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Abstract
Bone age assessment using hand-wrist X-ray images is fundamental when diagnosing growth disorders of a child or provid-
ing a more patient-specific treatment. However, as clinical procedures are a subjective assessment, the accuracy depends 
highly on the doctor’s experience. Motivated by this, a deep learning-based computer-aided diagnosis method was proposed 
for performing bone age assessment. Inspired by clinical approaches and aimed to reduce expensive manual annotations, 
informative regions localization based on a complete unsupervised learning method was firstly performed and an image-
processing pipeline was proposed. Subsequently, an image model with pre-trained weights as a backbone was utilized to 
enhance the reliability of prediction. The prediction head was implemented by a Multiple Layer Perceptron with one hidden 
layer. In compliance with clinical studies, gender information was an additional input to the prediction head by embed-
ded into the feature vector calculated from the backbone model. After the experimental comparison study, the best results 
showed a mean absolute error of 6.2 months on the public RSNA dataset and 5.1 months on the additional dataset using 
MobileNetV3 as the backbone.

Keywords Bone age assessment · Computer-aided diagnosis · Unsupervised learning of object localization · Pre-trained 
image model

Introduction

Skeletal development is a continuous variation process. 
It has distinct maturity markers that can be identified and 
analyzed by radiologists and pediatricians. Bone age is a 
quantitative metric of skeletal maturity [1]. The discrepancy 
between bone age and chronological age is closely related 
to physical development, such as body size, the appearance 
of the pubertal growth spurt, changes of sex characters, the 
level of endocrine hormone [2–7]. In clinical practice, this 
assessment is conducted by the pattern analysis of specific 
skeletal maturity markers on hand-wrist X-ray images.

Common clinical methods comprise the atlas method 
and the scoring method. A representative of atlas methods 
is the Greulich and Pyle (G&P) method [8], radiologists 
compared the X-ray image to be tested with atlas as a refer-
ence and used the closest match as the assessment result, 
which is simply and conveniently accomplished. However, 
the description of the stages of the bones should be more 
detailed and it is difficult to accurately determine bone age 
when the X-ray image to be tested is between two adja-
cent reference atlas. In Tanner–Whitehouse (TW) method, 
which is a scoring method, radiologists first focused on 20 
specific regions of interest (ROIs) and then analyzed them 
individually to evaluate bone age [9]. Through revisions and 
updates, the latest version of the TW method is called TW3 
for short. 20 ROIs considered in TW method are shown in 
Fig. 1. More indicators and parameters are used in the TW3 
method to achieve a more detailed description of skeletal 
development and improve the accuracy of bone age assess-
ment. However, clinical procedures are a subjective and 
time-consuming assessment. As a result, evaluation results 
are hard to maintain an acceptable error margin in the mod-
ern radiology department.
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Motivated by this and to meet the less-time tendency, a 
deep learning-based computer-aided diagnosis method was 
proposed for bone age assessment. Experimental investiga-
tion in this study shows that deep learning is sufficiently 
potential to create a fully automated bone age assessment 
system with accurate and authentic results.

Related works

Some existing computer-aided methods were examined to 
find out which factor facilitated or hindered the availability 
of clinical practice. Most computer-aided bone age assess-
ment methods can be divided into two categories: non-deep-
learning methods and deep-learning methods. The former 
mainly used image processing technology and classic 
machine learning [10]. For example, Pietka et al. [11] used 
different window sizes with adaptive thresholds to discrimi-
nate bone tissue and other regions. In terms of geometrical 
description and properties of pixel values, ROI was used to 
generate feature descriptors. Finally, the obtained feature 
descriptors were fed into decision-making methods to output 
an estimation of bone age. The extraction of the epiphy-
seal and metaphyseal tissues was illustrated in [12]. Feature 
descriptors were obtained by the diameter of the critical 
bone area and the ratios of the crucial distance measure-
ment. BoneXpert [13], as a commercial automated method, 
implemented a generative model to generated images with 
retaining realistic shapes and densities, collectively denoting 
bone appearance. Features included shape, intensities, and 
texture information. This method implemented an automated 
assessment by mapping functions to give a relative score 
depends on choosing the TW or G&P methods. However, 
images with poor quality or an abnormal bone structure will 

be rejected, thus the process could be manual sometimes. 
Non-deep-learning methods commonly utilized hand-crafted 
visual features from the whole images or local informative 
regions and the classifiers were developed on a private and 
small-scale dataset. The results ranged from 10 to 28 months 
mean absolute error (MAE) and were easily affected by 
hand-wrist X-ray images with unexpected image quality. 
The generalization ability of those models is questionable.

In deep-learning methods, BoNet [14] utilized a purpose-
designed Convolutional Neural Network (CNN) to extract 
low and middle-level feature descriptors and employed an 
additional deformation layer to account for nonrigid object 
deformation. Finally, fully connected layers were imple-
mented to accomplish bone age assessment. BoNet achieved 
a MAE of about 9.6 months. To promote the creation and 
development of machine learning models in analyzing 
medical images, a large-scale bone age assessment data-
set, which consists of 12,611 images with various resolu-
tions, was introduced by the Radiological Society of North 
America (RSNA) [15]. Data-processing, comprised of many 
subtasks, was undoubtedly a necessary procedure to located 
informative regions. In [16], both deep learning and classic 
machine learning were used to produce a reliable prediction. 
For the deep-learning-based method, pre-trained CNNs were 
implemented to extract image features automatically and 
build a regressor model. For the classic machine learning 
method, canny edge detection was implemented for feature 
extraction and there were five traditional machine learning 
regressors: Linear Regression, Random Forest, Support Vec-
tor Regressor (SVR), XGBoost, and Multilayer Perceptron 
(MLP). Finally, the mean absolute error achieved by pre-
trained CNNs was the best result, 14.78 months. In [17], the 
author firstly trained the U-Net model to obtain key point 
regions with manually labeled hand masks. Subsequently, a 
key point detection model was applied to align hand radio-
graphs into a common coordinate space. As a result, they 
achieved a 6.30 months MAE for males and a 6.49 months 
MAE for females. [18] proposed a novel experimental archi-
tecture with manually labeled bounding boxes and key point 
annotations during training. To perform pose estimation and 
region detection, local information was exploited for bone 
age assessment. As a result, they achieved the best in RSNA, 
4.14 months MAE. Although the specific applications of 
many existing high-performing models showed high accu-
racy and efficiency with precisely manual annotations, extra 
annotations were time-consuming and hindered the transfor-
mation of algorithms to clinical applications.

In conclusion, the current methods show that deep-
learning-based methods are being actively applied and 
can automatically generate feature descriptors represent-
ing the pattern of hand-wrist X-ray images. CNN has 
been the paradigm of choice in a wide range of computer 
vision image applications, resulting in a growing interest in 

Fig.1  TW3 method divides the hand-wrist bones into two series: 
(1) radius, ulna, and part of short finger bones (RUS) and (2) carpal 
bones(Carpal). RUS: 1–13; Carpal: 14–20
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application-specific features instead of hand-craft features. 
Most existing methods based on deep learning evaluated 
bone age by annotating extra bounding boxes or key points, 
even though manual annotations are expensive and sub-
jective. In this study, hand region were first located using 
a complete unsupervised learning method and an image-
processing pipeline was proposed. Subsequently, the image 
model with pre-trained weights was utilized as a backbone 
to enhance the reliability of prediction. The prediction head 
was implemented by a Multiple Layer Perceptron with one 
hidden layer. In compliance with clinical studies, gender 
information was an additional input to the prediction head by 
embedded into the feature vector calculated from the back-
bone model. The proposed method was developed on the 
RSNA dataset and the additional dataset, respectively. Lots 
of contrast experiments were implemented to demonstrate 
the superiority of the proposed method and the significance 
of gender-embedding.

The rest of this paper is structured as follows: “Dataset 
and image-processing” presents the description of the public 
RSNA dataset and the additional dataset. The unsupervised 
learning framework of object localization and purpose-
designed image pre-processing pipeline are also illustrated. 
In “Deep-learning-based bone age assessment”, an image 
model with pre-trained weights and a Multiple Layer Percep-
tron were implemented to accomplish bone age assessment. 
The superiority of the proposed method and the significance 
of gender-embedding were demonstrated by lots of contrast 
experiments. “Conclusion” provides the analysis of elements 
that facilitated or hindered the availability of clinical use and 
discussion about future research.

Dataset and image‑processing

This section describes attributes of the datasets employed in 
this study, informative regions localization based on a com-
plete unsupervised learning method, and a purpose-designed 
image-processing pipeline.

Dataset

The proposed method was developed on the public RSNA 
dataset of 12,611 X-ray images and an additional dataset of 
1709 images separately. The additional dataset is from the 
Department of Children’s Health Care, Women and Children 
Hospital of Huli District, Xiamen. As shown in Fig. 2, there 
are samples from the dataset. The attributes of the dataset 
are as follows:

1) ID: the ID of the image.

2) bone age: the bone age of each image, i.e., the ground 
truth.

3) male: the gender information (male: True, female: 
False).

The distribution of bone age and gender in the RSNA 
dataset and the additional dataset is shown in Figs. 3 and 4. 
Based on a 7:2:1 training-validation-testing ratio, two data-
sets were split individually.

Unsupervised learning of object localization

Due to the various resolutions of X-ray images in the dataset, 
it is necessary to locate object regions to enhance informa-
tive areas and suppress noise. Therefore, an unsupervised 
learning framework, which was inspired by a novel unsu-
pervised learning image-segmentation approach proposed 
in [19], was exploited to accomplish it. Supervised methods 
require the original image and ground truth with pixel-level 
semantic labels. However, in unsupervised methods, there 
is no training image or ground truth with labels of pixels. It 
assigns labels to pixels assuming that an image is divided 
into differentiable regions without any previous knowledge. 
The framework can implement object detection based on 
differentiable feature clustering. CNN was utilized to obtain 
pixel-level feature descriptors from the content of the target 
image. Those pixel-level feature descriptors could be suf-
ficiently discriminative to recognize desired object region. 
The mechanism of this framework, as shown in Fig. 5, con-
sists of convolutional layers to extract high-level features, a 
batch normalization layer of those high-level features, and an 
argmax layer for differentiable feature clustering. Finally, the 
backpropagation of the proposed loss function accomplished 
image segmentation in an unsupervised way.

A detailed illustration is as follows. In an input image 
X ∈ ℝ

C×H×W , 
{
xn ∈ ℝ

C
}
 denotes one of the pixels in the 

input image. For 
{
xn ∈ ℝ

C
}
 , p dimensional feature descrip-

tor 
{
rn ∈ ℝ

p
}
 was first obtained from the convolutional lay-

ers and p denotes the number of channels of Convolutional 
filters. Subsequently, the feature descriptor is fed into a one-
dimensional (1D) convolutional layer, where the number of 
channels produced by the convolution is q and the size of 
the convolution kernel is 1 × 1 , then is normalized using 
batch normalization. As a result, the response 

{
yn ∈ ℝ

q
}
 

was obtained and q denotes the upper bound of the possible 
amounts of unique labels. Finally, an argmax function was 
utilized to accomplish label assigning: The cluster label for 
the pixel xn was denoted as cn , which was equal to the dimen-
sional of the maximum value of yn.

For the whole structure, two-loss functions, which 
described below, are utilized as a strategy to make q descend-
ing and obtain the optimal parameters of the network. The 
details of the two kinds of loss functions are described as 
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Fig. 2  Samples from the dataset. Images in the first two rows are from the additional dataset. The remaining part is from RSNA dataset

Fig. 3  The distribution of bone age and gender in the RSNA dataset Fig. 4  The distribution of bone age and gender in the additional data-
set
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follows. The loss function L , which consists of similarity 
loss and spatial continuity loss, is denoted as follows:

where � and � represent the weights to balance these two 
constraints.

The constraint on the feature similarity is

and

{
yn,i

}
 denotes the i th element of 

{
yn
}
 . When considering 

feature similarity, the elements in the response vector will 
be assigned to corresponding labels according to the above 
principle.

The regulation on spatial continuity is

where the L1-norm was used as criterion and differences of 
the response vector in horizontal and vertical directions was 
considered as a distance regulation. Here, W  and H denotes 

(1)L = �Lsim
({

yn, cn
})

+ �Lcon
({

yn
})

,

(2)Lsim({yn, cn}) =

N∑

n=1

q∑

i=1

−�(i − cn)ln(yn,i),

(3)

N = H ×W,

�(t) =

{
1, if t = 0

0, otherwise

(4)Lcon({yn}) =

W−1∑

�=1

H−1∑

�=1

‖
‖‖
y�+1,� − y�,�

‖
‖‖1

+
‖
‖‖
y�,�+1 − y�,�

‖
‖‖1

the width and height of an input image, y�,� denotes the pixel 
value at (�, �) in the response vector yn.

Aimed to overcome the impact of various resolution, 
each target image was fed into the network individually, 
therefore, parameters will update and optimize based on 
the content of the current image. As mentioned above, 
for a target image, the forward process of the network 
predicts the cluster labels and the backward process, that 
is, calculating and backpropagating the loss L . It updates 
the parameters using a stochastic gradient descent with a 
momentum of 0.9 and learning rate set to 0.1. Two con-
volutional layers were used to obtain a feature descriptor 
and p = q = 90 for initialization. The number of iterations 
was set to 50. Notably, to balance loss functions exploited 
in this study, different values of � and � were set manually 
during the experiments. The results show that � = 4 and 
� = 1 are the best when applied to image segmentation.

Image processing pipeline

The abovementioned method distinguished informative 
object regions and other regions, which is difficult for gen-
eral threshold segmentation algorithms. However, due to 
various resolution and contrast in the dataset, segmenta-
tion results cannot provide masks with a clean and sharp 
edge. The background was first removed and the region 
with the maximum area was regarded as the hand region. 
Then, the target image was cropped based on the bound-
ing box of the informative region through connectivity 
analysis on the segmentation result. The pseudocode for 

Fig. 5  Illustration of the unsupervised method

Fig. 6  Proposed image-process-
ing pipeline
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the unsupervised object localization algorithm is shown in 
Algorithm 1. The proposed image pre-processing pipeline 
is shown in Fig. 6 and the results of each step are shown 
in Fig. 7.

Deep‑learning‑based bone age assessment

CNNs have been the paradigm of choice in modern artificial 
intelligence, resulting in a growing interest in application-
specific features instead of hand-craft features. Multiple 
Layer Perceptron (MLP) can distinguish data that are not 
linearly separable and map feature descriptors calculated 
from CNNs onto output with desired dimensions. Most deep 
learning-based methods evaluated bone age by extra bound-
ing boxes or key points, despite expensive and subjective 
annotations. Based on unsupervised learning of object local-
ization and the proposed image-processing pipeline, images 
with a large area of informative regions were obtained. In 
this study, to enhance the reliability of prediction, an image 
model with pre-trained weights was used as the backbone 
and the prediction head was implemented by a Multiple 
Layer Perceptron with one hidden layer. Besides, gender 
information was an additional input to the prediction head by 
embedded into the feature vector calculated from the back-
bone model. Lots of contrast experiments was performed to 
demonstrate the superiority of the proposed method and the 
necessity of gender-embedding.

Outline of MobileNetV3

MobileNetV3 [20] was built based on more efficient build-
ing blocks to improve the speed-accuracy tradeoff. Mobile-
NetV3 was proposed on the basis of MobileNetV1 [21] and 
MobileNetV2 [22]. The main modules of MobileNetV3 are 
as follows:

Fig. 7  Original images (first row), segmentation results (second row), generating bounding box of the hand region (third row), and the final 
result (last row)
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A. Depthwise Separable Convolution: In [21], depthwise 
separable convolutions can reduce the model size and build 
lightweight deep neural networks. Depthwise separable con-
volutions, as shown in Fig. 8, are comprised of two layers: a 
depthwise convolution, as spatial filtering, to apply an indi-
vidual filter to each channel of input and a 1 × 1 pointwise 
convolution to combine features from the depthwise convo-
lution and change the number of channels in the feature map.

B. Inverted Residual Block: MobileNetV2 introduced an 
inverted residual block as an even more efficient linear bot-
tleneck with a residual structure for reference. The inverted 
residual block, as shown in Fig. 9, is comprised of a 1 × 1 
expansion convolution to obtain better results without an 
excessive calculation, depthwise convolutions, and a 1 × 1 
projection layer. Because of a residual connection, the input 
and output are connected when they have the same channels. 
This structure generates a compact feature descriptor as the 
output, and at the same time expands to a feature space with 
a higher dimension to improve the ability to obtain nonlinear 
relationships.

C. Squeeze-and-Excitation [23]: As shown in Fig. 10, 
this module is used to model the dependence between the 
feature channels, and automatically obtain the importance 
of each feature channel through training. As a result, it can 
improve the useful features and suppress the uselessness of 
the current task. The first is the Squeeze operation. Fea-
ture compression is performed along the spatial dimension. 
Each two-dimensional feature channel is turned into a scalar 
which has a global receptive field to some extent and the 

output dimension equals the number of input feature chan-
nels. It characterizes the global distribution of the response 
on the feature channels and enables the layer close to the 
input to obtain the global receptive field. Secondly, the Exci-
tation operation generates weights for each feature channel, 
where weights are updated to explicitly model the corre-
lation between the feature channels. Finally, the Reweight 
operation weights feature channels through multiplication 
to accomplish recalibration of original features. In detail, 
global average pooling is used as the Squeeze operation to 
reduce feature dimensions. Then two Fully Connected layers 
form a Bottleneck structure is used to model the correlation 
between channels and output the same number of weights as 
the input channels. Between these two layers, the activation 
function is implemented by ReLU. The advantages of using 
two Fully Connected layers are: (1) It has more nonlinearity 
and can better fit the complex correlation between chan-
nels; (2) It greatly reduces the number of parameters and 
calculations. Then a Sigmoid function outputs the normal-
ized weights between 0 and 1, and finally a Scale opera-
tion weights the normalized weight to the features of each 
channel.

D. As shown in Fig. 11, the MobileNetV3 block was 
introduced based on the analysis of the abovementioned 
structures. To significantly improve the accuracy of neural 
networks, the h-swish (the hard version of swish) was pro-
posed to replace the Sigmoid function.

Fig. 8  The structure of Depth-
wise Separable Convolution

Fig. 9  The structure of inverted 
residual block

Fig. 10  The structure of SE block
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Details of training

The network was trained on the RSNA dataset and the addi-
tional dataset, respectively. As shown in Fig. 12, Mobile-
NetV3 with pre-trained weights on ImageNet was utilized as 
the backbone and the prediction head was implemented by 
a Multiple Layer Perceptron with one hidden layer. A linear 
transformation was applied to the gender information (0/1) 
and the size of the output was set to 24. After a ReLU func-
tion, it was regarded as an additional input to the prediction 
head by embedded into the feature vector calculated from the 
backbone model. The hidden layer in the Multiple Layer Per-
ceptron consisted of 1304 neurons and ReLU was used as the 
activation. The overall architecture of the MobileNetV3 as the 
backbone and the prediction head used in this study was shown 
in Table 1.

During training, data augmentation, such as cropping, resiz-
ing, rotation, and transformation in contrast and brightness, 
was applied to the input X-ray images to prevent the problem 
of overfitting. Overall architecture of the MobileNetV3 as the 
backbone and the prediction head is described in Table 1 and 
the number of parameters of the architecture is approximately 
7.6 Million. The learning rate was set to the initial learning rate 

(5)h − swish(x) = x
ReLU(x + 3)

6
.

decayed by 10 times every 30 epochs. The Batch size was set 
to 10 and the whole network was trained for 160 epochs. The 
stochastic gradient descent optimizer with a momentum of 0.9 
was used to minimizing the mean squared error (squared L2 
norm) between each element in the prediction and the target. 
The loss function is:

where N is the number of the training set, Ŷi is the output of 
the model and Y ′

i
 is the bone age after standardization:

where Yi is the original value of the bone age (month), � is 
the mean of the bone age and � is the standard deviation of 
the bone age.

Performance of the proposal

The mean absolute error was applied to evaluate the per-
formance of the proposed method. As shown in Table 2, 
lots of contrast experiments were implemented to evaluate 
the performance in different conditions. Obviously, gender-
embedding and image-processing are helpful for the perfor-
mance of the network. The model with image size set to 700 
× 700, gender-embedding and image-processing achieved 

(6)MeanSquaredError =
1

N

N∑

i=1

(Ŷi − Y �
i
)2,

(7)Y �
i
=

Yi − �

�
,

Fig. 11  The structure of 
MobileNetV3 block

Fig. 12  The workflow of the proposed model
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the best result. Besides, as shown in Table 3, the method was 
compared with other methods mentioned in “Related works” 
and those methods were all developed on the public RSNA 
dataset. Although many existing high-performing models 
showed high accuracy and efficiency with precisely manual 
annotations, extra annotations were time-consuming and 
hindered the transformation of algorithms to clinical appli-
cations. Without training annotations, the method achieves 
acceptable results without requiring manual annotation.

Conclusion

In this study, a deep learning-based computer-aided diagno-
sis method was proposed for performing bone age assess-
ment. To reduce expensive manual annotations, informative 
region was firstly located based on a complete unsupervised 
learning method and an image-processing pipeline was 
proposed. The unsupervised learning method consists of 
convolutional layers to extract high-level features, a batch 
normalization layer of those high-level features and an arg-
max layer for differentiable feature clustering. The back-
propagation of the proposed loss function accomplished 
image segmentation in an unsupervised way. As a result, it 
can distinguish informative object region and other regions 
without manual annotations. Subsequently, the background 
was removed and the region with the maximum area was 
regarded as the hand region and target images were cropped 
based on the bounding box of the informative region through 
connectivity analysis on segmentation results. Finally, his-
togram equalization was applied to adjust contrast. To pro-
duce a reliable prediction, image models with pre-trained 
weights was exploited as the backbone and the prediction 
head was implemented by a Multiple Layer Perceptron. In 

Table 1  Overall architecture of the MobileNetV3 as backbone and 
the prediction head

“Input” stands for the size of the input, Height × Weight × Channel. 
In “Operator” column, “Conv2d, 3 × 3” indicates traditional convolu-
tion layer and the size of the convolution kernel, “3 × 3” means 3 × 3 
depthwise separable convolution in MobileNetV3 block, “NBN” 
denotes no batch normalization and “AvgPool” stands for applying a 
2D adaptive average pooling over an input signal composed of sev-
eral input planes. “Out” means the number of channels in the output. 
“SE” denotes whether there was a Squeeze-And-Excite in that block. 
“NL” denotes the type of nonlinearity used. Here, “HS” denotes 
h-swish and “RE” denotes ReLU. “Stride” means the stride for the 
cross-correlation in a 2D Convolution

Input Operator Out SE NL Stride

224 × 224 × 3 Conv 2d, 3 × 3 16 False HS 2
112 × 112 × 16 3 × 3 16 False RE 1
112 × 112 × 16 3 × 3 24 False RE 2
56 × 56 × 24 3 × 3 24 False RE 1
56 × 56 × 24 5 × 5 40 True RE 2
28 × 28 × 40 5 × 5 40 True RE 1
28 × 28 × 40 3 × 3 40 True RE 1
28 × 28 × 40 3 × 3 80 False HS 2
14 × 14 × 80 3 × 3 80 False HS 1
14 × 14 × 80 3 × 3 80 False HS 1
14 × 14 × 80 3 × 3 80 False HS 1
14 × 14 × 80 3 × 3 112 True HS 1
14 × 14 × 112 3 × 3 112 True HS 1
14 × 14 × 112 5 × 5 160 True HS 2
7 × 7 × 160 5 × 5 160 True HS 1
7 × 7 × 160 5 × 5 160 True HS 1
7 × 7 × 160 Conv2d, 1 × 1 960 False HS 1
7 × 7 × 960 AvgPool 960 False – 1
1 × 1 × 960 Conv2d, 1 × 1, NBN 1280 False HS 1
1 × 1 × 1280 Gender Embedding 1304 False RE –
1 × 1304 MLP Prediction – – –

Table 2  Experimental results in 
different conditions

MobileNetV3 with pre-trained weights was exploited as the backbone. “Gender” indicates whether there 
was gender-embedding. “Pre-process” stands for the input X-ray images were original or processed by the 
framework described in “Dataset and image-processing”. “Pre-trained” means whether pre-trained back-
bone was used. “Image size” indicates the size of input X-ray images

Dataset Gender Pre-process Pre-trained Image Size MAE(months)

RSNA True True True 224 × 224 × 3 6.8
True True True 500 × 500 × 3 6.5
True True True 700 × 700 × 3 6.2
False True True 700 × 700 × 3 8.5
True False True 700 × 700 × 3 7.5
True True False 700 × 700 × 3 7.4

Additional Dataset True True True 224 × 224 × 3 5.7
True True True 500 × 500 × 3 5.6
True True True 700 × 700 × 3 5.1
False True True 700 × 700 × 3 6.0
True False True 700 × 700 × 3 6.2
True True False 700 × 700 × 3 5.9
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compliance with clinical studies, gender information was an 
additional input to the prediction head by embedded into the 
feature vector calculated from the backbone model. After 
experimental comparison of various model architectures, the 
best results showed a mean absolute error of approximately 
6.2 months on the RSNA dataset and 5.1 months on the 
additional dataset using MobileNetV3 as the backbone.

To facilitate the availability of clinical use and provide 
more accurate results, fine-grained local information which 
is the most relevant to the prediction should be extracted 
without extra manual annotations. In a future study, a pur-
pose-designed deep learning framework will be proposed to 
extract more fine-grained features and create an automated 
application with accuracy comparable to that of radiologists 
and pediatrician.
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