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Abstract
Image registration is a challenging NP-hard problem within the computer vision field. The differential evolutionary algorithm
is a simple and efficient method to find the best among all the possible common parts of images. To improve the efficiency
and accuracy of the registration, a knowledge-fusion-based differential evolution algorithm is proposed, which combines
segmentation, gradient descent method, and hybrid selection strategy to enhance the exploration ability in the early stage
and the exploitation ability in the later stage. The proposed algorithms have been implemented and tested with CEC2013
benchmark and real image data. The experimental results show that the proposed algorithm is superior to the existing algorithms
in terms of solution quality, convergence speed, and solution success rate.

Keywords Remote sensing image · Differential evolution · Image registration · Knowledge fusion

Introduction

Image registration is a complex task in image processing,
which refers to match different images of the same scene
taken at multiple times, in multiple viewpoints or with mul-
tiple sensors [21,22]. Remote sensing image registration
methods proposed in literature consist of two categories:
feature-based registration methods and intensity-based reg-
istration methods. The feature-based registration method
extracts the prominent features of an image, which is con-
sidered as control points. In general, the point is the shape
contours represented by edge points, or point features rep-
resented by the positions of interest points. The registration
problem is to find the correct correspondence between two
sets of points extracted from the input data and restore the
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underlying spatial mapping at the same time, which can
also be considered a point set registration problem. The
widely used solutions, such as scale invariant feature trans-
form (SIFT) [19,20], speeded up robust features (SURF) [2],
and shape context (SC) [3], are still hot spots in image reg-
istration. The second is intensity-based registration method
[7,27]. In this method, the intensity of images is used as
a measure of similarity between images. Intensity-based
method usually contains two steplike components: similarity
measurement and algorithm optimization. Similarity mea-
surement is a key step in intensity-based registration method
and appropriate similarity measurement directly affects the
registration results.Many similaritymeasurements have been
proposed, such as sum of squared differences (SSD) [9],
cross correlation (CC) [44], normalization mutual informa-
tion (NMI) [4].

The evolutionary algorithm is easy to find the best cor-
responding point or transformation parameter from image
registration problem, which derived many other important
algorithms such as genetic algorithm (GA) [1], particle
swarm optimization (PSO) [11], and differential evolution
algorithm (DE) [6]. Evolutional algorithm is able to solve var-
ious problems with improved strategies like mixed-variable
problem [37] and nonlinear programming [35], and dynamic
multi-objective optimization problems [36] with improved
Prediction strategies. Several improved algorithms were pro-
posed to get the best multi-modal problems. Qu et al. [25]
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put forward a neighborhood mutation strategy which is also
called niche technology, and proposed CDE [29], SDE [18],
NCDE [25], NSDE [25] etc. by combining them with DE
to solve multi-modal problems. ADE and SaEPSDE were
proposed by Lacca et al. [10] besides NSHDE [25] are a
multi-strategy DE, which improves the population diversity
by using multiple evolution strategies. Li et al. [13] proposed
R2PSO,R3PSO,R2PSOLHC,R3PSOLHCandYeet al. [41]
proposedMO-Ring-PSO-SCD, and all these algorithms used
the PSO algorithm with ring topology to divide subpopula-
tion, maintaining the population diversity. Wang et al. [34]
proposed an enhance DE with niching technique and adap-
tive learning strategy can be used to enhance the exploration
ability of the algorithm.

To seek and locate multiple optimal solutions, niche tech-
nology [24,31] is used in the multi-modal optimization
problems. Niche technology is to divide the population of
each generation into several sub-populations, the crossover
and mutation in the sub-populations or among different sub-
populations produce a new generation of populations. At the
same time, the selection strategies of pre-selection, exclu-
sion, and sharing are used to select individuals that will be
retained to the next generation. The evolutionary algorithm
combined with niche technology can maintain population
diversity and has a high global optimization capability and
convergence speed.Hence, it is especially suitable for solving
MMOP problems. In the last decades, lost of scholars have
proposed many technologies about niches, including crowd-
ing [32], speciation [12], fitness sharing [5], valleys [33],
and clustering [25,42] etc. The main process is to divide
the entire population into several niches and seek optima
in each niche. For the simple and effective of DE, several
improved DE combined niche technology were proposed in
recent years. Wang et al. [39] proposed a niche DE based
on the minimum spanning tree (MSTDE). In this method,
the MST in each iteration is constructed based on the dis-
tance information between individuals, and the population is
divided into several niches based on theMmaximalweighted
edges ofMST. Besides, a dynamic pruning ratio (DPR) strat-
egy is used to determine the size of the niche M to improve
the performance of the algorithm. Experiments show that
the performance of MSTDE is better than other state-of-art
multi-modal optimization algorithms when evaluated on the
benchmark test functions fromCEC2013. Poláková et al. [23]
proposed an adaptive method of population size during pop-
ulation evolution in the same year. This method dynamically
reduces or increases the size of the population during the
evolution process by detecting changes in the diversity of
the population. Experimental results show that DE with this
new self-adaptive variant has greatly improved the efficiency
of the algorithm and is proved effective in optimizing more
complex problems such as multi-modal, mixed, or combined
problems. Zhao et al. [45] proposed a DE algorithm based

on local binary pattern(LBPADE). LBP can extract relevant
information among individuals, and find multiple optima in
MMOP.Zhao et al. [45] proposes an adaptive algorithmbased
on LBP, which uses local binary operators to find multiple
optima and divides niches based on these optima. In addi-
tion, to improve the exploration and exploitation capabilities
of the algorithm, the mutation strategy and parameter strat-
egy of the algorithm are improved, hence, niche and global
interaction (NGI) mutation strategy and adaptive parameter
strategy (APS) are proposed. TheNGImutation strategy uses
the information of the niche and the global space to further
explore the current search space, while the APS adjusts the
parameters according to the LBP information of individuals
to let individuals close to the optima. Results on the MMOP
test functions show that the performance of LBPADE is supe-
rior to most state-of-art algorithms.

To improve the efficiency, some novel methods are
employed for registration. Knowledge fusion, developed
from information fusion, is a process where knowledge from
different sources interacts to form new knowledge [28,43].
It is commonly used in many engineering areas [26]. It con-
tains the process of abstracting, summarizing, and classifying
real-world information and raising them to the aspect of
knowledge. Knowledge fusion is applied to enhanced the
differential evolution algorithm to get the best solution [38].

To improve the performance of the DE, a novel algo-
rithm, based on niche technology, three different strategies
are designed according to three knowledge of the population,
are proposed. Besides, a multi-modal DE algorithm (SGD-
DE) with a species gradient descent method is proposed. To
evaluate the performance of our proposed algorithm, UCAS-
ADO dataset and the remote sensing image of Guangxi
University as registration image data. Experimental results
show that the algorithm proposed in this paper can acceler-
ate the convergence speed of DE and has better performance
than traditional DE and othermulti-modal optimization algo-
rithms in terms of solution quality and success rate.

The rest of this paper is organized as follows. In Related
work section, image registration and optimization techniques
are discussed. In Knowledge fusion based DE section, the
proposed Knowledge fusion based DE for image registration
is presented. Experimental results are described in Experi-
ment section. Finally, conclusions are drawn in Conclusion
section.

Related work

Image registration problem

Image registration refers to register two or more images
collected at different times, in different spaces, and with dif-
ferent equipments into a clear imagewith objects all focused.
which is denoted as
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Fig. 1 Left is Guangxi University in 2011, and right is Guangxi University in 2013

T = argmin
T

(E(R − T ⊗ S)), (1)

where T is the affine transformation parameter of the image,
T ⊗ S represents the affine transformation operation per-
formed on the image S, T is the affine transformation matrix.
S is the image to be registered, and R is the sample image.
E(R − T ⊗ S) represents the similarity measurement func-
tion of the two images. According to different functions, it
can be divided into two cases: maximum problem and mini-
mum problem. For example, the higher the image similarity,
the larger the function value of MI and NMI [8], but DTV
[16] is the opposite. The purpose of image registration is to
find the transformation parameter that optimizes the similar-
ity measurement function between images. DTV [16] is an
optimal similarity measurement method based on the gra-
dient domain [17] of total variation. DTV is designed as a
similarity measure to match the edges of two images. When
the edge features of the two images correspond, DTV can be
expressed by calculating the image gradients. The size and
position of the image gradient should be similar, and the gra-
dient of the residual image formed after registration should
be more sparse because any registration error may produce
ghost images and increase the sparsity of the residual image.
The DTV function used for image registration is expressed
as:

min
T

(E(T )) = ‖∇R − ∇S(T )‖, (2)

where∇R =
√

(∇x R)2 + (∇y R
)2 represents the image gra-

dient in the two spatial directions,∇x R and ∇y R represents
the positive finite-difference operator of x and y coordinates.
DTV is one of the most advanced methods for processing

image registration, it has lower computational complexity
and is more accurate and robust than MI and NMI. Figure 2
shows two images at the same location and different time in
Fig. 1. After slightly changing the transformed parameters,
it can be seen that the fluctuation of DTV is greater than
the fluctuation of NMI and MI. That is to say, DTV behaves
more sensitive than the other two similarity functions for
slight changes in transformed parameters.

From Fig. 2, it can be seen that one-dimensional DTV
functions have multiple local optima, but the dimension
in practical application is greater than or equal to three.
Therefore, image registration is a multi-modal problem. The
differential evolution algorithm based on niche technology
solve the problem efficiently.

Differential evolution algorithm

DE [30,40] is a population-based algorithm for optimiza-
tion problems proposed in 1997 by Storn and Price, DE has
relatively high search accuracy, robustness, and good con-
vergence speed. It can be used to find the optimal solutions
of nonlinear, non-differentiable, and multi-modal continu-
ous space functions with real-valued parameters. It has the
same structure and steps as classical evolutional algorithms,
such as population initialization, crossover, mutation, and
selection, however, when generating new candidate solu-
tions, DE uses differential evolution operators. For each
generation, operators continue working until the pre-defined
terminating condition is met. DE algorithm needs to define
control parameters (i.e., population size NP, scaling factor
F, and crossover probability CR, searching space Ω In this
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Fig. 2 The changes of the DTV value and the NMI value according to different rotation angles of the two overlapping pictures in Fig. 1

paper, we suppose that the object function to be minimized
is F (Xi ). Firstly, a feasible searching space Ω is defined,
Xi = {

xi,1, xi,2, . . . , xi,D
}
is randomly generated in Ω , XU

and XL are the upper and lower bounds of searching space.
Population initialization The initial population consists

of NP decision vectors(individuals) that are generated by
assigning values to each component of all vectors. An opti-
mization problem with D-dimension can be denoted as a
vector with D-dimension. DE is based on the differences of
individuals and each individual weights can be determined
as:

Xi, j = XU
j + rand(0, 1) ∗

(
XU

j − XL
j

)
, (3)

X1, X2, . . . XN P are generated individuals, where each Xi

consists of D vectors, Xi = {
xi,1, xi,2, . . . , xi,D

}
. Muta-

tion operation: After initialization, DE performs mutation
operation for each individual Xi Each individual has a cor-
respond mutation individual Vi . In this paper, DE/rand/1 is
conducted to generate mutant vectors. Each mutation indi-
vidual’s weight can be determined as:

Vi = Xr1 + F ∗ (Xr2 − Xr3) , (4)

where Vi is the mutant individual, Xr1, Xr2 and Xr3 are three
mutually different individuals which are randomly selected
from thewhole population, r1, r2 and r3 are random integers
in the range of {1, 2, . . . ,NP} and should be different from
the running index i. Hence, the number of population or niche
should be greater than 3. F is the scaling factor that lies in
the range of [0,1] for scaling the difference vectors. If the
F value is lower, the convergence speed is faster, while the
larger the value, the greater the population diversity.

Crossover operation To increase population diversity, DE
utilizes crossover operation to integrate mutant individuals
and successful individuals reserved from the last generation,
trial vectors are selected from mutant vectors and target vec-
tors according to the following formula:

ui, j =
{

vi, j , if rand(0, 1) ≤ CR
xi, j , otherwise

(5)

Where CR is the crossover probability, which is usually
within the range of [0,1], and ui, j can be determined whether
to assign the mutant vector vi, j to the trial vector ui, j by the
comparison result between the CR and a random number j
generated from the range of [0,1].

Selection operation: The selection process is the simple
competition between offspring and corresponding parents.
To confirm whether offspring individuals are reserved in the
next generation, the greedy criterion is used to make the
comparison, and those who have better fitness values are
retained to the next generation. If and only if, the trial vector
Ui,G+1 yields a fitness value no more than the target vector
Xi,G ,Ui,G+1 is set to replace Xi,G+1, otherwise Xi,G is kept
to the next generation.

Xi,G+1 =
⎧
⎨
⎩
Ui,G+1, if f

(
Ui,G+1

)
≤ f

(
Xi,G

)
i = 1, 2, . . . , N P

Xi,G , otherwise

(6)

Knowledge fusion based DE

In this section, the proposed multi-modal knowledge fusion
based algorithm for image registration is described in detail.
First, the Knowledge representation based population model
is introduced, and then the four main steplike procedures is
described. The DTV function is used as the object function
to find the best image registration solution. The proposed
method achieve a good balance between exploration and
exploitation through techniques such as niche technology,
Gradient descent, multiple operators selection scheme and
self-adaptive population updating strategies.
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Fig. 3 Division of niches

Knowledge represent population

In order to make full use of the fitness knowledge of DTV
function, niche technology is applied to divide the initialized
population into several niches. Each niche searches for its
own optimal value to avoid the entire population falling into
local optima. Firstly, the proposed algorithm uses the clus-
tering framework of species formation in the niche dividing
stage after initialization and combines three different types
of knowledge to fuse with other information. Based on that,
three new strategies are designed. In themutation stage, tradi-
tionalDEoperators and the transition probability are utilized,
and the state of the neighboring niche is regarded as the first
knowledge to guide the fusion of information among niches;
In the selection stage, the rank of the best individual’s fit-
ness value of every niche in the entire population is regarded
as the second knowledge to select the appropriate selection
strategy; In the stage of adjusting the parameters of niches,
the distances of central value among niches are regarded as
third knowledge to adjust the size of each niche.

Initialization with niche technology

After population initialization, the clustering method is used
to divide the niches. This paper uses the clustering framework
of species formation as the method of dividing the niche. NP
is the population size, NS is the initial size of the niche, and
each niche constructs NS new solutions in each iteration. The
Fig. 3 shows the division of niches.

The first step is to sort the current population according
to the fitness value, and the individual with the best fitness
value is set as the seed of the first niche; the second step is
to select NS-1 individuals closest to the seed to form a new
niche; Finally, remove these NS individuals from the popu-

lation, and repeat the above three steps until no remaining
individuals in the population.

Mutation with gradient descent

After initializing the population and dividing the niches,
ideally, the entire population can roughly cover the entire
solution space, and all the niches are evenly distributed in the
entire solution space. In every iteration, each niche evolves
independently. However, not every niche has local optima. If
the niche is closed to evolve, it is not conducive to the evolu-
tion of the entire population. Therefore, a mutation strategy
is used to promote communications among niches, which is
to say, the state of the neighboring niche is regarded as the
first knowledge to guide the fusion of information among
niches. Firstly, a static transition probability PC is defined.

Start looping from the first individual, and when a random
number generated from the range of [0, 1] is larger than PC,
that is rand > PC, the current individual uses a search strategy
with gradient descent in the mutation stage

dism = λ ∗ (Xbest-nearest(t) − Xi ) (7)

Vm = Xi + dism, (8)

dis is the step distance, λ is set as 0.1, i is the loop number of
gradient descent and Vi is the intermediate vector produced
in the ith descend. Xbest-nearest is the optimal solution from the
nearest niche that has better optimal fitness than the current
niche. The replacement strategy is used to update the current
individual in every iteration:

Xi =
{
Vi , if f (Vi ) ≤ f (Xi )

Xi , otherwise
(9)

When f ( f (Vi ) > f (Xi )) , let λ = α ∗λ , α is a value less
than 1. Increase i in every iteration until it reaches the max-
imum iteration. When the random number is less than PC,
that is rand(0, 1) < PC , the current individual is denoted
as follows:

vi = xr1,i + F ∗ (
xr2,i − xr3,i

)
, (10)

where r1, r2, r3 are random numbers from 1 to NS and F is
the scaling factor. An intermediate vector is generated fol-
lowing the same formula as the standard DE algorithm. The
selection of the intermediate vector also follows the same
process as the standard DE algorithm, and new content is
added. Details are presented in the following sections.

Through this mutation strategy, individuals in the niche
are more likely to be close to the optima of the nearest niche.

Dual-selectionmethod

After dividing the niches, evolutionary operations are per-
formed in each niche to generate offspring. On the basis of
that, selection operations are performed to chose individ-
uals that can be retained to the next generation, and form
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new niche groups. So far, there are mainly two selection
operators, and both have been widely used in multi-modal
algorithms. One is combination selection that first combines
NP parents with NP offspring (NP is the population size),
and then selects the best N individuals from 2NP individu-
als. Another is the one-by-one selection which compares the
fitness value of each offspring with its nearest parent indi-
vidual, generally using Euclidean distance to measure. If the
offspring has better fitness value, then replace the parent with
the corresponding individual, which is to say, the rank of the
best individual’s fitness value of every niche in the entire
population is regarded as the second knowledge to select the
appropriate selection strategy;

The two selection operators are respectively beneficial
to the evolution of the entire population. The one-by-one
selection operator, which selects the parent with the most
similar genes to the offspring, and then compares these two
individuals and replaces the poorer one with the best one,
which can maintain the population diversity and enhance
the exploration capabilities; while the combination selection
operators, mixing offspring and parent individuals, select
the best NP individual to enter the next generation, which
can fasten the convergence speed of the population, further
improve the accuracy of the optimal solution, and improve
the exploitation capabilities of the algorithm. Therefore, the
strategy proposed in this paper is to select different selection
operators according to the fitness value of the current niche.

Firstly, each niche is divided into two parts according to
the fitness value of the optimal individual. The first part,
called the superior niche, consists of the niches where the
current optimal solutions of the entire population is located,
and the second part, called the inferior niche, consists of
the rest niches. The goals of the two parts of the niche are
different, and the replacement strategy is selected based on
this.

Secondly, If the current individual belongs to the supe-
rior niche , such as individual a in niche A, it should further
explore its neighboring individuals to accelerate convergence
speed, and use the combination selection strategy for the
offspring of this niche: select N best individuals from 2N
individuals (N parent individuals, N offspring individuals)
to improve the accuracy of the solution. Conversely, if the
current individual belongs to inferior niche, such as individ-
ual b in niche B, use a one-by-one selection operator for its
evolved offspring: by comparing the fitness value of offspring
individual and parent individual with the closest Euclidean
distance from the offspring, and replace the parent individual
that is inferior to the offspring, which enables the niche to
further explore optima in the search space and maintain the
population diversity.

The selection strategy is described in Algorithm 1. If the
optimal individual in the niche is equal to the global optimal
individual, the combination selection operator is used, the

parent and the offspring are mixed, and the optimal NS indi-
viduals are selected after sorting; otherwise, the one-by-one
selection is used, comparing the offspring with the parent
individual which is the closest to the offspring according to
the Euclidean distance and select the better individual to be
retained to the next generation.

Algorithm 1 :Selection strategy
Require: Niches,Population:NP,Niche Size:NS,gbestval
Ensure: Current niche:pop
1: for j = 1, 2, ..., N P/NS do
2: compute the fitness Cost j of the individual in the niche j
3: if max(Cost j )=gbestval then
4: newpop = pop ∪ u j
5: newpop = sort(newpop)
6: pop = newpop[1:NS]
7: else
8: for k = 1, 2, ..., NS do
9: popx is the closest individual to u j,k in this niche j
10: if f (u j,k) > f (popx ) then
11: popx = u j,k
12: end if
13: end for
14: end if
15: end for

Self-adaptive updation

Tomaintain the diversity of each niche, themerge operation is
conducted between twoniches that are too close to each other.
For the g-th niche, where the individuals are xg1 , xg2 , . . . xgN S ,
firstly calculate the center point Cg of the NS individuals in
each niche:

cgj =
∑NS

i=1 x
g
i, j

N S
, (11)

where j = 1, 2, . . . , D, cgj represents the center point vector
of the jth variable.

Then, the Euclidean distances among center points of each
niche are denoted as follows:

dg,g′ =
√√√√

D∑
j=1

(
cgj − cg′j

)2
(12)

When dg,g′<τ , If the distance between the niches are too
close, the two niches will be merged. Because another evolu-
tion strategy is used in the mutation step, in this strategy, the
niche with poor fitness will move closer to the nearest neigh-
bor with high fitness. Hence, when the distance between the
two niches is small enough, merge the two niches, which can
ensure the population diversity of each niche. If the current
niche falls into a local optimum, the size of the cluster is
more likely to increase so that more accurate solutions can
be obtained or avoid getting trapped into the local optima.
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The overall procedure of SGD-DE algorithm

The steps of the SGD-DE algorithm are as follows, Algo-
rithm 2 is the pseudocode of the algorithm.The first step is
to initialize the population randomly; the second step is to
divide the niches according to the principle of species for-
mation;the third step is to evolution operation, individuals
are randomly selected based on probability, part of individ-
uals are generated from the local niche, and another part of
individuals generate offspring of the next generation accord-
ing to the standard DE algorithm; the fourth step: selection
operation.

Algorithm 2 :SGD-DE
Require: Poplation:NP;Dimension:D;Genelation:MaxFES;F;CR;Niche

Size:NS;Pc
Ensure: The best vector(solution)-Δ
1: initialize:Current population:pop,gbestval
2: initialize niches according to Fig. 3
3: for i t = 1, 2, ..., MaxFES do
4: for i = 1, 2, ..., N P/NS do
5: for j = 1, 2, ..., NS do
6: if rand > Pc then
7: Compute ui use equation (7)-(9)
8: else
9: Compute ui according to equation (10)
10: end if
11: end for
12: for j = 1, 2, ..., N P/NS do
13: compute the fitness Cost j of the individual in the niche j
14: if max(Cost j )=gbestval then
15: newpop = pop ∪ u j
16: newpop = sort(newpop)
17: pop = newpop[1:NS]
18: else
19: for k = 1, 2, ..., NS do
20: popx is the closest individual to u j,k in this niche j
21: if f (u j,k) > f (popx ) then
22: popx = u j,k
23: end if
24: end for
25: end if
26: end for
27: end for
28: end for

Experiment

Parameter settings

In this experiment for the proposed algorithm, we use the
fixed parameters NP (population size) = 200, F (scaling fac-
tor) = 0.5, CR (crossover rate) = 0.9, and the initial niche size
is set to 10, besides, the iterations are no more than 150. The
image datasets in this paper are collected from the UCAS-
AOD Dataset and the remote sensing images of Guangxi

University. The CEC2013multi-modal benchmark functions
[15] which contain 12 multi-modal test functions are used to
test the proposed algorithm.

Evaluation index

Peak ratio (PR), representing the average percentage of
global peaks found in multiple runs, is used as a evaluation
index in this paper and is denoted as follows:

PR =
∑NR

i=1 NPFi
TNP ∗ NR

, (13)

whereNR is the number of runs,NPFi is the number of global
peaks found in the ith run, and TNP is the total number of
global peaks in the optimization problem.

Comparisons with state-of-the-art multimodal
algorithms

Comparison at accuracy

In order to test the multi-modal performance of the two algo-
rithms proposed in this paper, the CEC2013 multi-modal
benchmark function is used to evaluate the performance of
SGD-DE in solving MMOPs.

In this section, two experiments are conducted. The algo-
rithms involved in the experiment are CDE, SDE, NCDE,
NSDE, NSHDE, and the particle swarm optimization algo-
rithm with ring topology: R2PSO, R3PSO, R2PSOLHC,
R3PSOLHC, FERPSO [13]. The total number of individ-
uals for all algorithms is set to 200. The other parameters of
the algorithm used for comparison are based on the corre-
sponding references.

CEC2013 multi-modal functions are used to test the
multi-modal capabilities of the SGD-DEalgorithm,DEnum-
ber multimodal algorithm, PSO with ring topology, and
the mainstream multi-strategy adaptive DE algorithm. The
experimental results show in Table 1. In the table, if the PR
value is higher than other algorithms or equal to the other
algorithms, the result will be highlighted in bold, and the total
times of the best results got in each algorithm are counted at
the endline of the table.

As shown in Table 1, the best results of SGD-DE were
obtained on F1–F5 and F11 when ε =1.0e−01, the results
on F6, F8 and F10 are not the best but very close to the
best; the results on the remaining functions differ from the
best results. Tables 2 and 3 represent the search results at
the accuracy of 1e−2 and 1e−5, and SGD-DE has the best
overall optimization results on F1–F5, F11, F13–F20; the
results on F6 and F10 are very close to the best, but the
results are different in the remaining functions.

When the accuracy is higher, higher development capabil-
ity of the algorithm is required. The results in Tables 2 and
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Table 4 Influence of local search on algorithm accuracy

Func. Local search Without local search

Average −0.027294278 −0.027973988

Standar 5.57037E−05 0.001090751

3 show that the gradient descent based local search strategy
proposed in this paper effectively improves the exploitation
ability of the algorithm, and the optimal solution found at
lower precision can improve the algorithm’s search accuracy
(Table 4), which is shown in Table 4 where bolded font indi-
cate better search accuracy.

Effect of the mutation strategy on performance

The niche technology are used in SGD-DE to generate pop-
ulations, and the local search strategy of gradient descent
is utilized to further exploit the solution space between the
niches while sub-populations communicate, thus enhanc-
ing the searching ability of the algorithm. Without the local
search strategy, the algorithm is just a simple species-based
DE. Table 1 shows that the performance of the proposed
algorithm is significantly superior to that of Species-based
DE; Without the niche technology, the algorithm degener-
ates into a traditional DE algorithm with better exploration
capabilities, but it can still get trapped in the local optima.
Therefore, those two improved strategies are indispensable
for SGD-DE.

Effect of the selection strategy on performance

In this section, CEC2013 dataset is used to test the effective-
ness of our hybrid selection strategy. The two algorithms used
for comparison are the SGD-DE with elite strategy, and the
SGD-DE with crowding strategy. For convenience, we only
put results of the lowest accuracy and the highest accuracy.

Tables 5 and 6 describe the experimental results of SGD-
DE using the hybrid selection strategy and the other two
single selection strategies, with the bolded font indicating
the better experimental results. It can be seen that SGD-DE
is better than the other two algorithms overall, especially
better than the SGD-DE with single elite strategy, which is
because the crowding strategy can better ensure the popula-
tion diversity so that shows better performance on F6, F7,
and F8 when solving the optimal problems, but the results
of SGD-DE with a mixed selection strategy on these prob-
lems are almost the same as SGD-DE with single crowding
strategy.Meanwhile, SGD-DEwith single crowding strategy
also performs well on the low-dimensional functions.

Table 5 Experimental results in PR on CEC 2013 problems at accuracy
level ε = 1.0e−01

Func. SGD-DE Elite Crowd

F1 1 0.357 1

F2 1 1 1

F3 1 1 1

F4 1 0.643 1

F5 1 1 1

F6 0.944 0.397 0.984

F7 0.397 0.5 0.444

F8 0.287 0.044 0.37

F9 0.106 0.122 0.098

F10 0.988 0.595 1

F11 1 0.024 0.952

F12 0.893 0.054 0.911

F13 0.786 0.071 0.738

F14 0.667 0.048 0.69

F15 0.696 0 0.607

F16 0.667 0.024 0.667

F17 0.571 0.054 0.536

F18 0.69 0.286 0.69

F19 0.482 0 0.482

F20 0.25 0.268 0

BEST 1 1 1

Table 6 Experimental results in PR on CEC 2013 problems at accuracy
level ε = 1.0e−05

Func. SGD-DE Elite Crowd

F1 1 0.357 1

F2 1 0.314 1

F3 1 0.571 1

F4 1 0.036 1

F5 1 0.143 1

F6 0.944 0.095 0.984

F7 0.397 0.202 0.444

F8 0.287 0.011 0.37

F9 0.106 0.056 0.098

F10 0.988 0.012 0.988

F11 1 0 0.905

F12 0.893 0 0.893

F13 0.786 0 0.714

F14 0.667 0 0.667

F15 0.696 0 0.554

F16 0.667 0 0.667

F17 0.571 0 0.5

F18 0.69 0.024 0.476

F19 0.482 0 0.393

F20 0.25 0.214 0

BEST 1 0.571 1
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Table 7 Experimental results of
PR on niche size parameter at
the accuracy level ε = 1.0e−04

Func. NS = 20 NS = 50

F1 1 1

F2 1 1

F3 0.429 1

F4 0.929 1

F5 1 1

F6 0.532 0.944

F7 0.278 0.377

F8 0.108 0.286

F9 0.042 0.092

F10 0.69 0.988

F11 0.738 0.976

F12 0.518 0.893

F13 0.619 0.762

F14 0.667 0.667

F15 0.589 0.696

F16 0.643 0.667

F17 0.393 0.5

F18 0.524 0.643

F19 0.304 0.464

F20 0.25 0.25

Effect of the niche size on performance

SGD-DE is mainly affected by the niche size. In this section,
we tested the effects of different niche sizes on CEC2013 test
results. The results of NS = 20 and NS = 50 in CEC2013 test
set are tested. Table 7 shows that different niche sizes have
great influence on the results in different functions.

Application for image registration

Registration results

Firstly, the proposed method is applied to the registration
problem with images that have little difference. Dataset of
Object Detection in Aerial Images from the University of

Fig. 5 The registration results for the UCAS-AOD dataset

Chinese Academy of Sciences (UCAS-AOD)are tested, and
the deviation of the images is mainly translation and rotation.
The UCAS-AOD data set is shown in Fig. 4, and the image
registration result of UCAS-AOD registration is shown in
Fig. 5.

the above two images overlapped after registration, and
the corresponding optimal solutions can be found with our
proposed algorithm.

Then the aerial images fromGuangxiUniversity are tested
to detect the registration performance of our method on
images that have large differences. Figures 6 and 7 show the
images shot at different times and devices, the registration
result is shown in Fig. 8.

The registration results of two images of Guangxi Uni-
versity shot in different years show that the aligned image
produces almost no ghosting, and the corresponding opti-
mal solutions can still be found with the algorithm proposed

Fig. 4 The UCAS-AOD data set
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Fig. 6 The image of Guangxi
University in 2019

Fig. 7 The image of Guangxi
University in 2018

in this paper even if there are some significant differences
between two images.

Registration convergence speed

In the matching of remote sensing images of Guangxi
University, this algorithm is compared with the traditional
optimization algorithm and the current advanced multi-
modal optimization algorithm such as DE, and four PSO
algorithms using ring topology [14].

Figure 9 shows that theDE algorithm is easy to fall into the
local optimum when registering complex image problems.
SGD-DE converges earliest and fastest at the beginning, and
when trapped in a local optimum, it takes less iterations
to jump out of the local optimum, and SGD-DE is more
exploitable and exploratory. Our algorithm is faster andmore
accurate in image registration than the advancedmulti-modal
PSO algorithm. Because we not only use niche technique

to increase diversity but also add local search strategy to
improve accuracy.

Registration accuracy

Compare the DTV function value of SGD-DE with R2PSO,
R3PSO, R2PSOLHC, R3PSOLHC, NCDE, FERPSO and
NSDE after each image registration experiment. According
to the definition of the function, the smaller the DTV value,
the smaller the difference between the overlapping parts of
the image, and the more accurate the registration result will
be.

In this experiment, it mainly compares the search capabil-
ity of the algorithm and the ability to avoid falling into local
optimum. From the image of theDTV function, it can be seen
that the function hasmany local optima, and the optimization
algorithm may stagnate. As is shown in Table 8, the bolded
font indicate better mean value and standard deviation. It can
be seen from the average and standard deviation of the exper-
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Fig. 8 The result of remote sensing image registration of Guangxi University

Fig. 9 Iterative data of various algorithms

iment results that SGD-DE is superior to other multi-modal
optimization algorithms.

In experiment one and experiment two, we tested the
SGD-DE algorithm that optimizes the NMI function and the
SGD-DE algorithm that optimizes the DTV function. And
the NMI value and DTV value of the two registration results
are compared. From the comparison results we can seewhich
image registration function is more accurate.

DTV is the minimization function and NMI is the max-
imum function. It can be seen from the table that the
registration result optimized by DTV function is more accu-
rate than other methods. Therefore, it is concluded that the

DTV method is more precise and robust, and the image reg-
istration results are described in Table 9.

Among them,DTV is theminimization function, andNMI
is the maximization function. It can be seen from the table
that the accuracy of the registration result optimized by the
DTV function is higher than that of other methods, so the
DTV method is more accurate and robust.

Conclusion

This paper proposed an SGD-DE for tackling the remote
sensing image registration problem, which enhances the
capability of exploration and exploitation. Experiments have
shown that our algorithm can achieve a promising perfor-
mance when finding the optimal solutions to the remote
sensing image registration problem, and the registration
result is relatively accurate. In terms of some performance
indicators, our algorithm is superior to the current advanced
ones. At present, the algorithm still needs improvement, such
as niche division and parameter adaptation, so we will fur-
ther improve our algorithm with the clustering method in the
future.

In the future research, wewould like to do further research
on metrics for comparison of rendered and reference images,
focusing on topological similarities between the phenotype
and a reference image (e.g. number of subbranches and their
lengths). Multiple metrics could be used and combined with
the use ofmulti-objective search, andpossibly combinedwith
interactive methods for optimization. One of the ideas for
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Table 8 Mean value and standard deviation of DTV function

R2PSO R3PSO R2PSOLHC R3PSOLHC NCDE FERPSO NSDE SGD-DE

MEAN − 0.03174 −0.03635 −0.05502 −0.04362 −0.03144 −0.05764 −0.02741 −0.02729

STD 0.0037 0.007115 0.012543 0.014163 0.006143 0.021013 6.70E−05 5.57E−05

Table 9 Image registration
results of Guangxi University

DTV NMI
Mean Best Mean Best

SGD-DE with DTV 0.027337905 0.027246878 1.18042428 1.178915963

SGD-DE with NMI 0.029343468 0.028543298 1.17745289 1.169815963

future research may also include another encoding aspect
of the procedural model using evolution of line segments
for vector parameters. In our future work, we aim to apply
the proposed algorithm to improve the capability of finding
optimal feasible solutions in large scale problems.
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