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Abstract
Pythagorean fuzzy sets (PFSs) retain the advantages of intuitionistic fuzzy sets (IFSs), while PFSs portray 1.57 times more 
information than IFSs. In addition, Pythagorean fuzzy preference relations (PFPRs), as a generalization of intuitionistic fuzzy 
preference relations (IFPRs), are more flexible and applicable. The objective of this paper is to propose a novel decision sup-
port model for solving group decision-making problems in a Pythagorean fuzzy environment. First, we define the concepts 
of ordered consistency and multiplicative consistency for PFPRs. Then, aiming at the group decision-making problem of 
multiple PFPRs, a consistency improving model is constructed to improve the consistency of group preference relations. 
Later, a consensus reaching model is developed to reach the degree of group consensus. Furthermore, a decision support 
model with PFPRs is established to derive the normalized weights and output the final result. Holding these features, this 
paper builds a decision support model with PFPRs based on multiplicative consistency and consensus. Finally, the described 
method is validated by an example of financial risk management, and it is concluded that the solvency of a company is an 
important indicator that affects the financial early warning system.

Keywords  Pythagorean fuzzy preference relation · Multiplicative consistency · Consensus · Decision support model · 
Financial crisis and risk management

Introduction

Decision-making implies that there is a range of choices. In 
this case, decision-makers (DMs) rank these choices from 
best to worst, and choose a goal that meets the expecta-
tions of DMs. In group decision-making (GDM) problems, 
DMs usually need to give a precise preference for a group 
of options using pairwise comparisons to express their pre-
ferred information and construct a preference relation judg-
ment matrix [1–3]. Obviously, there are many methods to 
support decision-making [4–6]. Nevertheless, in many GDM 
problems, DMs may be challenging to depict their prefer-
ence with a precise number. One reason is that DMs may not 
have an accurate or sufficient knowledge level of the prob-
lem, and the other is that DMs cannot clearly distinguish 
the extent to which one is superior to others [7, 8]. In these 
cases, DMs may prefer to compare the imprecise judgment 
information in a matrix in pairs. To describe this vague-
ness and indeterminacy, researchers have introduced fuzzy 
sets (FSs) [9] theory to different preference relations (PRs). 
Then, fuzzy preference relations (FPRs) [10] and interval 
fuzzy preference relations (IFPRs) [11] emerged. Compared 
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with traditional PRs, FPRs can provide reasonable feedback 
on the preferences given by DMs via a membership function 
[12–14]. With the growing complexity of the decision-mak-
ing environment, there will be recognitions of affirmation, 
hesitation, or negation in decision-making. Therefore, IFPRs 
can feedback assessment intuitively with membership, non-
membership, and hesitation [15–20].

However, the domain inscribed by the IFSs [21, 22] can 
be visualized as a triangular domain using a two-dimen-
sional coordinate axis. Yager et al. [23, 24] proposed PFSs, 
which are a further extension of IFSs. PFSs not only pos-
sess a membership function and non-membership function, 
but also extend the area composed of two functions to 1/4 
circles. While maintaining the characteristics of IFSs, PFSs 
have a wider range. Therefore, PFSs are more prominent in 
handling decision-making problems. Currently, the research 
on PFSs mainly involves aggregation operators [25–27], 
similarity measures and distance measures [28–30], and 
extensions of classical methods [31, 32]. To give a clear 
perspective on the different concepts, tools, and trends asso-
ciated with their extension, Peng and Selvachandran [33] 
provided an overview of PFSs.

Given the development of PFSs, PFSs were introduced 
to PRs, the concept of Pythagorean fuzzy reference rela-
tions (PFPRs) [34, 35] was proposed, and the GDM problem 
under PFPRs was studied.

The core of the decision-making problem based on PRs 
includes how to define the consistency of PRs and how to 
obtain the weight vector of PRs. Chu et al. [18] constructed a 
GDM framework with IFPRs based on additive consistency 
and the group consensus. Jin et al. [19] designed two meth-
ods to obtain the normalized priority weights from IFPRs. 
To represent preferences under uncertain weights, Lin and 
Wang [20] minimized extreme deviation from the relevant 
consistent IFPRs. Zhang [36] proposed a new approach 
index of Pythagorean fuzzy numbers (PFNs) and intro-
duced a PFN ranking method based on the approach index. 
Additionally, the concept of the interval-valued Pythagorean 
fuzzy set (IVPFS) parallel to the interval intuitionistic fuzzy 
set was proposed [36]. In view of the imprecise modeling 
ability of PFS for human perception in multi-criteria deci-
sion-making, Zhang et al. [36] introduced the classic prefer-
ence ranking organization method of enrichment evaluations 
(PROMETHEE) in the Pythagorean fuzzy environment. In 
Zhang et al.’s method [37], the weights and preferences are 
considered synthetically, which increase the range of the 
decision-maker’s choice. Based on a new multiplicative 
consistency definition of interval fuzzy preference relations, 
Zhang [38] constructs a goal programming model.

However, when using additive consistency to estimate 
incomplete elements in FPRs, it is easy to exclude partial 
incomplete elements from [0, 1]. Thus, the final decision 
result may be unreliable. In some cases, additive consistency 

is not suitable for fuzzy preference relations. In contrast, the 
multiplicative consistency in FPRs can effectively compen-
sate for this deficiency. Furthermore, Jin et al. [19] discussed 
multiplicatively consistent IFPRs and constructed a group 
decision model for solving practical problems. However, 
we know that the area of an intuitionistic fuzzy set (IFS) 
can be regarded as a triangle while the area of a Pythago-
rean fuzzy set (PFS) is a quarter circle. In short, the spatial 
membership of a PFS is greater than that of an IFS, which 
is equivalent to an intuitionistic fuzzy number (IFN) being a 
PFN. Otherwise, it does not hold [22, 23]. Therefore, PFPRs 
can solve the problem that IFPRs are incompetent. Yang 
et al. [35] defined additive consistent PFPRs and Pythago-
rean fuzzy weighted quadratic (PFWQ) operators to con-
struct group decision methods. In the GDM process, due 
to the complexity of the decision-making problem and the 
limitation of the evaluator’s knowledge or background, not 
all PRs provided by each evaluator can meet the condition 
of additive consistency. Therefore, an optimization model 
with the minimum deviation between the given PFPR and 
the constructed multiplicatively consistent PFPR is estab-
lished, and the objective optimization model is solved to 
obtain the fuzzy weight vector of the preference relation. It 
is worth affirming that Mandal and Ranadive [34] introduced 
PFPRs. However, the qualified consensus relation cannot 
be obtained through the given group collective PR [34]. He 
et al. [39] gave the multiplicative PFPR without consider-
ing the consensus among multiple DMs. Hence, it is only 
suitable for individual decision-making. In summary, how 
to generate a decision support model based on acceptably 
multiplicatively consistent PFPR and consensus is of great 
significance for GDM problems. Although it is worthwhile 
to discuss the multiplicative consistency under PFPRs, there 
are few related achievements. It is necessary to discuss the 
decision support model from the perspective of multiplica-
tive consistency and consensus.

Taking the essential advantages of the Pythagorean fuzzy 
environment and multiplicative consistency to describe pref-
erence values, the main contributions of this paper are as 
follows.

1.	 We define the order consistency and multiplicative con-
sistency with PFPRs.

2.	 We present three algorithms for ordered consistency, 
multiplicative consistency, and group consensus with 
PFPRs, respectively.

3.	 We demonstrate the proposed decision support model 
with an application in financial early warning to indicate 
its practicability and effectiveness.

The remainder of this paper is organized as follows. 
In "Preliminaries", some basic concepts, including FPRs, 
PFSs, and PFPRs, are briefly reviewed. "Method for deriving 
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priority weight vectors with PFPRs" defines the multipli-
cative consistency and properties of PFPRs. "Multiplica-
tive consistency improving algorithm" introduces con-
sensus reaching with multiplicatively consistent PFPRs. 
Then, "Algorithm for group decision-making with PFPRs" 
develops a model for group decision-making with PFPRs. 
"Numerical example and comparison analysis" presents one 
illustrative example of financial early warning, and com-
parative analyses are implemented simultaneously on the 
proposed approach and other existing methods. Finally, con-
clusions are summarized in "Conclusions".

Preliminaries

To illustrate this further, we introduce some basic concepts.

Fuzzy preference relations

Definition 1  [10] Assume that X =
{
x1, x2,… , xn

}
 is a finite 

set of alternatives. A fuzzy preference relation R on X is 
defined by a reciprocal matrix R =

(
rij
)
n×n

 with the circum-
stance that

where rij indicates the degree of preference of alternative xi 
relative to xj.

If rij = 0.5 , there is no difference between alternative xi and 
alternative xj . If rij > 0.5 , alternative xi is superior to alter-
native xj . If rij = 1 , alternative xi is completely superior to 
alternative xj.

Intuitionistic fuzzy preference relations

Definition 2  [15] Assume that X =
{
x1, x2,… , xn

}
 is a finite 

set. The intuitionistic fuzzy preference relation is denoted as

where �I(xi) and �I(xi) represent the degree of membership 
and degree of non-membership of the elements xi ∈ X to 
the set I, respectively. Let � = (�, �) =

(
�I(xi), �I(xi)

)
 be IFN 

where 

 and i, j ∈ N.

Definition 3  [15] Let �i =
(
�i, �i

)
, i = 1, 2 be double IFNs 

that satisfy the following sequential relations:

1.	 If Δ(𝛼1) < Δ(𝛼2) , then 𝛼1 < 𝛼2.

(1)0 ≤ rij ≤ 1, rij + rji = 1, rii = 0.5, i, j = 1, 2,… , n,

(2)I =
(
p̃ij
)
n×n

=
(⟨

𝜌ij, 𝜎ij
⟩)

n×n
,

�, � ∈ [0, 1], 0 ≤ �ij + �ij ≤ 1, �ij = �ji, �ij = �ji, �ij = �ji = 0.5,

2.	 If Δ(�1) = Δ(�2) , and 𝜑(𝛼1) < 𝜑(𝛼2) , then 𝛼1 < 𝛼2.
3.	 If Δ(�1) = Δ(�2) , and �(�1) = �(�2) , then �1 = �2.

Here, the score function Δ(�i) = �i − �i , and the accuracy 
function �(�i) = �i + �i.

Pythagorean fuzzy set

Definition 4  [23, 24] Assume that X =
{
x1, x2,… , xn

}
 is a 

finite set. The Pythagorean fuzzy set is denoted as

where �A(xi) and �A(xi) represent the degree of membership 
and degree of non-membership of the elements xi ∈ X to 
the set A, respectively. Let � = (�, �) =

(
�A(xi), �A(xi)

)
 be a 

PFN, where �, � ∈ [0, 1],�2 + �2 ≤ 1, and the indeterminate 
degree is �A =

√
1 − �2 − �2.

Definition 5  [40] Let �i =
(
�i, �i

)
, i = 1, 2 be PFNs. Then, 

we have the following:

1.	 If s(𝛼1) < s(𝛼2) , then 𝛼1 < 𝛼2.
2.	 If s(�1) = s(�2) , and h(𝛼1) < h(𝛼2) , then 𝛼1 < 𝛼2.
3.	 If s(�1) = s(�2) , and h(�1) = h(�2) , then �1 = �2.

Here, the score function s(�i) = �2
i
− �2

i
 , and the accuracy 

function h(�i) = �2
i
+ �2

i
.

Pythagorean fuzzy preference relations

Definition 6  [34, 35] Let p̃ij(i, j ∈ N) be the PFNs and P be 
the Pythagorean fuzzy preference relation defined on the 
alternative set X, which is characterized by

with the condition that �ij=�ji, �ij = �ji, �ii=�ii =
√
2

�
2.

Generally, �ij represents the degree of preference of alterna-
tive Xi relative to Xj , and �ij represents the degree of prefer-
ence of alternative Xj relative to Xi . The indeterminate 
d e g r e e  �ij =

√
1 − �2

ij
− �2

ij
 a n d 

�ii =

√
1 − �2

ii
− �2

ii
= 0, i ∈ N.

Method for deriving priority weight vectors 
with PFPRs

Multiplicative consistency and properties of PFPRs

Definition 7  A PFPR P = (p̃ij)n×n, i, j ∈ N , which satisfies

(3)A =
�⟨xi, �A(xi), �A(xi)⟩��xi ∈ X

�
,

(4)P =
(
p̃ij
)
n×n

=
(⟨

𝜌ij, 𝜎ij
⟩)

n×n
,
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for all js, is called an order consistent PFPR.

Example 1  Let X =
{
x1, x2,… , xn

}
 be a set of alternatives. 

A PFPR P = (p̃ij)4×4, i, j ∈ N is as follows:

From the above-mentioned PFPR P, it is apparent that 
p1j ≥ p2j ≥ p3j ≥ p4j, j ∈ {1, 2, 3, 4} , which denotes that 
alternative x4 is inferior to x3 , alternative x3 is inferior to x2 , 
and alternative x2 is inferior to x1 . Therefore, according to 
the ordered consistency of PFPRs, the rank of the alternative 
sets is x4 < x3 < x2 < x1.

Definition 8  Suppose that the PFPR P = (p̃ij)n×n, i, j ∈ N is 
regarded as multiplicatively consistent, which satisfies the 
multiplicative transitivity

For �ij = �ji, �ij = �ji, i, j = 1, 2,… , n in Definition 4, 
Eq. (6) is equivalent to the following:

Based on Definition 3.2, we introduce the following 
theorem.

T h e o r e m   1   A s s u m e  t h a t  t h e  P F P R 
P =

(
p̃ij
)
n×n

=
(⟨

𝜌ij, 𝜎ij
⟩)

n×n
 is multiplicative consistent, if 

and only if

where 𝜇(p̃ij) = 𝜌2
ij

/
𝜎2

ij
, i, j = 1, 2,⋯ , n.

Proof 

1.	 We first prove the necessity of Theorem 1.
	   Obviously, by Definition 3.2, we know that 

�2
ij
⋅ �2

jk
⋅ �2

ki
= �2

ik
⋅ �2

kj
⋅ �2

ji
, i, j, k = 1, 2,… , n . Since 

�ij = �ji, �ij = �ji, i, j = 1, 2,… , n , then the expression 
of �2

ij
⋅ �2

kj
⋅ �2

ik
= �2

ik
⋅ �2

kj
⋅ �2

ij
, i, j, k = 1, 2,… , n can be 

obtained. Furthermore, we have the equation

(5)p�(1),j ≥ p�(2),j ≥ ⋯ ≥ p�(n),j,

P =

⎡⎢⎢⎢⎢⎢⎢⎣

(
√
2

�
2,
√
2

�
2) (0.2, 0.1) (0.3, 0.1) (0.5, 0.2)

(0.1, 0.2) (
√
2

�
2,
√
2

�
2) (0.4, 0.3) (0.6, 0.4)

(0.1, 0.3) (0.3, 0.4) (
√
2

�
2,
√
2

�
2) (0.5, 0.4)

(0.2, 0.5) (0.4, 0.6) (0.4, 0.5) (
√
2

�
2,
√
2

�
2)

⎤⎥⎥⎥⎥⎥⎥⎦

.

(6)�2
ij
⋅ �2

jk
⋅ �2

ki
= �2

ik
⋅ �2

kj
⋅ �2

ji
, i, j, k = 1, 2,… , n.

(7)�2

ij
⋅ �2

jk
⋅ �2

ki
= �2

ik
⋅ �2

kj
⋅ �2

ji
, i, j, k = 1, 2,… , n.

(8)𝜇(p̃ij) = 𝜇(p̃ik) ⋅ 𝜇(p̃kj), i, j, k = 1, 2,… , n,

	   Hence ,  f rom Eq.   (9 ) ,  i t  fo l lows  tha t 
𝜇(p̃ij) = 𝜇(p̃ik) ⋅ 𝜇(p̃kj), i, j, k = 1, 2,… , n.

2.	 Here, we continue to prove the sufficiency of Theorem 1.

	   S i n c e  �ij = �ji, �ij = �ji, i, j = 1, 2,… , n  a n d 
𝜇(p̃ij) =

𝜌2
ij

𝜎2

ij

, i, j = 1, 2,… , n , then we know

	 
�2
ij

�2

ij

=
�2
ik

�2

ik

⋅

�2
kj

�2

kj

, i, j, k = 1, 2,… , n . Considering the 

above Proof (1), one can obtain

which indicates that P =
(
p̃ij
)
n×n

=
(⟨

𝜌ij, 𝜎ij
⟩)

n×n
 is multi-

plicative consistency.	�  ◻

Definition 9  Suppose that a Pythagorean fuzzy 
we i g h t  ve c t o r  w =

{
w1,w2,… ,wn

}T  o f  P F P R 
P =

(
p̃ij
)
n×n

=
(⟨

𝜌ij, 𝜎ij
⟩)

n×n
 is regarded to be standardized, 

which meets the following conditions:

w h e r e  wi ≡
(
w
�

i
,w�

i

)
 i s  a  P F V ,  a n d 

0 ≤ w
�

i
,w�

i
≤ 1,

(
w
�

i

)2
+
(
w�
i

)2
≤ 1.

Based on the above-mentioned normalized Pythagorean 
fuzzy weight vector w =

{
w1,w2,… ,wn

}T , a multiplica-
tively consistent PFPR Gp =

(
g̃ij
)
n×n

 is constructed.

Theorem 2  A PFPR Gp =
(
g̃ij
)
n×n

 is multiplicative consist-
ent PFPR, and it is expressed as follows:

Proof 

(9)
�2
ij

�2

ij

=
�2
ik

�2

ik

⋅

�2
kj

�2

kj

, i, j, k = 1, 2,… , n.

�2
ij
⋅ �2

jk
⋅ �2

ki
= �2

ik
⋅ �2

kj
⋅ �2

ji
, i, j, k = 1, 2,… , n,

(10)

n∑
j≠i

(
w
�

j

)2

≤
(
w�
i

)2
,

n∑
j≠i

(
w�
j

)2

≤
(
w
�

i

)2
+ n − 2, i = 1, 2,… , n,

(11)g̃ij =

⎧
⎪⎨⎪⎩

�√
2

�
2,
√
2

�
2

�
, i = j,�

4

��
w
𝜌

i

�2
⋅

�
w𝜎
j

�2

,
4

��
w
𝜌

j

�2

⋅

�
w𝜎
i

�2
�
, i ≠ j.
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1.	 First, we prove that Gp =
(
g̃ij
)
n×n

 is a PFPR.

	   As g̃𝜌
ij
=

4

√(
w
𝜌

i

)2
⋅

(
w𝜎
j

)2

=
4

√(
w𝜎
j

)2

⋅

(
w
𝜌

i

)2
= g̃𝜎

ji
 

can be obtained by Eq. (11) for all i, j ∈ N.

	   Then, since w�

i
,w�

j
∈ [0, 1] and 

(
w
�

i

)2
+

(
w�
j

)2

≤ 1 , 
w e  k n o w  t h e  e x p r e s s i o n  o f 

0 ≤
4

√(
w

�

i

)2
⋅

(
w�

j

)2

≤ 1, 0 ≤
4

√(
w�

i

)2
⋅

(
w

�

j

)2

≤ 1, i ≠ j, , 
which can be denoted as 0 ≤ g̃

𝜌

ij
≤ 1,0 ≤ g̃𝜎

ij
≤ 1, and 

i, j = 1, 2,… , n.
	   Simultaneously, it can be deduced that the following 

equation holds:

	   Therefore, Gp =
(
g̃ij
)
n×n

 is a PFPR.
2.	 Second, we prove that PFPR Gp is a multiplicatively con-

sistent.
	   As for all i, j, k = 1, 2,… , n , the following equation 

holds:

	   Therefore, PFPR Gp is a multiplicatively consistent 
PFPR in light of Theorem 1.

	   In summary, this completes the proof of Theorem 2. 	
� ◻

Corollary 1  Assume that P =
(
p̃ij
)
n×n

=
(⟨

𝜌ij, 𝜎ij
⟩)

n×n
 is a 

PFPR. If there is a standardized Pythagorean fuzzy weight 
vector w =

{
w1,w2,… ,wn

}T with the following condition:

Then, P =
(
p̃ij
)
n×n

=
(⟨

𝜌ij, 𝜎ij
⟩)

n×n
 is a multiplicatively 

consistent PFPR, where wi ≡
(
w
�

i
,w�

i

)
 , 0 ≤ w

�

i
,w�

i
≤ 1 , 

(12)

(
g̃
𝜌

ij

)2

+

(
g̃𝜎
ij

)2

=

√(
w
𝜌

i

)2
⋅

(
w𝜎
j

)2

+

√(
w𝜎
i

)2
⋅

(
w
𝜌

j

)2

≤

(
w
𝜌

i

)2
+

(
w𝜎
j

)2

2
+

(
w𝜎
i

)2
+

(
w
𝜌

j

)2

2

=

[(
w
𝜌

i

)2
+
(
w𝜎
i

)2]
+

[(
w𝜎
j

)2

+

(
w
𝜌

j

)2
]

2
≤

1 + 1

2
= 1.

(13)𝜇(g̃ik) ⋅ 𝜇(g̃kj) =

(
g̃
𝜌

ik

)2
(
g̃𝜎
ik

)2 ⋅

(
g̃
𝜌

kj

)2

(
g̃𝜎
kj

)2
=

√
w
𝜌

i
⋅ w𝜎

k√
w𝜎
i
⋅ w

𝜌

k

⋅

√
w
𝜌

k
⋅ w𝜎

j√
w𝜎
k
⋅ w

𝜌

j

=

√
w
𝜌

i
⋅ w𝜎

j√
w𝜎
i
⋅ w

𝜌

j

=

(
g̃
𝜌

ij

)2

(
g̃𝜎
ij

)2
= 𝜇(g̃ij).

(14)

p̃ij =
�
𝜌ij, 𝜎ij

�
=

⎧
⎪⎨⎪⎩

�√
2

�
2,
√
2

�
2

�
, i = j,�

4

��
w
𝜌

i

�2
⋅

�
w𝜎
j

�2

,
4

��
w
𝜌

j

�2

⋅

�
w𝜎
i

�2
�
, i ≠ j.

(
w
�

i

)2
+
(
w�
i

)2
≤ 1  a n d ∑n

j≠i

�
w
�

j

�2

≤
�
w�
i

�2
,
∑n

j≠i

�
w�
j

�2

≤
�
w
�

i

�2
+ n − 2, i = 1, 2,… , n.

Models for constructing a multiplicative consistent 
PFPR

In this complex world, when handling decision-making 
problems with certain complexity and uncertainty, it is 
unimaginably difficult for decision-makers to establish 
PFPRs with multiplicative consistency. Therefore, Eq. (3.10) 
cannot be established, namely, at least one of the following 
cases exists:

Case 1: If �ij ≠
4

√(
w
�

i

)2
⋅

(
w�
j

)2

 , one can obtain 

ln �ij ≠ ln
4

√(
w
�

i

)2
⋅

(
w�
j

)2

 . Hence, one can see that

Next, we introduce two non-negative deviation variables 
d−
ij
 and d+

ij
 into the equation, which are expressed as follows

where d−
ij
⋅ d+

ij
= 0. i, j = 1, 2,… , n.

(15)�ij ≠
4

√(
w
�

i

)2
⋅

(
w�
j

)2

, or �ij ≠
4

√(
w
�

j

)2

⋅

(
w�
i

)2
.

(16)ln �ij ≠ 0.25 ln
(
w
�

i

)2
+ 0.25 ln

(
w�
j

)2

.

(17)
d−
ij
− d+

ij
= 0.25 ln

(
w
�

i

)2
+ 0.25 ln

(
w�
j

)2

− ln �ij, i, j = 1, 2,… , n,
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Obviously, the smaller the two non-negative deviation 
variables d−

ij
, d+

ij
 are, the better the multiplicative consist-

ency. Therefore, the optimization model can be constructed 
to generate the standardized Pythagorean fuzzy weight vec-
tor, which minimizes the sum of two non-negative deviation 
variables

Case 2: If �ij ≠
4

√(
w
�

j

)2

⋅

(
w�
i

)2 , we introduce two non-

negative deviation variables e−
ij
 and e+

ij
 into the equation, 

which is expressed as follows:

(18)

(�−�.�)

s.t

⎧⎪⎪⎪⎨⎪⎪⎪⎩

d−
ij
− d+

ij
= 0.25 ln

�
w̃
𝜌

i

�2
+ 0.25 ln

�
w̃𝜎
j

�2

− ln 𝜌ij, i, j = 1, 2,… , n,

d−
ij
> 0, d+

ij
> 0, d−

ij
⋅ d+

ij
= 0, i, j = 1, 2,… , n

0 ≤ w
𝜌

i
≤ 1, 0 ≤ w𝜎

i
≤ 1,

�
w
𝜌

i

�2
+
�
w𝜎
i

�2
≤ 1, i = 1, 2,… , n,

n∑
j≠i

�
w
𝜌

j

�2

≤
�
w𝜎
i

�2
,

n∑
j≠i

�
w𝜎
j

�2

≤
�
w
𝜌

i

�2
+ n − 2, i = 1, 2,… , n.

where e−
ij
⋅ e+

ij
= 0. i, j = 1, 2,… , n.

Similarly, the smaller the two non-negative deviation 
variables e−

ij
 and e+

ij
 are, the better the multiplicative consist-

ency. Therefore, we can establish an optimization model and 
minimize the sum of the two non-negative deviation varia-
bles to obtain the normalized Pythagorean fuzzy weight 
vector

Combining (M-4.1) with (M-4.2), one can obtain

(19)
e−
ij
− e+

ij
= 0.25 ln

(
w�
i

)2
+ 0.25 ln

(
w
�

j

)2

− ln �ij, i, j = 1, 2,… , n,

(20)

(�−�.�) min 𝛿2 =

n�
i=1

n�
j=i

�
e−
ij
+ e+

ij

�

s.t

⎧⎪⎪⎪⎨⎪⎪⎪⎩

e−
ij
− e+

ij
= 0.25 ln

�
w𝜎
i

�2
+ 0.25 ln

�
w
𝜌

j

�2

− ln 𝜎ij, i, j = 1, 2,… , n,

e−
ij
> 0, e+

ij
> 0, e−

ij
⋅ e+

ij
= 0, i, j = 1, 2,… , n,

0 ≤ w
𝜌

i
≤ 1, 0 ≤ w𝜎

i
≤ 1,

�
w
𝜌

i

�2
+
�
w𝜎
i

�2
≤ 1, i = 1, 2,… , n,

n∑
j≠i

�
w
𝜌

j

�2

≤
�
w𝜎
i

�2
,

n∑
j≠i

�
w𝜎
j

�2

≤
�
w
𝜌

i

�2
+ n − 2, i = 1, 2,… , n.

(21)

(�−�.�) min 𝛿 = 𝛿1 + 𝛿2 =

n�
i=1

n�
j=i

�
d−
ij
+ d+

ij
+ e−

ij
+ e+

ij

�

s.t

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d−
ij
− d+

ij
= 0.25 ln

�
w
𝜌

i

�2
+ 0.25 ln

�
w𝜎
j

�2

− ln 𝜌ij, i, j = 1, 2,… , n,

e−
ij
− e+

ij
= 0.25 ln

�
w𝜎
i

�2
+ 0.25 ln

�
w
𝜌

j

�2

− ln 𝜎ij, i, j = 1, 2,… , n,

d−
ij
> 0, d+

ij
> 0, d−

ij
⋅ d+

ij
= 0, i, j = 1, 2,… , n,

e−
ij
> 0, e+

ij
> 0, e−

ij
⋅ e+

ij
= 0, i, j = 1, 2,… , n,

0 ≤ w
𝜌

i
≤ 1, 0 ≤ w𝜎

i
≤ 1,

�
w
𝜌

i

�2
+
�
w𝜎
i

�2
≤ 1, i = 1, 2,… , n,

n∑
j≠i

�
w
𝜌

j

�2

≤
�
w𝜎
i

�2
,

n∑
j≠i

�
w𝜎
j

�2

≤
�
w
𝜌

i

�2
+ n − 2, i = 1, 2,… , n.
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From Definition 4, we know �ij = �ji, �ij = �ji . Then,

Consequently, M-4.3 can be transformed into the model 
of M-4.4 by considering the upper triangular elements of 
PFPRs, which are expressed as follows:

Theorem 3  A PFPR P =
(
p̃ij
)
n×n

=
(⟨

𝜌ij, 𝜎ij
⟩)

n×n
 is a mul-

tiplicatively consistent PFPR if and only if 𝛿 = 0 , where 𝛿 
denotes the optimal objective value of the M-4.4.

Proof 

1.	 Assuming that PFPR P =
(
p̃ij
)
n×n

=
(⟨

𝜌ij, 𝜎ij
⟩)

n×n
 is 

multiplicatively consistent,  one can obtain 

�ij =
4

√(
w
�

i

)2
⋅

(
w�
j

)2

and �ij =
4

√(
w
�

j

)2

⋅

(
w�
i

)2
,

i, j = 1, 2,… , n from Eq. (14) in Corollary 1. We can 
express that ln �ij = 0.25 ln

(
w
�

i

)2
+ 0.25 ln

(
w�
j

)2

 , 

ln �ij0.25 ln
(
w�
i

)2
+ 0.25 ln

(
w
�

j

)2

 , and i, j = 1, 2,… , n.

	   In addition, according to Eq. (4.9), one can obtain 
d−
ij
= d+

ij
= e−

ij
= e+

ij
= 0, i, j = 1, 2,… , n.

	   T h e r e f o r e ,  w e  h a v e 

𝛿 =
n−1∑
i=1

n∑
j=i+1

�
d−
ij
+ d+

ij
+ e−

ij
+ e+

ij

�
= 0.

(22)d−
ij
− d+

ij
= 0.25 ln

(
w̃
𝜌

i

)2
+ 0.25 ln

(
w𝜎
j

)2

− ln 𝜌ij = 0.25 ln

(
w𝜎
j

)2

+ 0.25 ln
(
w
𝜌

i

)2
− ln 𝜎ji = e−

ji
− e+

ji
.

(23)

(�−�.�) min 𝛿 =

n−1�
i=1

n�
j=i+1

�
d−
ij
+ d+

ij
+ e−

ij
+ e+

ij

�

s.t

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d−
ij
− d+

ij
= 0.25 ln

�
w
𝜌

i

�2
+ 0.25 ln

�
w𝜎
j

�2

− ln 𝜌ij, i = 1, 2,⋯ , n − 1, j = i + 1,⋯ , n,

e−
ij
− e+

ij
= 0.25 ln

�
w𝜎
i

�2
+ 0.25 ln

�
w
𝜌

j

�2

− ln 𝜎ij, i = 1, 2,⋯ , n − 1, j = i + 1,⋯ , n,

d−
ij
> 0, d+

ij
> 0, d−

ij
⋅ d+

ij
= 0, i = 1, 2,⋯ , n − 1, j = i + 1,⋯ , n,

e−
ij
> 0, e+

ij
> 0, e−

ij
⋅ e+

ij
= 0, i = 1, 2,⋯ , n − 1, j = i + 1,⋯ , n,

0 ≤ w
𝜌

i
≤ 1, 0 ≤ w𝜎

i
≤ 1,

�
w
𝜌

i

�2
+
�
w𝜎
i

�2
≤ 1, i = 1, 2,⋯ , n,

n∑
j≠i

�
w
𝜌

j

�2

≤
�
w𝜎
i

�2
,

n∑
j≠i

�
w𝜎
j

�2

≤
�
w
𝜌

i

�2
+ n − 2, i = 1, 2,⋯ , n.

2.	 Support that 𝛿 = 0 and i, j ∈ N  , we can derive 

𝛿 =
n−1∑
i=1

n∑
j=i+1

�
d−
ij
+ d+

ij
+ e−

ij
+ e+

ij

�
= 0   .  A s 

d−
ij
, d+

ij
, e−

ij
, e+

ij
> 0 , d−

ij
= d+

ij
= e−

ij
= e+

ij
= 0 can be 

deduced.
	   Through the above proof, we can see that there 

is a normalized Pythagorean fuzzy weight vector 
w =

{
w1,w2,… ,wn

}T , and the elements in the PFPR 
can be expressed by Eq. (14). According to Corollary 
1, the PFPR P =

(
p̃ij
)
n×n

=
(⟨

𝜌ij, 𝜎ij
⟩)

n×n
 is multiplica-

tively consistent.
	   Therefore, the proof is completed.	�  ◻

One can obtain that the optimal Pythagorean fuzzy weight 
vectors w̃ =

(
w̃1, w̃2,… , w̃n

)T
=

(⟨
w̃
𝜌

1
, w̃𝜎

1

⟩
,
⟨
w̃
𝜌

2
, w̃𝜎

2

⟩
,…

⟨
w̃
𝜌
n, w̃

𝜎
n

⟩)T 
and the optimal deviation variables d̃−

ij
, d̃+

ij
, ẽ−

ij
, ẽ+

ij
.

When the  opt imal  ob jec t ive  va lue  𝛿 = 0  , 
d−
ij
= d+

ij
= e−

ij
= e+

ij
= 0 is considered equally, where i, j ∈ N . 

That is, PFPR P =
(
p̃ij
)
n×n

=
(⟨

𝜌ij, 𝜎ij
⟩)

n×n
 is multiplica-

tively consistent. Otherwise, we can improve the consistency 
of PFPRs using the following methods:

(24)𝜌̂ij =

⎧⎪⎨⎪⎩

𝜌ij ⋅ e
d−
ij , (i, j) ∈ n × n, d−

ij
> 0, d+

ij
= 0,

𝜌ij, (i, j) ∈ n × n, d−
ij
= 0, d+

ij
= 0,

𝜌ij ⋅ e
d+
ij , (i, j) ∈ n × n, d−

ij
= 0, d+

ij
> 0,

𝜎̂ij =

⎧⎪⎨⎪⎩

𝜎ij ⋅ e
d−
ij , (i, j) ∈ n × n, e−

ij
> 0, e+

ij
= 0,

𝜎ij, (i, j) ∈ n × n, e−
ij
= 0, e+

ij
= 0,

𝜎ij ⋅ e
d+
ij , (i, j) ∈ n × n, e−

ij
= 0, e+

ij
> 0.
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Theorem 4  PFPR P̂ =
(
p̂ij
)
n×n

=
(⟨

𝜌̂ij, 𝜎̂ij
⟩)

n×n
 is a multi-

plicatively consistent PFPR, in which the elements satisfy 
Eq. (4.10).

Proof  Based on the content mentioned above, we can know

T h e n , 
⎧⎪⎨⎪⎩

𝜌ij ⋅ e
d−
ij
−d+

ij =
4

��
w

𝜌

i

�2
⋅

�
w𝜎

j

�2

𝜎ij ⋅ e
e−
ij
−e+

ij =
4

��
w𝜎

i

�2
⋅

�
w

𝜌

j

�2
⇒

⎧⎪⎨⎪⎩

𝜌̂ij =
4

��
ŵ

𝜌

i

�2
⋅

�
ŵ𝜎

j

�2

𝜎̂ij =
4

��
ŵ𝜎

i

�2
⋅

�
ŵ

𝜌

j

�2
  , 

where i, j = 1, 2,… , n.

Furthermore, an algorithm that obtains the multiplica-
tively consistent PFPR by aggregating the optimal weight 
values is proposed, as shown below.

(A-3.1)

S t e p  1 :  C o n s t r u c t  t h e  P F P R  m a t r i x 
P =

(
p̃ij
)
n×n

=
(⟨

𝜌ij, 𝜎ij
⟩)

n×n
 from decision-making infor-

mation given by the DM.

Step 2: Determine whether the PFPR matrix P is ordered 
consistent with Definition 7. If yes, the ranking result will 
be obtained directly. Otherwise, please proceed to the next 
step 3.

Step 3: The optimal standardized Pythagorean fuzzy weight 
vectors and deviation variables are obtained by solving the 
optimal model in connection with the decision-making 
problem.

Step 4: Calculate the score functions s(w̃i) and accu-
racy functions h(w̃i) by the following equations: 
s(w̃i) =

(
w̃
𝜌

i

)2
−
(
w̃𝜎
i

)2 and h(w̃i) =
(
w̃
𝜌

i

)2
+
(
w̃𝜎
i

)2 , where 
i = 1, 2,… , n.

Step 5: Rank the standardized Pythagorean fuzzy weight 
vectors w̃i according to the comparison method mentioned 
above in Definition 8.

Step 6: Determine the optimum alternative in terms of rank-
ing results.

Step 7: Form a PFPR P̂ =
(
p̂ij
)
n×n

=
(⟨

𝜌̂ij, 𝜎̂ij
⟩)

n×n
 with 

complete multiplicative consistency based on the improved 
equations.

⎧
⎪⎨⎪⎩

d−
ij
− d+

ij
= 0.25 ln

�
w
�

i

�2
+ 0.25 ln

�
w�
j

�2

− ln �ij,

e−
ij
− e+

ij
= 0.25 ln

�
w�
i

�2
+ 0.25 ln

�
w
�

j

�2

− ln �ij,

⇒

⎧
⎪⎨⎪⎩

ln �ij + d−
ij
− d+

ij
= 0.25 ln

�
w
�

i

�2
+ 0.25 ln

�
w�
j

�2

,

ln �ij + e−
ij
− e+

ij
= 0.25 ln

�
w�
i

�2
+ 0.25 ln

�
w
�

j

�2

.

Multiplicative consistency improving 
algorithm

In general, it is impractical to derive the conditions for 
complete multiplicatively consistent PFPRs. Therefore, the 

consistency index (CI) will be introduced to measure the 
individual consistency of PFPRs.

Definition 10  Suppose that A =
(
aij
)
n×n

=
(⟨

aij,�, aij,�
⟩)

n×n
 

is a PFPR and that Ã =
(
ãij
)
n×n

=
(⟨

ãij,𝜌, ãij,𝜎
⟩)

n×n
 is a mul-

tiplicatively consistent PFPR. The consistency index (CI) is 
denoted by

Obviously, the smaller CI(A) is, the higher the degree of 
consistency of A. A is fully multiplicatively consistent when 
the condition CI(A) = 0 is satisfied.

D e f i n i t i o n  1 1   S u p p o s e  t h a t  P F P R 
A =

(
aij
)
n×n

=
(⟨

aij,�, aij,�
⟩)

n×n
 and CI is the given consist-

ency index threshold. A is called acceptably multiplicatively 
consistent PFPR, which is expressed as CI(A) ≤ CI.

To better improve the consistency of the PFPRs given 
by experts, the consistency improving algorithm (A-3.2) is 
constructed below. Through the effective improvement of the 
algorithm (A-3.2), the adjusted PFPRs can reach the preset 
consistency index threshold, increasing the reliability of the 
decision result.

(A-3.2)

Input: Individual PFPRs A =
(
aij
)
n×n

=
(⟨

aij,�, aij,�
⟩)

n×n
 , 

consistency threshold CI , and parameter �.

Output: Acceptably multiplicatively consistent PFPR A∗ , 
consistency index CI(A∗) , iterations l, and optimum alter-
native x∗.

(25)

CI(A) =
1

n(n − 1)

n∑
i,j=1
i<j

(|||ln
(
aij,𝜌

)
− ln

(
âij,𝜌

)|||

+
|||ln

(
aij,𝜎

)
− ln

(
âij,𝜎

)|||
)
.
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Step 1: Let Al = (al
ij
)n×n = A = (aij)n×n , where l = 0.

Step 2: The optimal standardized Pythagorean fuzzy weight 
vectors ŵl =

{
ŵl
1
, ŵl

2
,… , ŵl

n

}T  and deviation variables 
d̂l−
ij
, d̂l+

ij
, êl−

ij
, êl+

ij
 are obtained by solving the optimal model 

in connection with the decision-making problem.

Step 3: Construct a multiplicatively consistent PFPR matrix 
Âl =

(
âl
ij

)
n×n

=

(⟨
âl
ij,𝜌
, âl

ij,𝜎

⟩)
n×n

 , where

S t e p  4 :  C a l c u l a t e  CI(Al)  ,  w h e r e 
CI(A) =

1

n(n−1)

n∑
i,j=1
i<j

����ln
�
aij,𝜌

�
− ln

�
âij,𝜌

���� +
���ln

�
aij,𝜎

�
− ln

�
âij,𝜎

����
�
 . If 

CI(A) ≤ CI , which indicates that Al = (al
ij
)n×n is the accept-

able multiplicative consistency, continue to step 6. Other-
wise, go to step 5.

S t e p  5 :  L e t  t h e  i t e r a t i v e  P F P R 
Al+1 = (al+1

ij
)n×n =

(⟨
al+1
ij,�

, al+1
ij,�

⟩)
n×n

 and l = l + 1 for all 

i, j ∈ N  ,  w h e r e  al+1
ij,𝜌

=

(
al
ij,𝜌

)1−𝛾

⋅

(
âl
ij,𝜌

)𝛾

 a n d 

âl+1
ij,𝜎

=

(
al
ij,𝜎

)1−𝛾

⋅

(
âl
ij,𝜎

)𝛾

 . Then, return to step 2.

âl
ij,𝜌

=

⎧
⎪⎨⎪⎩

al
ij,𝜌

⋅ e
d̃l−
ij
−d̃l+

ij , i ≠ j,√
2

�
2, i = j,

âl
ij,𝜎

=

⎧
⎪⎨⎪⎩

al
ij,𝜎

⋅ e
d̃l−
ij
−d̃l+

ij , i ≠ j,√
2

�
2, i = j.

Step 6: Let the acceptable multiplicatively consistency 
A = Al , whose consistency index is CI(A) and w∗ = ŵl.

Step 7: The weights are sorted by calculating the score func-
tion s�

(
w∗
i

)
 and accuracy function h�(

w∗
i

)
 , and then, the best 

alternative x∗ is selected.

Step 8: End.

Theorem 5  (Convergence) Assuming that PFPR A = (aij)n×n 
and CI(A(l)) is a consistency index of A(l) , one can obtain

where l is the number of iterations.

Proof  From the content mentioned above, we can know

S i n c e  d
(l)−

ij
, d

(l)+

ij
, e

(l)−

ij
, e

(l)+

ij
≥ 0  a n d 

d
(l)−

ij
⋅ d

(l)+

ij
= 0, e

(l)−

ij
⋅ e

(l)+

ij
= 0  ,  two expressions of 

d
(l)−

ij
+ d

(l)+

ij
=
|||d

(l)+

ij
− d

(l)−

ij

||| and e(l)−
ij

+ e
(l)+

ij
=
|||e

(l)+

ij
− e

(l)−

ij

||| 
can be obtained.

Let PFPR Â(l) be multiplicatively consistent. With each 
iteration, we know

Here, d̂l−
ij
, d̂l+

ij
, êl−

ij
, êl+

ij
 are the deviation variables and the 

optimal standardized Pythagorean fuzzy weight vectors 
ŵl =

{
ŵl
1
, ŵl

2
,… , ŵl

n

}T , where i, j = 1, 2,… , n

(26)CI(A(l+1)) < CI(A(l)), lim
t→+∞

CI(A(l)) = 0,

⎧⎪⎨⎪⎩

d
(l)−

ij
− d

(l)+

ij
= 0.25 ln

�
w
(l)

i,𝜌

�2

+ 0.25 ln

�
w
(l)

j,𝜎

�2

− ln 𝜌
(l)

ij
, i < j,

e
(l)−

ij
− e

(l)+

ij
= 0.25 ln

�
w
(l)

i,𝜎

�2

+ 0.25 ln

�
w
(l)

j,𝜌

�2

− ln 𝜎
(l)

ij
, i < j.

(27)
⎧⎪⎨⎪⎩

âl
ij,𝜌

=
4

��
ŵ
(l)

i,𝜌

�2

⋅

�
ŵ
(l)

j,𝜎

�2

, i ≠ j,

âl
ij,𝜎

=
4

��
ŵ
(l)

i,𝜎

�2

⋅

�
ŵ
(l)

j,𝜌

�2

, i ≠ j,

⇒

⎧⎪⎨⎪⎩

ln âl
ij,𝜌

= 0.25 ln

�
ŵ
(l)

i,𝜌

�2

+ 0.25 ln

�
ŵ
(l)

j,𝜎

�2

, i ≠ j,

ln âl
ij,𝜎

= 0.25 ln

�
ŵ
(l)

i,𝜎

�2

+ 0.25 ln

�
ŵ
(l)

j,𝜌

�2

, i ≠ j.
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where parameter 𝛾 (0 < 𝛾 < 1) is used to adjust the 
iterations.

Moreover, another representation is also available as 
follows:

Since CI(A(l)) ≥ 0 , we have lim
l→+∞

CI(A(l)) = 0.
In conclusion, the proof of Theorem 5 is completed. 	

� ◻

Consensus reaching process with PFPRs

The model construction in the previous section only focuses 
on an individual PFPR. However, in actual decision-making, 
DMs usually give multiple Pythagorean fuzzy preference 
relations. To address this, we will conduct further research.

CI(A(l+1)) =
1

n(n − 1)

n∑
i,j=1
i<j

(||||ln
(
a
(l+1)

ij,𝜌

)
− ln

(
â
(l+1)

ij,𝜌

)|||| +
||||ln

(
a
(l+1)

ij,𝜎

)
− ln

(
â
(l+1)

ij,𝜎

)||||
)

=
1

n(n − 1)

n∑
i,j=1
i<j

(|||d̂
(l+1)−

ij
− d̂

(l+1)+

ij

||| +
|||ê

(l+1)−

ij
− ê

(l+1)+

ij

|||
)

=
1

n(n − 1)

n∑
i,j=1
i<j

(
d̂
(l+1)−

ij
+ d̂

(l+1)+

ij
+ ê

(l+1)−

ij
+ ê

(l+1)+

ij

)
(let w

(l+1)

i
= ŵ

(l)

i
)

≤
1

n(n − 1)

n∑
i,j=1
i<j

(||||0.25 ln
(
ŵ
(l)

i,𝜌

)2

+ 0.25 ln

(
ŵ
(l)

j,𝜎

)2

− ln a
(l+1)

ij,𝜌

|||| +
||||0.25 ln

(
ŵ
(l)

i,𝜎

)2

+ 0.25 ln

(
ŵ
(l)

j,𝜌

)2

− ln a
(l+1)

ij,𝜎

||||
)

=
1

n(n − 1)

n∑
i,j=1
i<j

(||||ln
(
a
(l+1)

ij,𝜌

)
− ln

(
â
(l)

ij,𝜌

)|||| +
||||ln

(
a
(l+1)

ij,𝜎

)
− ln

(
â
(l)

ij,𝜎

)||||
)

=
1

n(n − 1)

n∑
i,j=1
i<j

(||||(1 − 𝛾) ln

(
a
(l)

ij,𝜌

)
+ 𝛾 ln

(
â
(l)

ij,𝜌

)
− ln

(
â
(l)

ij,𝜌

)|||| +
||||(1 − 𝛾) ln

(
a
(l)

ij,𝜎

)
+ 𝛾 ln

(
â
(l)

ij,𝜎

)
− ln

(
â
(l)

ij,𝜎

)||||
)

= (1 − 𝛾)
1

n(n − 1)

n∑
i,j=1
i<j

(||||ln
(
a
(l)

ij,𝜌

)
− ln

(
â
(l)

ij,𝜌

)|||| +
||||ln

(
a
(l)

ij,𝜎

)
− ln

(
â
(l)

ij,𝜎

)||||
)

= (1 − 𝛾)CI(A(l)) < CI(A(l)).

lim
l→+∞

CI(A(l)) ≤ lim
l→+∞

(1 − �)CI(A(l−1)) ≤ lim
l→+∞

(1 − �)2CI(A(l−2)) ≤ ⋯ ≤ lim
l→+∞

(1 − �)lCI(A(0)) = 0.

Degree of consensus

Definition 12  Let Ak =

(
ak
ij

)
n×n

=

(⟨
ak
ij,�
, ak

ij,�

⟩)
n×n

(k ∈ m) 

be a set of PFPRs on the set X =
{
x1, x2,… , xn

}
 . ICD(Ak) is 

called the degree of individual consensus of PFPRs, which 
is expressed as

It should be noted that the smaller the value of ICD(Ak) is, 
the higher the consensus of Ak with other PFPRs, which 
indicates the higher the consensus between a decision-maker 
and other decision-makers.

Definition 13  Let Ak =

(
ak
ij

)
n×n

=

(⟨
ak
ij,�
, ak

ij,�

⟩)
n×n

(k ∈ m) 

be a set of PFPR on the set X =
{
x1, x2,… , xn

}
 . GCD(Ak) is 

(28)

ICD(Ak) =
1

n(n − 1)(m − 1)

∑
t≠k∑

i<j

(|||ln a
k
ij,𝜌

− ln at
ij,𝜌

||| +
|||ln a

k
ij,𝜎

− ln at
ij,𝜎

|||
)
.
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called the degree of group consensus of PFPRs, which is 
expressed as

Similarly, the smaller GCD(Ak) is, the higher the group 
consensus of all PFPRs A1,A2,… ,Am . That is, the higher 
the consensus of all decision-makers.

Comprehensive PFPR

Definition 14  Let Ak =

(
ak
ij

)
n×n

=

(⟨
ak
ij,�
, ak

ij,�

⟩)
n×n

(k ∈ m) 
be a set of PFPR given by DMs ek(k ∈ m) on the set 
X =

{
x1, x2,… , xn

}
 . Ac is denoted as a comprehensive 

Pythagorean fuzzy preference relation, which is expressed 
as

where � =
(
�1, �2,… , �m

)T is the corresponding weight vec-
tor of ek satisfying �k ≥ 0, k ∈ M , and 

∑m

k=1
�k = 1.

(29)

GCD =
1

m

m∑
k=1

ICD(Ak)

=
1

mn(n − 1)(m − 1)

m∑
k=1

∑
t≠k∑

i<j

(|||ln a
k
ij,𝜌

− ln at
ij,𝜌

||| +
|||ln a

k
ij,𝜎

− ln at
ij,𝜎

|||
)
.

(30)Ac =

�
ac
ij,�
, ac

ij,�

�
n×n

=

⎛⎜⎜⎝

���� m�
k=1

��
ak
ij,�

�2
��k

,

���� m�
k=1

��
ak
ij,�

�2
��k⎞⎟⎟⎠n×n

, i, j ∈ n,

The following lemma is introduced to facilitate the later 
discussion.

Lemma 1  One can obtain 
∏m

i=1
b
wi

i
≤
∑m

i=1
wibi , where 

bi > 0, wi > 0, i ∈ m , and 
∑m

i=1
wi = 1.

Theorem 6  Let 

 be a Pythagorean fuzzy preference relation.

Proof  Since Ak =

(
ak
ij

)
n×n

=

(⟨
ak
ij,�
, ak

ij,�

⟩)
n×n

(k ∈ m) is a 
set of PFPRs, for all i, j ∈ n , one has ak

ij,�
, ak

ij,�
∈ [0, 1]

ak
ij,�

= ak
ji,�

,ak
ij,�

= ak
ji,�
,

(
ak
ij,�

)2

+

(
ak
ij,�

)2

≤ 1.
T h e n , 

ac
ij,�

=

�
∏m

k=1

��
ak
ij,�

�2
��k

=

�
∏m

k=1

��
ak
ij,�

�2
��k

= ac
ji,�

 can 

be obtained. From the one side of Eq. (30), we obtain

Regarding the other side, 
(
ac
ij,�

)2

+

(
ac
ij,�

)2

≤ 1 is avail-
able in the following process:

Therefore, we can deduce

Ac =

�
ac
ij,�

, ac
ij,�

�
n×n

=

⎛
⎜⎜⎝

�
�m

k=1

��
ak
ij,�

�2
��k

,

�
�m

k=1

��
ak
ij,�

�2
��k ⎞⎟⎟⎠n×n

, i, j ∈ n

(31)

⎧⎪⎪⎨⎪⎪⎩

0 ≤ ac
ij,�

=

�
m∏
k=1

�
ak
ij,�

��k

≤

�
m∑
k=1

�kak
ij,�

≤

�
m∑
k=1

�k = 1,

0 ≤ ac
ij,�

=

�
m∏
k=1

�
ak
ij,�

��k

≤

�
m∑
k=1

�kak
ij,�

≤

�
m∑
k=1

�k = 1,

⇒ 0 ≤ ac
ij,�

≤ 1, 0 ≤ ac
ij,�

≤ 1.

�
ac
ij,�

�2

+

�
ac
ij,�

�2

=

⎛⎜⎜⎝

���� m�
k=1

��
ak
ij,�

�2
��k⎞⎟⎟⎠

2

+

⎛⎜⎜⎝

���� m�
k=1

��
ak
ij,�

�2
��k⎞⎟⎟⎠

2

=

m�
k=1

��
ak
ij,�

�2
��k

+

m�
k=1

��
ak
ij,�

�2
��k

≤

m�
k=1

�k
��

ak
ij,�

�2
��k

+

m�
k=1

�k
�
ak
ij,�

�2

=

m�
k=1

�k
��

ak
ij,�

�2

+

�
ak
ij,�

�2
�

= 1.

(32)
(
ac
ij,�

)2

+

(
ac
ij,�

)2

≤ 1, i, j ∈ N.
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To summarize, Ac is a PFPR, which completes the 
proof.	�  ◻

However, in actual group decision-making, the conclu-
sion of Theorem 6 has difficultly holding because of the 
different preferences of decision-makers. Therefore, we give 
further discussions on it.

Suppose that Corollary 1 is not valid, namely

 or

Next, we introduce some non-negative deviation variables 
dk−
ij
, dk+

ij
, ek−

ij
, ek+

ij
 into the equation, which are expressed as 

follows:

ak
ij,�

≠
4

√(
w
�

i

)2
⋅

(
w�
j

)2

ak
ij,�

≠
4

√(
w
�

j

)2

⋅

(
w�
i

)2
, i ≠ j, k ∈ m.

Obviously, the smaller the non-negative deviation varia-
bles dk−

ij
, dk+

ij
, ek−

ij
, ek+

ij
, i, j ∈ N, k ∈ M are, the better the 

multiplicative consistency. Therefore, the optimization 
model can be constructed to generate the standardized 
Pythagorean fuzzy weight vector, which minimizes the sum 
of two non-negative deviation variables

A s 
dk−
ij

− dk+
ij

= 0.25 ln
(
w
�

i

)2
+ 0.25 ln

(
w�
j

)2

− ln ak
ij,�
, ek−

ij

− ek+
ij

= 0.25 ln
(
w�
i

)2
+ 0.25 ln

(
w
�

j

)2

− ln ak
ij,�  and ∑m

k=1
�k = 1 , then

Combined  wi th  Eq.   4 .3 ,  one  can  obta in 
ln ac

ij,𝜌
=
∑m

k=1
𝜆k ln ak

ij,𝜌
, ln ac

ij,𝜎
=
∑m

k=1
𝜆k ln ak

ij,𝜎
, i < j . Let 

dc−
ij

=
∑m

k=1
�kdk−

ij
, dc+

ij
=
∑m

k=1
�kdk+

ij
, ec−

ij
=
∑m

k=1
�kek−

ij

and ec+
ij

=

∑m

k=1
�kek+

ij
 , and model (M-4.2) will be developed 

as the following optimization model:

dk−
ij

− dk+
ij

= 0.25 ln
(
w
�

i

)2
+ 0.25 ln

(
w�
j

)2

− ln ak
ij,�
, i, j = 1, 2,… , n,

ek−
ij

− ek+
ij

= 0.25 ln
(
w�
i

)2
+ 0.25 ln

(
w
�

j

)2

− ln ak
ij,�

, i, j = 1, 2,… , n.

(33)

(�−�.�) min Δ1 =

m�
k=1

�
i<j

𝜆k
�
dk−
ij

+ dk+
ij

+ ek−
ij

+ ek+
ij

�

s.t

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dk−
ij

− dk+
ij

= 0.25 ln
�
w
𝜌

i

�2
+ 0.25 ln

�
w𝜎
j

�2

− ln ak
ij,𝜌
, i < j, k ∈ M,

ek−
ij

− ek+
ij

= 0.25 ln
�
w𝜎
i

�2
+ 0.25 ln

�
w
𝜌

j

�2

− ln ak
ij,𝜎

, i < j, k ∈ M,

dk−
ij

> 0, dk+
ij

> 0, dk−
ij

⋅ dk+
ij

= 0, i < j, k ∈ M,

ek−
ij

> 0, ek+
ij

> 0, ek−
ij

⋅ ek+
ij

= 0, i < j, k ∈ M,

0 ≤ w
𝜌

i
≤ 1, 0 ≤ w𝜎

i
≤ 1,

�
w
𝜌

i

�2
+
�
w𝜎
i

�2
≤ 1, i = 1, 2,… , n,

n∑
j≠i

�
w
𝜌

j

�2

≤
�
w𝜎
i

�2
,

n∑
j≠i

�
w𝜎
j

�2

≤
�
w
𝜌

i

�2
+ n − 2, i = 1, 2,… , n.

⎧⎪⎨⎪⎩

m∑
k=1

𝜆k
�
dk−
ij

− dk+
ij

�
= 0.25 ln

�
w
𝜌

i

�2
+ 0.25 ln

�
w𝜎
j

�2

−
m∑
k=1

𝜆k ln ak
ij,𝜌
, i < j,

m∑
k=1

𝜆k
�
ek−
ij

− ek+
ij

�
= 0.25 ln

�
w𝜎
i

�2
+ 0.25 ln

�
w
𝜌

j

�2

−
m∑
k=1

𝜆k ln ak
ij,𝜎

, i < j.
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Therefore, one can be obtained that the optimal Pythago-
r e a n  f u z z y  w e i g h t  v e c t o r s 
w̃ =

(
w̃1, w̃2,… , w̃n

)T
=

(⟨
w̃

𝜌

1
, w̃𝜎

1

⟩
,
⟨
w̃

𝜌

2
, w̃𝜎

2

⟩
,…

⟨
w̃𝜌

n
, w̃𝜎

n

⟩)T and 
the optimal deviation variables d̃−

ij
, d̃+

ij
, ẽ−

ij
, ẽ+

ij
.

Theorem 7  Let Ak =

(
ak
ij

)
n×n

=

(⟨
ak
ij,�
, ak

ij,�

⟩)
n×n

(k ∈ m) 
be a PFPR defined on alternative set X =

{
x1, x2,… , xn

}
 , 

a n d 

Ac =

�
ac
ij,�
, ac

ij,�

�
n×n

=

⎛⎜⎜⎝

�
∏m

k=1

��
ak
ij,�

�2
��k

,

�
∏m

k=1

��
ak
ij,�

�2
��k ⎞⎟⎟⎠n×n

, i, j ∈ n 

be a comprehensive PFPR. Then, the inequality 
CI(Ac) ≤ max1≤k≤m

{
CI

(
AK

)}
 holds.

Proof.  From the aforementioned content, we have 
dc−
ij

=
∑m

k=1
�kdk−

ij
, dc+

ij
=
∑m

k=1
�kdk+

ij
 , ec−

ij
=
∑m

k=1
�kek−

ij
 and 

ec+
ij

=
∑m

k=1
�kek+

ij
 , where dk−

ij
, dk+

ij
, ek−

ij
, ek+

ij
, i, j ∈ N, k ∈ M 

and dc−
ij
, dc+

ij
, ec−

ij
, ec+

ij
, i, j ∈ N are the optimal deviation vari-

ables of the model (M-4.1) and model (M-4.2), respectively.

(34)

(�−�.�) min Δ2 =
�
i<j

�
dc−
ij

+ dc+
ij

+ ec−
ij

+ ec+
ij

�

s.t

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dc−
ij

− dc+
ij

= 0.25 ln
�
w
𝜌

i

�2
+ 0.25 ln

�
w𝜎
j

�2

− ln ac
ij,𝜌
, i < j,

ec−
ij

− ec+
ij

= 0.25 ln
�
w𝜎
i

�2
+ 0.25 ln

�
w
𝜌

j

�2

− ln ac
ij,𝜎

, i < j,

dc−
ij

> 0, dc+
ij

> 0, dc−
ij

⋅ dc+
ij

= 0, i < j,

ec−
ij

> 0, ec+
ij

> 0, ec−
ij

⋅ ec+
ij

= 0, i < j

0 ≤ w
𝜌

i
≤ 1, 0 ≤ w𝜎

i
≤ 1,

�
w
𝜌

i

�2
+
�
w𝜎
i

�2
≤ 1, i = 1, 2,… , n,

n∑
j≠i

�
w
𝜌

j

�2

≤
�
w𝜎
i

�2
,

n∑
j≠i

�
w𝜎
j

�2

≤
�
w
𝜌

i

�2
+ n − 2, i = 1, 2,… , n.

L e t  Ãk =

(
ãk
ij

)
n×n

=

(⟨
ãk
ij,𝜌
, ãk

ij,𝜎

⟩)
n×n

(k ∈ m)   , 

Ãc =

(
ãc
ij

)
n×n

=

(⟨
ãc
ij,𝜌
, ãc

ij,𝜎

⟩)
n×n

, i, j ∈ n , where

After deforming Eq. 4.8, we can obtain

Considering the above equation and CI(Ac) ≤ CI , the fol-
lowing process is derived:

(35)
ãk
ij,𝜌

= ak
ij,𝜌

⋅ e

(
d̃k−
ij
−d̃k+

ij

)
, ãk

ij,𝜎
= ak

ij,𝜎
⋅ e

(
ẽk−
ij
−ẽk+

ij

)
,

ãc
ij,𝜌

= ac
ij,𝜌

⋅ e

(
d̃c−
ij
−d̃c+

ij

)
, ãc

ij,𝜎
= ac

ij,𝜎
⋅ e

(
ẽc−
ij
−ẽc+

ij

)
.

ln ãk
ij,𝜌

− ln ak
ij,𝜌

= d̃k−
ij

− d̃k+
ij
,

ln ãk
ij,𝜎

− ln ak
ij,𝜎

= ẽk−
ij

− ẽk+
ij
, i, j ∈ N, k ∈ M,

ln ãc
ij,𝜌

− ln ac
ij,𝜌

= d̃c−
ij

− d̃c+
ij
,

ln ãc
ij,𝜎

− ln ac
ij,𝜎

= ẽc−
ij

− ẽc+
ij
, i, j ∈ N.

CI(Ac) =
1

n(n − 1)

n�
i,j=1
i<j

�����ln
�
ãc
ij,𝜌

�
− ln

�
ac
ij,𝜌

����� +
����ln

�
ãc
ij,𝜎

�
− ln

�
ac
ij,𝜎

�����
�

=
1

n(n − 1)

n�
i,j=1
i<j

����d̃
c−

ij
− d̃c+

ij

��� +
���ẽ

c−

ij
− ẽc+

ij

���
�

=
1

n(n − 1)

n�
i,j=1
i<j

������

m�
k=1

𝜆kd̃c−
ij

−

m�
k=1

𝜆kd̃c+
ij

�����
+
�����

m�
k=1

𝜆kẽc−
ij

−

m�
k=1

𝜆kẽc+
ij

�����

�

≤

m�
k=1

𝜆k

⎛
⎜⎜⎜⎝

1

n(n − 1)

n�
i,j=1
i<j

����d̃
c−

ij
− d̃c+

ij

��� +
���ẽ

c−

ij
− ẽc+

ij

���
�⎞⎟⎟⎟⎠

=

m�
k=1

𝜆k
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ãk
ij,𝜌

�
− ln

�
ak
ij,𝜌

����� +
����ln

�
ãk
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Overall, Theorem 7 holds, which completes the proof.	
� ◻

Inference 1 Let Ak = (ak
ij
)n×n = ((ak

ij,�
, ak

ij,�
))n×n (k ∈ m) be a 

PFPR defined on alternative set X =
{
x1, x2,… , xn

}
 , and 

Ac =

�
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ij,�
, ac
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, i, j ∈ n be 

a comprehensive PFPR. If CI
(
Ak
)
≤ CI, k ∈ M  , then 

CI(Ac) ≤ CI can be obtained, where CI is the given consist-
ency index threshold.

Inference 2 Let Ak = (ak
ij
)n×n = ((ak

ij,�
, ak

ij,�
))n×n (k ∈ m) be a 

PFPR defined on alternative set X =
{
x1, x2,… , xn

}
 , and 

Ac =

�
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, ac
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,
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, i, j ∈ n be 

a comprehensive PFPR. If CI
(
Ak
)
= 0, k ∈ M  , then 

CI(Ac) = 0 can be obtained, which shows that if all PFPRs 
Ak are multiplicative consistent, then the comprehensive 
PFPR Ac is also multiplicatively consistent.

Consensus reaching algorithm

To improve the consensus of all decision-makers in the deci-
sion-making problem, this section designs an algorithm to 
improve the consensus level, which is realized by filtering 
the preference relation with the worst consensus and adjust-
ing it to reach the consensus index threshold.

(A-4.1)

Input: A set of PFPRs A1,A2,… ,Am , a group consensus 
index threshold GCD , and parameter 𝜃(0 < 𝜃 < 1).

Output: Adjusted PFPR Ak∗(k ∈ M) , the degree of group 
consensus GCD∗ , and iterations l.

Step 1: Let Ak(l) = (a
k(l)

ij
)n×n = Ak = (ak

ij
)n×n, k ∈ M, l = 0.

Step 2: The degrees of individual consensus ICD(l) and 
degrees of group consensus GCD(l) of PFPRs Ak(l)(k ∈ M) 
are calculated by Eq. 4.1 and Eq. 4.2, respectively.

Step 3: Check for a consensus for PFPRs. If GCD(l) ≤ GCD , 
we continue to step 5. Otherwise, go to step 4.

Step 4: Focus on the PFPR with the worst consensus and 
adjust it.

Assume that ICD
(
A�(l)

)
= max

k

{
ICD

(
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)}
, and then 

A�(l) is called the worst consensus PFPR. Let 
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 , which satisfies

Then, let l = l + 1 , return to step 2.

Step 5: Let the iterative PFPR Ak∗ = Ak(l)(k ∈ M) and 
GCD

∗ = GCD
(l) . The output adjusted PFPR Ak∗(k ∈ M) , 

the degree of group consensus GCD∗ , and iterations l.

Step 6: End.

Algorithm for group decision‑making 
with PFPRs

This section will integrate the contents of the third and 
fourth sections to build a decision support model based on 
consistency and consensus, which can ensure that all PFPRs 
reach the preset consensus level under the premise of satis-
fying the acceptable multiplicative consistency. In addition, 
the model is used to calculate the standardized weight vector 

(35)
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Table 1   Values of score 
function and ranking results of 
different methods

Methods Values of score function Ranking results

Chu et al. [18] (−0.0910, −0.2979, −0.6574, −0.8640) xChu
1

> xChu
2

> xChu
3

> xChu
4

Jin et al. [19] (−0.1184, −0.5200, −0.5916, −0.7700) xJin
1

> xJin
2

> xJin
3

> xJin
4

Lin and Wang [20] (−0.1776, −0.4090, −0.6590, −0.7544) xLin
1

> xLin
2

> xLin
3

> xLin
4

Yang et al. [35] (−0.1543, −0.2684, −0.6548, −0.7944) x
Yang

1
> x

Yang

2
> x

Yang

3
> x

Yang

4

Mandal and Ranadive 
[34]

(0.6072, 0.3703, 0.2519, 0.2054) xMandal
1

> xMandal
2

> xMandal
3

> xMandal
4

He et al. [40] (−0.4832, −0.3602, −0.7061, −0.6543) xHe
2

> xHe
1

> xHe
4

> xHe
3

Our method (−0.0747, −0.4753, −0.6741, −0.7762) x1 > x2 > x3 > x4
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of the comprehensive PFPRs. Finally the most reasonable 
and reliable decision results are obtained.

For the convenience of comprehension, we give the pro-
cess flowchart and text descriptions of the decision support 
model with PFPRs as follows.

(A-5.1)

Input: A set of PFPRs A1,A2,… ,Am supported by DMs.

Output: The best alternative x▵.

Stage 1: Check order consistency
If the PFPRs satisfy the constraints in Definition 7, then 

they are order consistent and the ranking results can be 
directly output. Otherwise, go to the next stage.

Stage 2: Consistency control process
The improved consistency algorithm (A-3.2) is used to 

adjust and obtain the PFPRs A1,A2,… ,Am with acceptable 
multiplicative consistency.

Stage 3: Consensus building process
The adjusted PFPRs A1∗,A2∗,… ,Am∗ of acceptable 

multiplicative consistency are calculated by the consensus 
improving algorithm (A-4.1), so that the degree of group 
consensus reaches the consensus index threshold.

Stage 4: Alternatives selection process
Equation  (30) is used to aggregate the PFPRs 

A1▵,A2▵,… ,Am▵ into comprehensive PFPR Ac▵ . Accord-
ing to the ranking of the standardized weight vector calcu-
lated by the optimization model (M-4.2), the alternatives are 
sorted to select the best one x▵ (Fig. 1)

Numerical example and comparison analysis

In this section, we use a numerical example to illustrate 
the proposed GDM method and compare the experimental 
results of the proposed GDM method with those of the GDM 
methods.

Numerical example

In recent years, the rapid development of the economy 
has brought opportunities to various industries, but has 
also brought many challenges. For example, increasingly 
more enterprises are facing financial difficulties, which 
makes it important to establish an effective financial dis-
tress early warning model to prevent financial crises and 
risk management.

To achieve a better foothold and long-term development, 
a listed company establishes a perfect financial early warn-
ing system. Through comprehensive analysis, it is found 
that the main indicators that affect the financial situation of 
the enterprise are the following: solvency x1 , operations x2 , 
profitability x3 , and development x4 . To explore the impor-
tance of these four indicators to the financial early warn-
ing system, the listed company now invites three experts in 
related fields to evaluate and analyze the above four impact 
indicators systematically. The weight vector of the experts 
is � = (0.3, 0.4, 0.3)

T . Besides, to simplify the decision-mak-
ing process, preference relations are useful tools that only 
require the DMs to judge two alternatives at a time. Further-
more, PFVs are flexible in expressing the DMs’ hesitancy, 
where there is more than one value for judgments. Con-
sidering these two aspects, PFPRs are used for this GDM 
problem.

Therefore, experts use PFNs to evaluate the above four 
impact indicators according to professional knowledge and 
financial experience. The final PFPRs are as follows:

Some preset parameters are given as follows: consist-
ency index threshold level CI = 0.1 , group consistency 
index threshold level GCD = 0.1 , consistency adjustment 
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parameter � = 0.2 , and consistency adjustment param-
eter � = 0.3 . The detailed stages on the latter are shown in 
“Appendix”.

As international competition intensifies and the market 
environment changes, enterprises will inevitably suffer 
from various financial crises. Establishing a financial early 
warning system is conducive to preventing and overcoming 
financial crises. To guard against financial risks, the listed 
company prefers to establish an effective financial early 
warning system based on several indicators affecting its 
financial situation.

From the stages in “Appendix”, we obtain 
s
(
x1
)
= −0.0747, s

(
x2
)
= −0.4753, s

(
x3
)
= −0.6741, 

and s
(
x4
)
= −0.7762 via Definition 5. Then, the nor-

malized Pythagorean fuzzy weight vector is ranked 
w̃1 > w̃2 > w̃3 > w̃4 . Therefore, the rank results of impor-
tance of the influencing factors are solvency > opera-
tions > profitability > development (x1 > x2 > x3 > x4) , 
indicating that the most important interfering factor is 
solvency x1 . Moreover, the comprehensive PFPR Ac▵ 
also shows that the preferred factor x1 is higher than the 
other three factors by the three experts xj(j = 2, 3, 4) , such 
as  ac▵

12
= (0.7299, 0.5672),ac▵

13
= (0.7784, 0.5129) and 

ac▵
14

= (0.7762, 0.4833) . Furthermore, most of the raw infor-
mation in the PFPRs given by the three experts is robust 
enough to reflect that the preference value of x1 is superior 
to those of the others. E.g., a2

12
= (0.75, 0.55) represents the 

degree of preference of solvency x1 relative to operations 
x2 . Obviously, this is consistent with the results obtained in 
this paper, which side by side proves that the method of this 
paper is robust and reasonable.

Therefore, under the analysis and judgment of the three 
experts in the related field, it is concluded that solvency, 
operations, profitability, and development are all important 

indicators reflecting financial status; however, to avoid risks 
effectively, listed companies should give primary considera-
tion to their own solvency when establishing a financial early 
warning system.

Generally, solvency is the ability to pay debts as they fall 
due. If there is a problem with solvency, it will definitely 
pose a threat to the entire financial situation of an enterprise, 
and may even cause the enterprise to experience a financial 
crisis. Therefore, in the fierce market competition, the first 
goal of an enterprise to survive is to cover its expenses with 
revenues and pay off its debts on time.

Comparison analysis

The following is the comparison and analysis of methods 
of [18–20, 34, 35, 39], which includes the following main 
aspects.

1.	 To highlight the excellent properties of multiplicative 
consistency, we will compare multiplicative consistency 
with the method of additive consistency. Therefore, the 
methods proposed by Chu et al. [18] and Yang et al. 
[35] are used to find the optimal solution to the above 
problem.

2.	 To determine whether the decision-making information 
of the Pythagorean fuzzy environment is more compre-
hensive than that of the intuitionistic fuzzy environment, 
we will compare the proposal with the IFPR methods 
proposed by Chu et al. [18], Jin et al. [19] and Lin and 
Wang [20].

3.	 To accentuate the consensus in GDM, we will com-
pare the proposal with the individual decision-making 
approach by He et al. [39] and the approach that consid-

Table 2   Correlations of 
different methods

*Correlation is significant at the 0.05 level (2-tailed)
**Correlation is significant at the 0.01 level (2-tailed)

Chu [18] Jin [19] Lin [20] Yang [35] Mandal [34] Our method

Chu [18] Pearson correlation 1 0.921 0.988* 0.994** 0.942 0.949
Sig. (2-tailed) 0.079 0.012 0.006 0.058 0.051

Jin [19] Pearson correlation 0.921 1 0.954* 0.876 0.983* 0.986*
Sig. (2-tailed) 0.079 0.046 0.124 0.017 0.014

Lin [20] Pearson correlation 0.988* 0.954* 1 0.976* 0.980* 0.983*
Sig. (2-tailed) 0.012 0.046 0.024 0.020 0.017

Yang [35] Pearson correlation 0.994** 0.876 0.976* 1 0.913 0.920
Sig. (2-tailed) 0.006 0.124 0.024 0.087 0.080

Mandal [34] Pearson correlation 0.942 0.983* 0.980* 0.913 1 0.996**
Sig. (2-tailed) 0.058 0.017 0.020 0.087 0.004

Our method Pearson correlation 0.949 0.986* 0.983* 0.920 0.996** 1
Sig. (2-tailed) 0.051 0.014 0.017 0.080 0.004
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Comprehensive PFPR

Output the op�mal alterna�ve 

Fig. 1   Process flowchart of decision support model with PFPRs
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ers only consistency proposed by Jin et al. [19], Mandal 
and Ranadive [34], and Lin and Wang [20].

Considering the relationship between PFPRs and IFPRs, 
we will compare the methods [18–20] under an intuitionistic 
fuzzy environment to highlight the advantages of PFPRs. 
First, according to the transformation between them, the fol-
lowing IFPRs are obtained:

Considering that the method proposed by He et al. [39] 
solves an individual decision-making problem, the original 
PFPRs need to be converted to an overall decision-making 
matrix. The overall PFPR A⊙ can be obtained by utilizing 
the method in [37]. We need to convert the above PFPRs 
Ak =

(
ak
ij

)
4×4

(k = 1, 2, 3) of these four factors for the finan-
cial early warning system into the following overall PFPRs 
A⊙:

Based on the example of financial crisis and risk manage-
ment, the calculation results of the above five methods are 
shown in Table 1. To make the analysis not too redundant 
and to better highlight the results, the specific calculation 
procedure is omitted.

First, compared with the method proposed by He et al. 
[39], we find that the results obtained by the method in 
[39] are different from those obtained by our proposed 
method. The method in [39] yields a ranking result of 
xHe
2

> xHe
1

> xHe
4

> xHe
3

 , while our method produces a rank-
ing result of x1 > x2 > x3 > x4 . However, from the overall 
PFPR matrix A⊙ , we have A⊙

12
= (0.5250, 0.4500) , which 

means the degree of certainty that solvency x1 is preferred 

A1 =

⎡⎢⎢⎢⎣

(0.5000, 0.5000) (0.3600, 0.4900) (0.4900, 0.3600) (0.4225, 0.4900)

(0.4900, 0.3600) (0.5000, 0.5000) (0.6400, 0.0900) (0.5625, 0.2025)

(0.3600, 0.4900) (0.0900, 0.6400) (0.5000, 0.5000) (0.5625, 0.3600)

(0.4900, 0.4225) (0.2025, 0.5625) (0.3600, 0.5625) (0.5000, 0.5000)
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,
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(0.5000, 0.5000) (0.5625, 0.3025) (0.6400, 0.2500) (0.6400, 0.2500)

(0.3025, 0.5625) (0.5000, 0.5000) (0.3600, 0.4900) (0.6400, 0.3025)

(0.2500, 0.6400) (0.4900, 0.3600) (0.5000, 0.5000) (0.5625, 0.3025)

(0.2500, 0.6400) (0.3025, 0.6400) (0.3025, 0.5625) (0.5000, 0.5000)
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(0.3600, 0.5625) (0.2025, 0.4225) (0.5000, 0.5000) (0.1600, 0.4225)

(0.1225, 0.6400) (0.2025, 0.1600) (0.4225, 0.1600) (0.5000, 0.5000)

⎤
⎥⎥⎥⎦
.

A⊙ =

⎡⎢⎢⎢⎢⎢⎢⎣

�√
2

�
2,
√
2

�
2

�
(0.5250, 0.4500) (0.5625, 0.4250) (0.5625, 0.3875)

(0.4500, 0.5250)

�√
2

�
2,
√
2

�
2

�
(0.5125, 0.3625) (0.4875, 0.3625)

(0.4250, 0.5625) (0.3625, 0.5125)

�√
2

�
2,
√
2

�
2

�
(0.4750, 0.4500)

(0.3875, 0.5625) (0.3625, 0.4875) (0.4500, 0.4750)

�√
2

�
2,
√
2

�
2

�

⎤⎥⎥⎥⎥⎥⎥⎦

.

to operations x2 is 0.525, and the degree of certainty that 
solvency x1 is non-preferred to operations x2 is 0.45. Obvi-
ously, solvency x1 cannot be inferior to operation x2 . Simi-
larly, profitability x3 should not be inferior to development x4 
by A⊙

34
= (0.4750, 0.4500) . Therefore, our method is more 

robust than that of [39].
Second, from the four indicator rankings obtained by our 

method with those of Chu et al. [18], Jin et al. [19], Lin 

and Wang [20], Yang et al. [35], and Mandal and Ranad-
ive [34], we can see that the ranking results are consist-
ent, i.e., solvency > operations > profitability > development 
(x1 > x2 > x3 > x4) , but with some differences in approaches.

1.	 Compared with the methods proposed by Chu et al. 
[18], Yang et al. [35] found the optimal solution to the 
above problem. We know that when additive consist-
ency is used to describe the incomplete information in 

FPRs, an overflow range of 0 to 1 may be generated. 
Compared with additive consistency [18, 35], multipli-
cative consistency does not have information spillover 
in FPRs, or PFPRs. Therefore, the advantages of our 
decision support model are obvious. In response to PFs 
that do not achieve acceptable consistency, Chu et al. 
[18] built non-preferred relations for adjustment. This 
method can consider the additive consistency of the non-
preferred relations, but the process is complicated and 
information is easily lost. Our decision support model is 
directly based on the decision-making information given 
by experts, making full use of the original decision-mak-
ing information for decision-making, which can reduce 
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the information loss in the decision-making process and 
increase the reliability of the final results. By compari-
son, our method is simpler and more convenient.

2.	 As above, the decision results by Chu et al. [18], Jin 
et al. [19] and Lin and Wang [20] are also consistent 
with our final result, which again proves the excellent 
performance of the decision support model proposed 
in this paper. Although Jin et al. [19] constructed an 
improved model of the multiplicative consistency of 
IFPRs, our integrated environment is based on PFPRs, 
which is more extensive and sweeping than IFPRs in 
describing decision information. Moreover, the group 
decision model based on multiple IFPRs is just a sim-
ple extension of the decision model based on individual 
IFPRs. The model does not consider the consistency and 
compatibility of IFPRs, but our group decision model is 
the opposite. In our decision support model, we not only 
discuss how to improve the consistency of PFPRs, but 
also consider how to enhance the compatibility between 
them. Therefore, the virtues of this method are self-evi-
dent.

3.	 We compare the proposed method with the individual 
decision-making approach by He et al. [39] and the 
approach that considers only consistency proposed by 
Jin et al. [19], Mandal and Ranadive [34], and Lin and 
Wang [20]. He et al. [39] focused on multiplicatively 
consistent PFPRs, which is similar to this paper. Their 
method only considered the individual decision problem, 
while our method discusses the GDM consensus prob-
lem. Although Jin et al. [19] considered GDM, GDM 
was only an aggregation of individual decisions and did 
not consider the problem of non-consensus opinions 
among experts in GDM. As for Mandal and Ranadive 
[34], a consensus relationship was constructed. How-
ever, there is a problem with the definition of the rel-
evant equation, which makes the value on the diagonal 
of the constructed consensus relation not equal to one. 
Thus, our method is more practical.

Through the introduction of the above different methods 
of [18–20, 34, 35], it is found that the ranking results of 
the impact of factors are consistent (see Table 1), which 
shows that the decision support model constructed in this 
paper is reasonable and effective. Furthermore, the deci-
sion support model proposed in this paper integrates a vari-
ety of algorithm models such as a consistency improving 
algorithm and a consensus building algorithm. Therefore, 
our research methods consider decision information from 
multiple perspectives and solve decision-making problems 
at different levels. Besides, there is no information over-
flow in multiplicative consistency, which is more suitable 
for PFPRs than additive consistency. However, the degree 
of spatial membership of intuitionistic fuzzy environment 

is less than that of Pythagorean fuzzy environment, which 
is equivalent to the IFNs must be the PFNs. Otherwise, this 
does not hold. Therefore, the PFPRs can solve the problem 
that IFPRs are incompetent. In conclusion, it is valuable to 
build a decision support model with PFPRs based on multi-
plicative consistency.

To make a comparison, we count the Pearson correlations 
of rankings similarity via SPSS, as shown in Table 2.

According to the data of correlations of different methods 
with the same ranking, there are some correlations among 
these methods, and the difference is only the strength of the 
correlations. The correlation coefficients of our method and 
methods in [19] and [20] are less than 0.05, and are signifi-
cantly correlated. In particular, the correlation coefficient 
between our method and the method in [34] is 0.006 < 1, 
indicating a strong correlation between them.

Conclusions

Considering that different fuzzy environments, consistency 
improvement, consensus reaching, and the method of rank-
ing weights are the key research topics, this paper focuses on 
the preference relations in a Pythagorean fuzzy environment.

This paper provides several significant contributions to 
group decision-making with PFPRs as follows:

1.	 A novel concept of multiplicatively consistent PFPRs is 
introduced. The advantage of the proposed multiplica-
tive consistency is that it can overcome the malpractice 
of additive consistency with PFPRs.

2.	 A consistency measure index of PFPRs is introduced. 
Moreover, when the CI does not reach the expected 
threshold, a consistency improving model is designed 
to achieve the expected threshold.

3.	 The ICD and GCD are developed to measure the consen-
sus level. If the GCD is not within the expected thresh-
old, the consensus reaching model is modified to reach 
the expected threshold.

4.	 For the individual decision-making problem, order con-
sistency is defined to evaluate it efficiently. Furthermore, 
a decision support model, which is based on a consist-
ency improving model and consensus reaching model, 
is constructed for the GDM problem.

However, we do not conduct deep discussions on how 
the iteration parameters will affect the iterative speed and 
final decision results, which will be considered in the future. 
In addition, the weight of the experts in this paper is fixed, 
without considering the complexity of practical problems. 
The acquisition of incomplete weight information will be 
included in the following research.
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Appendix

Continued from the numerical example above.

Stage 1: Judge whether the PFPRs Ak =

(
ak
ij

)
4×4

(k = 1, 2, 3) 
are order consistent. From the analysis of the PFPRs 
Ak =

(
ak
ij

)
4×4

(k = 1, 2, 3) , it can be seen that the PFPRs do 
not conform to constraints in Definition 7. Thus, they are not 
order consistent, and we proceed to the next stage.

Stage 2: Consistency control process
In this stage, the acceptable multiplicative consistency of 

the three PFPRs Ak =

(
ak
ij

)
4×4

(k = 1, 2, 3) is tested.
First, multiplicatively consistent PFPRs can be obtained 

as follows:

Â1 =

⎡⎢⎢⎢⎢⎢⎢⎣

�√
2

�
2,
√
2

�
2

�
(0.6000, 0.7428) (0.6631, 0.6000) (0.6563, 0.5881)

(0.7428, 0.6000)

�√
2

�
2,
√
2

�
2

�
(0.7577, 0.5539) (0.7500, 0.5430)

(0.6000, 0.6631) (0.5539, 0.7577)

�√
2

�
2,
√
2

�
2

�
(0.6059, 0.6000)

(0.5881, 0.6563) (0.5430, 0.7500) (0.6000, 0.6059)

�√
2

�
2,
√
2

�
2

�

⎤⎥⎥⎥⎥⎥⎥⎦

,

Â2 =

⎡⎢⎢⎢⎢⎢⎢⎣

�√
2

�
2,
√
2

�
2

�
(0.7867, 0.5500) (0.7694, 0.6010) (0.8000, 0.5000)

(0.5500, 0.7867)

�√
2

�
2,
√
2

�
2

�
(0.6000, 0.6704) (0.6239, 0.5578)

(0.6010, 0.7694) (0.6704, 0.6000)

�√
2

�
2,
√
2

�
2

�
(0.6817, 0.5455)

(0.5000, 0.8000) (0.5578, 0.6239) (0.5455, 0.6817)

�√
2

�
2,
√
2

�
2

�

⎤⎥⎥⎥⎥⎥⎥⎦

,

Â3 =

⎡⎢⎢⎢⎢⎢⎢⎣

�√
2

�
2,
√
2

�
2

�
(0.7500, 0.5500) (0.7972, 0.4047) (0.7515, 0.4047)

(0.5500, 0.7500)

�√
2

�
2,
√
2

�
2

�
(0.6500, 0.4500) (0.6128, 0.4500)

(0.4047, 0.7972) (0.4500, 0.6500)

�√
2

�
2,
√
2

�
2

�
(0.4509, 0.4783)

(0.4047, 0.7515) (0.4500, 0.6128) (0.4783, 0.4509)

�√
2

�
2,
√
2

�
2

�

⎤⎥⎥⎥⎥⎥⎥⎦

.

Next, we will calculate the consistency indexes 
CI

(
Ak
)
(k = 1, 2, 3) corresponding to the PFPRs.

Compared with the consistency index threshold CI = 0.1 , 
it is easy to find that CI

(
A1

)
> CI,CI

(
A2

)
< CI, and 

CI
(
A3

)
> CI , which means that the PFPRs A1 =

(
a1
ij

)
4×4

 

and A3 =

(
a3
ij

)
4×4

 are not acceptably multiplicatively con-
sistent. Therefore, they should be adjusted via the consist-
ency improving algorithm. Then, we have the following 
adjusted PFPRs A1� =

(
a1�
ij

)
4×4

 and A3� =

(
a3�
ij

)
4×4

:

CI
(
A1

)
= 0.1138,CI

(
A2

)
= 0.0567, and CI

(
A3

)
= 0.1263.

A1� =

⎡⎢⎢⎢⎢⎢⎢⎣

�√
2

�
2,
√
2

�
2

�
(0.6000, 0.7084) (0.6925, 0.6000) (0.6513, 0.6760)

(0.7084, 0.6000)

�√
2

�
2,
√
2

�
2

�
(0.7914, 0.3391) (0.7500, 0.4672)

(0.6000, 0.6925) (0.3391, 0.7914)

�√
2

�
2,
√
2

�
2

�
(0.7187, 0.6000)

(0.6760, 0.6513) (0.4672, 0.7500) (0.6000, 0.7187)

�√
2

�
2,
√
2

�
2

�

⎤⎥⎥⎥⎥⎥⎥⎦

,

A3� =

⎡⎢⎢⎢⎢⎢⎢⎣

�√
2

�
2,
√
2

�
2

�
(0.7500, 0.5500) (0.7592, 0.5546) (0.7901, 0.3603)

(0.5500, 0.7500)

�√
2

�
2,
√
2

�
2

�
(0.6500, 0.4500) (0.4356, 0.4500)

(0.5546, 0.7592) (0.4500, 0.6500)

�√
2

�
2,
√
2

�
2

�
(0.4097, 0.6113)

(0.3603, 0.7901) (0.4500, 0.4356) (0.6113, 0.4097)

�√
2

�
2,
√
2

�
2

�

⎤⎥⎥⎥⎥⎥⎥⎦

,
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whose consistent indexes are CI
(
A1�

)
= 0.0911 < CI and 

CI
(
A3�

)
= 0.1011 > CI  , respectively. Therefore, A3′ is 

adjusted to meet the condition that its consistency index is 
less than 0.1. Then, let A3� = A3�� . One can obtain

with CI
(
A3��

)
= 0.0786 < CI  . Through this previ-

ous process of improving the consistency, all PFPRs are 
acceptably multiplicatively consistent. Then, let the PFPRs 
A1∗ = A1�, A2∗ = A2 and A3∗ = A3�� , and proceed to the next 
stage 3.

Stage 3: Consensus building process

A3�� =

⎡⎢⎢⎢⎢⎢⎢⎣

�√
2

�
2,
√
2

�
2

�
(0.7500, 0.5500) (0.7667, 0.5072) (0.7822, 0.3688)

(0.5500, 0.7500)

�√
2

�
2,
√
2

�
2

�
(0.6500, 0.4500) (0.4664, 0.4500)

(0.5072, 0.7667) (0.4500, 0.6500)

�√
2

�
2,
√
2

�
2

�
(0.4176, 0.5820)

(0.3688, 0.7822) (0.4500, 0.4664) (0.5820, 0.4176)

�√
2

�
2,
√
2

�
2

�

⎤⎥⎥⎥⎥⎥⎥⎦

,

A1∗ =

⎡⎢⎢⎢⎢⎢⎢⎣

�√
2

�
2,
√
2

�
2

�
(0.6000, 0.7084) (0.6925, 0.6000) (0.6513, 0.6760)

(0.7084, 0.6000)

�√
2

�
2,
√
2

�
2

�
(0.7914, 0.3391) (0.7500, 0.4672)

(0.6000, 0.6925) (0.3391, 0.7914)

�√
2

�
2,
√
2

�
2

�
(0.7187, 0.6000)

(0.6760, 0.6513) (0.4672, 0.7500) (0.6000, 0.7187)

�√
2

�
2,
√
2

�
2

�

⎤⎥⎥⎥⎥⎥⎥⎦

,

A2∗ =

⎡⎢⎢⎢⎢⎢⎢⎣

�√
2

�
2,
√
2

�
2

�
(0.7500, 0.5500) (0.8000, 0.5000) (0.8000, 0.5000)

(0.5500, 0.7500)

�√
2

�
2,
√
2

�
2

�
(0.6000, 0.7000) (0.8000, 0.5500)

(0.5000, 0.8000) (0.7000, 0.6000)

�√
2

�
2,
√
2

�
2

�
(0.7500, 0.5500)

(0.5000, 0.8000) (0.5500, 0.8000) (0.5500, 0.7500)

�√
2

�
2,
√
2

�
2

�

⎤⎥⎥⎥⎥⎥⎥⎦

,

A3∗ =

⎡⎢⎢⎢⎢⎢⎢⎣

�√
2

�
2,
√
2

�
2

�
(0.7500, 0.5500) (0.7667, 0.5072) (0.7822, 0.3688)

(0.5500, 0.7500)

�√
2

�
2,
√
2

�
2

�
(0.6500, 0.4500) (0.4664, 0.4500)

(0.4047, 0.7972) (0.4500, 0.6500)

�√
2

�
2,
√
2

�
2

�
(0.4176, 0.5820)

(0.4047, 0.7515) (0.4500, 0.6128) (0.4783, 0.4509)

�√
2

�
2,
√
2

�
2

�

⎤⎥⎥⎥⎥⎥⎥⎦

.

Based on the adjusted PFPRs A1∗,A2∗,… ,Am∗ with 
acceptable multiplicative consistency, we will check their 
consensus.

First, let l = 0, and Ak∗(l) = Ak∗ =

(
ak∗
ij

)
4×4

, k = 1, 2, 3 . The 

degree of individual consensus ICD and the degree of group 
consensus GCD with PFPRs are calculated as follows:

D u e  t o  GCD = 0.2238 > GCD = 0.1  ,  i t 
is necessary to adjust the worst PFPR in the 

ICD(A1∗(0)) = 0.2404, ICD(A2∗(0)) = 0.2065, ICD(A3∗(0))

= 0.2245 and GCD = 0.2238.
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consensus. From the above operation results, we know 
ICD(A1∗(0)) = max1≤k≤3

{
ICD(Ak∗(0))

}
 . Then, the following 

A1∗(1) is adjusted by Eq. (35):

In addition, let A2∗(1)=A2∗(0) and A3∗(1)=A3∗(0) . Next, the 
ICDs and GCD of the iterated PFPRs are calculated sepa-
rately as follows:

S ince  GCD = 0.1428 > GCD = 0.1 ,  i t  i s  nec -
essary to adjust the worst PFPR in the consen-
sus. From the above operation results, we know 
ICD(A3∗(1)) = max1≤k≤3

{
ICD(Ak∗(1))

}
 . Then, the following 

A3∗(1) is adjusted by Eq. (35):

and let A1∗(2)=A1∗(1) and A2∗(2)=A2∗(1).
Next, the ICDs and GCD of the iterated PFPRs are calcu-

lated separately as follows:

A1∗(1) =

⎡⎢⎢⎢⎢⎢⎢⎣

�√
2

�
2,
√
2

�
2

�
(0.7014, 0.5934) (0.7548, 0.5308) (0.7462, 0.4920)

(0.5934, 0.7014)

�√
2

�
2,
√
2

�
2

�
(0.6705, 0.4825) (0.6496, 0.4882)

(0.5629, 0.7490) (0.4825, 0.6705)

�√
2

�
2,
√
2

�
2

�
(0.6033, 0.5758)

(0.5056, 0.7521) (0.4882, 0.6882) (0.5985, 0.5942)

�√
2

�
2,
√
2

�
2

�

⎤⎥⎥⎥⎥⎥⎥⎦

.

ICD(A1∗(1)) = 0.1188, ICD(A2∗(1)) = 0.1545, ICD(A3∗(1)) = 0.1550 and GCD = 0.1428.

A3∗(2) =

⎡⎢⎢⎢⎢⎢⎢⎣

�√
2

�
2,
√
2

�
2

�
(0.7326, 0.5648) (0.7739, 0.5128) (0.7755, 0.4538)

(0.5500, 0.7500)

�√
2

�
2,
√
2

�
2

�
(0.6389, 0.5382) (0.6326, 0.4967)

(0.4047, 0.7972) (0.4500, 0.6500)

�√
2

�
2,
√
2

�
2

�
(0.5830, 0.5685)

(0.4047, 0.7515) (0.4500, 0.6128) (0.4783, 0.4509)

�√
2

�
2,
√
2

�
2

�

⎤⎥⎥⎥⎥⎥⎥⎦

,

ICD(A1∗(2)) = 0.0809, ICD(A2∗(2)) = 0.1085, ICD(A3∗(2)) = 0.0710 and GCD = 0.0868.

As stated above, GCD = 0.0868 < GCD which means 
that the group consensus degree of the adjusted PFPRs 
reaches the pre standard.

F i n a l l y ,  l e t  Ak▵ = Ak∗(1), k = 1, 2, 3,  a n d 
GCD

▵
= GCD = 0.0868. We output PFPRs Ak▵,k = 1, 2, 3 . 

They have an acceptable multiplicative consistency and 

degree of group consensus.

Stage 4: Alternative selection process
Equation  (30) is used to aggregate the PFPRs 

A1▵,A2▵,… ,Am▵ into a comprehensive PFPR Ac▵ . Accord-

ing to the ranking of the standardized weight vector calcu-
lated by the optimization model (M-4.2), the alternatives are 
sorted to select the best one x▵

The matrix is applied to the model to obtain the normal-
ized Pythagorean fuzzy weight vector

Ac▵ =

��
ac▵
ij,�
, ac▵

ij,�

��
4×4

=

⎡⎢⎢⎢⎢⎢⎢⎣

�√
2

�
2,
√
2

�
2

�
(0.7299, 0.5672) (0.7784, 0.5129) (0.7762, 0.4833)

(0.5687, 0.7282)

�√
2

�
2,
√
2

�
2

�
(0.6321, 0.5786) (0.7004, 0.5147)

(0.5708,0.7554) (0.4893, 0.6526)

�√
2

�
2,
√
2

�
2

�
(0.6515, 0.5632)

(0.4557, 0.7786) (0.4778, 0.6349) (0.6144, 0.5134)

�√
2

�
2,
√
2

�
2

�

⎤⎥⎥⎥⎥⎥⎥⎦

.

w̃ =
�
w̃1, w̃2, w̃3, w̃4

�T
= (⟨0.6424,0.6981⟩, ⟨0.4609,0.8293⟩, ⟨0.4037, 0.9149⟩, ⟨0.3345,0.9424⟩),
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and its consistency index is: CI
(
Ac▵

)
= 0.0196 < CI.
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