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Abstract
In overlapping spectrum sharing, due to the complexity of cognitive environment, it is a real challenge for a secondary user
(SU) to correctly sense the usage of the spectrum in real time. To tackle this challenge, a social awareness-aided transmit
power control policy for SUs is developed. First, a social network composed of a group of third-party sensing nodes that
do not share the spectrum with the PU is established, which helps an SU collect the power information of the PU. Then,
we design a Dueling Deep Q-Network (DQN) model to achieve efficient dynamic spectrum sharing between the PU and the
SU with the power information collected in the social network. Experimental results show that the spectrum sharing success
rate is higher and the comprehensive performance is improved with the sensing nodes selected by the social relationship.
Moreover, compared with other deep reinforcement learning (DRL) algorithms, the performance of Dueling DQN is more
stable on our targeted spectrum sharing problem.

Keywords Cognitive radio · Spectrum sharing · Social relationship · Power control

Introduction

Today’s wireless networks require intelligent user demand
sensing and elastic on-demand resource provisioning, as to
offer high quality of service (QoS) for spectrum users [1].
As an example, Cognitive Radio Networks (CRN) rely on
the sensing and rational allocation of the limited spectrum
resources to allow second users (SUs) to share the spectrum
without affecting the QoS of the primary users (PUs) [2,3].

Controlling the transmit power of SUs is one of the essen-
tial issues in CRN. Existing power control algorithms adjust
the transmit power of SUs through multiple iterations [5],
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such as DCPC and DPC-ALP [6,7]. Other methods include
utilizing the similarity between the graph model and wire-
less network model [8,9], or using the interference graph
to achieve spectrum allocation with reduced interference
[10,12]. On the other hand, the emergence of the novel
Deep Reinforcement Learning (DRL) techniques help tackle
the computation complexity of large-scale-state-and-action-
space problems under dynamic environments. DRL enables
agents to learn the action strategies under the guidance of
an update-to-date optimal target approximation (Q value)
[13,14]. DRL demonstrates its powerful control-decision
capabilities in the areas of games, robotics, autonomous driv-
ing, and radio communications, etc. [15,19]. It can also apply
to channel allocation and transmit power control in spectrum
allocation of CRN.

To achieve the optimal power control, it is necessary to
obtain the environmental information, e.g., channel state,
which is dynamic inmost cases.Collecting such environmen-
tal information accurately and timely requires considerable
amount of resources [4]. A promising strategy is to uti-
lize social networks. With the wide application of various
social software such as WeChat, Weibo, and Facebook, an
intangible relationship network has been built among users
[20,21].Revealedby existingworks, these close relationships
include relatives, friends, or the cooperative command rela-
tionships between subordinates, etc., and the user community
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in CRN demonstrates strong sociality [22]. A high correla-
tion between such social relationship and data transmission
rate has also been identified [23]. The social attributes of
users help improve the transmission performance signifi-
cantly even if there is no cooperation between users [24].
Therefore, utilizing these social attributes in spectrum allo-
cation and power control has a far-reaching significance
[25,26].

In this paper, we study the power control strategy of a sec-
ond user in CRN with the aid of social networks. We assume
a pair of SU and PU share the spectrum with the help of a
set of third-party sensing nodes. The SU adaptively adjusts
its transmit power to use the spectrum without affecting the
PU, according to the information collected from the sensing
nodes. Our main contributions are summarized as follows.

1. The scheme of social awareness-aided spectrum sharing.
A social relationship network between users is estab-
lished. The sensing nodes with more intimate social
relation are chosen to assist spectrum sharing.

2. The characterization and exploration of the impact of
social relationships between users on sensing the environ-
ment. A social awareness-aided spectrum sharing method
is proposed.

3. A deep reinforcement learning algorithm based on Duel-
ing Deep Q-Networks (DQN). The algorithm is designed
to achieve intelligent social awareness-aided spectrum
sharing, which proves to demonstrate superior perfor-
mance according to our experimental results.

The rest of this paper is organized as follows. The section
“Social awareness-aided spectrum sharing scheme” explains
the systemmodel, including the spectrum sharing model and
the social relationshipmodel. The section “Spectrum sharing
using dueling DQN” describes in detail how to use Dueling
Deep Q-Networks to achieve intelligent spectrum sharing.
The section “Experimental results” presents the simulation
setups and the experimental results that verify the perfor-
mance of our proposedmethod. The section “Conclusion and
future work” concludes the paper and discusses the future
work.

Related work

Concerning the transmit power control, Islam et al. proposed
a distributed power control strategy for beam-forming and
admission control [27], aiming at minimizing the transmit
power of SUs constrained by the SNR of the transmissions.
Game theory has also been applied to the dynamic resource
allocation of CRN, tackling the problem of “multi-person
decision-making in a competitive environment”, where Chen

et al. achieved power allocation according to the sufficient
condition ofNash equilibrium, and proposed a randompower
adaptive control method based on multi-agent Q-learning
[28].

In applying DRL to CRN, Naparstek et al. used DRL to
accomplish dynamic spectrum access (DSA) for the channel
selection of multiple SUs [29]. Chang et al. combined the
memory function of the recurrent neural network (RNN)with
the control decision-making ability of DRL, which achieved
remarkable results in DSA research [30]. From the aspect
of power control, Mohammadi et al. used transfer learn-
ing to reduce the number of iterations and took advantage
of DQN to adjust the power for optimizing Quality of Ser-
vice (QoS) and Quality of Experience (QoE) [31]. Liu et al.
input spectrum waterfall into the convolutional neural net-
work (CNN) to extract channel state information and used
the Q-function to select the optimal transmission frequency
to achieve anti-interference spectrum allocation [32,33]. In
[34], sensing nodes were used to perceive the environmental
information to assist the SU in sharing the spectrum. Zhang et
al. used themore advancedA3Calgorithm inDRL to perform
the power control in spectrum sharing [35]. They focused on
the tuning and optimization of the A3C algorithm to reduce
the dependence on gradient update in the learning process,
while we adopted the Dueling DQN method.

With the increasing popularity of social software, social
relationships have become an important research direction.
Das et al. constructed a social network model based on
online social platforms [39]. It used the formation process
of the consensus in real world to build a similar social
relationship network. This work served as the basis of the
works utilizing social networks to improve the performance
in many areas, including our work in this paper. In [36], a
dynamic peer selection strategy with social awareness-aided
spectrum-power trading in D2D overlaying communication
was proposed. Chen et al. applied game theory to D2D net-
works. They considered the social relationship on the original
physical relationship network (PRN) between users, estab-
lished the social relationship network (SRN), and defined
the social utility of users. PRN and SRN were combined
to measure the overall physical–social utility and aimed to
maximize the synergy between PRN and SRN [37]. In addi-
tion, social relationships such as credibility has been applied
to the perception of spectrum usage [40]. They proposed an
evidence-based decision fusion cooperative spectrum sens-
ing strategy, while we proposed a DRL technology to utilize
the social credibility in spectrum sharing.

Our work differs from the above in that we propose an
intelligent social awareness-aided spectrum sharing strategy.
The social relationship between users is used in the com-
putation of DRL, which improves the average transmission
success rate. At the same time, the intelligent control strat-
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egy, i.e., Dueling DQN, enhances the stability of spectrum
sharing.

Social awareness-aided spectrum sharing
scheme

In this section,we introduce our social awareness-aided spec-
trum sharing scheme and model.

Spectrum sharingmodel

Spectrum sharing with third-party sensing nodes

To achieve efficient spectrum sharing in CRN, it is necessary
to obtain the environmental information in real time, which
is a great challenge for such dynamic and complex systems.
In many scenarios, a PU and an SU perform transmission in
a non-cooperative manner, where the PU does not realize the
existence of the SU [34]. In such case, the PU and SU cannot
directly obtain the transmit power of each other. To tackle this
problem, we adopt the idea of using third-party nodes that do
not compete for spectrum resources with the PU as the sens-
ing nodes following existing work [38]. These sensing nodes
are also spectrum users similar to PUs and SUs. They store
the information they sensed, and the SUs may collect such
sensed information from themat fixed intervals.As the power
information is small in size,we assume that theSUcan collect
it in a very short time, leaving most of the time for spectrum
sharing between the PU and SU. Therefore, the collection
of the power information will not add much overhead to the
system, and thus, we ignore the time on collecting it in our
work. The PU and SU can obtain the transmit power of each
other through these sensing nodes, which facilitates the coor-
dination of the transmit power control to ensure that the SU
can access the spectrumwithout affecting the QoS of the PU.

Spectrum sharing with the assistance of third-party sens-
ing nodes is achieved through the overlapping method, as
illustrated in Fig. 1. We assume that user 1 is the PU with
the licensed band, and others are unauthorized users. When
an SU, e.g., user 6, needs to access the spectrum to trans-
mit data, it must carefully control its transmit power to avoid
impacting the QoS of the PU, user 1. We assume that the
PU and SU are independent of each other, and the SU can-
not sense the power adjustment strategy of the PU directly.
Instead, the SU observes such power information of the PU
through interacting with a group of third-party sensing users
in the middle, e.g., user 2 to 7. These intermediate sensing
users do not compete for the spectrumwith the PU. They only
sense the transmit power of the PU, and thus do not impact
its QoS.With the power information of the PU obtained from
these sensing users, the SU can control their transmit power
accordingly.

Fig. 1 Spectrum sharing with sensing nodes in cognitive radio

Power adjustment strategy of the PU

In this study, we do not require a specific power adjustment
strategy of the PU. It only needs to follow a set of general
rules, and the SU will try to learn it in the spectrum sharing
process.

We assume that the PU updates its transmit power fol-
lowing a step-by-step manner. We discretize the spectrum
sharing process into K time slots, and letP = {p(k)} denote
the power adjustment strategy of the PU for such time slots
k = 1, 2, 3, . . . , K , where p(k) is the transmit power of the
PU at time slot k. The selection space of the transmit power
of the PU is a set of discrete values {p1, p2, . . . , pL}, listed
in the ascending order, i.e., p1 < p2 · · · < pL .

In the spectrum sharing process, theQoS of the PU and SU
affects each other if they are close to each other and access
the same spectrum channel. The QoS of the PU and SU are
evaluated by their SNR, which is determined by both sides.
The general form of the SNR of user i is calculated as

SNRi = h2i i pi∑
i �= j h

2
j i p j + εi

, (1)

where pi and p j denote the transmit power of user i and j ,
respectively. h ji is the channel gain from sender j to receiver
i , and εi is the received noise of user i . For example, the SNR
of the PU is calculated using Eq. (1), where user i is the PU
and user j is the SU. A transmission is considered successful
when the SNR of sender i is higher than an SNR threshold δi .

Under these settings, a typical energy-saving strategy of
the PU is to dynamically set the minimum transmit power at
each time slot that guarantees a desirable QoS. For example,
the PU can set a smaller transmit power to save energy when
its previous SNR is above a certain level, or increase the
transmit power to the next level (e.g., from pl to pl+1) to
achieve a better QoS if its SNR in the previous time slot is
below a threshold [34].
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Power adjustment strategy of the SU

Thepower adjustment strategyof theSU is heavily dependent
on that of the PU, as it is required that the SU should not
impact the QoS of the PU. In this study, the SU will try
to obtain some knowledge of the transmit power of the PU
through third-party sensing nodes, and determine its own
transmit power based on that information in the spectrum
sharing process. Ideally, the optimal strategy of the SU is to
maximize its own overall throughput in the process without
affecting the QoS of the PU. According to Shannon theory,
the throughput of the SU at time k is

TSU(k) = W log2(1 + SNRSU(k)), (2)

where W is the bandwidth. Thus, the optimization problem
of the power adjustment strategy of the SU is formulated as

max :
K∑

k=1

TSU(k)I (k) (3)

s.t. : SN RPU(k) ≥ δPU, if p(k) > 0, (4)

∀k, I (k) = 1, if SN RSU(k) ≥ δSU; and I (k) = 0, elsewise,
(5)

∀k, q(k) ∈ PSU, (6)

where the unknowns, q(k), are the transmit power of the SU
at each time slot k, PS is the selection space of the transmit
power of the SU, and I (k) is an indicator variable indi-
cating whether the transmission of the SU is successful at
time k. The first constraint, Eq. (4), guarantees that the PU
will always succeed in transmission, and the second con-
straint, Eq. (5), takes only successful transmissions of the
SU into account when calculating the overall throughput.

The solution to the problem is q(k), the power selection
of the SU at each time slot. p(k)-s represent the power of
the PU, which are also unknown as p(k) cannot be directly
sensed by the SU and they may change dynamically follow-
ing the PU’s power adjustment strategy. However, p(k)-s
are the parameters of the problem rather than the solution.
Such parameters are unknown, so the problem is model-free.
Therefore, in the section “Spectrum sharing using dueling
DQN”, we resort to DRL techniques to make the SU learn
the optimal transmit power control strategy according to the
sensed transmit power of the PU at each time slot.

Social awareness-aidedmodel

With the increasing popularity of personal smart devices and
online social software, social relationships among users have
been identified and studied in the cognitive radio environ-
ment. In [39], the opinion information in social platforms

Fig. 2 The social network of cognitive users with social credibility

such as Twitter is used as a reference to judge the credibility
of users, and used as one of the conditions for the formation
of social networks. Simpson and Sun [40] treat the credi-
bility of the SU as a weighted averaging factor and update
it with the change of the SU to improve the efficiency of
spectrum sensing. In this study, we take such sociality into
consideration and introduce social credibility [41] to estab-
lish a social network overlay, as shown in Fig. 2. Such social
credibility is to measure the confidence level of the infor-
mation collected at the sensing nodes. In real systems, the
SU can obtain and maintain it in a distributed manner. It can
keep records of the sensed power of each sensing node, and
give each sensing node a score to represent its social credi-
bility. The social network is denoted as G = {N , E}, where
a set of nodes N = {1, 2, . . . , N } represent the users, and
E = {(m, n) : ∀m, n ∈ N } is the set of edges between
these nodes. Each edge (m, n) is associated with a value
ωmn ∈ [0, 1), i.e., the social credibility.

Given the transmit power pn of user n, and user m as
the sensing node, the sensed power of user n by user m is
calculated as

p′
mn = pnd

−α
mn + σm, (7)

where dmn is the distance between the sensing node m and
the transmitting node n, α is the path loss factor, and σm
is the sensing deviation of user m. Different sensing nodes
have different sensing deviations.With the social relationship
network G defined above, we assume that the SU obtains the
transmit power information of the PU based on the sensed
power by a sensor and the corresponding social credibility
between the SU and the sensor. At this time, the deviation
ratio between the sensed transmit power value p′ by the SU
and the real transmit power value p of the PU is ν = p−p′

p .
We define ω as a decreasing function of |ν| using

ω(ν) = e− ν2
2 . (8)
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This becomes

ω(p) = e− (
p−p′
p )2

2 (9)

when taking ν = p−p′
p into Eq. (8).

Thevalue of p′ affectedbyω at time slot k is determinedby
the shared result at the previous time, i.e., a Markov decision
process, and its expression is

p′(k) =
⎧
⎨

⎩

p(k)(1 + √−2 lnωmj ), if SNRi (k − 1) < δi

p(k)(1 − √−2 lnωmj ), if SNRi (k − 1) ≥ δi

. (10)

According to this function,ω increaseswhen |ν|decreases,
and |ν| increases when ω decreases. When user n is sharing
the authorized frequency band as a PU, we define its sensed
social utility function as

Solmn = p′
nd

−α
mn . (11)

With the spectrum sharing model and the social model
above, we are ready to formulate the optimization problem
of social awareness-aided spectrum sharing. When an SU
controls the transmit power, it needs to find out the transmit
power of the PU in real time through multiple sensing nodes
to ensure that it will not affect the QoS of the PU. Since all
users are included in the social network overlay, the transmit
power information queried by the SU will be affected by the
social credibility. Similar to [34], the transmit power infor-
mation collected by the mth sensing node can be calculated
by

Solm(k) = p′(k)d−α
mi + q ′(k)d−α

mj , (12)

where p′ and q ′ represent the queried transmit power of
the PU and the SU. The p(k) in Eq. (2) will be approx-
imated using Solm(k) to complete the formulation of the
social awareness-aided transmit control problem.

This problem is also NP-hard. Moreover, p(k) needs to
be estimated based on Solm(k) at each time slot, which is a
model-free Markov decision process. Therefore, we resort to
the novel reinforcement learning technique in which the SU
learns the power control policy of the PU according to the
transmit power information collected by the sensing nodes in
Eq. (12). After repeated training, the SU can adjust its trans-
mit power adaptively and achieve satisfactory QoS without
impacting the PU.

Spectrum sharing using dueling DQN

In this section, we describe our dueling DQNmodel of learn-
ing the power information of the PU by the SU.

Q-learning and dueling DQN

Q-learning is a traditional reinforcement learning method
that finds the optimal solution to a problem in a series of
dynamic processes. Because it can estimate the expected
effect after performing an action without knowing the sys-
tem model in advance and support adjustment in real time, it
is widely used in various decision problems. The algorithm
was originally designed for a single agent that can inter-
act with a fully observable Markov environment [42]. Then,
Q-learning also demonstrated its strong optimal decision-
making ability in other related fields such as multi-agent or
non-Markov environment. However, Q-learning is limited
to dealing with decision problems in small-scale state space.
When the action-state space of the problem increases, the fol-
lowing problemswill occur: (i) it is difficult to set up aQ table
to store all possible state–action pairs when the state–action
space is too complex; and (ii) as the state space continues
to increase, some states will be rarely accessed again that
causes poor training efficiency.

In recent years, the combination of Q-learning and deep
neural networks has shown the potential of solving the
control-decision problem in large-scale state space, i.e.,
DQN. DQN uses deep neural networks to approximate the
value function instead of the Q value table in Q-learning,
and obtains the optimal network parameters throughmultiple
iterative training to solve control decision-making problems.

The dueling-DQN-based power control model

In this study,weuseDQN to intelligently control the power of
the SU, through further optimizing the network structure of
DQN.The specific learningprocess is presented inFig. 3. The
transmit power of the PU is to be learned, so the PU is consid-
ered as a part of the environment, while SU is the agent that
receives rewards after performing actions according to differ-
ent environmental conditions. S = {s1, s2, . . . , sx } denotes
the state space, and A = {a1, a2, . . . , ay} denotes the action
space. The SU is in state s(k) ∈ S at the kth time slot, enters
a new state s(k + 1) ∈ S at the next time slot, and obtains a
reward after performing a(k) ∈ A. In the process, the next
state s(k + 1) is only relevant to s(k) and a(k) without after-
effect. Therefore, the power control process of the SU is a
Markov decision process (MDP).

The objective of the transmit power control problem is
to find a policy π with the maximum expected cumulative
reward

Gπ (k) =
∞∑

k=0

γ k Raπ

s(k). (13)
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Fig. 3 The DRL learning model

The expected value of the cumulative reward is denoted
by the state-value function

Vπ (s) = E

[ ∞∑

k=0

γ k Raπ

s(k)|s(k) = s

]

. (14)

The optimal transmit power control policy is

π∗(s, a) = argmax
π

V π (s). (15)

In DRL, the Q value [43] is calculated to find the optimal
action, and its cumulative reward of taking action a at state
s is

Q(s, a) = E[Gk |sk = s, ak = a], (16)

and the optimal action is

a = argmax
a

Q(s, a). (17)

In our paper, dueling DQN is used to calculate the Q
value to find the optimal solution of the transmit power con-
trol problem. With the same basic principle of DQN, the
action-value function Q of Dueling DQN is approximated
by neural networks (i.e., nonlinear approximation). We draw

Fig. 4 to show the difference between DQN and dueling
DQN. Dueling DQN does not directly calculate Q through
a fully connected layer before the output layer, but divides
the network into two parts. The first part calculates the value
function, which is only related to the state, and has nothing to
do with the action. The second part calculates the advantage
function, whose value is related to both the state and action.
In duelingDQN, the value function is regarded as the value of
a static environment, and the advantage function is the addi-
tional value of an action. Moreover, the calculation of the Q
value is related to both the environmental state and the action,
but the degree of correlation is different. When the dueling
DQN network is updated, instead of individually updating
the Q value of an action, the Q values of all the actions in a
state are adjusted to improve the network performance.

According to the section “Social awareness-aided spec-
trum sharing scheme”, we use the social utilities received
by the SU as the environmental states. s(k) = {Sol1(k),
Sol2(k), . . . , Solx (k)} denotes the state space at the kth
time slot, which is time-varying. The SU chooses a power
from {q1, q2, . . . , ql} for transmission, so the action space is
a(k) = {q1(k), q2(k), . . . , ql(k)}, which is a fixed set. The
action space contains all the possible actions, and the SU
selects an action from the action space at a time. The reward
is defined as
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Fig. 4 The network structure comparison of DQN and dueling DQN

r(k) =

⎧
⎪⎪⎨

⎪⎪⎩

r , if SN Ri (k + 1) ≥ δi and SNR j (k + 1) ≥ δ j

−r , if SN Ri (k + 1) < δi and SNR j (k + 1) < δ j

0, otherwise

.

(18)

If both the PU and the SU transmit successfully, the reward
is a constant r . If they both fail to transmit, the reward is −r .
The reward is 0 for other cases.

The specific implementation process of Dueling DQN is
shown in Fig. 5. We use the experience replay buffer to
improve the training efficiency. When training the neural
network, it is assumed that the training data are indepen-
dently identically distributed. However, there is a correlation
between the data collected through reinforcement learning,
and some states that have appeared before will be rarely
accessed. Therefore, the neural network is unstable if such
data are used for training. In dueling DQN, the agent stores
the data in a database, and then uses the uniform random
sampling method to extract the data from the database and
trains the neural network to break the correlation between the
data. Finally, dueling DQN sets up the target network to deal
with the TD error in the time difference algorithm alone.

Similar to DQN, dueling DQN also divides the network
into the main net and the target net, with the same structure
but different parameters during the parameter update process.
The main net is used to update the network parameters, and
the target net is used to update the Q value. At the initial
moment, the main net assigns parameters to the target net.
After that, themain net updates its ownnetwork parameters in
real time. After a period of time, themain net assigns updated
network parameters to the target net. The parameters of the
two networks are updated cyclically in this way till the end

of training. Such an update method can stabilize the target Q
value for a period of time, thereby making the overall update
of the algorithm more stable. The loss function is calculated
as

L(θ) = E[(TargetQ − Q(s, a, θ))2], (19)

TargetQ = r + max
a′ Q(s′, a′, θ), (20)

where s′ and a′ represent the next state and action, respec-
tively, after performing action a.

In addition, during the update process, we use the method
of stochastic gradient descent (SGD) to update the parameter
θ of the main net network. The specific calculation method
is as follows:

Δθ = β[r + γ max
a′ Q(s′, a′; θ) − Q(s, a; θ)]

∇Q(s, a; θ), (21)

θ ′ ← θ + β[r + γ max
a′ Q(s′, a′; θ)

−Q(s, a; θ)]∇Q(s, a; θ). (22)

In our social awareness-aided transmit power control strat-
egy, the social relationship of the sensing nodes and the
collected power information are used as the state input of
dueling DQN, as shown in Eq. (12). According to Definition
1 in [42], the power selection strategy can be seen as a map-
ping from state s(k) to a probabilitymass function over action
a(k). Therefore, in our social awareness-aided approach, we
set a selected probability for each sensing node to prevent it
from falling into a local optimal or selecting the wrong sens-
ing node due to malicious information. According to [44],
the channel switching follows the distribution as
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Fig. 5 The learning process of
dueling DQN

P(k) = (1 + α)rma (k)

ΣN
n=1(1 + α)rna (k)

m ∈ {1, . . . , N }, (23)

where α is a constant. The selecting probability is thus com-
puted as

pm(k) = (1 − ϕ)P(m(k) = m) + ϕ

N

= (1 − ϕ)
(1 + α)rma (k)

ΣN
n=0(1 + α)rna (k)

+ ϕ

N

= 1 − ϕ
∑N

n=1(1 + α)rna (k)
+ θ

C
, (24)

where ϕ is a constant parameter, and ϕ/N is a constant scal-
ing factor. To prevent falling into the local optimal solution,
the simulated annealing algorithm is introduced to select the
non-optimal solution with a certain probability during chan-
nel switching. Let β ∈ [0, 1) denote the simulating annealing
constant, and Eq. (24) can be formulated as

pm(k) = 1 − ϕ
∑N

n=1(1 + α)eβrna (k)
+ ϕ

N
. (25)

At a moment, when the sensing nodes are selected based
on social relationship values, we allow the agent to drop the
optimal choice with probability pm , and switch to another
sensing node with a lower social relationship value. This
selection method improves the overall performance of the
intelligent transmit power control system. The details of the
algorithm are elaborated in Algorithm 1.

Algorithm 1 Intelligent transmit power control policy
Initialize replay memory size D, buffer size O
Initialize weight θ = θ0
Initialize p,q
Establish the social relationship network
Compute the social utility functions for every user
Select the sensing nodes with better social utility functions
for iteration k = 1, . . . , K do

for iteration i = 1, . . . , I do
Input Solm in network to compute Q(s, a)

Choose a(k) = argmaxa Q(s(k), a(k), θ) with probability ε

Store 〈s, a, r , s′〉 in D following a uniform distribution in D
if D ≥ O then

Random extract a sample from D to train network
Compute the loss function according to Eq. (19), 20
Update the network weights

end if
end for
Re-select sensing nodes with probability pm

end for

Experimental results

In this section, we demonstrate the superiority of our social
awareness-aided power control strategy using dueling DQN
through experiments.

Experiment setup

We compare our social awareness-aided Dueling DQN
approachwith the approachwhere the sensing nodes are cho-
sen randomly. The transmit power of the PU and the SU is
selected from a set of discrete values from 0.1 to 0.5. The
received noise w is 0.01. SNR thresholds are set to δ1 = 1.2
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and δ2 = 0.7. Channel gain is set to 0.9 and all the users are
distributed in a rectangle area of 500×1, 000 M2. We do not
explicitly add dynamic fading to our experiments as it is part
of the environment that can be learned by the SU as well.

The dueling DQN network in the experiments has four
hidden layers to approximate the optimal action-value func-
tion Q(s, a). The number of neurons in the first three layers
of the fully connected neuron network is set to 128, 128, and
256, respectively. The fourth layer consists of two networks
with 60 neurons, which are used to compute the value func-
tion and the advantage function. The activation function is
ReLU, in which the output less than 0 will be set to 0, or
the raw output otherwise. The Adam algorithm is used to
optimize the weights, θi . The size of the experience replay
memory is D = 1000, the buffer size is O = 500, and the
random explore probability is ε = 0.8. The training time is
set to 2500 steps.

We mainly focus on two well-accepted performance met-
rics.

– Average success rate: the average number of successes
over the 1000 iterations.

– Explore rate: the time required for the SU from start try-
ing transmission to a successful transmission.

In our experiments,wefirst use duelingDQNto control the
transmit power of the SU assisted by the sensing nodes which
are chosenusing the social utility function.After constructing
the social relationship network, all sensing nodes are sorted
according to social utility values, and then, users with better
social relationship are selected to report power information.
The experiment result is comparedwith the approachwithout
social awareness. Then, we show the superiority of dueling
DQN by comparing the average success rate with other pop-
ular learning algorithms.

Performance with/without social awareness

We set the number of sensing nodes to 5. The perfor-
mance with and without social awareness is demonstrated
in Fig. 6. The average success rate of our social awareness-
aided approach gradually increases and eventually stabilizes
at 1, while the approach without social awareness is not only
worse but also more unstable than our approach, according
to Fig. 6a. The average success rate without social aware-
ness only fluctuates below 0.9. The training may take some
time at the beginning, but after 5000 iterations, our social
awareness-aided method converges, and the performance is
desirable and stable thereafter. The number of exploration
steps is plotted in Fig. 6b, where we see the number of
exploration steps with social awareness can be eventually
reduced to about 1.6, which is lower than that without social
awareness in most experiments. In DRL, the agent explores

Fig. 6 Comparison of learning performance of five sensing nodes

different policies, which is a random process. It is possible
that the strategy without social awareness outperforms the
social awareness-aided approach at some steps occasionally.
However, the performance of the approach without social
awareness is highly unstable, and the overall performance is
still worse than the social awareness-aided approach.

InFig. 7,we increase the number of the sensingnodes to 10
and perform the above experiments again. We observe again
that our social awareness-aided approach outperforms the
onewithout social awareness in termsof both success rate and
number of explore steps. Comparing with the performance
with 5 sensing nodes, the success rate with 10 sensing nodes
converges faster, as we have more candidates to select to get
the power information. In terms of exploring steps, due to
the increased number of the sensing nodes, the input states
of Dueling DQN are also increased. Therefore, the number
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Fig. 7 Comparison of learning performance of ten sensing nodes

of exploration steps have not decreased, but it can still be
successfully transmitted in a short time. According to the
above experimental results, we can draw the conclusion: the
social awareness-aided spectrum sharing can improve the
transmit power control performance of the SU.

We plot Fig. 8 to gain a better understanding of the influ-
ence of adjusting the number of sensing nodes. For the
social awareness-aided approach, 10 sensing nodes offer
more choices, and thus, the average success rate converges
faster and the performance is more stable, as suggested in
Fig. 8a. In contrast, Fig. 8b shows the performance of the
approachwithout social awareness,where the selection of the
power information is random from the 10 sensing nodes. We
observe that the success rates are only both floating around
0.8 for the no-social awareness approaches, i.e., little impact
by the number of sensing nodes in this case. The main reason

Fig. 8 The effect of the number of sensing nodes on learning success
rate

is that the sensingnodes are nowchosen randomly.Therefore,
only when the sensing nodes are selected based on the social
relationships, the increase of the number of sensing nodes can
improve the learning performance. This conclusion reflects
the importance of exploring the social relationships on spec-
trum sharing.

Compare with other approaches

Finally, we compare the average success rate under different
algorithms to verify the effectiveness and stability of our
Dueling DQN approach. In the experiments, we set up ten
sensing nodes as the candidates in our social awareness-aided
approach. We choose Q-learning, DQN, and dueling DQN
to compare with. The DQN algorithm uses fully connected
neural networks with four hidden layers to approximate the
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Fig. 9 Algorithm performance comparison

optimal action-value function Q(s, a). The number of neuron
units in the hidden layer are set to 128, 128, 256, and 256,
respectively. The first three layers of the activation function
is ReLU. The tanh function is employed for the fourth layer.

The comparison result is shown in Fig. 9. Due to the large
scale of the state space in the process of intelligent trans-
mit power control, Q-learning can never learn the optimal
control strategy. It quickly converges to an average success
rate around 0.5. Both DQN and dueling DQN belong to the
DRL algorithms, which can finally learn the optimal control
strategy, as the average success rates converge to 1. How-
ever, the training process of dueling DQN is accomplished
by dividing the network into a value function and an advan-
tage function, and thus, the learning is faster and more stable
than DQN. Through such comparison, we can conclude that
deep reinforcement learning has better learning performance
with large-scale state space, and our dueling DQN has better
network performance in deep reinforcement learning algo-
rithms.

Conclusion and future work

In this paper, we studied the spectrum sharing problem. We
proposed a social awareness-aided approach using dueling
DQN.A social relationship networkwas established between
users to reduce signal loss, and a social utility function
was proposed to achieve intelligent transmit power control.
The efficacy of our strategy was verified through experi-
ments, which demonstrate: with our social awareness-aided
approach, the average success rate of spectrum sharing con-
verged faster and was also more stable. Compared with other
DRL algorithms, our dueling DQN was more stable.

In the future, wewill investigatemore scenarios, including
multiple PUs and SUs, varying credibility, andmoving users,

etc. In addition, we will study more complex transmit power
adjustment strategies of the PU.
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