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Abstract
Feature selection based on the fuzzy neighborhood rough set model (FNRS) is highly popular in data mining. However,
the dependent function of FNRS only considers the information present in the lower approximation of the decision while
ignoring the information present in the upper approximation of the decision. This construction method may lead to the loss
of some information. To solve this problem, this paper proposes a fuzzy neighborhood joint entropy model based on fuzzy
neighborhood self-information measure (FNSIJE) and applies it to feature selection. First, to construct four uncertain fuzzy
neighborhood self-information measures of decision variables, the concept of self-information is introduced into the upper
and lower approximations of FNRS from the algebra view. The relationships between these measures and their properties
are discussed in detail. It is found that the fourth measure, named tolerance fuzzy neighborhood self-information, has better
classification performance. Second, an uncertainty measure based on the fuzzy neighborhood joint entropy has been proposed
from the information view. Inspired by both algebra and information views, the FNSIJE is proposed. Third, the K–S test is
used to delete features with weak distinguishing performance, which reduces the dimensionality of high-dimensional gene
datasets, thereby reducing the complexity of high-dimensional gene datasets, and then, a forward feature selection algorithm
is provided. Experimental results show that compared with related methods, the presented model can select less important
features and have a higher classification accuracy.

Keywords Fuzzy neighborhood rough set · Feature selection · Self-information · Fuzzy neighborhood joint entropy ·
Uncertainty measure

Introduction

Feature selection is an important data preprocess in the fields
of granular computing and artificial intelligence [1–6]. Its
main goal is to reduce redundant features and simplify the
complexity of the classification model, thereby improving
the generalization ability of classification model [7–12]. So
far, feature selection has been widely used in the fields of
pattern recognition, data mining, machine learning, and so
on [13–17].
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Related work

Pawlak proposed the classic rough set model in 1982 [18],
which was successfully applied in the field of feature selec-
tion [19–27]. However, the Pawlak proposed that rough set is
based on the general binary relationship and is only suitable
for discrete data [28]. Some information may be lost, while
the discretization method is used for continuous data [29].
To solve this problem, many scholars expanded the rough set
model. Dubois et al. introduced the concept of fuzzy rough
set via combining rough set and fuzzy set, which overcomes
the discrete problem and can directly reduce continuous data
[30]. Hu et al. [31] proposed a new method of neighbor-
hood granulation and neighborhood rough set for sensitive
feature selection. Wang et al. [32] constructed FNRS to use
parameterized fuzzy relations to describe fuzzy information
granularity, which reduced the possibility of samples being
misclassified. Qian et al. [33] studied the pessimistic multi-
granularity rough set decision model of attribute reduction,
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which overcomes the shortcomings of most models that limit
their application due to a single binary relationship.

As one of the most important rough set models, FNRS
received extensive attention in the fields of machine learn-
ing and data mining. Shreevastava et al. proposed a new
intuitionistic fuzzy neighborhood rough set model via com-
bination of intuitionistic fuzzy set and neighborhood rough
set, and applied it to heterogeneous datasets [34]. Yue et
al. [35] developed fuzzy neighborhoods to be applied to
cover data classification. Sun et al. [36] proposed a new
fuzzy neighborhood multi-granularity rough set model by
combining FNRS with multi-granularity rough set model,
which expanded the type of rough set model. Xu et al.
[37] redefined the fuzzy neighborhood relationship in FNRS
and introduced it into conditional entropy, and proposed
a new model—fuzzy neighborhood conditional entropy—
which improved the measurement mechanism. In fact, the
classification information is not only related to the lower
approximation of the decision classification consistency, but
also the upper approximation of the decision classification
divergence. Wang et al. [38] introduced the concept of self-
information into neighborhood rough set, and constructed
neighborhood self-information measure using the upper and
lower approximations of decision, which is helpful to the
select optimal feature subset.

In the past few decades, uncertainty measures for fea-
ture selection from the algebra view and information view
had been vigorously developed [37,39]. From algebra view,
Wang et al. introduced distance measure into fuzzy rough
set model and proposed a new attribute reduction method
[40]. Liu et al. designed a hash-based algorithm to calcu-
late the positive region of neighborhood rough set, which
was applied in attribute reduction [41]. Hu et al. [42]
developed a matrix-based dynamic method to calculate the
positive, boundary, and negative regions of neighborhood
multi-granularity rough set. Fan et al. [43] focused on bound-
ary samples using the largest decision neighborhood rough
set model. Liu et al. [58–60] solved some practical problems
from the algebra view. The importance of features based
on algebra view can only express the influence of features
present in feature subsets [40–43]. From information view,
information entropy and some of its deformations had been
widely used in feature selection in recent years. Xu et al. [37]
studied the fuzzy neighborhood conditional entropy to evalu-
ate the feature meaning in FNRS. Zhang et al. [17] proposed
information entropy based on fuzzy rough set and applied
it in fuzzy information system. The importance of features
based on the information view only explains the impact of
uncertainty classification on features [17,37,44,45]. If com-
bining the two views for feature selection, it helps to improve
the quality of uncertainty measurement in decision system.
Wang [45] simultaneously studied rough reduction and rel-
ative reduction from two views. Sun et al. [46] constructed

an attribute reduction method based on neighborhood multi-
granularity rough set, which can handle mixed incomplete
datasets from two views at the same time.

Our work

To solve the problem that most feature evaluation func-
tions only consider the information contained in the lower
approximation of the decision, which may cause part of the
information to be lost, this article focus on studying the fea-
ture selection method based on FNSIJE. The main content
of this paper is as follows:

– Analysis shows the shortcoming of the evaluation func-
tion based on the dependency of FNRS.

– Wepropose three types of uncertainty indices using upper
and lower approximations: decision index, optimistic
decision index, andpessimistic decision index.Three def-
initions of precision and roughness are given based on
this basis, and then combined with the concept of self-
information, four fuzzy neighborhood self-information
measures are proposed, and related properties are studied.
Through theoretical analysis, we find the most suitable
fuzzy neighborhood self-information for feature selec-
tion and apply it in practice.

– To better discuss feature selection methods based on
algebra and information views, this paper studies the
uncertainty measure method based on fuzzy neighbor-
hood joint entropy. Then, we combine measure and
information entropy to propose a fuzzy neighborhood
self-information-based fuzzy neighborhood joint entropy
(FNSIJE) method for feature selection. FNSIJE not only
considers the classification information provided by the
upper and lower approximations of the neighborhood
decision system at the same time, but also can simulta-
neously select features from the algebra and information
views.

The article is organized as follows: The section “Pre-
liminaries” is the concepts of self-information and FNRS.
The section “Insufficiency of neighborhood correlation func-
tions and uncertainty measurement based on FNSIJE” points
out the shortcoming of the neighborhood correlation func-
tions; in view of this shortcoming, we propose four fuzzy
neighborhood self-information measures, and study their
related properties. Then, the feature selection model based
on FNSIJE is constructed by combining tolerance deci-
sion self-information measure and fuzzy neighborhood joint
entropy. In the section “Feature selection method based on
FNSIJE model”, we design a heuristic feature subset selec-
tion method. In the section “Experimental analysis”, six UCI
datasets and four microarray gene expression profile datasets
are used for experimental verification. The section “Conclu-
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sion” is the conclusion of this article and the outlook for
future work.

Preliminaries

In this section, it mainly deals with relevant concepts of self-
information and FNRS.

Self-information

Definition 1 [47] The measure I (x) was proposed by Shan-
non to express the uncertainty of signal x . x is called the
self-information if it as the following properties:

(1) Non-negative: I (x) ≥ 0.
(2) If p(x) → 0, then I (x) → ∞.
(3) If p(x) = 0, then I (x) = 1.
(4) Monotonic: if p(x) < p(y), then I (x) < I (y).

Here, p(x) is the probability of x .

Fuzzy neighborhood rough set

Let NDS = 〈U , A, D, V , f , δ〉 be a neighborhood decision
system. U = {x1, x2, . . . , xm} is the set of samples. A is
the set of conditional attributes and D is the set of decision
classes. V = ⋃

a∈A Va . f : U × {A ∪ D} → V is the
map function, which f (a, x) is the attribute value of x on
attribute a. δ is the parameter of the neighborhood radius,
which 0 ≤ δ ≤ 1. The neighborhood decision system is
simplified to NDS = 〈U , A, D〉.

Definition 2 [32,48] Let B ⊆ A be a attribute subset on the
universeU , and then, B can induce a fuzzy relation RB onU ;
RB is a fuzzy similarity relation if the following conditions
are satisfied:

(1) Reflexivity: RB(x, x) = 1.
(2) Symmetry: RB(x, y) = RB(y, x), ∀x, y ∈ U .

Definition 3 Given NDS = 〈U , A, D〉, fuzzy neighborhood
radius parameter λ(0 < λ < 1) is used to describe the simi-
larity of samples. For any x, y ∈ U , the fuzzy neighborhood
similarity relationship between two samples x and y with
regard to a is expressed as:

Ra =
{
0, | f (a, x)− f (a, y)| > λ

1 − | f (a, x)− f (a, y)| , | f (a, x)− f (a, y)| ≤ λ.
(1)

The fuzzy neighborhood similarity matrix is [x]a(y) =
Ra(x, y), for any B ⊆ A, [x]a(y) = mina∈B([x]a y)) [37].

Definition 4 Given NDS = 〈U , A, D〉, B ⊆ A, for any
x, y ∈ U , the parameterized fuzzy neighborhood informa-
tion granule of x associated with B is expressed as:

αB(x) = [x]a(y) =
{
0, RB(x, y) < 1 − λ

RB(x, y), RB(x, y) ≥ 1 − λ.
(2)

Definition 5 GivenNDS = 〈U , A, D〉,U = {x1, x2, . . . , xm},
AT = {AT1,AT2, . . . ,ATn} and U/D = {D1, D2, . . . , Dt },
then the fuzzy decision of the sample derived from D is
expressed as:

FD = {FDT
1 ,FDT

2 , . . . ,FDT
t }. (3)

Here, FD j = {FD j (x1),FD j (x2), . . . ,FD j (xm)} is the
fuzzy rough set of sample decision equivalence class, and
j = 1, 2, . . . , t . When l = 1, 2, . . . ,m, FD j (xl) is recorded
as the degree of membership of xl ∈ U on FD j and denoted
[36] by:

FD j (xl) =
∣
∣[xl ]A(y) ∩ Dj

∣
∣

|[xl ]A(y)| , (4)

where [xl ]A(y) is fuzzy neighborhood similarity degree.

Definition 6 Given NDS = 〈U , A, D〉, B ⊆ A, for any
X ⊆ U , αB(x) is the parametric fuzzy neighborhood infor-
mation granule of x ∈ U . Then, the fuzzy neighborhood
upper and lower approximations of X with respect to B are,
respectively, expressed as:

Rλ
B(X) = {x ∈ U |αB(x) ∩ X = ∅} (5)

Rλ
B(X) = {x ∈ U |αB(x) ⊆ X } . (6)

Definition 7 Given NDS = 〈U , A, D〉, suppose any Dj ∈
U/D = {D1, D2, . . . , Dt }, then the fuzzy neighborhood
positive region and its dependency degree of D in relation to
B are expressed, respectively, by:

POSλ
B(D) = t∪

j=1
Rλ
B(Dj ) (7)

dλ
B(D) =

∣
∣POSλ

B(D)
∣
∣

|U | . (8)

Insufficiency of neighborhood correlation
functions and uncertainty measurement
based on FNSIJE

In the first subsection of this section, we will analyze the
shortcoming of the evaluation function based on the clas-
sical dependency function. To avoid this deficiency, in the
second subsection of this section, first, we construct three
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indices with different meanings using the upper and lower
approximations of decision: decision index, optimistic deci-
sion index, and pessimistic decision index. Second, we
redefine three types of precision and roughness on the
basis of the three indices; combining with the concept of
self-information, four fuzzy neighborhood self-information
measures are proposed and elaborate their properties in
detail. Finally, through theoretical analysis, we find that the
most suitable measure for feature selection and informa-
tion entropy is combined to form a new mixed uncertainty
measure for feature selection to reduce the noise in the neigh-
borhood decision system.

Insufficiency of neighborhood related functions

Formula (8) is employed as the evaluation function for fea-
ture selection in classical FNRS, and a variety of feature
selection methods based on formula (8) are proposed and
applied. However, this construction method only considers
positive samples; in other words, only consistent samples
in the lower approximation of the decision are involved,
while ignoring the upper approximation that diverges from
the decision classification. However, the upper approxima-
tion also contains some classification information that cannot
be ignored. Therefore, an ideal evaluation function should be
a function containing both upper and lower approximations
of decision. In the section “Uncertainty measurement based
on FNSIJE”, we construct the uncertainty measure based on
FNSIJE as the evaluation function of feature selection, mak-
ing the feature selection mechanism more reasonable.

Uncertainty measurement based on FNSIJE

Definition 8 Let NDS = 〈U , A, D〉, U/D = {D1, D2, . . . ,

Dt }, and B ⊆ A. The decision index dec(Dr ), the optimistic
decision index optB(Dr ), and the pessimistic decision index
pessB(Dr ) of Dr are defined, respectively, as:

dec(Dr ) = |Dr | (9)

optB(Dr ) = ∣
∣Rλ

B(Dr )
∣
∣ (10)

pessB(Dr ) =
∣
∣
∣R

λ

B(Dr )

∣
∣
∣ . (11)

Here, R
λ

B(Dr ) and Rλ
B(Dr ) are the fuzzyneighborhoodupper

and lower approximations, respectively. The optimistic deci-
sion index optB(Dr ) is represented by the cardinal number of
its lower approximation, which denotes the number of sam-
ples with consistent classification. The pessimistic decision
index pessB(Dr ) is represented by the cardinal number of its
upper approximation, which represents the number of sam-
ples that may belong to the decision class. |·| denotes the
cardinality of a set:

Property 1 optB(Dr ) ≤ dec(Dr ) ≤ pessB(Dr ).

Proof It can be directly inferred from Definition 8.

Property 2 Let B1 ⊆ B2 ⊆ A and Dr ∈ U/D, and then

(1) optB1(Dr ) ≤ optB2(Dr ).
(2) pessB1(Dr ) ≥ pessB2(Dr ).

Proof (1) Because B1 ⊆ B2 ⊆ A, thus Rλ
B2

(Dr ) ⊆
Rλ
B1

(Dr ). It follows from Definition 8 that optB1(Dr ) ≤
optB2(Dr ).

(2) It is similar to (1).
Property 2 shows that both optimistic and pessimistic deci-

sion indices aremonotonous.With the increase of the number
of features, the optimistic decision index increases and the
decision consistency is enhanced. For pessimistic decision
index, attribute reduction is produced with the reduction of
decision uncertainty.

Next, we define the precision and roughness of the opti-
mistic decision index to depict the classification ability of a
feature subset.

Definition 9 Let B ⊆ A, Dr ∈ U/D, and the precision and
roughness of the optimistic decision index are, respectively,
defined as:

ρ
(1)
B (Dr ) = optB(Dr )

dec(Dr )
(12)

ω
(1)
B (Dr ) = 1 − optB(Dr )

dec(Dr )
= 1 − ρ

(1)
B (Dr ). (13)

Apparently, 0 ≤ ρ
(1)
B (Dr ), ω

(1)
B (Dr ) ≤ 1. ρ(1)

B (Dr ) indi-
cates the degree to which the sample is completely divided
into Dr . ω

(1)
B (Dr ) indicates the degree to which a sample

may belong to Dr . Both ρ
(1)
B (Dr ) and ω

(1)
B (Dr ) reflect the

classification ability of feature subset B.
When ρ

(1)
B (Dr ) = 1, ω

(1)
B (Dr ) = 0, then, dec(Dr ) =

optB(Dr ). In this case, all samples are correctly classified
into the corresponding decision, and the feature subset B
has the strongest classification ability. When ρ

(1)
B (Dr ) = 0,

ω
(1)
B (Dr ) = 1, then optB(Dr ) = 0. In this case, all samples

have not been assigned to the correct decision. This moment,
B, has the weakest classification ability.

Property 3 Let B1 ⊆ B2 ⊆ A and Dr ∈ U/D, and then

(1) ρ
(1)
B1

(Dr ) ≤ ρ
(1)
B2

(Dr ).

(2) ω
(1)
B1

(Dr ) ≥ ω
(1)
B2

(Dr ).

Proof (1) Because B1 ⊆ B2, it follows from Property 2(1)
that optB1(Dr ) ≤ optB2(Dr ). Thus, we can have
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optB1(Dr )

dec(Dr )
≤ optB2(Dr )

dec(Dr )
. By Definition 9, we have

ρ
(1)
B1

(Dr ) ≤ ρ
(1)
B2

(Dr ).

(2) By Property 3(1), we can obtain that ρ
(1)
B1

(Dr ) ≤
ρ

(1)
B2

(Dr ) for B1 ⊆ B2. Thus, we can have that 1 −
ρ

(1)
B1

(Dr ) ≥ 1 − ρ
(1)
B2

(Dr ). From Definition 9, we can

obtain ω
(1)
B1

(Dr ) ≥ ω
(1)
B2

(Dr ).
Property 3 shows that the precision and roughness of opti-

mistic decision index are monotonous. With the increase
of the number of new features, the precision of optimistic
decision index gradually increases, while the roughness
decreases.

Definition 10 Let B ⊆ A, Dr ∈ U/D, and the optimistic
decision self-information of Dr can be defined as:

I 1B(Dr ) = −ω
(1)
B (Dr ) log ρ

(1)
B (Dr ). (14)

Apparently, Definition 10 satisfies the properties (1), (2),
and (3) of Definition 1. Then, Property (4) can be confirmed
according to Property 4.

Property 4 Let B1 ⊆ B2 ⊆ A and Dr ∈ U/D, and then,
I 1B1(Dr ) ≥ I 1B2(Dr ).

Proof Because B1 ⊆ B2 ⊆ A, it follows from Prop-
erty 3 that ρ

(1)
B1

(Dr ) ≤ ρ
(1)
B2

(Dr ). Thus, we can see that

0 ≤ − log ρ
(1)
B2

(Dr ) ≤ − log ρ
(1)
B1

(Dr ) and 0 ≤ ω
(1)
B2

(Dr ) ≤
ω

(1)
B1

(Dr ). Then, we can obtain I 1B1(Dr ) ≥ I 1B2(Dr ).

Definition 11 Let NDS = 〈U , A, D〉, U/D = {D1, D2,

. . . , Dt }, B ⊆ A, and theoptimistic decision self-information
of NDS is defined as:

I 1B(D) =
t∑

r=1

I 1B(Dr ). (15)

Self-information was originally used to describe the insta-
bility of signal output. Applying self-information to decision
system can describe the uncertainty of decision, which is an
effective means to evaluate decision ability.

I 1B(D) describes the classification information of feature
subset B. The smaller I 1B(D) is, the stronger the classifi-
cation ability of feature subset B is. I 1B(D) = 0 indicates
that all samples in U can be completely classified into their
respective classes by feature subset B.

The selected feature subset based on optimistic decision
self-information only pays attention to the consistency of the
classification objects, ignoring the information contained in
the uncertain classification samples. However, these uncer-
tain informations are often not negligible. Therefore, it is
necessary to analyze the information contained in uncertain
classification objects.

Next, we define the precision and roughness of pessimistic
decision to depict the uncertainty of feature subset B.

Definition 12 Let NDS = 〈U , A, D〉, U/D = {D1, D2,

. . . , Dt }, and B ⊆ A, and the precision and roughness of
the pessimistic decision index are defined as follows:

ρ
(2)
B (Dr ) = dec(Dr )

pessB(Dr )
(16)

ω
(2)
B (Dr ) = 1 − dec(Dr )

pessB(Dr )
= 1 − ρ

(2)
B (Dr ). (17)

It is obviously that 0 ≤ ρ
(2)
B (Dr ), ω

(2)
B (Dr ) ≤ 1. ρ(2)

B (Dr )

can be regarded as the uncertainty degree of the decision
equivalence class Dr . ω

(2)
B (Dr ) indicates the degree which

the sample cannot be correctly classified into decision class.
When ρ

(2)
B (Dr ) = 1, ω

(2)
B (Dr ) = 0, then dec(Dr ) =

pessB(Dr ). That means all objects which belong toDr are
completely sorted into Dr by B. In this case, feature subset
B has the strongest classification ability.

Property 5 Let B1 ⊆ B2 ⊆ A and Dr ∈ U/D, and then

(1) ρ
(2)
B1

(Dr ) ≤ ρ
(2)
B2

(Dr ).

(2) ω
(2)
B1

(Dr ) ≥ ω
(2)
B2

(Dr ).

Proof (1) Because B1 ⊆ B2, it follows from Property 2(2)
that pessB1(Dr ) ≥ pessB2(Dr ). Thus, we can have
dec(Dr )

pessB1(Dr )
≤ dec(Dr )

pessB2(Dr )
. By Definition 12, we have

ρ
(2)
B1

(Dr ) ≤ ρ
(2)
B2

(Dr ).

(2) By Property 5(1), we can obtain that ρ
(2)
B1

(Dr ) ≤
ρ

(2)
B2

(Dr ) for B1 ⊆ B2. Thus, we can have that 1 −
ρ

(2)
B1

(Dr ) ≥ 1 − ρ
(2)
B2

(Dr ). From Definition 12, we can

obtain ω
(2)
B1

(Dr ) ≥ ω
(2)
B2

(Dr ).
Property 5 shows that the precision and roughness of the

pessimistic decision index aremonotonous.As the number of
new features increases, the precision of the pessimistic deci-
sion index gradually increases and the roughness gradually
decreases.

Definition 13 Let B ⊆ A and Dr ∈ U/D, and the pes-
simistic decision self-information of Dr can be denoted as:

I 2B(Dr ) = −ω
(2)
B (Dr ) log ρ

(2)
B (Dr ). (18)

Apparently, Definition 13 satisfies the properties (1), (2),
and (3) of Definition 1. Then, Property (4) can be confirmed
according to Property 6.

Property 6 Let B1 ⊆ B2 ⊆ A and Dr ∈ U/D, and then,
I 2B1(Dr ) ≥ I 2B2(Dr ).
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Proof Because B1 ⊆ B2, it follows from Property 5(1)
that ρ

(2)
B1

(Dr ) ≤ ρ
(2)
B2

(Dr ). Thus, we can see that 0 ≤
− log ρ

(2)
B2

(Dr ) ≤ − log ρ
(2)
B1

(Dr ) and 0 ≤ ω
(2)
B2

(Dr ) ≤
ω

(2)
B1

(Dr ) ≤ 1. By Definition 13, we can obtain I 2B1(Dr ) ≥
I 2B2(Dr ).

Definition 14 Let NDS = 〈U , A, D〉, U/D = {D1, D2,

. . . , Dt }, and B ⊆ A, and the pessimistic decision self-
information of NDS is defined as:

I 2B(D) =
t∑

r=1

I 2B(Dr ). (19)

Through the above analysis, the optimistic decision self-
information I 1B(D) focuses on the ability to completely
divide the sample into correct decision Dr through feature
subset B. Although the pessimistic decision self-information
I 2B(D) can obtain samples that may belong to decision Dr , it
cannot ensure that all classification information is consistent.
Hence, both I 1B(D) and I 2B(D) describe the classification
ability of feature subset B from one-sided perspective, which
cannot reflect the comprehensive information included in
the decision. Therefore, we will propose two other self-
information to measure the uncertainty of classification
information. They can not only avoid considering the uncer-
tainty of decision information from a one-sided perspective
to a greater extent, but they are also more in line with actual
decision in theory.

Definition 15 Let B ⊆ A and Dr ∈ U/D, and the
optimistic-pessimistic decision self-information of Dr is
defined as:

I 3B(Dr ) = I 1B(Dr ) + I 2B(Dr ). (20)

Property 7 Let B1 ⊆ B2 ⊆ A and Dr ∈ U/D, and then,
I 3B1(Dr ) ≥ I 3B2(Dr ).

Proof From Properties 4 and 6, we can know that I 1B1(Dr ) ≥
I 1B2(Dr ) and I 2B1(Dr ) ≥ I 2B2(Dr ) for B1 ⊆ B2. Thus, we can

obtain that I 1B1(Dr ) + I 2B1(Dr ) ≥ I 1B2(Dr ) + I 2B2(Dr ). By

Definition 15, we have I 3B1(Dr ) ≥ I 3B2(Dr ).

Definition 16 Let NDS = 〈U , A, D〉, U/D = {D1, D2,

. . . , Dt } and B ⊆ A, the optimistic-pessimistic decision self-
information of NDS:

I 3B(D) =
t∑

r=1

I 3B(Dr ). (21)

Definition 17 Let B ⊆ A and Dr ∈ U/D, and the precision
and roughness of the tolerance decision index are defined as
follows:

ρ
(3)
B (Dr ) = optB(Dr )

pessB(Dr )
(22)

ω
(3)
B (Dr ) = 1 − optB(Dr )

pessB(Dr )
= 1 − ρ

(3)
B (Dr ). (23)

Apparently, 0 ≤ ρ
(3)
B (Dr ), ω

(3)
B (Dr ) ≤ 1. ρ

(3)
B (Dr )

depicts the ratio of optimistic decision and pessimistic deci-
sion samples, which characterizes the classification ability
of feature subset B. When ρ

(3)
B (Dr ) = 1, ω(3)

B (Dr ) = 0, it is
the ideal state of the feature subset B, and the feature sub-
set B has the optimal classification ability at this time. On
the contrary, when ρ

(3)
B (Dr ) = 0, the feature subset B has

no effect on classification and has the weakest classification
ability.

Property 8 Let B1 ⊆ B2 ⊆ A, Dr ∈ U/D and B ⊆ A, and
then:

(1) ρ
(3)
B1

(Dr ) ≤ ρ
(3)
B2

(Dr ), ω
(3)
B1

(Dr ) ≥ ω
(3)
B2

(Dr ).

(2) ρ
(3)
B (Dr ) = ρ

(1)
B (Dr ) · ρ

(2)
B (Dr ).

(3) ω
(3)
B (Dr )=ω

(1)
B (Dr )+ω

(2)
B (Dr )−ω

(1)
B (Dr ) · ω

(2)
B (Dr ).

Proof (1) Because B1 ⊆ B2, it follows from Property 2 that
optB1(Dr ) ≤ optB2(Dr ) and pessB1(Dr ) ≥ pessB2(Dr ).

Then, we can have
optB1(Dr )

pessB1(Dr )
≤ optB2(Dr )

pessB2(Dr )
. By Def-

inition 17, we have ρ
(3)
B1

(Dr ) ≤ ρ
(3)
B2

(Dr ). Thus, we can

have that 1 − ρ
(3)
B1

(Dr ) ≥ 1 − ρ
(3)
B2

(Dr ). Therefore, we

can obtain ω
(3)
B1

(Dr ) ≥ ω
(3)
B2

(Dr ).

(2) From Definitions 9 and 12, we have ρ
(1)
B (Dr ) =

optB(Dr )

dec(Dr )
and ρ

(2)
B (Dr ) = dec(Dr )

pessB(Dr )
, then ρ

(1)
B (Dr ) ·

ρ
(2)
B (Dr )= optB(Dr)

decB(Dr)
· decB(Dr)

pessB(Dr)
= optB(Dr)

pessB(Dr)
. From

Definition 17, we can obtain ρ
(3)
B (Dr ) = optB(Dr )

pessB(Dr )
,

and thus, ρ(3)
B (Dr ) = ρ

(1)
B (Dr ) · ρ

(2)
B (Dr ).

(3) From Definition 17 and Property 8(2), we have:

ω
(3)
B (Dr ) = 1 − ρ

(3)
B (Dr )

= 1 − ρ
(1)
B (Dr ) · ρ

(2)
B (Dr )

= 1−
[
1−ω

(1)
B (Dr )

]
·
[
1− ω

(2)
B (Dr )

]

= ω
(1)
B (Dr ) + ω

(2)
B (Dr ) − ω

(1)
B (Dr ) · ω

(2)
B (Dr ).

Definition 18 Let B ⊆ A and Dr ∈ U/D, and the tolerance
decision self-information of Dr is defined as:

I 4B(Dr ) = −ω
(3)
B (Dr ) log ρ

(3)
B (Dr ). (24)
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Clearly, Definition 18 satisfies (1), (2), and (3) of Defini-
tion 1. Property (4) is verified by Property 9.

Property 9 Let B1 ⊆ B2 ⊆ A and Dr ∈ U/D, and then,
I 4B1(Dr ) ≥ I 4B2(Dr ).

Proof Because B1 ⊆ B2, it follows from Property 8(1)
that ρ

(3)
B1

(Dr ) ≤ ρ
(3)
B2

(Dr ). Thus, we can see that 0 ≤
− log ρ

(3)
B2

(Dr ) ≤ − log ρ
(3)
B1

(Dr ) and 0 ≤ ω
(3)
B2

(Dr ) ≤
ω

(3)
B1

(Dr ) ≤ 1. Then, from Definition 18, we can obtain

I 4B1(Dr ) ≥ I 4B2(Dr ).

Property 10 I 4B(Dr ) ≥ I 3B(Dr ).

Proof

I (4)
B (Dr ) = −ω

(3)
B (Dr ) log ρ

(3)
B (Dr )

= −
[
ω

(1)
B (Dr ) + ω

(2)
B (Dr ) − ω

(1)
B (Dr ) · ω

(2)
B (Dr )

]

· log
[
ρ

(1)
B (Dr ) + ρ

(2)
B (Dr )

]

= −
[
ω

(1)
B (Dr ) + ω

(2)
B (Dr ) − ω

(1)
B (Dr ) · ω

(2)
B (Dr )

]

·
[
log ρ

(1)
B (Dr ) + log ρ

(2)
B (Dr )

]

= −ω
(1)
B (Dr ) · log ρ

(1)
B (Dr ) − ω

(2)
B (Dr ) · log ρ

(2)
B (Dr )

+
[
ω

(1)
B (Dr ) − 1

]
· ω

(2)
B (Dr ) · log ρ

(1)
B (Dr )

+
[
ω

(2)
B (Dr ) − 1

]
· ω

(1)
B (Dr ) · log ρ

(2)
B (Dr )

= I 1B(Dr ) + I 2B(Dr ) +
[
ω

(1)
B (Dr ) − 1

]
· ω

(2)
B (Dr )

· log ρ
(1)
B (Dr ) +

[
ω

(2)
B (Dr ) − 1

]
· ω

(1)
B (Dr ) · log ρ

(2)
B (Dr ).

It is clear that 0 ≤ ρ
(1)
B (Dr ) ≤ 1, 0 ≤ ω

(1)
B (Dr ) ≤ 1 from

Definition 9, and we have log ρ
(1)
B (Dr ) ≤ 0, ω(1)

B (Dr )− 1 ≤
0. Similarly, we can see 0 ≤ ρ

(2)
B (Dr ) ≤ 1, 0 ≤ ω

(2)
B (Dr ) ≤

1 from Definition 12, and we have log ρ
(1)
B (Dr ) ≤ 0,

ω
(2)
B (Dr ) − 1 ≤ 0. It can be proved that:

⎧
⎨

⎩

[
ω

(1)
B (Dr ) − 1

]
· ω

(2)
B (Dr ) · log ρ

(1)
B (Dr ) ≥ 0 1©

[
ω

(2)
B (Dr ) − 1

]
· ω

(1)
B (Dr ) · log ρ

(2)
B (Dr ) ≥ 0 2©.

Thus, �= 1© + 2© ≥ 0:

I 4B(Dr ) = I 1B(Dr ) + I 2B(Dr ) + �

= I 3B(Dr ) + �

≥ I 3B(Dr ).

Definition 19 Let NDS = 〈U , A, D〉, U/D = {D1, D2,

. . . , Dt }, and B ⊆ A, and the tolerance decision self-
information of NDS is defines as:

I 4B(D) =
t∑

r=1

I 4B(Dr ). (25)

Property 11 Let B1 ⊆ B2 ⊆ A,and then, I 4B1(D) ≥ I 4B2(D).

Proof It is straightforward from Property 9.

Remark 1 According to the above theoretical analysis, toler-
ance fuzzy neighborhood decision self-information (FNSI)
can not only consider the decision uncertainty from a more
comprehensive perspective, but also is sensitive to the change
of feature subset size, and thus, it is more suitable for feature
selection.

Definition 20 [36] Let NDS = 〈U , A, D〉 and U =
{x1, x2, . . . , xm}, and then, the fuzzy neighborhood entropy
of A is denoted by:

FNEα(A) = −
m∑

l=1

|αA(xl)|
|U | log2

|αA(xl)|
|U | . (26)

Here, αA(xl) is the parameterized fuzzy neighborhood gran-
ule, xl ∈ U and l = 1, 2, . . . ,m.

Definition 21 Let NDS = 〈U , A, D〉, U/D = {D1, D2,

. . . , Dt } and AT ⊆ A, and the fuzzy neighborhood joint
entropy of AT and D is defined as:

FNEα(AT,D)=− 1

|U |
m∑

l=1

t∑

j=1

∣
∣αA(xt ) ∩ FD j

∣
∣

|U |

× log2

∣
∣αA(xl) ∩ FD j

∣
∣

|U | .

(27)

Here, xl ∈ U , l = 1, 2, . . . ,m, and j = 1, 2, . . . , t , and∣
∣αA(xl) ∩ FD j

∣
∣ indicates that the degree of membership of

αA(xl) is not greater than the number of non-zero values of
the samples of FD j [37].

Definition 22 Let NDS = 〈U , A, D〉, U/D = {D1, D2,

. . . , Dt }, andAT ⊆ A, and then, theFNSI-based fuzzyneigh-
borhood joint entropy (FNSIJE) of AT and D is defined as:

FNSIJEα(ATi , D) = −I 4B(D)

× 1

|U |
m∑

l=1

t∑

j=1

∣
∣αAi (xl) ∩FD j

∣
∣

|U | log2

∣
∣αAi (xl) ∩FD j

∣
∣

|U | .

(28)

Here, I 4B(D) is the tolerance decision self-information
of NDS, αA(xl) is the parameterized fuzzy neighborhood
granule, xl ∈ U and l = 1, 2, . . . ,m,

∣
∣αA(xl) ∩ FD j

∣
∣ indi-

cates that the degree of membership of αA(xl) is not greater
than the number of non-zero values of the samples of FD j ,
j = 1, 2, . . . , t .
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Property 12 Let NDS = 〈U , A, D〉, U/D = {D1, D2, . . . ,

Dt }, AT ⊆ A, AT = {AT1,AT2, . . . ,ATn} and U =
{x1, x2, . . . , xm} , and then:

FNSIJEα(ATi , D) = I 4B(D) × FNEα(ATi , D) ≥ 0.

Remark 2 From Definition 22 and Property 12, I 4B(D) is the
fuzzy neighborhood self-information measure from algebra
view, and FNEα(ATi , D) denotes the fuzzy neighborhood
joint entropy from the information view. Therefore, FNSIJE
can simultaneouslymeasure the uncertainty of neighborhood
decision from both the algebra and information views.

Feature selectionmethod based on FNSIJE
model

In this section, we will propose a feature selection method
based on the FNSIJE model and apply it to the neighborhood
decision system.

FNSIJE-based feature selection

Definition 23 Let NDS = 〈U , A, D〉, AT′ ⊆ AT ⊆ A, AT =
{AT1,AT2, . . . ,ATn}, AT′ is the reduction of AT with regard
to D, if it is satisfied:

(1) FNSIJEα(AT′, D) = FNSIJEα(AT, D).
(2) FNSIJEα(AT′, D) > FNSIJEα(AT′ − ATi , D), for any

ATi ⊆ AT′.

Equation (1) shows that the reduced subset has the same
classification ability as the entire dataset, and Eq. (2) ensures
that the reduced subset has no redundant feature.

Definition 24 Let NDS = 〈U , A, D〉, AT′ ⊆ AT ⊆ A, AT =
{AT1,AT2, . . . ,ATn}, ATi ⊆ AT′ and i = 1, 2, . . . , n, and
then, the attribute significance of subset ATi with respect to
D is defined as:

SIG(ATi,AT
′,D) = FNSIJEα(AT

′−ATi,D)

−FNSIJEα(AT
′,D). (29)

Feature selection algorithm

According to the above definition, a FNSIJE-based feature
selection (FNSIJE-KS) method is demonstrated in Algo-
rithm 1.

Algorithm1FNSIJE-KS
Require: NDS =< U , A, D >, a fuzzy neighborhood radius param-

eters λ.
Ensure: An optimal feature subset red .
1: ∀a ∈ A, compute the relation matrix Rλ

a
2: Initialize red = ∅, B = A − red , start=1.
3: for each Dr in U/D do
4: Compute pessimistic decision index pessB(Dr )

5: Compute optimistic decision index optB(Dr )

6: Compute precision function ρB(Dr )

7: Compute I 4B(Dr ) = −(1 − ρB(Dr )) log(ρB(Dr ))

8: end for
9: whileFNSIJEα(red, D) = FNSIJEα(A, D) do
10: for j =1 to |B| do
11: Compute FNSIJEα(red ∪ a j , D)

12: Selecta j that satisfies max{
a j

∣
∣FNSIJEα(red ∪ a j , D)

}

13: end for
14: Let red = red∪a j , B = A−red , and compute FNSIJEα(red,D)

15: end while
16: for k = 1 to red do
17: Select Bk ∈ red
18: Compute SIG(Bk , red, D)

19: if SIG(Bk , red, D) > 0 then
20: Let red = red − {Bk}
21: end if
22: end for
23: return red

For this FNSIJE-KS method, the most significant impact
on complexity is the calculation of parameterized fuzzy
neighborhood granule. The time complexity is about O(mn),
where m is the size of objects and n is the size of features.
This method is a loop in steps 9–15, and its time complexity
is O(n3m) at worst. Suppose the size of the selected feature
subset is r , the time complexity of fuzzy neighborhood gran-
ule is about O(rm). As n is much greater than r for the most
part. Thus, the total time complexity is close to O(mn).

Experimental analysis

In this section, we conduct a series of experiments to test
the feasibility and stability of FNSIJE-KS. The experiment is
divided intofiveparts: the section “Datasets and experimental

123



Complex & Intelligent Systems (2022) 8:287–305 295

Table 1 Ten datasets in experiments

No. Datasets Samples Features Classes

1 Glass 214 10 6

2 Ionosphere 351 33 2

3 Sonar 208 60 2

4 Wdbc 569 31 2

5 Wine 178 13 3

6 Wpbc 198 34 2

7 Colon 62 2000 2

8 DLBCL 77 5469 2

9 Leukemia 72 7129 2

10 Prostate 136 12,600 2

design” is the datasets and experimental environment used in
the experiments; the section “Performance on different fuzzy
neighborhood para-meters” is the impact of different fuzzy
neighborhood parameters on the classification performance
of our method; the section “Classification results of the UCI
datasets” is the classification results of the UCI datasets; the
section “Classification results of gene datasets” is the classi-
fication results of the gene datasets; the section “Statistical
analysis” is the statistical analysis.

Datasets and experimental design

The experiment performs feature selection on ten pub-
lic datasets including six low-dimensional UCI datasets
and four high-dimensional microarray gene expression pro-
file datasets (hereinafter referred to as gene datasets). The
six UCI datasets can be downloaded at http://archive.ics.
uci.edu/ml/datasets.php, and the four gene datasets can
be downloaded at http://portals.broadinstitute.org/cgi-bin/
cancer/datasets.cgi.

Table 1 lists all datasets.
All experiments are implementedusingMATLABR2016a

under Windows 10 with an Intel Core i5-3470 CPU at
3.20 GHz and 4.0 GB RAM. The classification accuracy is
verified under the three classifiers KNN, CART and C4.5
in WEKA 3.8, and all parameters under the three classi-
fiers are set to default values. To ensure the consistency of
experiments, we use tenfold cross-validation in the following
subsections.

Performance on different fuzzy neighborhood
para-meters

This subsection analyzes the influence of different fuzzy
neighborhood parameters on the classification performance
of our method, and finds the most appropriate parameter for
each dataset.

To reduce the time complexity originate from the four
gene datasetswith high dimensions,we use theKolmogorov–
Smirnov test (K–S test) for preliminary dimensionality
reduction.

K–S test is a common non-parametric method used to
compare whether two types of samples belong to the same
distribution. It is extremely sensitive in identifying the dif-
ference of distribution morphology of two types of samples
[49]. It has made development and breakthrough in the fields
of cancer gene data analysis [50], emotional recognition, etc.
[51]. Not only that, it also has many advantages: high cal-
culation speed and strong operability, which can effectively
reduce time complexity.

Assume that the original dataset covers two types of inde-
pendent samples, denoted as positive (A) and negative (B).
The total number of samples in the gene dataset is recorded
as n, take a gene X in the original gene dataset as an exam-
ple, the observed value of gene X is x(1), x(2), . . . , x(n),
refer to its eigenvalues to sort in descending order, and the
corresponding order observation value can be obtained as
x(1) ≤ x(2) ≤ · · · ≤ x(n). Therefore, the cumulative distri-
bution function of the gene is [52]:

F(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, x< x(1)

k

n
, x(k) ≤ x ≤ x(k + 1); k = 1, 2, . . . , n − 1

n, x ≤ x(n).

(30)

On the basis of formula (30), the cumulative distribution
functions FA(x) and FB(x) of the two types of samples are
calculated, respectively, and then, the K–S test statistic TS is
recorded as:

TS = max
∣
∣FA(x) − FB(x)

∣
∣ . (31)

According to theK–S test principle, under the significance
level β, if TS < TScrit (TScrit is the critical value under
the significance level β), it is believed that the gene is not
significantly different between the positive sample and the
negative sample. If TS ≥ TScrit, it is believed that there
is a significant difference between the positive sample and
the negative sample of the gene at the significance level of
1−β [53].β and the corresponding critical value TScrit (here,

s(n) =
√
n1 + n2
n1n2

, n1 and n2 are the number of positive and

negative genes, respectively) are shown in Table 2 [54].
It can be seen from formula (31) that the larger the value

TS, the greater the difference between the positive and neg-
ative of the gene, which means that the gene has a stronger
ability to distinguish between the positive and negative sam-
ples. Taking the gene dataset Prostate as an example, which
contains 77 normal samples and 59 tumor samples, and
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Fig. 1 Examples of K–S test statistics

Table 2 Significance level of
K–S test and corresponding
critical value

β TScrit/s(n)

0.10 1.22

0.005 1.36

0.01 1.63

0.05 1.73

0.001 1.95

each sample contains 12,600 genes. As shown in Fig. 1a,
b, comparing the cumulative distribution probability and K–
S test statistics TS of the 78th gene and the 3474th gene (the
abscissa x represents the gene value, the ordinate F(x) rep-
resents the cumulative probability corresponding to x), we
can see the difference of the 3474th gene in the two types of
samples is significantly greater than that of the 78th gene, so
3474th gene has better distinguishing ability.

To reduce the time complexity of gene datasets, this paper
uses K–S test method to preprocess the data, to reduce the
dimensionality reduction. The algorithm description of K–S
test method is shown in Algorithm 2.

Algorithm2K-S Test
Require: Original gene data set OD, significance level β.
Ensure: A selected gene subset S.
1: Initialize S =∅.
2: for i = 1 to |OD| do
3: Compute Fi

A(x) and Fi
B(x)

4: Find T Si that satisfies T Si = max
∣
∣
∣Fi

A(x) − Fi
B(x)

∣
∣
∣

5: if T Si ≥ T Scrit (β) then
6: Let S = S ∪ i
7: end if
8: end for
9: return S

Table 3 The number of genes in the four gene datasets after dimen-
sionality reduction with K–S test under different significance levels

Datasets Original Different significance levels

0.1 0.005 0.01 0.05 0.001

Colon 2000 477 105 146 324 44

DLBCL 5469 2116 802 941 1640 459

Leukemia 7129 2637 903 1141 2011 288

Prostate 12,600 4240 1163 1536 3024 685

Since the K–S test can sensitively detect the difference in
the distribution shape of different gene samples, it is help-
ful to eliminate irrelevant genes and achieve the purpose of
reducing the dimensionality of the dataset. Table 3 shows
the number of genes in the four gene datasets under differ-
ent significance levels (0.10, 0.005, 0.01, 0.05, and 0.001)
after dimension reduction by K–S test. Classification accu-
racy changes with the size of gene subsets in most cases.
Figure 2 illustrates the change trend of the accuracy via the
gene selected feature subsets under different significance lev-
els for four gene datasets under the classifier KNN. Here, the
abscissa represents five different significance levels, and the
ordinate represents classification accuracy.

Adhering to the principle that the gene selected feature
subset has a smaller dimension andhigher classification accu-
racy, combined with Table 3 and Fig. 2, it can be seen that
significance level β sets to 0.005 is more suitable for dataset
Colon, β sets to 0.001 is more suitable for dataset DLBCL
and Leukemia, and β sets to 0.1 is more suitable for dataset
Prostate.

In the following portion, we will discuss the impact of
the fuzzy neighborhood parameters λ on FNSIJE-KS. The
change curve of classification accuracy on different λ for 10
datasets is shown in Fig. 3 (abscissa represents parameters λ
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Fig. 2 Classification accuracy of gene subsets under different signifi-
cance levels

Table 4 Optimal fuzzy
neighborhood parameters for six
UCI datasets

Datasets KNN CART

Glass 0.95 0.95

Ionosphere 0.15 0.3

Sonar 0.65 0.45

Wdbc 0.4 0.05

Wine 0.5 0.65

Wpbc 0.65 0.65

Table 5 Optimal fuzzy neighborhood parameters for four gene datasets

Datasets KNN CART C4.5

GDLBCL 0.35 0.3 0.35

Colon 0.35 0.2 0.65

Prostate 0.7 0.75 0.7

Leukemia 0.25 0.1 0.1

and ordinate represents classification accuracy). We design
the value of λ to vary from 0 to 1, with a step size of 0.05.
The classification accuracy of the six UCI datasets under
the classifiers KNN and CART is shown in Fig. 3a–f; the
accuracy of the four gene datasets under the classifiers KNN,
CART, and C4.5 is shown in Fig. 3g–j.

It can be seen from Fig. 3 that the change of λ does have a
certain impact on the classification performance of FNSIJE-
KS, but all datasets can achieve a high classification accuracy
in a wider range of λ. Tables 4 and 5 list the optimal fuzzy
neighborhood parameters selected for each UCI dataset and
gene dataset under different classifiers, respectively.

Classification results of the UCI datasets

In this subsection, to verify the classification effectiveness
of the FNSIJE-KS method on UCI datasets, we compare the
size and classification accuracy of selected feature subsets by
FNSIJE-KS and three existing methods. The three methods
include FNRS (method based on fuzzy neighborhood rough
set) [32], FNCE (method based on fuzzy neighborhood con-
ditional entropy) [37], and FNPME-FS (method based on
fuzzy neighborhood pessimistic multigranulation entropy)
[36].

In the first portion of the subsection, we use the obtained
fuzzy neighborhood parameters λ, let the four feature selec-
tion methods use ten-fold cross-validation on six UCI
datasets, and the average size of the original datasets and the
selected feature subsets by different methods are exhibited in
Table 6. The optimal selected feature subsets by FNSIJE-KS
for the six UCI datasets under the classifiers KNN and CART
are shown in Table 7.

Table 6 describes the average size of the selected fea-
ture subsets by the four methods. In Table 6, the bolded
numbers show that the size of the reduced datasets is the
least with respect to other methods. The selected feature sub-
sets by FNSIJE-KS on the datasets Glass, Ionosphere, and
Wine reach the minimum size, which are 2.1, 2.2, and 4.75,
respectively. In short, comparing with FNRS, FNCE, and
FNPME-FS, the mean size of selected feature subsets using
FNSIJE-KS is the least for six UCI datasets.

The second portion pays attention to the effectiveness of
classification for FNSIJE-KS. Tables 8 and 9 list classifi-
cation accuracy of selected feature subsets by FNSIJE-KS
and other three feature selectionmethods (FNRS [32], FNCE
[37], andFNPME-FS [36]) under classifiersKNNandCART,
respectively. In Tables 8 and 9, the bolded numbers indicate
that the classification accuracy of the selected feature subsets
is the best with respect to other methods.

No method always outperforms other methods under dif-
ferent classifiers and learning tasks. As observed from the
results of four methods demonstrate in Tables 6, 8, and
9 illustrate the differences among the four methods. From
Tables 6 and 8, it can be seen that FNSIJE-KS has the high-
est classification accuracy of the selected feature subsets on
datasets Glass and Wpbc, 99.07 and 77.27%, respectively,
under the classifier KNN. Furthermore, the average size of
the selected feature subset by FNSIJE-KS is the 2.8, 10.2,
and 3.6 smaller than those by FNRS, FNCE, and FNPME-FS
on Glass dataset, respectively. The selected feature subsets
by FNSIJE-KS and FNPME-FS have the same classification
accuracy of 90.31% on dataset Ionosphere, and the selected
feature subset by FNSIJE-KS is 9.4 less than those selected
by FNPME-FS.

Similarly, from Tables 6 and 9, it is clear that the average
classification accuracy of FNSIJE-KS is larger than FNRS,
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(a) Glass dataset
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(b) Ionosphere dataset
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(c) Sonar dataset
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(d) Wdbc dataset
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(e) Wine dataset
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(f) Wpbc dataset
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(g) Colon dataset
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(h) DLBCL dataset
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(i) Leukemia dataset
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(j) Prosate dataset

Fig. 3 Classification accuracy under different fuzzy neighborhood parameter values on ten datasets
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Table 6 Number of selected
features with four feature
selection methods

Datasets Original FNRS FNCE FNPME-FS FNSIJE-KS

Glass 15 4.9 12.3 5.7 2.1

Ionosphere 33 3.2 16 11.6 2.2

Sonar 60 1.5 21.7 17.5 7.95

Wdpc 31 11.8 4.2 7 11.5

Wine 13 9.1 5.9 6 4.75

Wpbc 34 9 8.1 5.7 7.9

Mean 31 6.5 11.37 8.91 6.1

Table 7 Optimal subset with
FNSIJE-KS for six UCI datasets

Datasets KNN CART

Glass {1} {1}
Ionosphere {30 4 9} {10 25 22}
Sonar {11 22 31 36 39 48 54 17 35 37 38 13 19} {11 13 26 33 34 50}
Wdpc {1 2 5 7 16 22 25 28 9 21} {1 2 5 9 12 16 18 22 25 27 28 21}
Wine {1 2 10 12 13 4} {1 8 10 7}
Wpbc {3 6 13 21 26 1} {3 6 13 21 26 1}

Table 8 Classification accuracy
with four methods on classifier
KNN

Datasets Original FNRS FNCE FNPME-FS FNSIJE-KS

Glass 0.9112 0.9393 0.8627 0.9393 0.9907

Ionosphere 0.8245 0.8664 0.8823 0.9031 0.9031

Sonar 0.8653 0.5385 0.8001 0.8846 0.8558

Wdpc 0.9124 0.9174 0.9825 0.9279 0.9579

Wine 0.9195 0.9720 0.9073 0.9719 0.9607

Wpbc 0.6969 0.7273 0.6872 0.7222 0.7727

Mean 0.8550 0.8268 0.8537 0.8915 0.9068

Table 9 Classification accuracy
with four methods on classifier
CATR

Datasets Original FNRS FNCE FNPME-FS FNSIJE-KS

Glass 0.9672 0.9813 0.8475 0.9813 0.9813

Ionosphere 0.8641 0.8832 0.8053 0.9117 0.9231

Sonar 0.7115 0.6298 0.7616 0.7789 0.7933

Wdpc 0.8595 0.9438 0.8807 0.9314 0.9455

Wine 0.8932 0.8932 0.8249 0.9326 0.9270

Wpbc 0.7121 0.7275 0.6143 0.7374 0.7626

Mean 0.8346 0.8431 0.7891 0.8789 0.8888

FNCE, and FNPME-FS on almost UCI datasets under clas-
sifier CART , except only one dataset Wine. In addition,
FNPME-FS selects fewer features than FNRS and FNPME-
FS when its classification accuracy is equal to FNRS and
FNPME-FS on dataset Glass. According to Tables 8 and 9,
comparing FNSIJE-KS with FNRS, FNCE, and FNPME-
FS, the mean classification accuracy of FNSIJE-KS has been
improved under two classifiers KNN and CART on the UCI
datasets.

In summary, the FNSIJE-KS method is easy to eliminate
redundant features as a whole and displays better classifi-
cation performance than other compared methods on UCI
datasets.

Classification results of gene datasets

This subsection is dealing with the classification effective-
ness of the FNSIJE-KS method on gene datasets.
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In the first portion of this subsection, we compare the size
of selected gene subsets by the FNSIJE-KSmethod and three
existing methods (FNRS [32], FNCE [37], and FNPME-FS
[36]).

We use the obtained λ, let the four feature selection meth-
ods use tenfold cross-validation on four gene datasets, and
the average size of the original datasets and the selected
gene subsets by different methods are described in Table 10.
In Table 10, the bolded numbers show that the size of the
reduced gene datasets is the least with respect to other meth-
ods. Then, the optimal selected gene subsets by FNSIJE-KS
for the four gene datasets under three classifiers KNN, C4.5,
and CART are demonstrated in Table 11.

As is clearly shown from Table 10, for three gene datasets
Colon, DLBCL, and Leukemia, FNSIJE-KS is significantly
superior to the other three methods. Moreover, the mean size
of the selected gene subset by FNSIJE-KS is less than those
by FNRS, FNCE, and FNPME-FS. Briefly, FNSIJE-KS can
select less genes for gene datasets.

In the second portion of this subsection, we discuss the
classification performance of the selected gene subsets by
FNSIJE-KS and other four feature selection methods under
classifiers KNN and C4.5. Among them, four feature selec-
tion methods include FNRS [32], FNCE [37], FNPME-FS
[36], and EGGS (entropy gain-based gene selection method)
[55].

Let five feature selection methods use tenfold cross-
validation on four gene datasets, and the classification
accuracy of selected gene subsets under the classifiers KNN
and C4.5 are illustrated in Tables 12 and 13, respectively. In
Tables 12 and 13, the bolded numbers indicate that the clas-
sification accuracy of the selected gene subsets is the best
with respect to other four methods.

From Tables 10 and 12, the classification accuracy of
selected gene subsets by FNSIJE-KS is 13.23, 6.75, 2.88,
and 27.97%, respectively, which is higher than those selected
by FNRS, FNCE, FNPME-FS, and EGGS under classifier
KNN on dataset Prostate. Both FNSIJE-KS and FNPME-
FS have the highest classification accuracy of selected gene
subsets on dataset Leukemia, which is 94.44%; furthermore,
the selected gene subset by FNSIJE-KS is less than those of
FNPME-FS. However, FNSIJE-KS selects 2.5 and 2.8 fewer
genes than FNCE and FNPME-FS on datasets Colon and
DLBCL, respectively, although its classification accuracy is
slightly lower than FNCE and FNPME-FS.

In the same way, from Tables 10 and 13, the classification
accuracy of selected gene subset by FNSIJE-KS achieves
highest value of 85.48% under classifier C4.5 on dataset
Colon, which is 3.22, 11.29, 4.83, and 20.84% higher than
those by the other four methods, respectively. The classifi-
cation accuracy of selected gene subsets by FNSIJE-KS and
FNPME-FS reaches the highest value at the same time on

dataset Prostate, which is 88.23%, and the selected gene sub-
set by FNSIJE-KS is 4.45 fewer than those by FNPME-FS.

In short, from Tables 12 and 13, comparing with FNRS,
FNCE,FNPME-FS, andEGGS, themean classification accu-
racy of selected gene subsets by the FNSIJE-KS method has
been improved under classifiers KNN and C4.5, both reach-
ing the highest level.

This final portion is verify the classification performance
of the FNSIJE-KS method under the classifier CART for
four gene datasets. Three feature selection methods com-
pared with FNSIJE-KS include FNRS [32], FNCE [37], and
FNPME-FS [36].

Let the four feature selection methods use the tenfold
cross-validation method on four gene datasets, and classifi-
cation accuracy of selected gene subsets under the classifier
CART is shown in Table 14. In Table 14, the bolded numbers
indicate that the classification accuracy of the selected gene
subsets is the best with respect to other three methods.

As seen from the average classification result illustrated in
Table 14, and combining Table 10, our method FNSIJE-KS
achieves the largest value for the gene dataset Colon under
the classifier CART. Meanwhile FNSIJE-KS selects fewest
genes than three other feature selection methods. FNSIJE-
KS and FNRS have the highest classification performance
on selected gene subset of dataset Prostate, which is 86.03%.
Comparing FNSIJE-KS with FNRS, FNCE, and FNPME-
FS, the mean classification accuracy of the selected gene
subset by FNSIJE-KS reached the highest level under the
classifier CART.

In summary, the FNSIJE-KSmethod can eliminate redun-
dant features in the mass and exhibits better classification
performance than other compared methods on the gene
datasets.

Statistical analysis

To systematically study the statistical performance on clas-
sification accuracy of all compared methods in this paper,
Friedman test and corresponding post hoc will be carried out
in this subsection. Friedman statistic [56] is conveyed as:

χ2 = 12n

k(k + 1)

(
k∑

i=1

r2i − k(k + 1)2

4

)

(32)

F = (n − 1)χ2

n(k − 1) − χ2, (33)

where ri is the mean ranking of method on all datasets, n and
k represent the number of datasets andmethods, respectively,
and F is a F-distribution under (k − 1) and (k − 1) (n − 1)
freedom degrees.
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Table 10 Number of selected
genes with four feature selection
methods

Datasets Original FNRS FNCE FNPME-FS FNSIJE-KS

Colon 2000 2.5 4.9 7 2.4

DLBCL 5469 5.2 16.3 6.4 3.6

Leukemia 7129 4.7 8.7 6 2.2

Prostate 12,600 3.5 13.7 11.5 7.05

Mean 6799.5 3.98 10.9 7.73 3.81

Table 11 Gene subset with FNSIJE-KS for four gene datasets

Datasets KNN C4.5 CART

Colon {377 493 765 249} {377 265 765} {765 897}
DLBCL {1939 3769 920} {1939 3769 920} {1939 3769 398}
Leukemia {1882 760 2258} {1882 255} {1882 255}
Prostate {8554 9850 3474 4173 3793 7756 48 } {8554 9850 3474 4173 3793 7756 48} {8554 9850 3474 4173 3794 7756}

Table 12 Classification
accuracy with five methods on
classifier KNN

Datasets Original FNRS FNCE FNPME-FS EGGS FNSIJE-KS

Colon 0.7903 0.8548 0.9231 0.8548 0.6493 0.8710

DLBCL 0.8701 0.8831 0.8917 0.9611 0.8540 0.9221

Leukemia 0.7344 0.9306 0.8970 0.9444 0.6292 0.9444

Prostate 0.7647 0.7868 0.8516 0.8903 0.6394 0.9191

Mean 0.7899 0.8638 0.8909 0.9127 0.6929 0.9142

In this first portion, the classification accuracy of the four
feature selection methods in Tables 8 and 9 under the classi-
fiers KNN and CART is statistically analyzed.

First, for the classification accuracy on six UCI datasets
in Tables 8 and 9, the Friedman tests are achieved by the
comparison of FNSIJE-KSwith FNRS, FNCE, and FNPME-
FS. Tables 15 and 16 list the mean rankings of the four
methods under the classifiers KNN and CART, respectively.

Calling icd f in MATLAB 2016a calculates critical value
F(3, 15) = 2.4898, when α = 0.1.

Assuming that the four methods are equivalent in classifi-
cation performance, the value of Friedman statistics should
not exceed the critical value F(3, 15). On the contrary, the
four methods differ significantly in feature selection perfor-
mance.

Table 13 Classification
accuracy with five methods on
classifier C4.5

Datasets Original FNRS FNCE FNPME-FS EGGS FNSIJE-KS

Colon 0.7419 0.8226 0.7419 0.8065 0.6464 0.8548

DLBCL 0.7922 0.9351 0.8181 0.8832 0.8264 0.8832

Leukemia 0.8143 0.9306 0.8754 0.9583 0.7333 0.9306

Prostate 0.6400 0.8603 0.7945 0.8823 0.5913 0.8823

Mean 0.7471 0.8872 0.7945 0.8825 0.6993 0.8877

Table 14 Classification
accuracy with four methods on
classifier CART

Datasets Original FNRS FNCE FNPME-FS FNSIJE-KS

Colon 0.5967 0.8387 0.7964 0.8064 0.8548

DLBCL 0.8181 0.8442 0.7698 0.9091 0.8961

Leukemia 0.7556 0.9306 0.8342 0.9722 0.9306

Prostate 0.6917 0.8603 0.8046 0.8224 0.8603

Mean 0.7155 0.8685 0.8013 0.8775 0.8855
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Table 15 Rank of four methods with classifier KNN on UCI datasets

Datasets FNRS FNCE FNPME-FS FNSIJE-KS

Glass 2.5 4 2.5 1

Ionosphere 4 3 1.5 1.5

Sonar 4 3 1 2

Wdpc 4 1 3 2

Wine 1 4 2 3

Wpbc 2 4 3 1

Mean 2.92 3.17 2.17 1.75

Table 16 Rank of four methods with classifier CART on UCI datasets

Datasets FNRS FNCE FNPME-FS FNSIJE-KS

Glass 2 4 2 2

Ionosphere 3 4 2 1

Sonar 4 3 2 1

Wdpc 2 4 3 1

Wine 3 4 1 2

Wpbc 3 4 2 1

Mean 2.83 3.83 2 1.33

According to Friedman statistics, we can get that F =
1.8431 under the classifier KNN and F = 11.0948 under
the classifier CART. Obviously, the value under the classifier
CART is greater than the critical value F(3, 15). This phe-
nomenon indicates that the FNRS, FNCE, FNPME-FS, and
FNSIJE-KS are significantly different.

Second, we need to do a post hoc test for the difference
between the four methods. The post hoc test used here is
Nemenyi test [57]. The statistics first needs to determine the
critical value of the distance between the mean ranking val-
ues, which is denoted as:

CDα = qa

√
k (k + 1)

6n
. (34)

Here, qa represents the critical tabulated value of this test.
It can be obtained that q0.1 = 2.291 when α = 0.1 and the
number of methods is 4. Thus, CD0.1 = 1.7076.

If the distance of the corresponding mean rankings
between the two methods is larger than the critical distance
CD0.1, the twomethods are considered to be significantly dif-
ferent. From Table 15, the distance between mean rankings
of FNSIJE-KS to FNCE is 1.95, which is greater than 1.7076
under the classifier KNN. Therefore, the Nemenyi tests
show that FNSIJE-KS is significantly greater than FNCE at
α = 0.1. However, the distances between mean rankings of
FNSIJE-KS to FNRS and FNPME-FS are less than 1.7076.
This phenomenon repeals that there is no significant differ-
ence between FNSIJE-KS to FNRS and FNPME-FS. For

Table 17 Rank of five methods with classifier KNN on gene datasets

Datasets FNRS FNCE FNPME-FS EGGS FNSIJE-KS

Colon 3.5 1 3.5 5 2

DLBCL 4 3 1 5 2

Leukemia 3 4 1.5 5 1.5

Prostate 4 3 2 5 1

Mean 3.63 2.75 2 5 1.63

Table 18 Rank of five methods with classifier C4.5 on gene datasets

Datasets FNRS FNCE FNPME-FS EGGS FNSIJE-KS

Colon 2 4 3 5 1

DLBCL 1 5 2.5 4 2.5

Leukemia 2.5 4 1 5 2.5

Prostate 3 4 1.5 5 1.5

Mean 2.13 4.25 2 4.75 1.88

the classifier CART, the distance between mean rankings of
FNSIJE-KS to FNCE is 2.5, which is greater than 1.7076; it
is obviously obtained that FNSIJE-KS is significantly greater
than FNCEatα = 0.1.However, the distances betweenmean
rankings of FNSIJE-KS to FNRS and FNPME-FS are less
than 1.7076. This reveals that there is no significant differ-
ence between FNSIJE-KS to FNRS and FNPME-FS.

The following portion is executed on five different meth-
ods FNRS, FNCE, FNPME-FS, and FNSIJE-KS for four
gene datasets from Tables 12 and 13 under two classifiers
KNN and C4.5. Tables 17 and 18 list the mean rankings of
the five methods under the classifiers KNN and C4.5, respec-
tively.

After calculation, F(4, 12) = 2.4801 when α = 0.1, and
then, we can compute that F = 8.5221 for Classifier KNN
and F = 10.0225 for Classifier C4.5. It is apparent to obtain
that the twovalues are greater than the critical value F(4, 12).
This result exhibits that five methods are significantly differ-
ent.

Then, we perform Nemenyi tests on the five feature
selection methods in Tables 12 and 13 under the classi-
fiers KNN and C4.5. It is easily obtained that q0.1 = 2.459
when the number of methods is 5 and α = 0.1. Thus,
it can calculate that CD0.1 = 2.7492 (k = 5, n = 4)
according to formula (34). For classifier KNN, the dis-
tances between mean rankings of FNSIJE-KS to other four
methods are less than 2.7492, and this result shows that
five methods are no significant difference. For classifier
C4.5, the distance between mean rankings of FNSIJE-KS
to EGGS is greater than 2.7492. Thus, the Nemenyi tests
show that FNSIJE-KS is significantly better than EGGS at
α = 0.1.
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Table 19 Rank of five methods with classifier CART on gene datasets

Datasets FNRS FNCE FNPME-FS FNSIJE-KS

Colon 2 4 3 1

DLBCL 3 4 1 2

Leukemia 2.5 4 1 2.5

Prostate 1.5 4 3 1.5

Mean 2.25 4 2 1.75

In the final portion of this subsection, we discuss the sta-
tistical results of the four compared methods for four gene
datasets from Table 14 under the classifier CART. The mean
rankings of four methods under classifier CART are com-
puted and demonstrated in Table 19.

It is apparently obtained that F(3, 9) = 2.8129 when α =
0.1, and then, we can compute that 5.00 for classifier CART.
This exhibits that the values is greater than the critical value
F(3, 9). Thus, four methods are significantly different under
classifier CART.

Then, we perform Nemenyi test on the four feature selec-
tion methods in Table 14 under the classifier CART. It is
easily obtained that q0.1 = 2.291 when the number of meth-
ods is 4 and α = 0.1. Thus, it can calculate that 2.0914
(k = 4, n = 4) according to formula (34). For the classifier
CART, the distance between mean rankings of FNSIJE-KS
to FNCE is greater than 2.0914. Thus, the Nemenyi test
shows that FNSIJE-KS is significantly better than FNCE at
α = 0.1.

To sum up, FNSIJE-KS is better than the other compared
methods in the Friedman statistic test.

Conclusion

In neighborhood decision system, the traditional dependency
function based on FNRS only considers the classification
information contained in the lower approximation while
ignoring the classification information contained in the upper
approximation.This constructionmethodmay lead to the loss
of some information. To solve this problem, we propose an
improved model based on self-information and information
entropy. First, from the algebra view, the four types of fuzzy
neighborhood self-information measures are defined using
the upper and lower approximations in FNRS and combining
with the concept of self-information, and the related proper-
ties are discussed in detail. It is proved that the fourthmeasure
changes more with the change of feature subset, which is
helpful to select the optimal feature subset. The significance
of features based on algebra view can interpret the influ-
ence of the features included in feature subset. Second, the
fuzzy neighborhood joint entropy is given from the informa-

tion view. Information view-based feature significance can
illustrate the importance on features from uncertainty clas-
sification. Then, from both algebra and information views,
a model based on FNSIJE is proposed to analyze the noise,
uncertainty, and ambiguity of the neighborhood decision sys-
tem. Third, a new forward searchmethod for feature selection
is designed, which makes that the selected feature subsets
have higher classification performance. All the designed
experiments demonstrate that our FNSIJE-KS method can
select fewer features for some low-dimensional UCI datasets
and high-dimensional gene datasets, which has the optimal
classification performance. In the future work, we will fur-
ther study more effective search strategies based on FNSIJE
to balance the size of selected feature subsets and classifica-
tion accuracy asmuch as possible, and explore on incomplete
information systems.
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