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Abstract
This paper investigates a feature tracking controlmethod for visual servoing (VS)manipulators adaptive dynamic programming
(ADP)-based the unknown dynamics. The major superiority of ADP-based optimal control lies in that the visual tracking
problem is converted to the feature tracking error control with optimal cost function. Moreover, an adaptive neural network
observer is developed to approximate the entire uncertainties, which are utilized to construct an improved cost function. By
establishing a critic neural network, the Hamilton–Jacobi–Bellman (HJB) equation is solved, and the approximate optimal
error control policy is derived. The closed-loop VSmanipulator system is verified to be ultimately uniformly bounded with the
developed ADP-based feature tracking control strategy according to the Lyapunov theory. Finally, simulation results under
various situations demonstrate that the proposed method achieves higher tracking accuracy than other methods, as well as
satisfies energy optimal requirements.
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Introduction

To comply with the requirements of modern manufactur-
ing for efficiency, visualization and wireless communication
[1–3], manipulators equippedwith different sensors are com-
petent to adapt extreme ambient conditions by means of the
non-contact detection.Manipulators with visual sensors sim-
ulate humanvisionwhich allows the feedback controller to be
measured in non-contact positions and directions. At present,
visual servoing (VS) manipulators have a wide application
potential in many scenarios such as disaster rescue, medical
detection, space exploration, etc [4–6]. It is well known that
the tracking control strategy is demanded to provide themore
precision and less consumption of the VS systems especially
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in the unstructured environments, but only a few advanced
techniques have been applied to the VS tracking control to
ensure the optimum of system tracking performance.

Related work

Generally, the goal of the feature trajectory tracking control
is to drive the system outputs track specified desired trajec-
tories in the VS system. Hence, visual feedback signals have
been used as significant information in robotics to tackle the
positioning or motion control in unstructured environments.
The visual tracking problem for manipulators has been stud-
ied over the past few years and a wide range of technologies
have been explored.

Kang et al. [7] adopted a reinforcement learning method
to adaptively adjust the servoing gain to improve the conver-
gence rate and stability. Li et al. [8] combined proportional
derivative (PD) control with sliding mode control (SMC) to
tackle the disturbance and uncertainties on a 6-degree-of-
freedom (DOF) VS manipulator. Sharma et al. [9] proposed
a fractional order SMCmethod to drive vehicle motion using
visual information of image plane. Furthermore, consider-
ing the uncertainties, they designed a new adaptive rule to
adjust the sliding surface parameters to ensure the finite time
stability of the system. Qiu et al. [10] presented a depth-
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independent interaction matrix based on model predictive
control method by taking the input and output constraints
into account.

Unlike the above kinematic VS control problems, the
dynamic VS control problems can be solved by establish-
ing the composite Jacobian matrix mapping from the image
space to the robot joint spacewhich is usually adopted. Based
on the obtained systemparameters, an effective controller can
be designed. For example, Wang et al. [11] presented a new
adaptive algorithm based on the estimated image depth, and
proved the global stability by Lyapunov method. Li et al.
[12] addressed an effective controller design problem for an
uncalibrated camera–manipulator system to ensure the finite-
time convergence. In addition, some scholars have also paid
attention to the large measurement error caused by exter-
nal interference or system modeling deviation. Based on
the parameter uncertainties in manipulator kinematics and
dynamics, Cheah et al. [13] proposed an adaptive regression
strategy to estimate the Jacobian matrix adaptively. Hua et
al. [14] adopted immersion and invariance observer to iden-
tify an uncalibrated VS system without measuring the joint
velocity on the basis of depth independentmatrix.Wang et al.
[15] designed a new nonlinear observer to dynamically track
themotion of a target in Cartesian space.Wang et al. [16] pro-
posed a novel adaptive observer controller which employed
the feature velocity term contained in the unknown kinemat-
ics. The superiority of the proposed image-space observer
lied in its simple structure in handling uncertainties; thus, it
avoided the over parametrization in the existing works. Leite
et al. [17] developed a cascade control strategy based on
an indirect/direct adaptive method, which introduced uncer-
tainties in robot kinematics and dynamics of visual tracking
problem. Considered the output nonlinearity and unknown
dynamics, Wang et al. [18] investigated an adaptive neu-
ral network control for the VS manipulator system whose
dynamic model is not required to be linearly decompos-
able. Zhang et al. [19] developed an adaptive neural network
controller with theBarrier Lyapunov Function (BLF) to over-
come nonlinearities and visibility constraint problems.

In addition, the key points of optimal control problems of
nonlinear systems are to design a suitable controller tackling
input/output constraints, external disturbance, uncertainties,
etc [20–23]. During the past few years, adaptive dynamic
programming (ADP) algorithmwhich is proposed byWerbos
[24] has extensively developed the optimal control schemes
for robots or manipulators to enhance the control perfor-
mance and reduce the energy consumption of the controller
[25]. Kong et al. [26] introduced an approximate optimal
strategy to resolve the non-linearity saturation problem of
n-DOF manipulators. In [27], an adaptive fuzzy neural net-
work control methodwith impedance learning was presented
for robots with constraints. In [28], the optimal coordina-
tion control which was applied to multi-robots to follow

expected trajectories was presented by means of reinforce-
ment learning. Tang et al. [29] employed a reinforcement
learning-based adaptive optimal control method to realize
the optimal tracking of n-DOF manipulators. Li et al. [30]
established the nonlinear discrete-time dynamic model of
wheeled mobile robots, where the reinforcement learning
and ADP method were adopted to tackle the tracking prob-
lem for systems with skidding and slipping constraints. In
[31], an artificial potential field scheme cooperatedwithADP
method was proposed for path planning of bio-mimetic robot
fish, where heuristic learning programming was applied to
obtain the position and angle. Lian et al. [32] presented a
receding-horizon dual heuristic programming algorithm for
tracking control of wheeled mobile robots, and developed a
backstepping kinematic controller. Zhan et al. [33] proposed
an ADP-based control approach to deal with tracking prob-
lem for robots with environment interactions. Li et al. [34]
proposed a policy iteration-based fault compensation control
formodular reconfigurable robots subject to actuator failures.
Zhao et al. [35] developed an event-triggered ADP algorithm
of decentralized tracking control which can reduce commu-
nication frequency and extend the service life of mechanical
and electronic devices. Dong et al. [36] designed a novel
force/position control scheme based on zero-sum optimal
ADP decentralized control strategy for decentralized system
by considering the influence of unknown and interconnected
dynamics for reconfigurable manipulators. The application
of ADP-based optimal control in the field of robotics has
progressed in the recent years, the optimal feature tracking
control for VS system which is expected in practical systems
is still an open problem.

Motivation and contribution

In recent few years, many kinematics-based visual con-
trollers have been proposed by assuming that the VS manip-
ulator has an accurate positioning device with negligible
dynamics [37–39]. However, in the control perspective, it is
difficult to ensure the dynamic performance and stable con-
trol when neglecting the nonlinearities in kinematic control
due to the existence of both parameter uncertainties in robot
dynamics and errors in camera calibration. Therefore, the
controller design is a challenging task with considering the
influence of control error and system stability, especially in
the robot positioning or trajectory tracking control [12,40].
Unfortunately, there is few discussion on the difficulties of
VS manipulator systems, especially with uncertainties of
intrinsic parameters, camera calibration errors, external dis-
turbance, friction, etc. From the aforementioned literature,
we conclude that the difficulties in designing controllers lie in
how to handle unmodeled dynamics and external disturbance
without linearity-in-parameters. Furthermore, it is expected
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to optimize the performance index in VS manipulator sys-
tems.

Inspired by the above literature, this paper investigates
a feature tracking controller based on ADP scheme for VS
manipulators subject to unknown dynamics by taking opti-
mal performance index into account. Based on the radial
basis function (RBF) estimated uncertain dynamics of theVS
manipulator model, an adaptive NN observer is proposed to
identify the uncertainties (e.g., unmodeled dynamics, exter-
nal disturbance, joint friction, etc) in real time. The cost
function is improved by inserting the estimated uncertainties,
and the visual tracking problem is converted to the feature
error control. Then, the optimal feature tracking control is
derived directly. Therefore, the stability of VS manipula-
tor systems is guaranteed by utilizing Lyapunov stability
theorem. Finally, in order to show the robustness and effec-
tiveness of the designed controller, a 3-DOF (Degree of
Freedom) eye-to-hand (ETH) manipulator is employed to
simulation.

The main contributions of the presented scheme can be
summarized as follows.

1. In this paper, the proposed feature tracking control strat-
egy, which directly acts on image feature, is facilitated
more feasibility and intuitively. Thus, the designing con-
troller based on the camera–manipulator model does not
need to obtain regression matrix and avoids complicated
calculation.

2. It is the first time to develop theADP technique to feature-
based visual tracking control for VS manipulator systems
with unknown dynamics. Unlike the existing visual track-
ing control approaches, the critic NN-based controller is
designed in an optimal manner, which saves the energy
cost and is significant in practice.

3. The major advantage of the improved cost function lies
in that the estimated uncertainties is introduced and given
full consideration in controller design. Simultaneously,
the closed-loop VS manipulator system can be guaran-
teed to be ultimately uniformly bounded (UUB) using the
proposed ADP control scheme.

The remainder of this paper is organized as follows. In
“Preliminaries and problem statement”, the basic preliminar-
ies and dynamic model are presented. In “ADP-based feature
tracking controller”, the unknown dynamics of VS manipu-
lator systems is approximated by an adaptive NN observer,
and the optimal error controller is designed in detail. Then,
the stability is analyzed. In “Simulation tests”, simulation
examples are provided to illustrate the effectiveness of the
proposed control scheme. Finally, a brief conclusion is given
in “Conclusion”.

Fig. 1 VS manipulator system

Preliminaries and problem statement

Camera–robot kinematics model

In this paper, the ETH structure is selected for the VS sys-
tem that is shown in Fig. 1, and a n-DOF VS manipulator
is employed to construct the forward kinematics. Denote the
image coordinate of feature point as fuv = [u, v]T. The
mapping from feature point to robot position [14] can be
expressed as

[
fuv(t)
1

]
= 1

Depth(t)
Mc

[
r(t)
1

]
, (1)

where r(t) ∈ R
3 is the Cartesian coordinate of robot end-

effector with respect to the base frame, Depth(t) ∈ R is the
depth of feature point in the camera frame, Mc ∈ R

3×4 is the
perspective projection matrix which can be expressed as

Mc = MinMex,

where Min ∈ R
3×4 is the intrinsic matrix of the camera,

Mex ∈ R
4×4 is the homogenous transformation matrix com-

puted via forward kinematics, which also represents the
extrinsic matrix.

By separating fuv(t) from (1), we can obtain

fuv(t) = 1

Depth(t)
Msubr(t), (2)

where Msub ∈ R
2×3 is the sub-matrix of perspective projec-

tion matrix Mc, which is given by

Msub =
[
m11 m12 m13

m21 m22 m23

]
,
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where mi j is the ijth component of Mc.
The depth of the feature point can be given by

Depth(t) = MDr(t), (3)

where MD = [m31,m32,m33]T. Assume Depth(t) be a posi-
tive and bounded constant; i.e.,

min(Depth(t)) ≤ Depth(t) ≤ max(Depth(t)).

By differentiating (2) and (3), one obtains

ḟuv(t) = 1

Depth(t)
(Msub − fuv(t)MD)ṙ(t) = JIṙ(t), (4)

where JI ∈ R
2s×3 is the feature Jacobian matrix (or interac-

tion matrix), s is the number of feature points. Let q(t) ∈ R
n

be the joint angle vector. From the robot kinematics, the
velocity relationship of joint space to Cartesian space can
be expressed as

ṙ(t) = JRq̇(t), (5)

where JR ∈ R
3×n is the robot Jacobian matrix. Combining

(4) with (5), we obtain

ḟuv(t) = JI JRq̇(t) = Jcomq̇(t), (6)

where Jcom ∈ R
2s×n denotes the compound Jacobianmatrix.

We can rewrite (6) as

q̇(t) = J+
com ḟuv(t), (7)

where J+
com = (JTcom Jcom)−1 JTcom is the pseudo-inverse of

the compound Jacobian matrix. In practice, the manipulator
is required to perform a servoing task in a reachable finite
task-space [41]. To avoid the Jacobian matrix singularity, Mc

should be full rank. Hence, Jcom is full rank and its pseudo-
inversematrix exists,whose detailed illustration can be found
in [42,43].

By differentiating (7), the acceleration of joint angle q(t)
is formulated as

q̈(t) = J+
com f̈ uv(t) + d

dt
(J+

com) ḟuv(t). (8)

Camera–manipulator dynamic model

Considering a general n link manipulator, whose dynamic
model can be mathematically formulated as

N (q)q̈ + B(q, q̇)q̇ + G(q) + A(q̇) + Fd = τ, (9)

where N (q) ∈ R
n×n is the inertia matrix, B(q, q̇) ∈ R

n×n

is the centrifugal and coriolis force, G(q) ∈ R
n is the gravi-

tational term, A(q̇) ∈ R
n denotes the friction term, Fd ∈ R

n

indicates the external disturbance, and τ ∈ R
n denotes the

output torque.
Combining (7)–(9), the dynamics of VS manipulators can

be expressed as

N (q)J+
com f̈uv + N (q)

d

dt
(J+

com) ḟuv + B(q, q̇)J+
com ḟuv

+G(q) + A(q̇) + Fd = τ. (10)

Multiplying the term (J+
com)T on both sides of (10),

the dynamics of the VS manipulators is expressed in the
workspace as

No( fuv) f̈uv + Co( fuv, ḟuv) ḟuv + Go( fuv)

+Ao( ḟuv) + Fdo = τo, (11)

where No( fuv) = (J+
com)TN (q)J+

com, Co( fuv, ḟuv) =
(J+

com)T(N (q) d
dt (J

+
com)+B(q, q̇)J+

com),Go( fuv) = (J+
com)T

G(q), Ao( ḟuv) = (J+
com)TA(q̇), Fdo = (J+

com)T

Fd, and τo = (J+
com)Tτ .

Due to the uncertain kinematic parameters and unmodeled
dynamics, the actual parameters of system can be decom-
posed into the nominal part and uncertainties, so (11) can be
written as

(N̄o( fuv) + ΔNo( fuv)) f̈uv + (B̄o( fuv, ḟuv)

+ΔBo( fuv, ḟuv)) ḟuv

+(Ḡo( fuv) + ΔGo( fuv)) + ( Āo( ḟuv)

+ΔAo( ḟuv)) + Fdo = τo, (12)

where N̄o( fuv), B̄o( fuv, ḟuv), Ḡo( fuv) and Āo( ḟuv) are the
nominal part, ΔNo( fuv)), ΔBo( fuv, ḟuv), ΔGo( fuv) and
ΔAo( ḟuv) are the uncertainties.

By separating the uncertainties from the dynamics of
camera–manipulator model, (12) can be reformulated as

N̄o( fuv) f̈uv + B̄o( fuv, ḟuv) ḟuv

+Ḡo( fuv) + Āo( ḟuv) + D( fuv) = τo, (13)

where the uncertainties D( fuv) is given as

D( fuv) = ΔNo( fuv) f̈uv + ΔBo( fuv, ḟuv) ḟuv

+ΔGo( fuv) + ΔAo( ḟuv) + Fdo. (14)

Before designing and analyzing the optimal feature track-
ing controller, the camera–manipulator dynamic system (13)
is supposed to satisfy the following properties.
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Property 1 The inertiamatrix No( fuv) is symmetric, positive
scalar, and satisfies

λ1 ‖ξ‖2 ≤ ξTNo( fuv)ξ ≤ λ2 ‖ξ‖2 , ∀ξ ∈ R
n,

where λ1 and λ2 are positive constants.

Property 2 The time-derivative of the inertia matrix
No( fuv) and centripetal and coriolis matrix Bo( fuv, ḟuv)

satisfies the skew-symmetric relationship as

xT
{
1

2
Ṅo( fuv) − Bo( fuv, ḟuv)

}
x = 0, ∀x ∈ R

n .

Assumption 1 The friction torque Ao( ḟuv) is bounded by∥∥Ao( ḟuv)
∥∥ ≤ ϕ1 , where ϕ1 ∈ R is an unknown positive

constant.

Assumption 2 The uncertain dynamics D( fuv) is bounded
by ‖D( fuv)‖ ≤ ϕ2 , where ϕ2 ∈ R is an unknown positive
constant.

From the properties above, the VS manipulator systems
canbe rewritten to facilitate theADPdesign.By transforming
the dynamic model (13), the state space expression of VS
system is proposed as

⎧⎨
⎩
ẋ1 = x2
ẋ2 = k (x) + g (x) (τo − D (x))
y = x1

, (15)

where x = [x1, x2]T = [ fuv, ḟuv]T with x1, x2 ∈ R
2s is the

system state vector, y is the output vector, k(x) and g(x) can
be defined as

k (x) = −N̄−1
o ( fuv)

(
B̄o( fuv, ḟuv) ḟuv(t) + Ḡo( fuv)

)
,

g(x) = N̄−1
o ( fuv).

Assumption 3 k(x) and g(x) are locally Lipschitz and con-
tinuous in their arguments with k(x) = 0.

Remark 1 It is observed from (13), the input and output of
dynamic model are mapped from the direct form (i.e., τo →
fuv, ḟuv, f̈uv) to the indirect form (i.e., τ → q̈, q̇ → ṙ →
ḟuv , see (4), (6) and (9)). Moreover, a camera–manipulaotr
dynamic model is established by taking the uncertainties
D( fuv) into account. In this way, linearity in parameter fea-
tures cannot be employed in the VS manipulator systems. In
this paper, the ADP-based control approach is presented to
solve the feature tracking control problem of VS manipula-
tor systemswith uncertainties. This implies that the proposed
scheme guarantees the closed-loop VS manipulator systems

to converge to zero, i.e., the actual trajectories can follow
their desired trajectories.

ADP-based feature tracking controller

Optimal visual control

As we know, the aim of the optimal feature tracking control
is to design an effective tracking control policy which fol-
lows the desired feature trajectory. To achieve this objective,
the feature tracking control can be obtained by combining
the desired visual tracking control and feature tracking error
control.

Assumption 4 The desired feature trajectory fuvd , the
desired feature velocity ḟuvd and the desired feature acceler-
ation f̈uvd are all bounded and known.

Letting x fuvd
= [ fuvd , ḟuvd ]T and ẋ fuvd

= [ ḟuvd , f̈uvd ]T, the
desired feature trajectory can be described as

ẋ fuvd
= k(x fuvd

) + g(x fuvd
)τ fuvd

, (16)

where τ fuvd
denotes the desired control torque. Then, the

desired visual tracking controller can be obtained by

τ fuvd
= g+(x fuvd

)(ẋ fuvd
− k(x fuvd

)). (17)

From the state space expression of system (15), the feature
tracking error dynamics can be expressed by

{
ef = x − x fuvd

ėf = ẋ − ẋ fuvd

, (18)

where ef indicates the feature error and ėf denotes the time
derivative of ef . For the state space expression of camera–
manipulator system (15), the optimal objective is to derive
the control law by minimizing the following infinite horizon
cost function

U (ef (t)) =
∫ ∞

t
P
(
ef(σ ), τ fe (σ )

)+ α
(
D̂(σ )T D̂(σ )

+(∇U∗ (ef(σ ))
)2) dσ, (19)

where P (ef , τfe) = eTf Qef+τTfeRτfe denotes the utility func-
tion, P (ef , τfe) ≥ 0 with P (0, 0) = 0, τ fe = τo − τ fuvd

is

the optimal control input error, Q ∈ R
2s×2s and R ∈ R

2s×2s

are the positive definite matrices, D̂(t) is the estimation of
uncertainties, and α > 0 is an unknown constant.

Definition 1 [44]For the dynamic system (15), a control poli-
cies τfe is admissible with respect to the cost function (19) on
a compact set Ω , if τfe is continuous on Ω with τfe(0) = 0,
τfe stabilizes on Ω , and U (ef) is finite ∀ef ∈ Ω .
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Given a series of admissible control policies τfe ∈ Ξ(Ω),
then the infinitesimal version of (19) is the the so-called Lya-
punov equation as

0 = P (ef(σ ), τfe(σ )) + α
(
D̂(σ )T D̂(σ )

+(∇U∗ (ef(σ ))
)2)+ (∇U (ef))

Tėf , (20)

where U (0) = 0 and ∇U (ef) = ∂U (ef )
∂ef

is the partial deriva-
tive of U (ef) with respect to ef . The Hamiltonian and the
improved cost function can be given by

H (ef , τfe,∇U (ef )) = α
(
D̂T D̂ + (∇U∗ (ef )

)2)

+P (ef , τfe) + (∇U (ef ))
T ėf , (21)

U∗ (ef ) = min
τfe∈Ξ(Ω)

∫ ∞

0
P (ef (σ ), τfe(σ ))

+α
(
D̂(σ )T D̂(σ )+(∇U∗ (ef (σ ))

)2) dσ. (22)

Thus, the solution of the HJB equation can be obtained by

0 = min
τfe∈Ξ(Ω)

H
(
ef , τfe,∇U∗ (ef)

)
, (23)

where ∇U∗ (ef) = ∂U∗(ef )
∂ef

. IfU∗ (ef) is continuously differ-
entiable, the optimal feature tracking error controller of the
VS system will be derived as

τ ∗
fe = −1

2
R−1gT (x) ∇U∗ (ef) . (24)

According to (21) and (23), we can obtain

(∇U (ef))
Tėf = −P (ef(σ ), τfe(σ )) − α

(
D̂(σ )T D̂(σ )

+(∇U∗ (ef(σ ))
)2)

. (25)

Adaptive neural network observer design

The uncertainties are estimated by an adaptive NN observer,
which can be formulated by

˙̂xfouv = k
(
x̂fouv

)+ g
(
x̂fouv

) (
τo − D̂(x̂fouv )

)
+ βOe, (26)

where x̂fouv denotes the observation of the system state x , β
is the positive definite observation gain matrix, and Oe =
x − x̂fouv denotes the state observer error.

Combining (15) with (26), we can present the observation
error dynamics as

Ȯe=k(x)+g(x)(τo−D(x))−k
(
x̂fouv

)
− g

(
x̂fouv

)(
τo− D̂(x̂fouv )

)
−β

(
x− x̂fouv

)
= Γ (x, x̂fouv ) − g

(
x̂fouv

)
(D(x) − D̂(x̂fouv )) − βOe

,

(27)

where Γ (x, x̂fouv )=ke(x, x̂fouv ) + ge(x, x̂fouv )(τo − D(x)),
ke(x, x̂fouv ) = k(x) − k(x̂fouv ) and ge(x, x̂fouv ) = g(x) −
g(x̂fouv ) are the observation errors of k(x) and g(x), respec-
tively. According to Assumption 3, ε is a positive constant
such that ||g(x̂ f ouv)|| = ε.

Assumption 5 Γ (x, x̂fouv ) is norm-bounded as
∥∥Γ (x, x̂fouv )

∥∥
≤ ω1, where ω1 is a positive constant.

To estimate the uncertainties D(x) , RBFNN is con-
structed as

D(x) = WT
DΦ (x) + χD, (28)

whereWD ∈ R
l1×2s denotes the ideal weightmatrix,Φ (x) ∈

R
l1 denotes the NN activation function, l1 indicates the num-

ber of neurons in the hidden layer, and χD indicates the NN
approximation error.

Let ŴD be the estimation ofWD. D̂(x̂fouv ) is the estimation
of D(x) , which can be expressed as

D̂(x̂fouv ) = ŴT
DΦ̂

(
x̂fouv

)
, (29)

where ŴD can be updated by

˙̂WD = −μΦ̂T (x̂fouv

)
OT
e g
(
x̂fouv

)
, (30)

whereμ is a positive definite matrix. From (28) and (29), one
obtains

D(x) − D̂(x̂fouv ) = WT
DΦ (x) + χD − ŴT

DΦ̂
(
x̂fouv

)
= WT

DΦ̃
(
x, x̂fouv

)+ W̃T
DΦ̂

(
x̂fouv

)+ χD,

(31)

where W̃D = WD − ŴD is the weight estimation error,
Φ̃
(
x, x̂fouv

) = Φ (x) − Φ̂
(
x̂fouv

)
is the estimation error of

the activation function.

Assumption 6 The local observation error We = WT
DΦ̃ (x,

x̂fouv

)+ χD is norm-bounded as ‖We‖ ≤ ω2, where ω2 > 0
is an unknown constant.

Theorem 1 For the VS manipulator systems with uncertain-
ties, the proposed adaptive NN observer can ensure the
observation error to beUUBwith the help of theNNupdating
law (30).

Proof Choose a Lyapunov function candidate as

Z1 = 1

2
OT
e Oe + 1

2
tr
(
W̃T

Dμ−1W̃D

)
. (32)
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The time derivative of (32) is

Ż1 = OT
e Ȯe − tr

(
W̃T

Dμ−1 ˙̂WD

)

= OT
e (Γ (x, x̂fouv ) − g(x̂fouv )(D(x) − D̂(x̂fouv )) − βOe)

− tr
(
W̃T

Dμ−1 ˙̂WD

)

≤ ω1 ‖Oe‖ − OT
e g(x̂fouv )(We + W̃T

DΦ̂
(
x̂fouv

)
)

− λmin(β)‖Oe‖2 − tr
(
W̃T

Dμ−1 ˙̂WD

)

≤ ω1 ‖Oe‖ − λmin (β) ‖Oe‖2 − ω2ε ‖Oe‖
− OT

e g(x̂fouv )W̃
T
DΦ̂(x̂fouv ) − tr

(
W̃T

Dμ−1 ˙̂WD

)

, (33)

where λmin (β) is the minimum eigenvalue of the matrix.
Thus, substituting (29) into (33), we have

Ż1 ≤ −((λmin(β) ‖Oe‖) − (ω1 + ω2ε)) ‖Oe‖ . (34)

It can be seen that L̇1 ≤ 0 when Oe lies outside the com-

pact set Ω1 =
{
Oe : ‖Oe‖ ≤ ω1+ω2ε

λmin(β)

}
. According to the

Lyapunov’s direct method, the state observation error can be
guaranteed to be UUB. This concludes the proof.

Critic NN and implementation

As an excellent learning tool of nonlinear functions, NN is
widely considered to approximate the cost function (22).
Thereby, the improved cost function can be expressed by
a critic NN on the compact set Ω2, which is given by

TU (ef) = WT
UΦU (ef) + χU , (35)

where WU ∈ R
l2 denotes the ideal weight matrix, ΦU (ef) ∈

R
l2 indicates the NN basis function, l2 denotes the number of

neurons in the hidden layer, and χU is the NN approximation
error. The partial derivative of TU (ef) with respect to ef is

∇TU (ef) = (∇ΦU (ef))
TWU + ∇χU , (36)

where ∇ΦU (ef) = ∂ΦU (ef )
∂ef

and ∇χU are the partial deriva-
tives of the basis functionΦU (ef) and the NN approximation
error χU , respectively. A critic NN is utilized to approximate
the improved cost function as

T̂U (ef) = ŴT
UΦU (ef). (37)

Thus, the partial derivative of T̂U (ef) with respect to ef is

∇ T̂U (ef) = (∇ΦU (ef))
TŴU . (38)

Considering (23), the ideal optimal feature tracking error
control policy can be described by

τ ∗
fe = −1

2
R−1gT(x)((∇ΦU (ef))

TWU + ∇χU ). (39)

Thus, according to (37) and (38), the approximation optimal
feature tracking error control can be given by

τ̂ ∗
fe = −1

2
R−1gT(x)(∇ΦU (ef))

TŴU . (40)

For the uncertain system (15), considering (20) and (36),
one can obtain

0 = α

(
D̂(σ )T D̂(σ ) +

(
(∇ΦU (ef))

TWU + ∇χU

)T

×
(
(∇ΦU (ef))

TWU + ∇χU

))

+ P (ef(σ ), τfe(σ )) +
(
(∇ΦU (ef))

TWU + ∇χU

)T
ė f .

(41)

Therefore, the Hamiltonian can be expressed by

H (ef , τfe,WU )

= α

(
D̂(σ )T D̂(σ )+(
(∇ΦU (ef ))TWU + ∇χU

)T (
(∇ΦU (ef ))TWU + ∇χU

)
)

+ P (ef (σ ), τfe(σ )) +
(
(∇ΦU (ef ))

TWU

)T
ė f − EUH ,

(42)

where EUH = −(∇χU )Tėf is the approximation residual.
And the approximate Hamiltonian is derived in the same
manner, which is expressed as

Ĥ
(
ef , τfe, ŴU

)

= α

⎛
⎝ D̂(σ )T D̂(σ )+(

(∇ΦU (ef))TŴU

)T (
(∇ΦU (ef))TŴU

)
⎞
⎠

+ P (ef(σ ), τfe(σ )) +
(
(∇ΦU (ef))

TŴU

)T
ė f

.

(43)

Defining the error function as EU = H (ef , τfe,WU ) −
Ĥ
(
ef , τfe, ŴU

)
, then combining (42) with (43), we have

EU = EUH − W̃T
U∇ΦU (ef)ėf , (44)

where W̃U = WU − ŴU is the weight estimation error.

Assumption 7 The NN function δ = ∇ΦU (ef)ėf is norm-
bounded as ‖δ‖ ≤ δe, where δe is a positive constant.

To adjust the critic NN weight vector ŴU , we can min-
imize the objective function Eobj = 1

2 E
T
U EU with the

updating law as
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˙̂WU = μU

(
∂EU

∂ŴU

)
= −μU EU δ, (45)

where μU is the learning rate of the critic NN. Hence, con-
sidering (44) and (45), one can obtain the updating law of
weight estimation error as

˙̃WU = − ˙̂WU = μU EU δ. (46)

Theorem 2 For the uncertain camera–manipulator system,
the weight vector approximation error of the critic NN can
be guaranteed to be UUB with the updating law (45).

Proof Choose a Lyapunov function candidate as

Z2 = 1

2μU
W̃T

U W̃U . (47)

The time derivative of (47) is

Ż2 = − 1

μU
W̃T

U
˙̃WU

= W̃T
U EU δ

= W̃T
U EUH δ −

∥∥∥W̃U δ

∥∥∥2.
(48)

According to Young’s inequality, we can obtain

Ż2 ≤ 1

2
E2
UH − 1

2

∥∥∥W̃U δ

∥∥∥2. (49)

Therefore, Ż2 < 0 when the weight approximation error

W̃U lies outside the compact setΩ3 =
{
W̃U :

∥∥∥W̃U

∥∥∥ ≤
∥∥∥ EUH

δe

∥∥∥}.
Thus, the weight approximation error can be guaranteed to
be UUB. This concludes the proof.

Stability analysis

Unlike existing visual tracking control methods which
neglected the optimal control performance, this paper impro-
ves the cost function with the information from an adaptive
NN observer. Furthermore, via the ADP approach, we
develop a novel optimal feature tracking error controlmethod
that optimizes the control performance and ensures the sys-
tem stability.

The optimal feature tracking controller which composes
of the desired tracking controller τfd and feature tracking
error controller τfe is derived by

τo = τfd + τ̂fe. (50)

Theorem 3 Consider system dynamics of VS manipulator
(15) and improved cost function (19), the closed-loop VS sys-
tem is UUB under the optimal tracking control policy (50).

Proof Choose a Lyapunov function candidate as

L3 = 1

2
ef

Tef +U∗ (ef) . (51)

Considering (15), (16) and (24), the time derivative of (51)
is expressed as

Ż3 = ef
Tė f + (∇U∗ (e)

)T
ė f

= ef
T(kd(x, xfd) + gd(x, xfd)τo + g(x)D(x))

− P (ef , τfe) − α
(
D̂T D̂ + (∇U∗ (ef)

)2)
,

(52)

where kd(x, xfd) = k(x) − k(xfd) and gd(x, xfd) = g(x) −
g(xfd). According to Assumption 3, ε f is a positive constant
such that ‖kd(x, xfd)‖ ≤ ε f ‖ef‖. Assuming ‖g(x)‖ ≤ κ1,
‖g(xfd)‖ ≤ κ2 and ‖g(x) − g(xfd)‖ ≤ κ3, we have

Ż3 ≤ ε f ‖ef‖2 + κ3 ‖τfd‖ ‖ef‖ + (κ3 + κ2) ‖τfe‖ ‖ef‖
+ κ1 ‖D(x)‖ ‖ef‖ − λmin(Q)‖ef‖2
− λmin(R)‖τfe‖2 − α(D̂T D̂ + (∇U∗ (ef)

)2
)

≤ ε f ‖ef‖2 + 3

2
‖ef‖2

+ 1

2
(κ3 + κ2)

2‖τfe‖2

+ 1

2
κ2
1‖D(x)‖2 + 1

2
κ2
3‖τfd‖2

− λmin(Q)‖ef‖2 − λmin(R)‖τfe‖2
− α(D̂T D̂ + (∇U∗ (ef)

)2
)

≤ −
(

λmin(Q) − ε f − 3

2

)
‖ef‖2

− α
(∇U∗ (ef)

)2 −
(

λmin(R) − 1

2
(κ3 + κ2)

2
)

‖τfe‖2
(

α − 1

2
κ2
1

)
D̂(x̂)T D̂(x̂)

,

(53)

Assuming ‖τfd‖ ≤ ζ1 and
∥∥∥D(x) − D̂(x̂)

∥∥∥ ≤ ζ2, where

ζ1 and ζ2 are positive constant. We have

Ż3 ≤ −
(

(λmin(Q) − ε f − 3

2
) ‖ef‖ − κ2

3 ζ 2
1 + κ2

1 ζ 2
2

2 ‖ef‖

)

‖ef‖ − α
(∇U∗ (ef)

)2
−
(

λmin(R) − 1

2
(κ3 + κ2)

2
)

‖τfe‖2

−
(

α − 1

2
κ2
1

)
D̂(x̂)T D̂(x̂).

(54)
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Table 1 VS system parameters

Joint 1 Joint 2 Joint 3

Length (m) 0.3 0.25 0.15

Mass (kg) 5.5 5 1.5

Inertia (kg m2) 0.25 0.2 0.05

Table 2 Controller and observer parameters

Variable β α μ Q μU R

Value 50 × I4 1 0.1 × I2 5 × I4 0.000005 0.1 × I4

Therefore, it can be seen that Ż3 < 0 when ef lies outside

the compact setΩ4 =
{
ef : ‖ef‖ ≤

√
κ23 ζ 21 +κ21 ζ 22

2(λmin(Q)−ε f − 3
2 )

}
with

the following conditions hold.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λmin(Q) ≥ ε f + 3

2

λmin(R) ≥ 1

2
(κ3 + κ2)

2

α ≥ 1

2
κ2
1

. (55)

Simulation tests

In this section, we employ a 3-DOF humanoid manipula-
tor with one feature point marked on the end-effector for
simulation tests [45,46]. The performance of the proposed
ADP-based feature tracking control are implemented in two
cases, i.e., without/with uncertainties.

The 3-DOF manipulator system and the control parame-
ters are presented in Tables 1 and 2. The intrinsic matrix Min

and the extrinsic matrix Mex are given by

Min =
⎡
⎣100 0 25 0

0 100 29 0
0 0 1 0

⎤
⎦ ,

Mex =

⎡
⎢⎢⎣
0.5 −0.3 0 0.2
0 0 −0.2 0.2
0.2 0.5 0 0.9
0 0 0 1

⎤
⎥⎥⎦ .

Define the desired feature trajectories as

fd(1) = 450 + 20 ∗ sin(t),

fd(2) = 65 + 20 ∗ cos(t).

In the adaptive NN observer, Gaussian type function is
selected as the activation function, the center of the basis

function Bc is

Bc =

⎡
⎢⎢⎣
420 435 450 465 480
40 55 65 75 90
30 20 0 20 30
10 5 0 −5 10

⎤
⎥⎥⎦ ,

and the width of the activation function Bb = 80. The
improved cost function (19) is approximated by a critic NN,
and the weight vector is ŴU = [ŴU1, ŴU2, ŴU3, ŴU4,

ŴU5, ŴU6, ŴU7, ŴU8, ŴU9, ŴU10]T with its initial value
ŴU = [7, 3, 50, 5, 4, 5, 15, 1, 0.5, 1.5]T, the activation
function is chosen as ΦU = [e2f 1, e f 1e f 2, e f 1e f 3, e f 1e f 4

e2f 2, e f 3e f 2, e f 2e f 4, e2f 3, e
2
f 4, e f 3e f 4]T.

Case 1: VS system without uncertainties
We employ three different initial feature points to ver-

ify the visual tracking performance using the proposed ADP
scheme. Moreover, it is assumed that the uncertainties can
be neglected. The initial feature points are given by

f1 = [460, 70]T,

f2 = [455, 90]T,

f3 = [445, 65]T.

As shown in Figs. 2, 3, 4 and 5, simulation results illus-
trate the trajectories of feature position, feature velocity, and
feature tracking error, respectively. The visual tracking tra-
jectories are illustrated in Fig. 2. It is observed that the actual
feature trajectories can follow their desired ones with dif-
ferent initial feature points. The image tracking errors are
displayed to illustrate the visual tracking performance intu-
itively in Fig. 3.We can see that the desired trajectorywith the
initial point f2 has a faster convergence rate than others. It is
obvious that velocity trajectory curves of the VSmanipulator
systems are smooth and continuous except a slight oscilla-
tion at the beginning as shown in Fig. 4. Feature curves on
the image plane are described in Fig. 5. From the feature
tracking trajectories and their error curves, the VS system is
performed to be asymptotically stable.

Case 2: VS system with uncertainties
To test the robustness of our proposedmethod,we consider

a simple servoing task by introducing different uncertainties.
Let the initial state be [460, 70, 0, 0], the initial observation
state be [461, 69, 0, 0]. The uncertainties as constant vector
and sinusoidal noise, which are given by

D1 = [50; 50]T,

D2 =
[

100sin(t) + 100cos(t)
150sin(0.5t) + 50cos(t)

]
.

Simulation results are shown in Figs. 6, 7, 8 and 9. The
velocity tracking trajectories still accompany thedesiredones
in both uncertain cases, which are shown in Figs. 6 and 8.
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Fig. 2 Image feature
trajectories a the first element of
feature vector. b The second
element of feature vector

Fig. 3 Image feature error a the
first element of feature vector. b
The second element of feature
vector

Fig. 4 Image feature velocity
trajectories a the first element of
feature vector. b The second
element of feature vector

Fig. 5 Image feature trajectories on the image plane

From Figs. 7 and 9, the uncertainties can be estimated well
within a short period of time by using the developed scheme.

To further exhibit the performance of the proposed ADP-
based controller, the comparison results with adaptive neural
network (ANN) scheme [47] and adaptive sliding mode con-
trol (ASMC) scheme [48] are also provided. The uncertainty
is set as constant vector D1. The image feature position
and their velocity trajectories of the proposed scheme, ANN
scheme and ASMC scheme are illustrated in Figs. 10 and 11.
The settling time of VS system under the proposed scheme
(about 1.8 s) is longer than that under ANN scheme (about
0.4 s) and ASMC scheme (about 0.2 s). The image track-
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Fig. 6 Image feature velocity
trajectories a the first element of
feature vector. b The second
element of feature vector

Fig. 7 Estimated uncertainties
D̂1 a D̂1(1). b D̂1(2)

Fig. 8 Image feature velocity
trajectories a the first element of
feature vector. b The second
element of feature vector

ing errors of three methods are depicted in Fig. 12. It can
be seen the error curve of the ASMC scheme has the fastest
convergence rate in spite of an obvious fluctuation in Fig.
12b. Furthermore, the error curve of the ANN scheme has a
small overshoot compared to our method. It is obvious that
the responses of feature tracking exhibit no oscillations and
overshoot, and smooth transient performance in Fig. 12c.
The comparison of image feature position of three methods
on the image plane are shown in Fig. 13. We can observe
that the results of tracking in a complete circle period, which
validates the accurate of our method. To quantize the track-

ing accuracy, three performance index functions, where Emax

denotes maximum value of absolute of image feature error,
Emin denotes minimum value of absolute of image feature
error and MSE denotes mean-square-error (MSE) measure
of image feature error, are defined as

Emax = max(| fuv − fd|),
Emin = min(| fuv − fd|),

MSE = 1

N

N∑
t=1

( fuv − fd)
2.
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Fig. 9 Estimated uncertainties
D̂2 a D̂2(1). b D̂2(2)

Fig. 10 Image feature
trajectories of three schemes a
the first element of feature
vector. b The second element of
feature vector

Fig. 11 Image feature velocity
trajectories of three schemes a
the first element of feature
vector. b The second element of
feature vector

Fig. 12 Image feature errors of
three schemes a the first element
of feature vector. b The second
element of feature vector
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Fig. 13 Image feature
trajectories on the image plane a
ADP scheme. b ANN scheme. c
ASMC scheme

Table 3 Numerical comparison of three methods

ADP ANN ASMC

Emax f1(1) 0.0796 0.1300 0.1355

f1(2) 0.0962 0.2238 0.7840

Emin f1(1) 2.9638 × 10−5 0.0871 1.1817 × 10−5

f1(2) 3.6897 × 10−6 0.1532 9.3381 × 10−4

MSE f1(1) 2.7677 × 10−4 0.0116 0.0029

f1(2) 0.0014 0.0348 0.1129

After 2 s, the numerical quantitative comparison results of
the proposed ADP-based scheme, ANN scheme and ASMC
scheme are listed in Table 3. The significance underline
points out the minimum value of the row in Table 3. It is
clearly indicated that the proposed ADP-based scheme has
a more precise tracking accuracy in contrast to other two
methods.

It concludes that the proposed scheme can fulfill promi-
nent tracking tasks by considering uncertainties.

Conclusion

In this paper, a feature tracking control scheme forVSmanip-
ulator with uncertainties based on ADP has been proposed.

Under the effective estimation of uncertainties based on the
adaptive NN observer, an improved cost function is designed
to account for the influence of system uncertainties. The
improved HJB equation is solved by a critic neural net-
work, and the approximated optimal feature tracking error
controller can be derived directly. Thus, the feature track-
ing controller is obtained by combining the optimal feature
error controller and the desired controller. Moreover, the VS
system is guaranteed to be UUB based on Lyapunov stabil-
ity analysis. Simulation results illustrate the effectiveness of
the proposed feature tracking control scheme. It is shown
that the proposed controller is capable of controlling the VS
manipulator which are regarded as highly nonlinear dynamic
systems successfully.

In this study, we investigate the visual servoing control
problem for manipulators subject to the unknown dynam-
ics with energy cost optimization. In our future work, the
dynamic control of manipulators with time delay, uncertain-
ties in Jacobian matrix, and depth information, as well as VS
control with image processing are potential research topics.
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National Natural Science Foundation of China (61703055), Jilin Sci-
entific and Technological Development Program (20200801056GH,
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Province (CN) (JJKH20200672KJ, JJKH20200673KJ, JJKH20200674KJ).

123



268 Complex & Intelligent Systems (2022) 8:255–269

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Wang H, Wang S, Zuo S (2020) Development of visible manip-
ulator with multi-gear array mechanism for laparoscopic surgery.
IEEE Robot Autom Lett 5(2):3090–3097

2. AryaKV,Bhadoria RS, Chaudhari NS (eds) (2018) Emergingwire-
less communication and network technologies: principle. Paradigm
and performance. Springer, Singapore

3. Bhadoria RS, Chaudhari NS (2019) Pragmatic sensory data seman-
tics with service-oriented computing. J Organ End User Comput
31(2):22–36

4. Dai H, Cao X, Jing X et al (2020) Bio-inspired anti-impact
manipulator for capturing non-cooperative spacecraft: theory and
experiment. Mech Syst Signal Proc 142:106785

5. Gao J, Zhang G, Wu P, Zhao X, Wang T, Yan W (2019) Model
predictive visual servoing of fully-actuated underwater vehicles
with a sliding mode disturbance observer. IEEE Access 7:25516–
25526

6. LiW,Chiu PWY,Li Z (2020)An accelerated finite-time convergent
neural network for visual servoing of a flexible surgical endoscope
with physical and rcm constraints. IEEE Trans Neural Netw Learn
Syst 31(12):5272–5284

7. Kang M, Chen H, Dong J (2020) Adaptive visual servoing with
an uncalibrated camera using extreme learning machine and q-
leaning. Neurocomputing 402(18):384–394

8. Li S, Ghasemi A, Xie W, Gao Y (2018) An enhanced IBVS con-
troller of a 6-Dof manipulator using hybrid PD-SMC method. Int
J Control Autom Syst 16:844–855

9. Sharma RS, Nair RR, Agrawal P, Behera L, Subramanian VK
(2019) Robust hybrid visual servoing using reinforcement learning
and finite-time adaptive fosmc. IEEE Syst J 13(3):3467–3478

10. Qiu Z, Hu S, Liang X (2019) Model predictive control for con-
strained image-based visual servoing in uncalibrated environments.
Asian J Control 21(3):1–17

11. Wang H, Jiang M, Chen W, Liu Y (2012) Visual servoing of
robots with uncalibrated robot and camera parameters. Mechatron-
ics 22(6):661–668

12. Li T, Zhao H (2017) Global finite-time adaptive control for uncal-
ibrated robot manipulator based on visual servoing. ISA Trans
68:402–411

13. Cheah CC, Liu C, Slotine J (2006) Adaptive Jacobian tracking con-
trol of robots with uncertainties in kinematic, dynamic and actuator
models. IEEE Trans Autom Control 51(6):1024–1029

14. Hua C, Liu Y, Yang Y (2015) Image-based robotic control
with unknown camera parameters and joint velocities. Robotica
33(8):1718–1730

15. Wang H (2015) Adaptive visual tracking for robotic systems with-
out image-space velocity measurement. Automatica 55:294–301

16. Wang H, Liu YH, Chen W, Wang Z (2011) A new approach to
dynamic eye-in-hand visual tracking using nonlinear observers.
IEEE ASME Trans Mechatron 16(2):387–394

17. Leite AC, Lizarralde F (2016) Passivity-based adaptive 3d visual
servoing without depth and image velocity measurements for
uncertain robot manipulators. Int J Adapt Control Signal Process
30:1269–1297

18. Wang F, Liu Z, Chen CLP et al (2018) Adaptive neural network-
based visual servoing control formanipulator with unknown output
nonlinearities. Inf Sci 451:16–33

19. Zhang Y, Hua C, Li Y, Guan X (2019) Adaptive neural networks-
based visual servoing control for manipulator with visibility
constraint and dead-zone input. Neurocomputing 332:44–55

20. Zhao B, Liu D, Luo C (2019) Reinforcement learning-based opti-
mal stabilization for unknown nonlinear systems subject to inputs
with uncertain constraints. IEEE Trans Neural Netw Learn Syst
31(10):4330–4340

21. Zhao B, Liu D, Cesare A (2020) Sliding mode surface-based
approximate optimal control for uncertain nonlinear systems with
asymptotically stable critic structure. IEEE Trans Cybern 99:1–12

22. Zhao B, Luo F, Lin H, Liu D (2021) Particle swarm optimized
neural networks based local tracking control scheme of unknown
nonlinear interconnected systems. Neural Netw 134:54–63

23. Lin H, Zhao B, Liu D, Cesare A (2020) Data-based fault tolerant
control for nonlinear systems through particle swarm optimized
critic learning. IEEE/CAA J Autom Sin 7(4):954–964

24. Werbos PJ (1992) Approximate dynamic programming for real-
time control and neural modeling. In: White DA, Sofge DA
(eds) Handbook of intelligent control: neural, fuzzy and adaptive
approaches, chapter 13. Van Nostrand, New York

25. Liu D, Xue S, Zhao B, Luo B, Wei Q (2021) Adaptive dynamic
programming for control: a survey and recent advances. IEEETrans
Syst Man Cybern 51(1):142–160

26. Kong L, Zhang S, Yu X (2020) Approximate optimal control for
an uncertain robot based on adaptive dynamic programming. Neu-
rocomputing 423(29):308–317

27. ZhangC,ZouW,ChengN,Gao J (2017)Trajectory tracking control
for rotary steerable systems using interval type-2 fuzzy logic and
reinforcement learning. J Frankl Inst 355(2):803–826

28. Li Y, Chen L, Tee K, Li Q (2015) Reinforcement learning con-
trol for coordinatedmanipulation ofmulti-robots. Neurocomputing
170:168–175

29. Tang L, Liu Y, Tong S (2014) Adaptive neural control using rein-
forcement learning for a class of robotmanipulator. Neural Comput
Appl 25(1):135–141

30. Li S, Ding L, Gao H, Chen C, Liu Z, Deng Z (2017) Adaptive
neural network tracking control-based reinforcement learning for
wheeled mobile robots with skidding and slipping. Neurocomput-
ing 283(29):20–30

31. Wang Z, Dai Y, Li Y (2011) Research of path planning based on
adaptive dynamic programming for bio-mimetic robot fish. Int J
Model Identif Control 13(3):144–151

32. Lian C, Xu X, Chen H, He H (2016) Near-optimal tracking control
of mobile robots via receding-horizon dual heuristic programming.
IEEE Trans Cybern 46(11):2484–2496

33. Zhan H, Huang D, Chen Z, Wang M, Yang C (2020) Adaptive
dynamic programming-based controller with admittance adapta-
tion for robot–environment interaction. Int J Adv Robot Syst
17(3):172988142092461

34. Li Y, Xia H, Bo Z (2018) Policy iteration algorithm based fault
tolerant tracking control: an implementation on reconfigurable
manipulators. J Electr Eng Technol 13(4):1739–1750

35. Zhao B, Liu D (2020) Event-triggered decentralized tracking con-
trol of modular reconfigurable robots through adaptive dynamic
programming. IEEE Trans Ind Electron 6(4):3054–3064

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Complex & Intelligent Systems (2022) 8:255–269 269

36. Dong B, An T, Zhou F, Liu K, Li Y (2019) Decentralized robust
zero-sum neuro-optimal control for modular robot manipulators
in contact with uncertain environments: theory and experimental
verification. Nonlinear Dyn 97(13):503–524

37. Al-Junaid H (2015) Ann based robotic arm visual servoing nonlin-
ear system. Procedia Comput Sci 62:23–30

38. Li W, Ye G, Wan H, Zheng S, Lu Z (2015) Decoupled control
for visual servoing with SVM-based virtual moments. In: IEEE
international conference on information and automation. IEEE, pp
2121–2126

39. Oliveira TR, Leite AC, Peixoto AJ, Hsu L (2014) Overcoming
limitations of uncalibrated robotics visual servoing by means of
sliding mode control and switching monitoring scheme. Asian J
Control 16(3):752–764

40. Li T, Zhao H, Chang Y (2018) Visual servoing tracking control of
uncalibrated manipulators with a moving feature point. Int J Syst
Sci 49(9–12):2410–2426

41. Liang X, Wang HS, Liu YH et al (2016) Adaptive task-space
cooperative tracking control of networked robotic manipulators
without task-space velocity measurements. IEEE Trans Cybern
46(10):2386–2398

42. Chaumette F, Hutchinson S (2006) Visual servo control, part i:
basic approaches. IEEE Robot Autom Mag 13(4):82–90

43. Chaumette F (1998) Potential problems of stability and con-
vergence in image-based and position-based visual servoing. In:
KriegmanDJ, Hager GD,Morse AS (eds) The confluence of vision
and control. Lecture notes in control and information sciences, vol
237. Springer, London

44. Abu-Khalaf M, Lewis FL (2005) Nearly optimal control laws for
nonlinear systems with saturating actuators using a neural network
HJB approach. Automatica 41(5):779–791

45. Siciliano B, Sciavicco L, Villani L, Oriolo G (2008) Robotics:
modelling. Planning and control. Springer, London

46. Lafmejani HS, Zarabadipour H (2014) Modeling, simulation and
position control of 3DOF articulated manipulator. Indones J Electr
Eng Inform 2(3):132–140

47. Liu J (2013) Radial basis function (RBF) neural network control
for mechanical systems. Springer, Berlin

48. Liu J, Wang X (2011) Advanced sliding mode control for mechan-
ical systems, design. Analysis and matlab simulation. Springer,
Berlin

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Adaptive dynamic programming-based feature tracking control of visual servoing manipulators with unknown dynamics
	Abstract
	Introduction
	Related work
	Motivation and contribution

	Preliminaries and problem statement
	Camera–robot kinematics model
	Camera–manipulator dynamic model

	ADP-based feature tracking controller
	Optimal visual control
	Adaptive neural network observer design
	Critic NN and implementation
	Stability analysis

	Simulation tests
	Conclusion
	References




