

There are other metrics mainly used for multiclass classifica-
tion are- average accuracy, attack accuracy, and attack detec-
tion rate (ADR) discussed below.

– Average accuracy (AvgAcc): It is the average of recalls of
all classes and is given by Eq. 16.

– Attack accuracy (AttAcc): It is an average of recalls of all
classes except the genuine (normal) class and is given by
Eq. 17.

– Attack detection rate (ADR): It is the rate of correct predic-
tion of attack categories excluding the normal category and
is given by Eq. 18.

Performance evaluation

On Real-time data set: According to the proposed framework
discussed in Sect. 5 and the experimental setup to generate
synthetic test data, the system is evaluated using unknown
attack categories, which refer to the variant attacks not used
in the signature generation phase. The distribution of test data
sets under different categories is shown in Table 6. In the pro-
posed work, the HVA class consists of DoS and DDoS vari-
ants and LVA has other attack variants except those present in
HVA, and finally, the Normal class consists of benign packets.

The Confusion matrix for binary classification is shown
in the Table 7. The first category is the attack category that
includes all attack categories and the other is the normal cat-
egory. The metrics corresponding to the Table 7 are shown in
Fig. 15 with accuracy 91.33% and lower FAR of only 0.6%
and optimal values for the precision recall is 99.77% and 89%
respectively.

(15a)FARbin =
FP

FP + TN

(15b)

FARmul =
misclassified instances of genuine class

Total instances of genuine class

(16)AvgAcc =
�∀ class irecalli

Total number of classes

(17)AttAcc =
�∀ class i except for i=genuinerecalli

Total number of classes − 1

(18)

ADR =
correct predicted instances of attack classes

Total instances of attack classes

Table 8 shows the confusion matrix corresponding to the
multi-class classification. The precision and recall under multi-
class classification are shown in Fig. 16, and performance
metrics generated for the corresponding matrix are shown in
Fig. 17.

It is observed that the multi-class performance has slightly
decremented compared to binary class in terms of accuracy.
The reason is that, in the case of multi-class classification, the
prediction is more specific to each class. But, in binary class
classification, all attack classes are predicted under the single
aggregated attack class. E.g., assume that the misclassifica-
tion of prediction in Table 8 occurred between HVA and LVA
attacks i.e., 78 instances of HVA predicted as LVA and 166
instances of LVA predicted as HVA. But this misclassification
is absent in the binary classification because HVA and LVA
are merged into a single class.

On CICIDS18 Dataset: Confusion matrix for the binary and
multi-class classification is given by Table 9 and 10. Figure 18
and 19 show the accuracy for binary and multi-class classifica-
tion using the confusion matrix described above shows 91.62%
and 88.98% respectively on the CICIDS18 data set. A lower
precision against the normal category in multi-class classifica-
tion is due to the lower number of normal packets considered
for analysis against the attack packets. Hence, for the number
of other categories, the packets predicted as normal category
dominates the true prediction of normal packets. Figures 18
and 19 show the performance on CICIDS18 benchmark data
for binary and multi-class classification.

Comparison of performance with existing state-of-the-art:
The framework provided by Sameera and Shashi [41] used
DNN to detect ZAs. Before detection, all the traffics first
undergo soft-labeling through clustering, which further gives
the facility to make the detection supervised. They use labeled
attack and normal data along with the unlabeled data whose
label is generated using clustering. In Fig. 20, the accuracy
of model [41] and proposed approach are compared for both
intra-domain and inter-domain detection. The intra-domain
detection of [41] is 91.71%, which is the average attack
detection accuracy of DoS-to-probe and DoS-to-R2L of the
NSL-KDD data set. In the proposed approach, intra-domain
detection accuracy is 91.62% for binary class classification on
real-time captured traffic. In [41], all the performance analysis

Table 6 Distribution of
instances in different classes

Classes DoS DDoS OS scan Network scan Data theft Normal

Instances 5000 4000 5000 3400 1600 6032

Table 7 Confusion matrix for
real-time test data set under
binary-class classification

Classes Attack Normal

Attack 16867 2133
Normal 38 5994

2230 Complex & Intelligent Systems (2021) 7:2211–2234

1 3

is done on binary class classification. So, only binary classifi-
cation of the proposed framework is considered for compara-
tive analysis.

On the other hand, in [41] inter-domain detection accu-
racy is 78.85% where the model is trained on the NSL-KDD
data set and tested on the CIDD data set. In our approach,
inter-domain detection accuracy is 88.98% where the model
is trained and signature is generated on real-time captured
traffic and tested on the CICIDS18 data set. So, compar-
ing the performance of inter-domain of both models, the

proposed model slightly shows an improvement in the accu-
racy. Unlike [41], the proposed work does not require any
feature and labeling process.

Conclusion

This paper proposes a novel robust intelligent approach to
detect the signatures of ZAs. The proposed work is divided
into two modules (a) HVA to derive high volume ZAs using
heavy-hitter and (b) LVA to derive signatures for low vol-
ume ZAs using graph technique. The data is captured by
setting up a virtual environment that consists of 10 genuine,
10 high volume attack nodes and 3 low volume attack nodes.
The proposed approach works on the raw hexadecimal byte
format and successfully captures unknown attacks. The
result analysis of the proposed work is done for binary and

Fig. 15 Performance evalua-
tion of the proposed system for
binary class

Table 8 Confusion matrix for
real-time test data set under
multi-class classification

HVA LVA Normal

HVA 6960 78 1962
LVA 166 9663 171
Normal 21 17 5994

Fig. 16 Precision recall
comparison for multi-class clas-
sification

2231Complex & Intelligent Systems (2021) 7:2211–2234

1 3

multi-class classification. The binary classification perfor-
mance for real-time attack data shows an accuracy of 91.33%
and 90.35% for binary and multi-class classification. On the
other hand, for the CICIDS18 benchmark data set, binary
and multi-class classification shows the accuracy of 91.62%
and 88.98%, respectively.

Several recent works are restricted to high volume ZAs
[36, 59] or use an anomaly-based approach discussed in
Sect. 3. This paper designs a model which detects not only
high volume ZAs but also zero-day LVAs. This approach
is independent of source/destination-specific information
like IP address, port, etc., and can be configured to cover
broader variants of ZAs.

Fig. 17 Performance matrices
for multiclass classification on
real-time data

Table 9 Confusion matrix for
CICIDS18 under binary-class
classification

Classes Attack Normal

Attack 314018 29243
Normal 38 5994

Table 10 Confusion matrix for CICIDS18 data set under multi-class
classification

HVA LVA Normal

HVA 242014 8054 23537
LVA 1183 62764 5706
Normal 21 17 5994

Fig. 18 Performance matrices
for binary-class classification on
CICIDS18 data

2232 Complex & Intelligent Systems (2021) 7:2211–2234

1 3

Limitations and Future Work of the Proposed Frame-
work: In the future, we would like to improve the robust-
ness of our approach by detecting those types of ZAs
whose behaviors are independent of existing attacks.
We will perform tests to improve accuracy in the case
of multi-class classification. We will optimize the time
complexity of LVA signature generation and scan for the
intrusive pattern. The limitation of the proposed work is
that the exact category of LVA and HVA attack variants
is not detected due to its implementation approach which
will be explored in the future too.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http:// creat iveco

mmons. org/ licen ses/ by/4. 0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

Fig. 19 Performance matrices
for multiclass classification on
CICIDS18 data

Fig. 20 Comparative perfor-
mance analysis of proposed
framework with DNN-based
approach [41]

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

2233Complex & Intelligent Systems (2021) 7:2211–2234

1 3

adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http:// creat iveco mmons.
org/ licen ses/ by/4. 0/.

References

 1. “Exploiting a crisis: How cybercriminals behaved during the
outbreak.” https:// www. micro soft. com/ secur ity/ blog/ 2020/ 06/
16/ explo iting-a- crisis- how- cyber crimi nals- behav ed- during- the-
outbr eak/, note = Accessed: 2021-03-12

 2. “Interpol.” https:// www. inter pol. int/ News- and- Events/ News/
2020/ INTER POL- report- shows- alarm ing- rate- of- cyber attac
ks- during- COVID- 19. Accessed: 2021-03-12

 3. “Cyber defense magazine.” https:// www. cyber defen semag azine.
com/ cyber- secur ity- stati stics- for- 2019/ . Accessed: 2019-12-01

 4. Li W, Tug S, Meng W, Wang Y (2019) Designing collaborative
blockchained signature-based intrusion detection in IoT envi-
ronments. Future Generation Computer Systems 96:481–489

 5. Wang Y, Meng W, Li W, Li J, Liu W-X, Xiang Y (2018) A
fog-based privacy-preserving approach for distributed signa-
ture-based intrusion detection. J Parallel Distributed Comput
122:26–35

 6. Bahador MB, Abadi M, Tajoddin A (2019) Hlmd: a signature-
based approach to hardware-level behavioral malware detection
and classification. J Supercomput 75(8):5551–5582

 7. Numan M, Subhan F, Khan WZ, Hakak S, Haider S, Reddy
GT, Jolfaei A, Alazab M (2020) A systematic review on clone
node detection in static wireless sensor networks. IEEE Access
8:65450–65461

 8. “Naked security by sophos.” https:// naked secur ity. sophos. com/
2020/ 03/ 25/ windo ws- has-a- zero- day- that- wont- be- patch ed- for-
weeks/. Accessed: 2020-04-15

 9. “Common vulnerabilities and exposures.” https:// cve. mitre.
org/ cgi- bin/ cvena me. cgi? name= CVE- 2020- 0674. Accessed:
2020-10-20

 10. “National vulnerability database.” https:// nvd. nist. gov/ vuln/
detail/ CVE- 2020- 12271. Accessed: 2020-10-20

 11. Sun X, Dai J, Liu P, Singhal A, Yen J (2018) Using bayes-
ian networks for probabilistic identification of zero-day attack
paths. IEEE Trans Inform Forensics Security 13(10):2506–2521

 12. Gries D, Misra J (1978) A linear sieve algorithm for finding
prime numbers. Commun ACM 21(12):999–1003

 13. Metwally A, Agrawal D, El Abbadi A (2005) Efficient computa-
tion of frequent and top-k elements in data streams. In: Interna-
tional Conference on Database Theory, pp. 398–412, Springer

 14. Wong RC-W, Fu AW-C (2006) Mining top-k frequent itemsets
from data streams. Data Min Knowl Discovery 13(2):193–217

 15. Chen L, Mei Q (2014) Mining frequent items in data stream
using time fading model. Inform Sci 257:54–69

 16. Palmieri F (2019) Network anomaly detection based on logistic
regression of nonlinear chaotic invariants. J Netw Comput Appl
148:102460

 17. Duessel P, Gehl C, Flegel U, Dietrich S, Meier M (2017) Detect-
ing zero-day attacks using context-aware anomaly detection at
the application-layer. Int J Inform Security 16(5):475–490

 18. Moon D, Pan SB, Kim I (2016) Host-based intrusion detec-
tion system for secure human-centric computing. J Supercompu
72(7):2520–2536

 19. Moustafa N, Choo K-KR, Radwan I, Camtepe S (2019) Outlier
dirichlet mixture mechanism: adversarial statistical learning
for anomaly detection in the fog. IEEE Trans Inform Forensics
Security 14(8):1975–1987

 20. Kaur R, Singh M (2015) A hybrid real-time zero-day attack
detection and analysis system. IJ Comput Netw Inform Security
9:19–31

 21. Khan IA, Pi D, Khan ZU, Hussain Y, Nawaz A (2019) Hml-ids:
a hybrid-multilevel anomaly prediction approach for intrusion
detection in scada systems. IEEE Access 7:89507–89521

 22. Bayoğlu B, Soğukpınar İ (2012) Graph based signature classes for
detecting polymorphic worms via content analysis. Comput Netw
56(2):832–844

 23. Wang B, Zheng Y, Lou W, Hou YT (2015) Ddos attack protection
in the era of cloud computing and software-defined networking.
Comput Netw 81:308–319

 24. AlEroud A, Alsmadi I (2017) Identifying cyber-attacks on soft-
ware defined networks: an inference-based intrusion detection
approach. J Netw Comput Appl 80:152–164

 25. Singh UK, Joshi C, Kanellopoulos D (2019) A framework for
zero-day vulnerabilities detection and prioritization. J Inform
Security Appl 46:164–172

 26. Yichao Z, Tianyang Z, Xiaoyue G, Qingxian W (2019) An
improved attack path discovery algorithm through compact graph
planning. IEEE Access 7:59346–59356

 27. Grana J, Wolpert D, Neil J, Xie D, Bhattacharya T, Bent R (2016)
A likelihood ratio anomaly detector for identifying within-perim-
eter computer network attacks. J Netw Comput Appl 66:166–179

 28. Dai J, Sun X, Liu P (2013) Patrol: Revealing zero-day attack paths
through network-wide system object dependencies. In: European
Symposium on Research in Computer Security, pp. 536–555,
Springer

 29. Nguyen H-T, Ngo Q-D, Le V-H (2019) A novel graph-based
approach for iot botnet detection. International Journal of Infor-
mation Security, 1–11

 30. Tran H, Campos-Nanez E, Fomin P, Wasek J (2016) Cyber resil-
ience recovery model to combat zero-day malware attacks. Com-
put Security 61:19–31

 31. Sterman J (2010) Business dynamics. Irwin/McGraw-Hill c2000
 32. Diro AA, Chilamkurti N (2018) Distributed attack detection

scheme using deep learning approach for internet of things. Future
Generation Comput Syst 82:761–768

 33. Saied A, Overill RE, Radzik T (2016) Detection of known and
unknown ddos attacks using artificial neural networks. Neurocom-
puting 172:385–393

 34. Rehman S ur, Khaliq M, Imtiaz SI, Rasool A, Shafiq M, Javed AR,
Jalil Z, Bashir AK (2021) Diddos: An approach for detection and
identification of distributed denial of service (ddos) cyberattacks
using gated recurrent units (gru). Future Generation Comput Syst
118:453–466

 35. Rehman A, Rehman SU, Khan M, Alazab M, Reddy T (2021)
Canintelliids: Detecting in-vehicle intrusion attacks on a control-
ler area network using cnn and attention-based gru. IEEE Transac-
tions on Network Science and Engineering

 36. Afek Y, Bremler-Barr A, Feibish SL (2019) Zero-day signature
extraction for high-volume attacks. IEEE/ACM Trans Netw
27(2):691–706

 37. Kim J-Y, Bu S-J, Cho S-B (2018) Zero-day malware detection
using transferred generative adversarial networks based on deep
autoencoders. Inform Sci 460:83–102

 38. Rm SP, Maddikunta PKR, Parimala M, Koppu S, Gadekallu TR,
Chowdhary CL, Alazab M (2020) An effective feature engineering

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.microsoft.com/security/blog/2020/06/16/exploiting-a-crisis-how-cybercriminals-behaved-during-the-outbreak/
https://www.microsoft.com/security/blog/2020/06/16/exploiting-a-crisis-how-cybercriminals-behaved-during-the-outbreak/
https://www.microsoft.com/security/blog/2020/06/16/exploiting-a-crisis-how-cybercriminals-behaved-during-the-outbreak/
https://www.interpol.int/News-and-Events/News/2020/INTERPOL-report-shows-alarming-rate-of-cyberattacks-during-COVID-19
https://www.interpol.int/News-and-Events/News/2020/INTERPOL-report-shows-alarming-rate-of-cyberattacks-during-COVID-19
https://www.interpol.int/News-and-Events/News/2020/INTERPOL-report-shows-alarming-rate-of-cyberattacks-during-COVID-19
https://www.cyberdefensemagazine.com/cyber-security-statistics-for-2019/%20
https://www.cyberdefensemagazine.com/cyber-security-statistics-for-2019/%20
https://nakedsecurity.sophos.com/2020/03/25/windows-has-a-zero-day-that-wont-be-patched-for-weeks/
https://nakedsecurity.sophos.com/2020/03/25/windows-has-a-zero-day-that-wont-be-patched-for-weeks/
https://nakedsecurity.sophos.com/2020/03/25/windows-has-a-zero-day-that-wont-be-patched-for-weeks/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-0674
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-0674
https://nvd.nist.gov/vuln/detail/CVE-2020-12271
https://nvd.nist.gov/vuln/detail/CVE-2020-12271

2234 Complex & Intelligent Systems (2021) 7:2211–2234

1 3

for dnn using hybrid pca-gwo for intrusion detection in iomt archi-
tecture. Comput Commun 160:139–149

 39. Tang M, Alazab M, Luo Y (2017) Big data for cybersecurity:
vulnerability disclosure trends and dependencies. IEEE Trans Big
Data 5(3):317–329

 40. Javed AR, Usman M, Rehman SU, Khan MU, Haghighi MS
(2020) Anomaly detection in automated vehicles using multistage
attention-based convolutional neural network. IEEE Transactions
on Intelligent Transportation Systems

 41. Sameera N, Shashi M (2020) Deep transductive transfer learn-
ing framework for zero-day attack detection. ICT Express
6(4):361–367

 42. Balamurugan V, Saravanan R (2019) Enhanced intrusion detection
and prevention system on cloud environment using hybrid clas-
sification and ots generation. Cluster Comput 22(6):13027–13039

 43. Hindy H, Atkinson R, Tachtatzis C, Colin J-N, Bayne E, Bellekens
X (2020) Utilising deep learning techniques for effective zero-day
attack detection. Electronics 9(10):1684

 44. Blaise A, Bouet M, Conan V, Secci S (2020) Detection of zero-
day attacks: an unsupervised port-based approach. Comput Netw
180:107391

 45. Alauthman M, Aslam N, Al-Kasassbeh M, Khan S, Al-Qerem
A, Choo K-KR (2020) An efficient reinforcement learning-based
botnet detection approach. J Netw Comput Appl 150:102479

 46. Vinayakumar R, Alazab M, Soman K, Poornachandran P, Ven-
katraman S (2019) Robust intelligent malware detection using
deep learning. IEEE Access 7:46717–46738

 47. Sari A (2019) Turkish national cyber-firewall to mitigate country-
wide cyber-attacks. Comput Electr Eng 73:128–144

 48. Bhunia SS, Gurusamy M (2017) Dynamic attack detection and
mitigation in iot using sdn. In: 2017 27th International telecom-
munication networks and applications conference (ITNAC),
pp. 1–6, IEEE

 49. Thangavel S, Kannan S (2019) Detection and trace back of low
and high volume of distributed denial-of-service attack based on
statistical measures. Concurrency and Computation: Practice and
Experience, e5428

 50. “Stormwall.” https:// storm wall. netwo rk/ knowl edge- base/ termin/
ddos- zero . Accessed: 2020-02-12

 51. Gera J, Battula BP (2018) Detection of spoofed and non-spoofed
ddos attacks and discriminating them from flash crowds. EURA-
SIP J Inform Security 2018(1):9

 52. Behal S, Kumar K (2017) Detection of ddos attacks and flash
events using novel information theory metrics. Computer Net-
works 116:96–110

 53. Behal S, Kumar K, Sachdeva M (2018) D-face: An anomaly based
distributed approach for early detection of ddos attacks and flash
events. J Netw Comput Appl 111:49–63

 54. Guozi S, Jiang W, Yu G, Danni R, Huakang L (2018) Ddos attacks
and flash event detection based on flow characteristics in sdn. In:
2018 15th IEEE International Conference on Advanced Video and
Signal Based Surveillance (AVSS), pp. 1–6, IEEE

 55. Bhatia S (2016) Ensemble-based model for ddos attack detection
and flash event separation. In: 2016 Future Technologies Confer-
ence (FTC), pp. 958–967, IEEE

 56. Kemp C, Calvert C, Khoshgoftaar T (2018) Utilizing netflow data
to detect slow read attacks. In: 2018 IEEE International Confer-
ence on Information Reuse and Integration (IRI), pp. 108–116,
IEEE

 57. “Cloakify.” https:// github. com/ TryCa tchHCF/ Cloak ify. Accessed:
2019-12-01

 58. “Crack it down-beelogger.” https:// www. crack itdown. com/ 2018/
05/ create- keylo gger- for- windo ws. html . Accessed: 2019-12-01

 59. David J, Thomas C (2019) Efficient ddos flood attack detection
using dynamic thresholding on flow-based network traffic. Com-
puters & Security 82:284–295

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://stormwall.network/knowledge-base/termin/ddos-zero%20
https://stormwall.network/knowledge-base/termin/ddos-zero%20
https://github.com/TryCatchHCF/Cloakify
https://www.crackitdown.com/2018/05/create-keylogger-for-windows.html%20
https://www.crackitdown.com/2018/05/create-keylogger-for-windows.html%20

	A robust intelligent zero-day cyber-attack detection technique
	Abstract
	Introduction
	Preliminaries
	Related work
	Risk observations (attack analysis)
	Case 1: zero-day high volume attacks (HVA)
	Case 2: zero-day low volume attack (LVA)

	Proposed framework
	Signature generation phase
	HVA module
	LVA module

	Attack detection Phase
	Working procedure

	Experimental setup
	Real-time data set
	CICIDS18 benchmark data set

	Performance analysis
	Complexity analysis
	Determination of for signature extraction
	Performance metrics
	Performance evaluation

	Conclusion
	References

