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Abstract
Finding the optimal size of a hybrid renewable energy system is certainly important. The problem is often modelled as
an multi-objective optimization problem (MOP) in which objectives such as annualized system cost, loss of power supply
probability etc. are minimized. However, the MOP model rarely takes the load characteristics into account. We argue that
ignoring load characteristics may be inappropriate when designing HRES for a place with intermittent high load demand.
For example, in a training base the load demand is high when there are training tasks while the demand decreases to a low
level when there is no training task. This results in an interesting issue, that is, when the loss of power supply probability
is determined at a specific value, say 15%, then it is very likely that most of loss of power supply would occur right in
the training period which is unexpected. Therefore, this study proposes a constraint multi-objective model to deal with this
issue—in addition to the general multi-objective optimization model, the loss of power supply probability over a critical
period is set as a constraint. Correspondingly, the non-dominated sorting genetic algorithm II with a relaxed ε constraint
handling strategy is proposed to address the constraint MOP. Experimental results on a real world application demonstrate
that the proposed model and algorithm are both effective and efficient.
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Abbreviations
HRES Hybrid renewable energy system
EMO Evolutionary multi-objective optimization

NSGAII Non-dominated sorting algorithm II
WT Wind turbines
Bat Battery banks

LPSP Loss of power supply probability
MOP Multi-objective problem
ASC Annualized system cost
PV Photovoltaic
DG Diesel generator

Algorithm parameters
mGen Maximum number of generations
SBX Simulated binary crossover

N Population size
PM Polynomial mutation

Objective function
FASC Annualized system cost function

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-021-00363-4&domain=pdf
http://orcid.org/0000-0001-9048-2979


804 Complex & Intelligent Systems (2022) 8:803–817

Npv The number of PV panels
Ndg The number of DGs
Cini Initial investment
Crep Battery replacement cost
Cemi Emission cost
Qfuel Fuel consumption
ree Efficiency of rectifier
sff Sinking fund factor
nir Nominal interest rate
ly The HRES lifetime

FLPSP LPSP function
Nwt The number of WT
Nbat The number of batteries
Com Operation and maintenance cost
Cfuel Fuel cost
facemi Emission coefficient
fuelc Fuel price
ine Efficiency of inverter
crf The capital recovery factor
rair Real annual interest rate

PVmodel
Ppv Power output by PV panels (W)
sr Solar radiation
α PV installation angle

tloc The local time
δ Solar declination

TC Cell temperature (◦C)
TCSTC Nominal cell operating temperature (◦C)

ISC,STC Short-circuit current under STC (A)
VOC Open-circuit voltage (V)
ISC Short-circuit current (A)
ηpv Efficiency of PV panels
sr p Incident radiation
δlat Latitude

τ The hour angle
TA Ambient temperature (◦C)
ISC Short-circuit current (A)

VOC,STC Open-circuit voltage under STC (V)
KV VOC temperature coefficient (V/◦C)
KI ISC temperature coefficient (A/◦C)

WTmodel
Pwt Power output by WT (W)

v The wind speed
Vin Cut-in wind speed
H The height of WT

Pwtr The rated WT power(W)
Vr the rated wind speed

Vout Cut-off wind speed
Href The reference WT height

Battery bankmodel
SOC the state of charge
δbat The self-discharging coefficient
Ebat Total charged or discharged power

Capbat Nominal capacity of Bat
ηbat Round-trip efficiency
lbat Lifetime of batteries

Diesel generator
Prdg The nominal output power of DG(W)
ηdg DG efficiency coefficient
Pdg Actual DG output power(W)

Introduction

Electricity in remote places, e.g., islands, are generally sup-
plied by fossil fuel based generation systems. However, due
to the depletion of fossil fuels and harmful emissions, renew-
able energieswhich are sustainable and environment-friendly
have received increasing attentions in recent years. Never-
theless, their intermittence and unpredictable characteristics
have brought challenges for their applications. In order
to resolve this issue, multi-energy complementary hybrid
renewable energy systems (HRES) have become increasingly
popular [1,2].

In this context, optimal sizing components of a HRES,
i.e., determining the capacity of system components on the
premise of certain optimization objectives, is a key factor to
attain a low cost and reliable HRES. In general, the problem
can be formulated as an multi-objective optimization model,
see Eq. (1).

MinF(x) = { f1(x), f2(x), . . . , fm(x)}
S.T.x = (x1, x2, . . . , xi , . . . , xk) ∈ �

(1)

where f1(x), f2(x), . . . , fm(x) represent optimizationobjec-
tives such as the annualized system cost (ASC), loss of power
supply probability (LPSP) [3], and x is the decision vector
which determines the HRES size such as the number of pho-
tovoltaic (PV) panels, wind turbines, the installation angle
of PV panels. Besides, m and � in Eq. (1) denote the num-
ber of objectives and the search space, respectively. With
the MOPmodel, an optimization solver such as evolutionary
multi-objective algorithm [4] can then be applied to find a
set of Pareto optimal solutions. These solutions effectively
present different trade-offs amongst optimization objectives
[5,6]. To this end, a decision-maker can select his/her pre-
ferred solution, i.e., HRES size. The above method presents
a basic process of sizing a HRES. For a specific application
scenario, the method, especially the MOP model, needs to
be further refined.
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In this paper, the research of optimal sizing of HRES
focuses on places whose load demand has intermittent char-
acteristics. For example, in a training base, when there are
training tasks the load demand is high, however, when the
training completes, the load demand becomes very low. In
addition, the annual training tasks and training period are usu-
ally fixed. Therefore, while sizing a HRES for such places,
the load characteristics are suggested to be taken into account.
That is, in addition to the commonly used optimization crite-
ria, an additional constraint that measures the power supply
reliability over the training period must be included. This is
also to ensure an appropriate use of the criterion of LPSP.
Generally, LPSP at about 10–15% is acceptable in an HRES.
However, for the above scenario, it is very likely that the
loss of power supply would mostly occur during the training
period, which is clearly not expected.

Therefore, this study proposes a constraintmulti-objective
optimization model for the optimal sizing of HRES in places
with intermittent high load demand. Specifically, the annual-
ized system cost (ASC), loss of power supply probability
(LPSP) are used as optimization objectives, the LPSP of
a specific period, denoted as LPSP-T, is considered as a
constraint. Correspondingly, an effective and efficient con-
straint multi-objective evolutionary algorithm, i.e., NSGA-II
with an ε relaxed constraint handling strategy, is proposed
to address the constraint MOP, searching for the best HRES
size, i.e., the number of PV panels and their installation angle
(Npv and α), the number of wind turbines and their instal-
lation height (Nwt and H ), the number of diesel generators
(Ndg), the number of battery banks (Nbat). Lastly, a case study
on Chang-Shan island (122◦44′N , 37 ◦ 55′E) demonstrates
the effectiveness of the proposed model and algorithm.

The rest of this paper is organized as follows. Section
3 reviews recent studies with respect to optimal sizing of
HRES. Section 4 presents mathematical models of the main
components in HRES. Section 5 elaborates the proposed
constraint MOP model and optimizer for optimal sizing of
HRES. This is then followed by a case study in Sect. 6. Sec-
tion 7 concludes the paper, and identifies future studies.

Literature review

The optimal sizing of HRES has been intensively studied as
shown in Fig. 1. These studies have mainly investigated the
following two issues—(i) various combinations of optimiza-
tion objectives while sizing a HRES such as the loss of power
supply probability, loss of load probability, annualized sys-
tem cost, energy production and environmental emissions,
and (ii) development of different problem solvers including
linear programming, heuristics, hybrid methods and soft-
ware tools. This section briefly reviews some representative

Fig. 1 The number of publications in Web of Science with respect to
“multi-objective optimal sizing (design) of hybrid renewable energy
system”

studies. Readers can refer to [7–9] for more comprehensive
surveys.

In [10] the optimal sizing of a PV-wind-battery system is
conducted. A single objective constraint optimization model
is built in which the annualized system cost is minimized
while a pre-defined LPSP is satisfied. The design variables
include the number of PV panels, the slope angle of PV
panels, the number of wind turbines and their installation
height, and the capacity of batteries. In [11], the optimal
energy storage size of a PV-based standalone system under
different time scales is studied in which the optimization
criterion is the lifetime system cost. In [3] the optimal size
of a PV-wind-battery-diesel system is studied where ASC,
LPSP and greenhouse gas emission are minimized. Inter-
estingly, this study takes both the type of and capacity of
HRES components as decision variables. With respect to
the studies of models in the optimal sizing of HRES, the
authors of [8] reviewed the latest studies and found that the
PV-Wind-Diesel-Battery is the most frequent configuration.
Also, in [12] a systematic framework integrated with techno-
economic optimization analysis for the design of HRES is
provided. The study examined different hybridizations of
system components, i.e., solar photovoltaic, wind turbines,
diesel generators, batteries and converters. It is found that the
hybrid PV-wind-diesel-battery-converter system is the most
feasible and reliable solution in terms of minimizing the sys-
tem cost and pollutant emissions.

Due to the model complexity of optimal sizing of HRES,
various algorithms have been developed to solve the model.
In [13] the socio-techno-economic optimal design of HRES
is studied where the effect of different hybridizations of wind
turbines, PV panels, diesel generators, biomass and batter-
ies is examined. Also, performance of several representative
evolutionary algorithms on this problem is analyzed. In [14],
the grey wolf optimization algorithm is proposed to find the
optimal size ofHRES in terms ofminimizing the system cost.
In [15] amulti-objective hybrid particle swarm optimization-
grey wolf optimizer is applied to find the optimal size of
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HRES while minimizing the total cost and emissions in a
20-years lifetime. Note that in this study the HRES is grid-
connected and is integrated with a reverse osmosis desalina-
tion plant. It uses PV modules and wind turbines as the main
source of energy, and uses battery banks and hydrogen stor-
age systems as to store energy. Diesel generators are used as
backup energy sources. In [16] theHRES is composedof only
PVpanels and diesels.Multi-objective crow search algorithm
(MOCSA) is applied to solve the sizing model where the
total net present cost, CO2 emission and LPSP are taken
as optimization objectives. Experimental results show that
MOCSA outperforms multi-objective particle swarm opti-
mization on this problem. In [17] four heuristics, i.e., lion
optimizer algorithm , grey wolf optimizer algorithm, krill
herd algorithm and JAYA algorithm, are applied to mini-
mizing the unit energy cost of HRES for a specified LPSP.
Experimental results show that JAYA is the most effective.
Besides, this study also investigated the effect of different
energy storage technologies in solar-wind hybrid system, i.e.,
PV/Wind/Ni-Cd, PV/Wind/Li-ion and PV/Wind/LA, and
found that PV/Wind/Ni-Cd and PV/Wind/Li-ion are more
effective than PV/Wind/LA. Lastly, as reviewed in [7], HRES
sizing methods also include classical methods and software
tools. For example, dynamic programming is used in [18],
the HOMER software is applied in [19,20].

To make the sizing model more applicable, uncertainties
such as renewable resources availability and load demand
have gradually received attentions in the design ofHRES. For
example, the study [21] proposed a probabilistic simulation-
based multi-objective optimization method for sizing HRES
under various uncertainties. Experimental results show that
the system cost with the same LPSP under uncertain environ-
ment is a bit higher than that under deterministic condition.
In [22] uncertainties of wind speed and solar radiation are
considered in the design of HRES. The NSGAII algorithm
integrated with a chance constrained programming method
is applied to solve the model. In [23] the particle swarm opti-
mization algorithm integrated with Monte Carlo simulation
method is applied to sizing HRES under uncertainties. Very
recently, the authors of [24] proposed a two-stage method
to handle the optimal sizing of HRES under uncertainties
for seaports. In the first stage, the capacity of system compo-
nents, i.e., the PV panels, diesels, is optimized byminimizing
the investment cost. In the second stage, the stochastic char-
acteristics of wind energy and load demand in the seaports
are further considered to minimize the operation cost and to
satisfy the capacity and emission constraints.

Overall there have been a large number of studies with
respect to multi-objective optimal sizing of HRES. However,
these studies rarely take the characteristics of load demand
into account. As is previously mentioned, the load demand
of some places may have intermittent characteristics. That
is, the load demand is high during a specific period while is

Fig. 2 Illustration of a typical stand-alone hybrid solar andwind system
[25]

relatively low at the rest of time. In such case we argue that
load characteristics cannot be ignored while sizing HRES.
Thus, this study proposes a novel constraint multi-objective
model and an effective constraint multi-objective evolution-
ary algorithm to sizing HRES.

Modelling

This study focuses on stand-alone hybrid renewable energy
system as shown in Fig. 2. The HRES in specific contains
PV panels, wind turbines, battery banks, diesel generators as
well as other accessory devices and cables. Next we describe
mathematical models of these HRES components.

PV panels

The solar energy is utilized through PV panels. The power
output by PV panels is mainly determined by solar radiation
(sr), the number (size) of panels (Npv) and the installation
angle of panels (α). Specifically, the model described in [26]
is adopted, see Eq. (2).

Ppv(t) = ISC(t) · VOC(t) · ηpv

ISC(t) = [ISC,STC + KI (TC (t) − 25)] srp(t)
1000

VOC(t) = VOC,STC + KV · TC (t)

TC (t) = TA(t) + TCSTC − 20

800
sr p(t)

(2)

where Ppv(t) denotes power output by a single PV panel
at time step t , which equals to the product of short-circuit
current, ISC(t)(A), the open-circuit voltage, VOC(t)(V ), and
the coefficient of efficiency of PV panels, ηpv. Note that ηpv
accounts for the power loss caused by the cable resistance,
the diffused and reflected solar radiation and the accumu-
lative dust, and is set to 0.95 [26]. Both ISC and VOC are
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determined by the short-circuit current ISC,STC and open-
circuit voltage VOC,STC under standard condition (STC), the
cell temperature TC (◦C), KI (the coefficient of the short-
circuit current temperature, A/◦C) and KV (the coefficient
of open-circuit voltage temperature V /◦C). The parame-
ter sr p denotes solar radiation perpendicular to PV panels,
which affects both ISC and TC . TC is also affected by the
ambient temperature TA(◦C) and the nominal cell operat-
ing temperature TCSTC(◦C). Lastly, sr p is determined by the
solar radiation (sr), the installation angle of panels (α), and
the geography of the latitude (φ), see Eq. (3) [27].

sr p(t) = sr(t)

sin β
· sin(α + β)

sin β = sin φ sin δ + cosφ cos δ + cos τ

δ = θ ×
(
360 × (284 + d)

365

)

τ = 360 × (12 − tloc)

24
θ = 23.44◦

(3)

where d denotes the cumulative days with January 1st as
1, and tloc denotes the local time (0 ≤ tloc ≤ 23). In the
equation, δ and β denote the solar declination and the angle
between the sun and the horizon over a day, respectively.
θ = 23.44◦ indicates the angle between the equatorial plane
and the earth axis.

One advantage of the PV model is that the latitude of the
place, the change of solar elevation angle over a day and the
installation angle α are all considered for the measurement
of solar radiation which enables the calculation of power
output to be more accurate. Certainly, the model also has
shortcomings, for example, the diffused and reflected solar
radiation are neglected though they have little effect.

Wind turbine

The output power of wind turbines is determined by the wind
speed (v), the cut-in (Vin), cut-off wind speed (Voff ), and can
be described using a piecewise linear function. In specific,
wind turbines generate powerwhen thewind speed v is larger
than Vin. The output power linearly increases as v increases
to the ratedwind speed (Vr ).When Vr < v < Voff , the output
power equals to the rated power Pwtr. Lastly, when v < Vin
or v > Voff wind turbines are shut down for safety reasons.
Mathematically, Eq. (4) presents the power output by a single
wind turbine.

Pwt =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, v < Vin
Pwtr · v−Vin

Vr−Vin
Vin ≤ v < Vr

Pwtr Vr ≤ v < Voff
0, v > Voff

(4)

In general, given the wind speed record of a place (Vref )
at a reference height Href , the wind speed v of height H can
be refined by Eq. (5).

v = Vref

(
Href

H

)γ

(5)

where γ is usually set as 1
7 for relatively flat surfaces.

Battery banks

In a HRES battery banks store excess power generated by
PV panels and wind turbines, and output power when there
is a load-supply gap. The working process of battery banks
can be described using the parameter state-of-charge (SOC),
see Eq. (6)

SOC(t + 1) = SOC(t) · (1 − δbat)

+ sign · ηbat · Ebat(t) · �t

Capbat
· 1

Nbat

sign = 1 charging mode

sign = −1 discharging mode

(6)

where SOC of the (t + 1) step, SOC(t + 1), is determined
by SOC(t) and the total power (Ebat(t)) charged or dis-
charged at time step t . Parameters δbat and Capbat denote the
self-discharging coefficient and the nominal capacity of the
battery, respectively. ηbat denotes the round-trip efficiency
of batteries. Lastly, SOC(t) of batteries is always restricted
within SOCmin and SOCmax for safety reasons.

Diesel generator

When the power demand cannot be met by both renewable
energies and battery banks, diesel generators start working.
The output power of a single diesel generator can be calcu-
lated as follows [25].

Pdg = Prdg · ηdg (7)

where Prdg denotes the nominal output power of a diesel
generator, and ηdg is a coefficient describing the efficiency
of diesel generator.

ConstrainedMulti-objective optimal sizingmodel of
HRES

Prior to introducing the optimization model of HRES, the
workflow of HRES is presented in Fig. 3. Assuming that the
hourly load demand, the wind speed and the solar radiation
are known beforehand, first power generated by renewable
energies is used to meet the load demand. Note that efficien-
cies of inverter (ine) and rectifier (ree) are set to 0.9 [10].
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Fig. 3 Simulation of HRES workflow over a year’s time [3]

After satisfying the load demand, excess power is used to
charge battery banks till they reach the maximum SOC. On
the other hand, if the load demand cannot be met by renew-
able energies, then battery banks discharge their power till
they reach the minimum SOC. If the load demand still can-
not be met, then diesel generators start working to fill in the
demand-supply gap. Accordingly, the cost of fuel consump-
tion and the associated gas emissions are calculated. Note
that when the fuel is also used up while the load demand is
still unmet, then some load will be cut off. This accounts for
a loss of power supply.

Next we present the constraint multi-objective optimal
model proposed for sizing HRES with load characteristics.
The optimization objectives are minimization of the loss of

power supply probability, FLPSP and minimization of the
annualized system cost, FASC, and the constraint CLPSP is
that the loss of power supply probability during a specific
period must be lower than a specified level. Assuming that
the overall number of simulation steps is a year’s time, i.e.,
T = 8760, next we describe how to calculate FLPSP, FASC
and CLPSP.

• FASC is the annualized system cost which is composed
of the investment cost (Cini) of HRES distributed to each
year, the operation andmaintenance cost (Caom) per year,
the battery replacement cost per year, the fuel consump-
tion and emission cost.
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FASC = Cini + Com + Crep + Cfuel

= Cini(PV + WT + Bat + DG)+
Com(PV + WT + Bat + DG)+
Crep(Bat)+
Cfuel

(8)

whereCfuel accounts for the cost of fuel consumption and
the cost of greenhouse gas emission.

Cfuel = Cemi + Ccosp
= ∑T

i=0 Qfuel(t) ∗ fuelc+
= ∑T

i=0 Qfuel(t) ∗ emiα ∗ f acemi

Qfuel(t) = Prdg ∗ dg1 + Pdg(t) ∗ dg2

(9)

where Qfuel(t)(L) denotes the fuel consumption at time
step t and f uelc is the fuel price. facemi ∈ [2.4kg/L,
2.8kg/L] is diesel generator related parameter that mea-
sures the emission coefficient. emiα is the coefficient
of emission-to-cost. Besides, dg1 = 0.081451/kWh and
dg2 = 0.2461/kWh are parameters, describing the curve
of fuel consumption [28].
Given the life time of HRES is designed for 20 years, it is
necessary to consider the nominal interest rate (nir) and
the inflation rate (ir). Specifically, the real annual interest
rate (rair), the capital recovery factor (crf) and the sinking
fund factor (sff) are calculated as follows.

rair = nir − ir

1ir

crf = rair(1 + rair)ly

(1 + rair)ly − 1

sff = rair

(1 + rair)lbat − 1

ly = 25, lbat = 5, nir = 3.75%, ir = 1.5%

(10)

where lhres and lbat denote the life time of HRES and
batteries, respectively.
Moreover, Eq. (11) calculates the Cini, Crep and Com.

Cini(PV + WT + Bat + DG)

= crf · (NpvCipv + NwtCiwt + NbatCibat + NdgCidg)

Com(PV + WT + Bat + DG)

= NpvCmpv + NwtCmwt

+ NbatCmbat + NdgCmdgCrep(Bat)

= s f f · (NbatCrbat)

(11)

where Cipv,Ciwt,Cibat and Cidg denote the initial invest-
ment cost of PV panels, wind turbines, battery banks and
diesel generators distributed in each year, respectively.
Cmpv,Cmwt ,Cmbat and Cmdg denote the operation and
maintenance cost of these components per year. Crbat

denotes the battery replacement cost per year.

• FLPSP measures the overall loss of power supply proba-
bility, which is calculated as follows.

FLPSP =
∑T

i=0 ti
T

(12)

where ti = 1 when the supplied power Psupply(t) at time
t is smaller than the load demand Pload(t), otherwise ti =
0.

• CLPSP describes the loss of power supply probability dur-
ing a specific period, and is defined in Eq. (13).

CLPSPT =
∑

i∈�t
ti

|�t | (13)

where �t denotes a specific period. For example, �t can
be an interval [t1, t2]where t1 and t2 denote the beginning
and end simulation steps, respectively.

Overall, the two-objective constraint optimization model
is described as follows.

MinF(x) = {FLPSP, FASC}
x = (Npv, α, Nwt, H , Nbat, Ndg)

S.T .

CLPSPT ≤ LPSPv

H ∈ [10, 30]
α ∈ (0◦, 90◦)
Npv, Nwt, Nbat, Ndg ∈ [0, 50]

(14)

where LPSPv is a pre-specified constraint value.

Remark in general the optimal sizing of HRES is solved
using an multi-objective model. However, we argue that for
places that have intermittent high load demand, it is neces-
sary to introduce the constraint, i.e., CLPSPT ≤ LPSPv into
the model so as to find more appropriate HRES designs. For
example, when we design a HRES for a training base, the
load of such place features significant characteristics. That
is, when there are training tasks, the load demand is high
while when there is no training task, the load demand is
low. Moreover, the training only occurs at a fixed period of
a year, e.g., summer or winter holidays. It is surprising to
see that in literature this issue is rarely discussed. Without
introducing the CLPSPT constraint, it is very likely that when
FLPSP is specified at certain level, e.g., 10%, then the loss
of power supply occurs mostly during the training period.
Besides, at the rest of time the power output by renewable
energies could be redundant. By introducing the constraint,
it is explicitly guaranteed that the loss of power supply prob-
ability at a specific (or preferred) period meet the practical
demand (or preference of decision-makers).

123



810 Complex & Intelligent Systems (2022) 8:803–817

Fig. 4 Illustration of the (N + N ) elitist framework

Algorithm

In literature, the optimal sizing of HRES design is gener-
ally solved by an unconstrained evolutionary multi-objective
(EMO) algorithm . For example, in [29], PICEAg [30] is
applied to sizing a standalone HRES in which the annual-
ized cost, system reliability and emissions are minimized.
In addition to PICEAg, other EMO algorithms, e.g., SPEA
[31], NSGAII [32], MOEA/D [33,34] have also been used,
see [3,25,35]. Based on these studies, this section proposes
an effective EMO algorithm to solve the constraint multi-
objective optimization model.

The well-known NSGAII is taken as the base EMO algo-
rithm due to its effectiveness and robustness on various real
world problems [32]. As is shown in Fig. 4, NSGAII is an
(N + N ) elitist algorithm. That is, the offspring solutions of
size μ are combined with their parents, the combined solu-
tions compete with each other to obtain the next N parent
solutions. Readers are referred to [32] for more details about
NSGA-II.

In order to handle the constraint multi-objective model,
we integrate a relaxed ε constraint handling technique into
NSGAII, the derived algorithm is denoted as ε-CNSGAII.
Prior to elaborating the ε-CNSGAII, we describe the relaxed
ε technique. The idea is simple—if the constraint violation
of a solution is less than the value of ε, then the solution is
taken as feasible, otherwise it is infeasible. In principle the
setting of ε is related to the trade-off between feasible and
infeasible solutions. At the beginning of the search, ε is set as
a large value, which enables most of solutions to be feasible.
As the search progresses, ε changes based on the generation
number and the ratio of feasible solutions. Specifically, ε

is changed according to the following rule. When most of

solutions are infeasible, then ε is exponentially decreased so
as to effectively push the search towards feasible regions. If
most of solutions become feasible, then ε is increased such
that the exploration in the infeasible regions is strengthened.
The adaptive ε is helpful in making use of both feasible and
infeasible information, and thus, leading to a good algorithm
performance. The relaxed ε strategy is described as follows.

εk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ(xi ), k = 1

(1 − τ)εk−1, 1 < k < Gc and rk ≤ δ

(1 + τ)φmax, 1 < k < Gc and rk > δ

0, k ≥ Gc

(15)

where k is the generation number and rk is the ratio of feasible
solutions in the k-th generation. Gc is the total generation
number that allows for the constraint relaxation, and δ is the
parameter used to control the searching preference between
the feasible and infeasible regions.Gc and δ are set to be 80%
of the maximum generation number and 0.95, respectively
[36]. Additionally, xi is the i th solution amongst the initial
population which is ranked in descending order according to
the constraint violation value, withφ(xi ) being the constraint
violation of xi . τ is a scaling factor and τ ∈ [0, 1]. φmax is
the so-far-found maximum constraint violation value.

From Eq. (15), we can observe that (i) when k < Gc, εk is
dynamically adjusted to balance the search in the feasible and
infeasible regions, and (ii) when k ≥ Gc, εk = 0 is applied
to exert strong selection pressure towards feasible regions,
thus the feasibility of the finally obtained solutions can be
ensured.

The pseudo-code of ε-CNSGAII is shown in Algorithm
(1). The algorithm starts with a set of N randomly generated
parent solutions (Line 1). After the objective vectors and the
constraint violation values are calculated, the initial solution
archive As , the level of relaxation ε and the maximum con-
straint violation φmax can be determined (Lines 2–6). Note
that if all solutions in the initial population are infeasible, then
As = ∅. At each iteration, the same number of offspring solu-
tions are generated through selection, crossover andmutation
operators (i.e., simulated binary crossover (SBX) and poly-
nomial mutation (PM) [37]). Then the parent solutions and
their offspring are combined to form a joint population (Lines
9–11). Correspondingly, φmax can be updated by comparing
the constraint violation values of newly-generated solutions
with the original φmax, and the maximum one selected (Line
12). As for the joint population Sjoint, they are compared
based on εk-level relaxation. That is, for any solution, e.g.
xi , if the constraint violation is less than εk , then it is con-
sidered to be εk-feasible. Here, we label each εk-feasible
solution in the joint populationwith “0”. Otherwise, the solu-
tions whose constraint violation is larger than εk are labelled
with “1”. During the environmental selection phase, the solu-
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tions in Sjoint are ranked, based on their Pareto dominance
levels, εk-feasible labels, and the crowding distances. The
former two indicators are used in ascending order while the
latter one is used in descending order. Based on the ranking
results, the best N solutions survive into the next generation,
which forms the new parent population S (Lines 13–15).
Finally, the solution archive As is updated by new feasi-
ble solutions. That is, a total number of N solutions are
selected from the archive populationwhen its size exceeds N .
(Lines 16–19).

Algorithm 1: ε-CNSGAII
Input: Maximum number of generations Gmax ,

population size N
Output: Solution archive As

Initialize a set of N random solutions,1

S = {
x1, x2, . . . , xN

}
;

Calculate the objective vector F(xi ) and the2

constraint violation φ(xi ) for each xi ∈ S;
As = {

xi |xi ∈ S, φ(xi ) = 0
}
;3

Set k = 1;4

Initialize εk according to Eq. (15);5

Set φmax = max
i=1,...,N

φ(xi );
6

while k < Gmax do7

Update εk according to Eq. (15);8

Generate N offspring solutions Sc by crossover9

and mutation operators;
Calculate F(xi ) and φ(xi ) for each xi ∈ Sc;10

S joint = S
⊎

Sc;11

Update φmax ;12

Perform εk-level relaxation for S joint , and label13

the εk-feasible solutions with 0, the counterpart
with 1;
Rank S joint by the Pareto dominance level,14

εk-feasible label, and the crowding distance;
Select the best N solutions from S joint to form the15

new S;
// Update the solution archive As

As = As
⊎ {

xi |xi ∈ S, φ(xi ) = 0
}
;16

if the size of As is larger than N then17

Prune the redundant solutions by the18

non-dominated sorting approach;
end19

k ← k + 1;20

end21

The computational complexity of ε-CNSGAII is similar to
that of NSGA-II, i.e., O(mN 2). Although ε-CNSGAII needs
to update the parameter εk , the additional computation is
minor.

Case study

This section presents a case study to demonstrate the effec-
tiveness of the proposed model and algorithm. A standalone
hybrid renewable energy system is designed for Chang-Shan
island of Shandong province, China (122◦44′N , 37◦55′E).
The input data of load demand, solar radiation, temperature
and wind speed is collected from the site of http://data.cma.
cn/, and is illustrated in Fig. 5.

Input data, model and algorithm parameters

It can be observed from Fig. 5 that the load demand
is relatively high during April and May, specifically, T ∈
[2191, 3650], while at the rest of time the load demand is
low. Effectively, this accords with the fact that there is exten-
sive training in April and May while little training during
the remaining months. As is repeatedly mentioned, this phe-
nomenon raises an interesting issue, that is, although a low
LPSP is pre-specified, say 10%, most of the loss of power
supply may occur in April and May, which is unexpected.

Parameters of HRES components and the proposed ε-
CNSGAII are listed in Table 1. Note that parameters of
ε-CNSGAII are configured based on the results in [38,39].

Results and analysis

In this section we first demonstrate that unconstrained
multi-objective sizing model used in most of studies (e.g.,
[9,25,29,40]) is not appropriate when the load has intermit-
tent characteristics. Second we show that by the proposed
constraint multi-objective model and the ε-CNSGAII algo-
rithm, the optimal sizing of HRES for this typical case can be
successfully tackled. Note that for the unconstrained model,
we only consider minimizing the annualized system cost
(FLPSP) and the loss of power supply probability (FASC) in
Eq. (14). The NSGAII algorithm is adopted as the problem
solver.

Sizing HRES with unconstrainedmodel

Figure 6 presents non-dominated solutions of the uncon-
strained model obtained by NSGAII. The non-dominated
solutions correspond to different trade-offs between FLPSP
and FASC. Assuming that a decision maker requires FLPSP ≤
15%, then solution xA that satisfies this requirement while
minimizes FASC is identified. In this case, FASC = 7327.9.

Nextwe investigate the performance ofxA. The simulation
results of the loss of power supply over the whole year is
plotted in Fig. 7. The load demand is plotted as a reference.
From the results we can find that the loss of power supply
frequently occurs during the training period (i.e., April and
May). Specifically, when FLPSP = 15%, CLPSPT is as high
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Fig. 5 Illustration of load
demand, solar radiation,
temperature and wind speed for
a year’s time horizon (i.e.,
T = 8760 hours)
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Table 1 Related parameter settings of HRES model and the ε-CNSGAII algorithm

mGen N Crossover operator (SBX) polynomial mutation (PM)

100 100 pc = 0.9, ηc = 20 pm = 0.02, ηm = 15

ine ree fuelc nir ir lhres lbat dg1 dg2

0.95 0.95 6.6 CNY/L 4.01% 1.52% 20 years 6 years 0.08145 1/kWh 0.246 1/kWh

Fig. 6 Non-dominated solutions of the unconstrained multi-objective
model obtained by NSGAII

Fig. 7 Illustration of loss of power supply labels (�) over a year’s
horizon. The load demand servers as a reference

as 42.1%. This implicitly indicates that the HRES does not
really solve the power shortage issue, and thus, we argue that
the unconstrained sizing model is not applicable for places
having such load characteristics.

Fig. 8 Non-dominated solutions of the constrained multi-objective
model obtained by ε-CNSGAII

Sizing HRES with constrainedmodel

In this experiment we introduce CLPSPT ≤ LPSPv into the
unconstrained model, and for illustration LPSPv is set as
30%. This means that the decision-maker expects the loss
of power supply probability over the training period to be
less than 30%. Figure 8 presents non-dominated solutions
of the constrained model obtained by ε-CNSGAII. For the
easy of comparison, again, the optimal solution satisfying
FLPSP ≤ 15% while minimizing FASC is identified, denoted
as xB. By comparing xA and xB, it is found that FASC of
xB is 7103.2 which is smaller than that of xA. Moreover, xB
satisfies the constraint CLPSPT ≤ 30% which is better than
xA with CLPSPT = 42.1%. Such results clearly indicate the
superiority of the proposed constrained model.

Next the operation performance of HRES with xB as the
optimal size is plotted over a year’s time. The hourly power
output of PV panels, wind turbines, batteries and diesel gen-
erators is shown in Fig. 9.
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Fig. 9 Illustration of operation
performance of HRES under the
optimal size
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Fig. 10 Non-dominated solutions obtained by ε-CNSGAII and
NSGAII

From Fig. 9 it is observed that (i) when the load demand
is low, the power output by PV panels and wind turbines can
sufficiently meet the demand, that is, the results in Fig. 9d is
positive, and (ii) when the load demand is high in the training
period, the demand-supply gap is large. Then, battery banks
and diesel generators will start working to fill in the demand-
supply gap.

The effectiveness of�-CNSGAII

To effectively solve the constrained multi-objective model,
a tailored algorithm, ε-CNSGAII is proposed. Alternatively,
we can also first ignore the constraint in Eq. (14), and directly
apply NSGAII to solve the unconstrained model, obtaining a
set of well-spread non-dominated solutions. Then, we filter
out solutions that satisfy the constraint from those obtained
solutions. However, such approach is not as effective as the
ε-CNSGAII.

For illustration, LPSPv is set to 30%, i.e., CLPSPT ≤ 30%
is set as constraint. The obtained non-dominated solutions
are shown in Fig. 10. Qualitatively, it can be observed from
Fig. 10 that a much richer set of solutions is found by
ε-CNSGAII than NSGAII. Also, the solutions are more
evenly distributed. Furthermore, the hypervolume metric,
a widely used indicator for performance assessment of
non-dominated solution set, is employed to quantitatively
compare the results. The hypervolume metric measures the
volume enclosed by non-dominated solutions and a reference

point [31]. The larger the hypervolume, the better the solution
set. Prior to calculating the hypervolumemetric, solutions are
normalized within [0,1] by the ideal point (0,0) and the nadir
point. Note that in this case study the nadir point is approx-
imated by the maximum objective values of each objective
amongst all solutions. The reference point is then set as [1.1,
1.1]. The hypervolume values for the two sets of solutions
are 0.7956 and 0.8464, respectively, which indicates that ε-
CNSGAII outperforms NSGAII.

Conclusion

Due to the environmental degradation and depletion of
fossil energy, renewable energies have attracted increasing
attentions in recent years. However, their stochastic and
intermittent characteristics have greatly jeopardized their
applications, which instead popularized hybrid renewable
energy systems (HRES). The optimal sizing of HRES is a
critical issue while designing a HRES. In general a multi-
objective optimization (MOP) model is formulated where
economic, environment and reliability related objectives are
simultaneously optimized. However, this study argues that
this ordinarymethod is not applicable for places having inter-
mittent high load demand. In such places, the load demand is
very high during the training period while is relatively low at
the rest of time. Without introducing an additional constraint
into theMOPmodel to handle this issue, the obtained optimal
HRES sizemay result in frequent loss of power supply during
the high load demand period. Therefore, this study proposes
a constrained multi-objective optimal sizing model in which
the loss of power supply probability during a specific period
is introduced as a constraint. Accordingly, NSGAII with a
relaxed ε constraint handling strategy, ε-CNSGAII, is pre-
sented to solve themodel. Experimental results have justified
the necessity of the constrained multi-objective model, and
the effectiveness of the ε-CNSGAII.

With respect to future studies, first this study has only dis-
cussed sizing a HRES. Effectively, the HRES size and its
operation strategies could be optimized integratively which
therefore deserves further study. Second, we have only con-
sidered the power demand on sizing a HRES, in fact the
combined heat and power (CHP) system based on renew-
able energies is also widely used [41]. Thus, the proposed
method could be extended to CHP system. Third, sizing a
HRES involves the optimization of mixed variables, more
effective algorithms are therefore required [42–48]. Lastly,
in addition to those frequently used optimization objectives
like ASC, LPSP, new criteria in the view of reliability, eco-
nomic and environment can be disseminated.
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