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Abstract
The paper aims to present an integrated approach to solve the decision-making problem under the probabilistic hesitant fuzzy 
information (PHFI) features, which is an extension of the hesitant fuzzy set. The considered PHFI not only allows multiple 
opinions, but also associates occurrence probability to each opinion, which increases the reliability of the information. Moti-
vated by these features of PHFI, an approach is presented to solve the decision problem with partial known information about 
the attribute and expert weights. In addition, an algorithm for finding some missing values in the preference information is 
presented and stated their properties. Afterward, the Hamy mean operator has been used to aggregate the different collective 
information into a single one. Also, we presented a COPRAS method to the PHFI for ranking the given alternatives. The 
presented algorithm has been demonstrated through a case study of cloud vendor selection and its validity has been revealed 
by comparing the approach results with the several existing algorithm results.

Keywords  Cloud vendor selection · Hamy mean · Mathematical model · Probabilistic hesitant fuzzy information

Introduction

Hesitant fuzzy set (HFS) [1] is a promising extension to the 
classical fuzzy set that promotes multi-criteria decision-mak-
ing (MCDM) with effective uncertainty management. Though 
the fuzzy sets and orthopairs have wide practical usage [2–5], 
HFS was generic and more flexible. Rodriguez et al. [6] made 
a detailed review on HFS and different approaches under HFS 

for MCDM. From the review, it is clear that the (i) HFS is a 
flexible preference structure with the ability to mitigate sub-
jective randomness; (ii) also, HFS eases the experts’ prefer-
ence elicitation behavior; and (iii) occurrence probability of 
each element is ignored. Driven by the claims made in the 
systematic review, Zhou and Xu [7] put forward a general-
ized structure called probabilistic hesitant fuzzy information 
(PHFI) that associates occurrence probability to each element. 
By doing so, the confidence of each element is obtained that 
acts as potential information for MCDM.

Let us consider an example of a beauty contest, where the 
judges/experts rate models (candidates) based on their walk 
& posture. For this, experts associate multiple membership 
grades to each model along with the respective confidence 

v a l u e s ,  s u c h  a s  Mod1 =

(
0.6|0.35
0.45|0.40

)
 , 

Mod1 =

(
0.65|0.30
0.5|0.50

)
 , and Mod1 =

(
0.7|0.45
0.55|0.35

)
 . Another 

example deals with rating IQ levels of school students, in 

which a teacher gives rating as Stu1 =
(
0.7|0.35
0.6|0.50

)
 , and 

Stu2 =

(
0.8|0.40
0.5|0.60

)
 . According to the PHFI structure, it is 

seen that expert can not only give multiple membership grades 
or preference grades, but also associate confidence value to 
each grade. This flexible style and generalization along with 
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the structural strength that allows association of occurrence 
probability with each grade is the main advantage of PHFI 
that is lacking in other HFS variants [8–11]. For ease of 

understanding the semantics, 1 =

(
0.65|0.30
0.5|0.50

)
 infers that an 

expert rates Mod1 as 50% or 65% preferable with occurrence 
probability (confidence) of 50% and 30%, respectively. Driven 
by the flexibility of PHFI, many researchers applied the infor-
mation for MCDM. Zhou and Xu [12] extended value at risk 
concept to PHFI and evaluated stocks in China. Zhou and Xu 
[13] also proposed a new uncertain PHFI structure for stock 
assessment with the help of integrated decision model. Gao 
et al. [14] solved emergency decision situation that involves 
uncertainty and dynamism with the help of dynamic referenc-
ing approach under PHFI context by developing a novel 
expectation measure to cope with the evolutionary and 
dynamic factors. Zhou and Xu [15] further determined con-
sistency and repaired inconsistent PHFI-based relations itera-
tively based on judgment principle and expected consistency 
index. Also optimization model is formulated for probability 
calculation of preference relations with PHFI and used the 
framework for research candidate selection. Wang and Li [16] 
introduced correlation measures to PHFI and assessed com-
modities for investment. Li et al. [17] selected research can-
didate based on outranking methods under PHFI environment 
by extending PROMETHEE and QUALIFLEX approaches. 
Ding et al. [18] made an interactive decision framework by 
developing new axiomatic distance measure that is used in the 
formulation of PHFI-based mathematical model. Positive and 
negative ideal solutions are determined with PHFI and the 
model is used for solving project selection under virtual real-
ity domain. Zhang et al. [19] provided an improvement of 
PHFI structure and presented some properties along with their 
proofs. Some aggregation operators are proposed for this 
improved structure and its continuous domain variants are 
also presented and industrial safety in automobile sector is 
evaluated. Wu et al. [20] made an integrated model with GM 
(1, 1) to predict information for decision process. Later, dis-
tance measure with hesitation degree is put forward along 
with mathematical model for weight estimation and risk in 
coal mines are evaluated using TOPSIS method with PHFI 
for making emergency decision.

Hao et al. [21] proposed a variant of PHFI called proba-
bilistic dual hesitant fuzzy set (PDHFS) that considers both 
degree of membership and non-membership in multiple 
grades and put forward a new framework with aggregation 
operator and entropy measure for risk evaluation in the Artic 
zone. Tian et al. [22] evaluated funding of venture capitals 
in the form of sequential investment based on a consensus 
model by developing a decision index system with Prospect 
consensus model under PHFI structure. Li and Wang [23] 
developed prioritized operators under arithmetic and geo-
metric contexts for aggregation and ranking of faculties for 

a Chinese university in the management department. They 
also discussed the fundamental properties nad the relation-
ship between arithmetic/geometric operators. Bashir et al. 
[24] integrated preference relations to PHFI and designed 
algorithms of consistency measures and consensus reaching 
that was used them for group decision-making. Recently, 
Song et al. [25] created a clustering algorithm based on 
two correlation measures that helps in understanding the 
relationship between PHFI and validated the usefulness 
through synthetic/real time experiments. Garg & Kaur [26] 
developed new correlation measures and weighted vari-
ants by introducing new informational energy and covari-
ance measures under PDHFS context that was utilized for 
personnel selection. Li et al. [27] integrated a framework 
with dominance degree and best–worst method for investor 
assessment by presenting a new density function that sup-
ported the construction of dominance matrix, which was in 
turn used in the formulation of best–worst approach. He and 
Xu [28] proposed reference ideal based distance and rank-
ing methods by identifying the relationship between ideal 
values and PHFI that were further used in the assessment 
of water saving projects. Garg and Kaur [29] also extended 
Maclaurin mean operator to PDHFS for gesture understand-
ing in brain hemorrhage situations. Farhadinia et al. [30] 
proposed new correlation measures along with its theoretical 
base and evaluated strategies. Liu et al. [31] developed an 
integrated approach with PHFI using entropy measure and 
regret theory for venture capital investment assessment. Li 
et al. [32] put forward an ORESTE-based approach with 
PHFI by making use of new distance measure for choos-
ing apt research topic. Farhadinia and Herrera-Viedma [33] 
fine-tuned the PHFI and developed theoretical base for the 
same by introducing operational laws and evaluating safety 
of industries in automobile sector. Li et al. [34] made a con-
sensus model with PHFI by introducing normalized PHFI 
for candidate selection and evaluation. Lin et al. [35] meas-
ured consistency and repaired inconsistent preferences with 
newly proposed algorithms under PHFI context and adopted 
the model for decisions on investment projects. Jin et al. [36] 
developed a new consistency check and adjustment measure 
for preference relations with PHFI and used DEA approach 
for logistics selection. Guo et al. [37] developed a Choquet 
integral-based TODIM approach with PHFI for rational 
selection of sites of CO2 storage.

The literature review helped in identification of potential 
research challenges that could be mitigated by novel contri-
butions whose intuitions are inspired from the literatures and 
cognition. As there is limited amount of time and domain 
knowledge, experts may not be comfortable with preference 
elicitation for each alternative over a specific criterion. This 
causes missing values in the preference matrices that must 
be methodically imputed before further processing. Binning 
methods [38] from data mining provided the intuition for 
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imputation. Similarly, weights of experts and criteria must 
be calculated to avoid subjective bias and inaccuracies in 
MCDM. Works from Kao [39] and Koksalmis and Kabak 
[40] provides intuition for methodical weight calculation of 
criteria and experts, respectively. Besides, the partial infor-
mation can be effectively utilized by formulating mathe-
matical models that depict the partial weight information as 
inequality constraints. Moreover, inter dependencies among 
experts need to be rationally captured for proper aggregation 
of preferences, which offered intuition for proposing HM 
operator [41] to aggregate PHFI. Finally, COPRAS [42] is a 
popular and powerful ranking method that actively considers 
the nature of criteria by handling preferences from different 
angles along with consideration to direct and proportional 
alternatives’ relationship [43].

Based on the review conducted above, certain research 
challenges are encountered. Firstly, extant decision models 
with PHFI do not consider missing values during MCDM. 
But, these are common phenomenon owing to the implicit 
hesitation/pressure that experts face during MCDM. Sec-
ondly, when partial information about the importance of 
experts and criteria are available, it becomes a critical chal-
lenge to use the information effectively, which is lacking 
in extant PHFI-based models. Further, inter dependencies 
among experts are not captured rationally in the extant mod-
els during aggregation of PHFI. Finally, ranking of alterna-
tives from different angles with apt consideration to nature 
of criteria is lacking in the extant PHFI-based models.

Driven by these research challenges, some novel contri-
butions are put forward to mitigate the challenges and they 
are:

1.	 Hesitation/confusion is common in practical MCDM 
and so missing values occur in preference matrices and 
they can be effectively imputed by proposing weighted 
averaging technique. The rationale behind weighted 
average approach is that it helps in retaining the PHFI 
structure of the imputed value and also grants flexibility 
to the experts to express their personal opinion on each 
alternative.

2.	 Due to dilemma, partial information on the importance 
of each criterion and experts are possible, which can 
be utilized efficiently by proposing mathematical mod-
els. Unlike the direct elicitation of weights, methodical 
calculation reduces subjective biases and inaccuracies, 
which are driven by the claims from Kao [39] and Kok-
salmis & Kabak [40].

3.	 Experts participating in MCDM tend to reflect some 
inter dependencies in their views/opinions that can be 
rationally captured by extending Hamy mean (HM) 
operator to PHFI. The intuition behind using the opera-
tor is that it is generic in nature and also considers both 

the weights and risk appetite values of experts that aids 
in rational aggregation of information.

4.	 Finally, popular COPRAS (complex proportional assess-
ment) method is extended to PHFI for ranking alter-
natives by properly considering the nature of criteria 
and offering decision from different angles based on the 
complex proportional factors. Zheng et al. [43] rightly 
pointed out these features that motivated our research 
focus in this direction.

The rest of the paper is constructed in the following fash-
ion. Basic concepts are of HFS and PHFI are reviewed in 
“Preliminaries”. Core contribution of this paper is presented 
in “Novel decision model with PHFEs”, where the procedure 
for each method is provided step wise. A numerical example 
is presented in “Numerical example” to aid in demonstrating 
the usefulness of the framework. Results are compared with 
extant models in “Comparative investigation—proposed 
vs. other models” to discuss the merits and limitations of 
the work. Finally, concluding remarks with future research 
scope is provided in “Conclusion and future directions”.

Preliminaries

It is essential to note some basics of HFEs and PHFEs before 
presenting the proposed methodologies.

Definition 1
[1]: Consider T  as a fixed set, an HFS on T  is a func-

tion h which yields a subset with values in the range 0 to 1. 
Mathematically,

where h
T
(t) has values in the range 0 to 1 and they represent 

the membership grade of t ∈ T .

Definition 2
[7]: T  is as before, an PHFS on T  is a pair and it is given 

by,

where hTp
(
�i|pi

)
 is a pair with membership grade and occur-

rence probability associated with the grade for z on the set 
Tp , 0 ≤ �i ≤ 1 , 0 ≤ pi ≤ 1 and 

∑
i pi ≤ 1.

Note 1 Sum of occurrence probability is less than or equal 
to unity due to the idea of partial ignorance. By normaliza-
tion, sum is brought to unity. Let hTp

(
�i|pi

)
= h

i
=
(
�k
i
|pk

i

)
 

be a probabilistic hesitant fuzzy element (PHFE) with 
k = 1, 2,… , #hi and such PHFE constitutes a PHFS.

(1)T =
{(

t, h
T
(t)
)|t ∈ T

}

(2)Tp =
{(

t, hTp

(
�i|pi

))|t ∈ T
}
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Definition 3
[7]: Consider two PHFEs h1 and h2 as in Note 1. Some 

arithmetic operations are,

Equations (3–7) show the addition, multiplication, power 
operation, complement, and scalar multiplication, respec-
tively. Some interesting properties of these operations can 
be found in [7].

Novel decision model with PHFEs

This is the core section that proposes new methods under 
PHFS context that are integrated to form a decision model 
for MCDM.

Imputation of non‑available entries

This section focuses on presenting a new and elegant 
approach for imputing values that are missing in the prefer-
ence matrices. In the process of MCDM, experts provide 
their preferences that are formulated into a matrix called 
the preference/decision matrix. This matrix represents the 
choice/opinion that an expert makes on an alternative based 
on a criterion. Due to hesitation, confusion, and pressure, 
experts may not be able to provide all values in the matrices. 
This causes missing values that must be imputed methodi-
cally to avoid inaccuracies in MCDM.

Previous studies on PHFS have clearly ignored the miss-
ing values and assumed that the matrices are complete, 
which is not possible in practical cases. Driven by the 
assumption and to alleviate the issue, in this section, missing 
(non-available) values are considered and they are imputed 
methodically using Eq. (8).

(3)hc ⊕ hd = ∪c=1,2,…#hc,d=1,2,…,#hd

{
𝛾c + 𝛾d − 𝛾c𝛾d|pcpd

}

(4)hchd = ∪c=1,2,…#hc,d=1,2,…,#hd

{
�c�d|pcpd

}

(5)h�
c
= ∪c=1,2,…#hc

{(
�c
)�|pc

}
� ≥ 0

(6)hcc
d
= ∪d=1,2,…#hd

{(
1 − �d

)|pd
}

(7)�hc = ∪c=1,2,…#hc

{
1 −

(
1 − �c

)�|pc
}
� ≥ 0

(8)hmiss =

⎧⎪⎨⎪⎩

�
⊕mm

i=1

�
1 −

�
1 − 𝛾k

ij

�𝜁 l
i

�
�⊕mm

i=1

�
1 −

�
1 − pk

ij

�𝜁 l
i

��
;SchemeA

�
⊕

qq

l=1

�
1 −

�
1 − 𝛾k

ij

�𝜁 l
i

�
�⊕qq

i=1

�
1 −

�
1 − pk

ij

�𝜁 l
i

��
;Otherwise

where mm denotes the number of alternatives with PHFEs, 
� l
i
 is the normalized relative importance of the ith alterna-

tive (values available) for the lth expert, and qq denotes the 
number of experts with PHFEs in a specific (i, j) position.

SchemeA – The equation is applied when at least two 
alternatives are present for a particular criterion.

Otherwise – The equation is applied when the values for 
the entire criterion is missing from a particular expert. When 
there is one element per criterion, repeat the element to all 
other non-available rows.

It must be noted that the values for � l
i
 are in the unit inter-

val that depicts the relative importance of the ith alterna-
tive by the lth expert. These are personal opinions on each 
alternative by the experts, which is potential information in 
determining the missing values as it influences the prefer-
ence information from an expert. We generally get this vec-
tor from experts and normalize the same before applying 
the weights to Eq. (8). Experts are given equal importance 
during imputation process.

Theorem 1
The values that are imputed by Eq. (8) are PHFEs.

Proof
From Definition 2, it is evident that the PHFEs have two 

components viz., the HFE and the probability associated 
with the HFE. It is well known that these values are in the 
unit interval and the 

∑
k p

k
ij
≤ 1 . Equation (8) adopts the base 

formulation of scalar multiplication of PHFEs with idea of 
addition of PHFEs. Hence, from Eq. (8), it is obvious that 
the resultant value is an PHFE.

Some typical merits of the imputation method are (i) 
it is simple and straightforward; (ii) it considers relative 
importance of each alternative by obtaining personal opin-
ions from experts; and (iii) it does not force the experts to 
confine their relative importance values to the constraint of 
sum equals to unity, which thereby promotes flexibility and 
allows experts to share their opinions effectively.

Mathematical model for expert weight estimation

This section focuses on presenting a new mathematical 
model for determining the weight vector of experts based 
on the partial weight information provided the officials who 
constitute the expert panel. It must be noted that weights are 
either calculated with fully unknown information or partially 
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known information. The former situation is applicable when 
the information is unavailable or not presentable. But, when 
partial information is provided, it is important to use the 
information effectively for weight calculation. As men-
tioned earlier, Koksalmis & Kabak [40] strongly argued on 
the importance of methodical weight calculation of experts, 
which eventually reduces bias and inaccuracies.

Driven by the claim, in this section, an optimization model 
is put forward that considers the available partial information 
as useful component and formulates them as inequality con-
straints. So, a constrained optimization model is proposed, 
which is solved using MATLAB® optimization toolbox.

Model 1:

Subject to

In Model 1, h+
j
 is the positive ideal solution (PIS) of the jth 

criterion, h−
j
 is the negative ideal solution (NIS) of the jth 

criterion, and d(a1, b1) is the distance between any two 
PHFEs a1 and b1.

where BT  is the benefit type criterion and CT  is the cost 
type criterion.

Readers must note that Eqs. (9, 10) yields a single-valued 
entity for each criterion. But, we need to consider the PHFE 
that corresponds to the respective single-valued entity. 
Hence, Eqs. (9, 10) yields a vector each of order 1 × n that 
contains PHFEs.

Equation (11) is applied to formulate the objective func-
tion in Model 1. Some advantages of the proposed expert 
weight calculation model are (i) it is methodical and adheres 
to the argument of Koksalmis and Kabak [40]; (ii) it makes 
efficient use of the partial information for rational weight 
calculation.

Min Z =

q∑
l=1

�l

m∑
i=1

n∑
j=1

(
d
(
hij, h

+

j

)
− d

(
hij, h

−

j

))

0 ≤ �l ≤ 1;

q∑
l=1

�l = 1

(9)h+
j
= maxj∈BT

(∑
k

�k
ij
.pk

ij

)
orminj∈CT

(∑
k

�k
ij
.pk

ij

)

(10)h−
j
= minj∈BT

(∑
k

�k
ij
.pk

ij

)
ormaxj∈CT

(∑
k

�k
ij
.pk

ij

)

(11)d(a1, b1) =

√√√√ #h∑
k=1

(
�
k(a1)

ij
.p

k(a1)

ij
− �

k(b1)

ij
.p

k(b1)

ij

)2

Mathematical model for criteria weight 
determination

This section focuses on a new mathematical model for cri-
teria weight calculation with PHFEs. Inspired by the claim 
from Kao [39], in this section, a methodical approach is 
presented. The mathematical model adopts Euclidean dis-
tance norm for formulating the objective function. Com-
monly, criteria weights are determined either using partial 
information or under fully unknown information context. 
Popular methods under the latter part are entropy methods 
[44], step-wise weight assessment ratio analysis [45], and 
analytical hierarchy process [46]. But, these methods lack 
the ability to utilize partial information on each criterion for 
weight determination.

To alleviate the issue, a new category of weight calcula-
tion with partial information is put forward. Mathematical 
models are proposed to properly consider the partial infor-
mation during weight calculation. Driven by the claim, in 
this section, a new model is put forward that makes use of 
the partial information as inequality constraints. A con-
strained optimization model is developed that is solved using 
the optimization toolbox of MATLAB®.

Model 2:

Subject to

Equations (9–11) are used for calculating the PIS, NIS, 
and distance measure. Some advantages of Model 2 are (i) 
it is simple and straightforward; (ii) it accepts partial infor-
mation as inequality constraints for better determination of 
weights; and (iii) weights of criteria are determined by con-
sidering the nature of criteria that promotes rational weight 
calculation.

PHFS‑based Hamy mean operator

This section focuses on a new extension to the Hamy mean 
(HM) operator under PHFS context for aggregation of PHFI. 
HM operator [41] is a popular aggregation operator that is 
a generalized version of different arithmetic and geometric 
mean operators along with its weighted variants. It must be 
noted that the HM operator adheres to monotonicity, idem-
potency and bounded properties as per the base formulation 
of weighted HM. Thus, the operator is said to be Schnur con-
vex in nature and considers risk appetite factor in the context 
of group decision-making. HM operator yields arithmetic 

Min Z =

n∑
j=1

cwtj

q∑
l−1

(
d
(
hlj, h

+

j

)
− d

(
hlj, h

−

j

))

0 ≤ cwtj ≤ 1;

n∑
j=1

cwtj = 1
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mean and geometric mean operators as special cases, when 
g = 1 in Eq. (12), the operator transforms to arithmetic mean 
and when g = q , the operator proposed in Eq. (12) trans-
forms to geometric mean. In general, operators defined in 
[7] under PHFI context are special cases of the operator 
proposed in this section. Apart from the advantage of gen-
eralization, the HM operator also considered risk appetite 
values of experts along with the relative importance, which 
intuitively aided in rational aggregation of information. Spe-
cifically, it is observed that as value of g = 1 , the experts 
attitude is towards risk aversion compared to when g = q.

Recently researchers explored HM operator under dif-
ferent fuzzy structures such as orthopair fuzzy sets [47–50] 
with their variants [51–53], HFSs [54] with its variants [55] 
and used the same for decision-making. Inspired by the 
flexibility and generic nature of HM operator, motivation is 
gained and in this section, a new extension is put forward.

Definition 4
Aggregation of PHFI using PHFWHM operator is a map-

ping from Hl
→ H and is given by,

where g is a risk appetite parameter that can take values 
1, 2,… , q , �l is the weight of the lth expert, and (
q

g

)
=

q!

g!(q−g)!
 . The weights of experts used in Eq. (12) are 

calculated by solving Model 1 proposed in “Mathematical 
model for expert weight estimation”. Let us discuss some 
properties of PHFWHM operator.

Theorem 2
The proposed PHFWHM operator satisfies the idempo-

tent, commutative, monotonicity, and bounded properties.
(Idempotent)—For all hl = h where l = 1, 2,… , q ; 

PHFWHM
g
(
h1, h2,… , hq

)
= h.

(12)

PHFWHM
g
�
h1, h2,… , hq

�

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −
∏q

l=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −
∏g

ll=1

�
�k
ij

�

⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎝

q

g

⎞⎟⎟⎟⎠
g

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�l⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1

∑
ll

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎝

q

g

⎞⎟⎟⎟⎠
g

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −
∏q

l=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −
∏g

ll=1

�
pk
ij

�

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎝

q

g

⎞⎟⎟⎟⎠
g

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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As experts’ weights add up to unity, we obtain

(Monotonicity)
Let h′′ be an aggregated PHFE that is obtained by aggre-

gating h′′
l
 for all l = 1, 2,… ., q . Similarly, h is an aggregated 
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When PHFEs are aggregated using PHFWHM operator, 
the resultant value is also an PHFE.

Proof
From Theorem 2, it is evident that the PHFWHM operator 

satisfies bounded property. By extending the property fur-
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Thus, (hmin
= 0) ≤ PHFWHM

g
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h1, h2,… , hq

)
≤ (hmax

= 1) . 
Further, it must be noted that 

∑
k p

k
ij
≤ 1 for the aggregated 

value as the inputs hold this inequality. This clearly shows 
that the aggregated value is also an PHFE.

New extension to COPRAS method

This section focuses on presenting a new extension to the 
popular COPRAS method under PHFS context. The genesis 
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for COPRAS method was made in [56] that led to increasing 
usage of COPRAS in MCDM. Zavadskas et al. [42] selected 
dwelling equipment for the project using COPRAS method. 
Zavadskas et al. [57] assessed contractors with an integrated 
gray-COPRAS approach under uncertain context. Gorabe 
et al. [58] made a methodical selection of industrial robots 
using COPRAS approach. Yazdani et al. [59] developed an 
integrated model with QFD and COPRAS for assessment 
of green suppliers. Zheng et al. [43] assessed the severity 
of the pulmonary disease by adopting COPRAS to hesitant 
linguistic preferences. Vahdani et al. [60] evaluated robots 
under interval valued fuzzy context with COPRAS approach. 
Mousavi et  al. [61] analyzed the efficacy of COPRAS 
approach for auxiliary tool selection by comparison with 
other MCDM methods. Chatterjee et al. [62, 63] performed 
methodical selection of materials by adopting COPRAS 
method. Valipour et al. [64] assessed risk in excavation pro-
jects in Iran by adopting SWARA-COPRAS combination 
under uncertain situations. Nguyen et al. [65] presented AHP 
with COPRAS under fuzzy context for machine tool selec-
tion. Ayrim et al. [66] selected cargo company based on new 
stochastic COPRAS approach. Mardani et al. [67] reviewed 
different utility functions/methods to better understand the 
efficacy of COPRAS method in comparison to other meth-
ods. Recently, Roy et al. [68] evaluated hotels-based on web 
data by extending COPRAS to rough numbers. Ramadass 
et al. [69] evaluated cloud vendors for an organization using 
COPRAS method under linguistic preference context. Kris-
hankumar et al. [70] put forward a new framework with 
COPRAS under double hierarchy linguistic information for 
green supplier selection. Rani et al. [71] made an assessment 
of suppliers based on sustainable factors using SWARA-
COPRAS combination under HFS.

Based on the literature review made above, it is clear that 
COPRAS is an interesting and flexible approach for MCDM. 
Moreover, Zheng et al. [43] rightly pointed out the superi-
ority of COPRAS method as (i) simple and straightforward 
approach; (ii) considers the nature of criteria for better rank-
ing of alternatives; (iii) offers ranking from different angles 
based on the calculation of complex proportional factors; 
and (iv) final ranking of alternatives is influenced by strategy 
values that associates degree of importance to the types of 
criteria. Driven by these advantages of COPRAS approach, 
a step-wise procedure for ranking alternatives with PHFI is 
given below.

Step 1: Collect the weight vector of the criteria and the 
aggregated matrix by applying the proposed methods from 
“Mathematical model for criteria weight determination” and 
“PHFS-based Hamy mean operator”, respectively.

Step 2: Identify the benefit and cost types of the cri-
teria and apply Eqs. (13, 14) to determine the COPRAS 
parameters.

where B denotes number of criteria in the benefit type and C 
denotes the number of criteria in the cost type.

Step 3: Calculate the net ranking values of alternatives 
using Eq. (15) that forms a vector of order 1 × m . Apply 
arithmetic mean instance wise to determine the average val-
ues R1i and R2i.

where � is the strategy value in the unit interval, 
R1i =

∑
k R1

k
i
 , and R2i =

∑
k R2

k
i
.

Step 4: Arrange R3i values in the descending order to 
obtain the ranking order of the alternatives.

The explanation for the proposed algorithm is provided 
below to clarify the working of COPRAS method. Initially, 
an aggregated matrix of order m × n is considered as input 
along with a weight vector of order 1 × n . Equations (13, 14) 
are used to calculate R1k

i
 and R2k

i
 , respectively. These are 

vectors of order 1 × m and are determined for all instances. 
The R1k

i
 is associated with the benefit type criteria and R2k

i
 

is associated with the cost type criteria. It must be noted 
that n = B + C and final rank value of each alternative is 
determined using Eq. (15), which yields R3i . This is also a 
vector of order 1 × m that is calculated based on the linear 
combination of R1i and R2i . The strategy value � is used to 
alter influence and attitude mode during ranking. When the 
strategy value follows 0 ≤ 𝜉 < 0.50 condition, cost type cri-
teria are given preference over benefit type. Similarly, when 
strategy value follows 0.50 < 𝜉 ≤ 1 condition, benefit type 
is preferred over cost type. Finally, when strategy value is 
equal to 0.50, there is neutral preference over criteria.

Based on the flowchart depicted in Fig. 1, it is clear that 
the proposed framework under PHFS context obtains data 
from experts. Initially, matrices are formed based on the 
opinions from experts on each alternative over each criterion. 
Later, experts share their opinions on each criterion. Missing 
values are imputed methodically and the filled matrices are 
used for expert weight assessment. Further, criteria weight 
matrix is utilized for criteria weight calculation. PHFS infor-
mation from experts is aggregated with the help of the expert 
weight vector and finally, the aggregated matrix along with 
the criteria weight vector are used for ranking alternatives. 
This working flow is carefully adopted in the next section for 
demonstrating the usefulness of the framework.

(13)R1k
i
= ⊕B

j=1

(
1 −

(
1 − 𝛾k

ij

)cwtj |1 −
(
1 − 𝛾k

ij

)cwtj
)

(14)R2k
i
= ⊕C

j=B+1

(
1 −

(
1 − 𝛾k

ij

)cwtj |1 −
(
1 − 𝛾k

ij

)cwtj
)

(15)R3i = �R1i + (1 − �)

⎛
⎜⎜⎜⎝

∑m

i=1
R2i

R2i

�
1∑m

i=1
R2i

�
⎞
⎟⎟⎟⎠
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Numerical example

This section exemplifies the usefulness of the proposed frame-
work by demonstrating CV selection example for a startup 
company. A startup company A2P Soft (name modified) in 
Chennai is an active company that delivers software products 
to food industries for creating, managing, and analyzing data 
from the diverse set of customers. A2P Soft provided the food 
industries with support in data analytics to help them gain 
profit and achieve global market. Due to the data intensive 
nature and data-driven strategy adopted by A2P Soft, it is 
essential for the startup to invest more money for data storage. 
Since the company is a startup and focuses mainly on software 
product delivery to other food industries, their core investment 
is on technological advancement and software developers.

With the view of cutting cost in terms with data storage, the 
startup company plans to store data in cloud by utilizing the 
maximum power of cloud computing. As mentioned earlier, 
due to the massive data-driven strategy adopted by A2P Soft, 
large volumes of data needs to be stored and process synchro-
nously for offering effective decisions to food industries. The 
head of the company decides to adopt group decision-making 
for selecting an appropriate cloud vendor (CV) for the process. 
Due to large number of potential alternatives (CVs) in the mar-
ket, a rational selection with supportive mathematical grounds 
is essential. To achieve the goal, the head of the startup com-
pany constitutes a panel of three experts viz., senior software 
architect, audit manager, and software developer who aid in 
the decision-making process. Let us refer the three experts as 
D1 , D2 , and D3 , respectively. These experts analyzed the cloud 
vendors from cloud rating websites such as best cloud and 
cloud hosting review. Further, they analyzed the SLAs (ser-
vice level agreements) of CVs and made emails and phone 

calls to understand their services and billing patterns. Based 
on the initial scrutiny, the experts selected 11 CVs (from Cloud 
Armor repository) who were pre-screened for their suitability 
to the task being considered. From Delphi approach, six CVs 
were shortlisted for the decision-making process. We refer the 
CVs as A1 , A2 , A3 , A4 , A5 , and A6 (names are kept anonymous 
for ethical reasons). These vendors are rated based on seven 
functional criteria. Experts analyzed the literatures [72, 73] 
to make an initial selection of the criteria that were further 
revised based on the scorecard-based voting principle and a 
set of seven criteria referred as assurance, availability, security, 
agility, scalability, total cost and response time were finalized. 
We denote them as B1 to B7 . Among the seven criteria, last two 
are cost type and the rest are benefit type.

Experts plan to adopt PHFS information for rating CVs 
based on these criteria. Steps for apt selection of CVs are 
given below.

Step 1: Provide three decision matrices of order 6 × 7 
where we consider six CVs rated based on seven criteria. 
Due to hesitation/pressure, some entries are missing, which 
are methodically imputed based on the procedure proposed 
in “Imputation of non-available entries”.

Table 1 gives the data from each expert that rates each 
CV based on the functional criteria mentioned above. It must 
be noted that due to hesitation/confusion, some entries are 
missing (that is, experts are unable to provide data). Based 
on the literature review on PHFS-based MCDM, it is clear 
that the data matrices are assumed to be filled, which is not 
practical due to the implicit hesitation/confusion. In this 
research model, we consider missing entries and impute the 
values methodically. A lookup table provided below shows 
the entries that are imputed by adopting the procedure 
described in “Imputation of non-available entries”.

Fig. 1   Flowchart of the pro-
posed research framework
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aggregate preferences from each expert with a risk appetite 
value of g = 2.

Step 5: Calculate the parameters of COPRAS method 
that forms three vectors of order 1 × 6 . Ranking order is 
determined based on the vector values in the last column 
that is a derivate from the values provided in R1k

i
 and R2k

i
.

Note: The first two columns depict values for two 
instances in the HFE followed by occurrence probability 
fashion as the data has two instances.

Equations presented in “New extension to COPRAS 
method” are adopted to calculate the parameter values of 
COPRAS method and it is shown in Table 6. R3i is the rank-
ing vector that is used for forming the ranking order of CVs. 
Based on this vector, a suitable CV is chosen for A2P Soft. 
The ranking order is given by.

A2 ≻ A4 ≻ A1 ≻ A5 ≻ A3 ≻ A6 and the suitable CV for 
A2P Soft is A2.

Comparative investigation—proposed vs. 
other models

This section demonstrates the comparative investigation of 
the proposed model with other extant models under PHFS. 
For this purpose, extant models such as Li and Wang [23], Li 
et al. [27], Liu et al. [31], and Guo et al. [37] are compared 
with the proposed work. All these models actively use PHFI. 
Table 7 summarizes the advantages of the proposed work 
over other extant models, which are further detailed below 
for clarity. Following this, sensitivity analysis of criteria 
weights are performed to understand the effects of change 
of weight values in the ranking order. Through this analysis, 
robustness of the proposed work is realized. Finally, consist-
ency of the proposed work is also measured using Spearman 
correlation [74].

Based on Table 7, a detailed description on the advan-
tages of the proposed work is presented below:

1.	 PHFI is a flexible preference style that not only takes 
advantage of the HFS, but also associates occurrence 
probability as confidence level to each element.

2.	 Due to hesitation/confusion in MCDM, missing val-
ues are common and extant models do not consider 
the missing entries. Proposed work not only considers 

It must be noted that the lookup table offers values in the 
following order, that is, (a, b, c, d) denotes the expert’s num-
ber, CV’s number, criteria’s number, and instance’s number.

Step 2: Provide a criteria evaluation matrix of order 3 × 7 
where there are three DMs offering their opinion on each 
criterion. Table 2 is used as input for weight calculation of 
criteria (Table 3).

Table 2 is also obtained as an input to determine the 
weights of the criteria. This matrix utilizes PHFS infor-
mation. Each expert shares his/her opinions on each cri-
terion. Equations (9, 10) are used for calculating the PIS 
and NIS values, which are vectors of order 1 × 7 . It must be 
noted that these are also PHFS information. By applying 
Eq. (11), an objective function is obtained that is solved 
using the optimization toolbox of MATLAB® based on 
certain constraints. The objective function is determined as 
0.18cwt1 + 0.24cwt2 + 0.64cwt3 − 0.54cwt4 + 0.69cwt5 + 0.88cwt6 + 0.61cwt7 
and the constraints are presented as cwt1 + cwt2 + cwt3 ≤ 0.50 ; 
cwt4 + cwt5 + cwt6 + cwt7 ≤ 0.50   ; 
cwt2 + cwt3 + cwt4 ≤ 0.70  ;  cwt5 + cwt6 + cwt7 ≤ 0.30  ; 
0.35 ≤ cwt2 + cwt4 ≤ 0.40 ; and cwt3 + cwt6 + cwt7 ≤ 0.5 . 
Thus the solutions are given by 0.1, 0.2, 0.2, 0.2, 0.1, 0.1, 
0.1, which are considered as the weights of the criteria.

Step 3: Calculate the weights of DMs using the data in 
Table 4 and procedure proposed in “Mathematical model for 
criteria weight determination”.

By applying Eqs. (9–11), the PIS and NIS values for each 
expert are determined, which are vectors of order 1 × 7 . 
Using the distance norm, a vector of order 1 × 3 is obtained 
that is considered as the objective function. It is solved using 
MATLAB® based on the constraints. Objective function is 
presented as 3.74�1 + 4.93�2 + 0.61�3 and the constraints are 
given as �1 + �2 ≤ 0.70 ; �1 + �3 ≤ 0.60 ; and �2 + �3 ≤ 0.70 . 
By solving the model, we get the experts’ weights as 0.30, 
0.40, and 0.30, respectively.

Step 4: Aggregate the matrices from Table 1 to form 
Table 5 using the operator proposed in “PHFS-based Hamy 
mean operator”. A single matrix of order 6 × 7 is obtained 
with six cloud vendors rated based on seven criteria.

Table 5 presents the aggregated PHFS information that 
takes data from Table 1 and the methodically determined 
experts’ weights from Step 3. This aggregated value is used 
for ranking CVs. Operator proposed in Eq. (12) is applied to 
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Table 1   Data matrix with PHFI from experts

Criteria DMs Cloud vendors

A1 A2 A3 A4 A5 A6

B1 D1

(
(0.66, 0.66),

(0.69, 0.24)

) (
(0.11, 0.33),

(0.63, 0.29)

) (
(0.54, 0.64),

(0.59, 0.1)

) (
(0.32, 0.25),

(0.14, 0.42)

) (
(0.67, 0.42),

(0.62, 0.51)

) (
(0.34, 0.17),

(0.41, 0.43)

)

D2

(
(0.15, 0.15),

(0.35, 0.34)

) (
(0.44, 0.49),

(0.43, 0.25)

) (
(0.41, 0.48),

(0.57, 0.44)

) (
(0.76, 0.27),

(0.69, 0.57)

) (
(0.72, 0.6),

(0.61, 0.39)

) (
(0.43, 0.17),

(0.54, 0.46)

)

D3

(
(0.19, 0.11),

(0.33, 0.17)

) (
(0.33, 0.29),

(0.48, 0.25)

) (
(0.6, 0.14),

(0.58, 0.33)

) (
(0.45, 0.15),

(0.69, 0.44)

) (
(0.2, 0.11),

(0.78, 0.19)

) (
(0.63, 0.19),

(0.19, 0.71)

)

B2 D1

(
(0.44, 0.57),

(0.75, 0.21)

) (
(0.54, 0.18),

(0.28, 0.62)

) (
(0.17, 0.35),

(0.54, 0.59)

) (
(0.25, 0.33),

(0.47, 0.54)

) (
(0.63, 0.14),

(0.38, 0.13)

) (
(0.59, 0.37),

(0.27, 0.15)

)

D2

(
(0.52, 0.22),

(0.50, 0.61)

) (
(0.16, 0.54),

(0.76, 0.18)

) (
(0.38, 0.39),

(0.13, 0.13)

) (
(0.76, 0.13),

(0.54, 0.46)

) (
(0.60, 0.31),

(0.72, 0.60)

) (
(0.51, 0.59),

(0.70, 0.12)

)

D3

(
(0.58, 0.61),

(0.37, 0.21)

) (
(0.29, 0.22),

(0.31, 0.68)

) (
(0.54, 0.13),

(0.34, 0.31)

) (
(0.25, 0.25),

(0.32, 0.73)

) (
(0.78, 0.26),

(0.16, 0.69)

) (
(0.80, 0.51),

(0.16, 0.28)

)

B3 D1

(
(0.39, 0.31),

(0.30, 0.23)

) (
(0.26, 0.14),

(0.43, 0.44)

) (
(0.45, 0.63),

(0.59, 0.27)

) (
(0.52, 0.62),

(0.40, 0.31)

) (
(0.26, 0.20),

(0.65, 0.68)

) (
(0.80, 0.36),

(0.13, 0.16)

)

D2

(
(0.71, 0.60),

(0.71, 0.18)

) (
(0.57, 0.29),

(0.19, 0.40)

) (
(0.44, 0.21),

(0.10, 0.21)

) (
(0.30, 0.21),

(0.69, 0.43)

) (
(0.21, 0.72),

(0.58, 0.23)

) (
(0.31, 0.15),

(0.12, 0.19)

)

D3

(
(0.72, 0.12),

(0.49, 0.55)

) (
(0.61, 0.63),

(0.74, 0.36)

) (
(0.56, 0.33),

(0.21, 0.42)

) (
(0.48, 0.18),

(0.30, 0.68)

) (
(0.11, 0.44),

(0.43, 0.14)

) (
(0.49, 0.43),

(0.75, 0.11)

)

B4 D1

(
(0.49, 0.28),

(0.49, 0.38)

) (
(0.67, 0.31),

(0.34, 0.18)

) (
(0.57, 0.65),

(0.72, 0.24)

) (
(0.29, 0.28),

(0.15, 0.56)

) (
(0.66, 0.65),

(0.29, 0.27)

) (
(0.42, 0.67),

(0.57, 0.24)

)

D2

(
(0.79, 0.68),

(0.69, 0.12)

) (
(0.58, 0.48),

(0.64, 0.11)

) (
(0.37, 0.11),

(0.31, 0.67)

) (
(0.12, 0.70),

(0.77, 0.20)

) (
(0.28, 0.67),

(0.22, 0.22)

) (
(0.26, 0.40),

(0.28, 0.45)

)

D3

(
(0.72, 0.20),

(0.76, 0.65)

) (
(0.64, 0.17),

(0.26, 0.15)

) (
(0.71, 0.13),

(0.72, 0.25)

) (
(0.12, 0.77),

(0.19, 0.18)

) (
(0.43, 0.51),

(0.35, 0.18)

) (
(0.10, 0.10),

(0.62, 0.47)

)

B5 D1

(
(0.60, 0.31),

(0.43, 0.33)

) (
(0.60, 0.31),

(0.43, 0.33)

) (
(0.60, 0.31),

(0.43, 0.33)

) (
(0.37, 0.60),

(0.49, 0.28)

) (
(0.73, 0.13),

(0.35, 0.62)

) (
(0.62, 0.37),

(0.44, 0.20)

)

D2

(
(0.66, 0.16),

(0.58, 0.14)

) (
(0.35, 0.38),

(0.16, 0.57)

) (
(0.23, 0.42),

(0.20, 0.38)

) (
(0.61, 0.24),

(0.40, 0.68)

) (
(0.75, 0.26),

(0.36, 0.17)

) (
(0.62, 0.27),

(0.25, 0.50)

)

D3

(
(0.46, 0.12),

(0.53, 0.32)

) (
(0.64, 0.17),

(0.20, 0.33)

) (
(0.53, 0.33),

(0.29, 0.19)

) (
(0.76, 0.50),

(0.77, 0.13)

) (
(0.46, 0.80),

(0.19, 0.15)

) (
(0.21, 0.36),

(0.49, 0.27)

)

B6 D1

(
(0.63, 0.25),

(0.39, 0.42)

) (
(0.11, 0.18),

(0.47, 0.22)

) (
(0.15, 0.30),

(0.37, 0.48)

) (
(0.50, 0.26),

(0.36, 0.68)

) (
(0.74, 0.36),

(0.54, 0.38)

) (
(0.63, 0.23),

(0.79, 0.18)

)

D2

(
(0.44, 0.42),

(0.34, 0.23)

) (
(0.12, 0.15),

(0.48, 0.16)

) (
(0.53, 0.38),

(0.37, 0.29)

) (
(0.63, 0.28),

(0.31, 0.47)

) (
(0.61, 0.43),

(0.39, 0.26)

) (
(0.72, 0.11),

(0.23, 0.16)

)

D3

(
(0.15, 0.69),

(0.29, 0.13)

) (
(0.12, 0.13),

(0.48, 0.11)

) (
(0.74, 0.47),

(0.36, 0.17)

) (
(0.73, 0.30),

(0.26, 0.33)

) (
(0.41, 0.51),

(0.20, 0.18)

) (
(0.53, 0.37),

(0.54, 0.40)

)

B7 D1

(
(0.77, 0.26),

(0.29, 0.57)

) (
(0.71, 0.11),

(0.51, 0.27)

) (
(0.49, 0.29),

(0.74, 0.20)

) (
(0.19, 0.30),

(0.13, 0.19)

) (
(0.23, 0.13),

(0.76, 0.52)

) (
(0.75, 0.51),

(0.39, 0.13)

)

D2

(
(0.29, 0.56),

(0.36, 0.30)

) (
(0.79, 0.61),

(0.15, 0.18)

) (
(0.54, 0.53),

(0.30, 0.41)

) (
(0.56, 0.26),

(0.40, 0.48)

) (
(0.12, 0.18),

(0.73, 0.26)

) (
(0.24, 0.53),

(0.79, 0.38)

)

D3

(
(0.17, 0.47),

(0.15, 0.40)

) (
(0.15, 0.27),

(0.28, 0.16)

) (
(0.29, 0.33),

(0.72, 0.13)

) (
(0.48, 0.34),

(0.20, 0.52)

) (
(0.32, 0.19),

(0.50, 0.33)

) (
(0.43, 0.40),

(0.55, 0.38)

)
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missing entries, but also puts forward a novel procedure 
to impute the missing entries systematically. The core 
strength of the procedure is that it is simple, intuitive/
interpretable, and also yields values that are PHFS in 
nature.

3.	 Weights of both criteria and experts are methodically 
determined to mitigate subjective biases and inaccura-
cies. Further, partial information provided to the system 
are rationally utilized for weight calculation, unlike the 
extant models.

Table 2   Criteria weight determination matrix with PHFI

Criteria DMs

D1 D2 D3

B1

(
(0.16, 0.42),

(0.22, 0.25)

) (
(0.54, 0.18),

(0.75, 0.10)

) (
(0.22, 0.65),

(0.54, 0.12)

)

B2

(
(0.66, 0.22),

(0.37, 0.37)

) (
(0.43, 0.51),

(0.16, 0.24)

) (
(0.45, 0.50),

(0.49, 0.43)

)

B3

(
(0.29, 0.36),

(0.14, 0.32)

) (
(0.60, 0.39),

(0.24, 0.12)

) (
(0.14, 0.25),

(0.79, 0.16)

)

B4

(
(0.34, 0.35),

(0.64, 0.44)

) (
(0.69, 0.31),

(0.28, 0.39)

) (
(0.70, 0.32),

(0.10, 0.47)

)

B5

(
(0.43, 0.25),

(0.39, 0.66)

) (
(0.56, 0.32),

(0.40, 0.28)

) (
(0.13, 0.27),

(0.55, 0.50)

)

B6

(
(0.30, 0.24),

(0.48, 0.58)

) (
(0.46, 0.27),

(0.39, 0.55)

) (
(0.47, 0.55),

(0.56, 0.28)

)

B7

(
(0.62, 0.21),

(0.57, 0.60)

) (
(0.51, 0.40),

(0.50, 0.33)

) (
(0.11, 0.53),

(0.18, 0.44)

)

Table 3   Ideal solution-criteria

Criteria Ideal solutions

h+
j

h−
j

B1

(
(0.22, 0.65),

(0.54, 0.12)

) (
(0.16, 0.42),

(0.22, 0.25)

)

B2

(
(0.45, 0.50),

(0.49, 0.43)

) (
(0.43, 0.51),

(0.16, 0.24)

)

B3

(
(0.60, 0.39),

(0.24, 0.12)

) (
(0.29, 0.36),

(0.14, 0.32)

)

B4

(
(0.34, 0.35),

(0.64, 0.44)

) (
(0.7, 0.32),

(0.1, 0.47)

)

B5

(
(0.43, 0.25),

(0.39, 0.66)

) (
(0.56, 0.32),

(0.40, 0.28)

)

B6

(
(0.46, 0.27),

(0.39, 0.55)

) (
(0.47, 0.55),

(0.56, 0.28)

)

B7

(
(0.11, 0.53),

(0.18, 0.44)

) (
(0.62, 0.21),

(0.57, 0.60)

)

Table 4   Ideal solution-DMs

Criteria Ideal solutions

h+
j

h−
j

B1

(
(0.66, 0.66),

(0.69, 0.24)

) (
(0.32, 0.25),

(0.14, 0.42)

)

B2

(
(0.44, 0.57),

(0.75, 0.21)

) (
(0.63, 0.14),

(0.38, 0.13)

)

B3

(
(0.26, 0.20),

(0.65, 0.68)

) (
(0.39, 0.31),

(0.30, 0.23)

)

B4

(
(0.57, 0.65),

(0.72, 0.24)

) (
(0.29, 0.28),

(0.15, 0.56)

)

B5

(
(0.37, 0.60),

(0.49, 0.28)

) (
(0.73, 0.13),

(0.35, 0.62)

)

B6

(
(0.11, 0.18),

(0.47, 0.22)

) (
(0.74, 0.36),

(0.54, 0.38)

)

B7

(
(0.19, 0.30),

(0.13, 0.19)

) (
(0.75, 0.51),

(0.39, 0.13)

)

B1

(
(0.72, 0.60),

(0.61, 0.39)

) (
(0.15, 0.15),

(0.35, 0.34)

)

B2

(
(0.60, 0.31),

(0.72, 0.60)

) (
(0.38, 0.39),

(0.13, 0.13)

)

B3

(
(0.71, 0.60),

(0.71, 0.18)

) (
(0.31, 0.15),

(0.12, 0.19)

)

B4

(
(0.79, 0.68),

(0.69, 0.12)

) (
(0.26, 0.40),

(0.28, 0.45)

)

B5

(
(0.61, 0.24),

(0.40, 0.68)

) (
(0.23, 0.42),

(0.20, 0.38)

)

B6

(
(0.12, 0.15),

(0.48, 0.16)

) (
(0.61, 0.43),

(0.39, 0.26)

)

B7

(
(0.12, 0.18),

(0.73, 0.26)

) (
(0.79, 0.61),

(0.15, 0.18)

)

B1

(
(0.45, 0.15),

(0.69, 0.44)

) (
(0.19, 0.11),

(0.33, 0.17)

)

B2

(
(0.80, 0.51),

(0.16, 0.28)

) (
(0.54, 0.13),

(0.34, 0.31)

)

B3

(
(0.61, 0.63),

(0.74, 0.36)

) (
(0.11, 0.44),

(0.43, 0.14)

)

B4

(
(0.72, 0.20),

(0.76, 0.65)

) (
(0.12, 0.77),

(0.19, 0.18)

)

B5

(
(0.76, 0.50),

(0.77, 0.13)

) (
(0.64, 0.17),

(0.20, 0.33)

)

B6

(
(0.12, 0.13),

(0.48, 0.11)

) (
(0.53, 0.37),

(0.54, 0.40)

)

B7

(
(0.15, 0.27),

(0.28, 0.16)

) (
(0.43, 0.40),

(0.55, 0.38)

)
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4.	 Preferences are aggregated using a generalized opera-
tor called the Hamy mean that can easily interpret other 
arithmetic/geometric operators as special cases. Further-
more, the weights of experts that are needed for aggre-
gation are calculated and not directly obtained extant 
models) to avoid biases.

5.	 As stated by Zheng et al. [43], COPRAS method is (i) 
simple and straightforward; (ii) determines rank from 
different angles, and (iii) considers the nature of criteria 
during rank calculation. This inspired authors to extend 
COPRAS method to PHFI.

6.	 Sensitivity analysis is conducted to realize the effects 
of change of criteria weights on the ranking order. 
Figure 1 is shown below that contains rank values of 
different sets of criteria weights. Since there are seven 

criteria, seven sets are formed by applying right shift 
operation. From the figure, it is clear that the proposed 
work is robust and the final ranking order is given by 
A2 ≻ A4 ≽ A1 ≻ A5 ≻ A3 ≻ A6.

7.	 Rank values of the proposed work are compared with 
the extant models by applying the Spearman correla-
tion to determine the consistency of the proposed work. 
Figure 2 depicts the correlation values and confidence 
factors that are determined based on the and the values 
are given as ((1,1); (0.6, 0.79); (0.49, 0.68); (0.1,0.2); 
(0.49, 0.68)). Clearly the proposed work is moderately 
consistent with the extant models. Due to the ability of 
COPRAS to consider the nature of criteria, fairly unique 
ranking order is obtained with proper understanding of 
each criterion.

Conclusion and future directions

This paper puts forward a new decision model with PHFI by 
integrating different methods for achieving rational decisions 
with minimum human intervention and subjective biases. 
Unlike the extant models under PHFS, the proposed model 
considers missing entries and imputes the same methodi-
cally without loss of generality. Furthermore, weights of 
both criteria and experts are calculated by properly utiliz-
ing the partial information. Also, the preferences are sensi-
bly aggregated and cloud vendors are rationally prioritized. 
Table 7 describes the theoretical strengths/innovations of the 
proposed work. Further, sensitivity analysis reveals that the 
proposed work is robust even after adequate alterations are 
made to the criteria weights. Besides, the consistency factor 

Table 5   Aggregated PHFI from experts

Criteria Cloud vendors

A1 A2 A3 A4 A5 A6

B1

(
(0.50, 0.50),

(0.54, 0.29)

) (
(0.37, 0.41),

(0.53, 0.26)

) (
(0.53, 0.52),

(0.58, 0.37)

) (
(0.64, 0.24),

(0.64, 0.50)

) (
(0.65, 0.50),

(0.68, 0.42)

) (
(0.51, 0.18),

(0.46, 0.58)

)

B2

(
(0.52, 0.53),

(0.61, 0.49)

) (
(0.41, 0.44),

(0.63, 0.58)

) (
(0.43, 0.34),

(0.42, 0.45)

) (
(0.62, 0.26),

(0.48, 0.61)

) (
(0.68, 0.27),

(0.59, 0.59)

) (
(0.67, 0.52),

(0.57, 0.21)

)

B3

(
(0.67, 0.49),

(0.60, 0.41)

) (
(0.54, 0.48),

(0.58, 0.40)

) (
(0.49, 0.48),

(0.44, 0.33)

) (
(0.45, 0.47),

(0.57, 0.54)

) (
(0.22, 0.60),

(0.58, 0.52)

) (
(0.64, 0.35),

(0.57, 0.17)

)

B4

(
(0.72, 0.55),

(0.68, 0.50)

) (
(0.63, 0.40),

(0.52, 0.15)

) (
(0.59, 0.49),

(0.65, 0.54)

) (
(0.22, 0.68),

(0.63, 0.42)

) (
(0.52, 0.63),

(0.30, 0.23)

) (
(0.33, 0.52),

(0.53, 0.42)

)

B5

(
(0.60, 0.24),

(0.53, 0.29)

) (
(0.56, 0.33),

(0.32, 0.47)

) (
(0.51, 0.37),

(0.34, 0.33)

) (
(0.34, 0.22),

(0.44, 0.55)

) (
(0.70, 0.62),

(0.33, 0.47)

) (
(0.57, 0.34),

(0.42, 0.41)

)

B6

(
(0.50, 0.54),

(0.35, 0.32)

) (
(0.12, 0.16),

(0.48, 0.18)

) (
(0.60, 0.40),

(0.37, 0.37)

) (
(0.64, 0.28),

(0.32, 0.55)

) (
(0.63, 0.45),

(0.44, 0.30)

) (
(0.65, 0.28),

(0.63, 0.30)

)

B7

(
(0.59, 0.49),

(0.31, 0.46)

) (
(0.71, 0.49),

(0.39, 0.22)

) (
(0.48, 0.44),

(0.66, 0.33)

) (
(0.49, 0.30),

(0.32, 0.46)

) (
(0.25, 0.17),

(0.70, 0.41)

) (
(0.59, 0.49),

(0.68, 0.35)

)

Table 6   Parameters of COPRAS approach with PHFI

Cloud vendors COPRAS parameters

R1k
i

R2k
i

R3i

A1 (0.54, 0.55)
(0.53, 0.49)

(0.15, 0.88)
(0.08, 0.83)

4.70

A2 (0.44, 0.50)
(0.47, 0.41)

(0.13, 0.78)
(0.11, 0.72)

5.12

A3 (0.44, 0.51)
(0.43, 0.49)

(0.15, 0.84)
(0.14, 0.81)

3.91

A4 (0.40, 0.45)
(0.48, 0.59)

(0.16, 0.78)
(0.07, 0.87)

4.89

A5 (0.48, 0.56)
(0.44, 0.50)

(0.12, 0.77)
(0.16, 0.81)

4.27

A6 (0.44, 0.47)
(0.45, 0.37)

(0.18, 0.82)
(0.19, 0.80)

3.14
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is also moderate with a fairly unique ranking order with A2 
being the most viable cloud vendor based on the majority 
wins principle. These are merits from the statistical percep-
tion that can be observed from Figs. 2 and  3, respectively.

Certain shortcomings of the proposed work are (i) 
occurrence probabilities are not methodically determined; 
and (ii) consistency of imputed matrices are not checked 
and repaired. Certain managerial implications that can be 
inferred are (i) the proposed model is a ready-to-use tool, 
which could act in a bidirectional manner to help both cloud 
users (customers) and CVs; (ii) the model carefully mitigates 
biases by reducing human intervention through systematic 
calculation of parameter values; (iii) uncertainty is managed 
effectively by utilizing the flexibility of HFE and associating 
probabilities as confidence values; and (iv) finally, it must 
be noted that experts need training to properly use the tool 
for practical decision-making and to extend the scope of the 
tool to other MCDM applications.

As future research directions, shortcomings of the model 
are planned to be addressed. Also, plans are made to adopt 
the framework for real case studies with primary data from 
empirical experimentation and more generalized operators 
for calculation. Further, machine learning techniques can 
be integrated with the framework for decision-making with 
large volumes of data. Finally, the proposed work could be 
improved with other theoretical concepts such as hyper-
bolic functions [75, 76] for solving problems in business 
and health sectors.
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Fig. 2   Sensitivity analysis of 
PHFS-COPRAS with varying 
criteria weights (X axis – 1 to 7 
refers to seven sets of weights 
obtained from shift operation)

Fig. 3   Consistency analysis 
using Spearman correlation 
(X axis: 1 denotes proposed 
vs. method [15]; 2 denotes 
proposed vs. method [19]; 3 
denotes proposed vs. [23]; and 
4 denotes proposed vs. method 
[29])
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Appendix

Table A1 is presented below that provides the list of abbre-
viations along with the expansions.
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