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Abstract
This paper studies a single-machine multitasking scheduling problem together with two-agent consideration. The objective 
is to look for an optimal schedule to minimize the total tardiness of one agent subject to the total completion time of another 
agent has an upper bound. For this problem, a branch-and-bound method equipped with several dominant properties and a 
lower bound is exploited to search optimal solutions for small size jobs. Three metaheuristics, cloud simulated annealing 
algorithm, genetic algorithm, and simulated annealing algorithm, each with three improvement ways, are proposed to find the 
near-optimal solutions for large size jobs. The computational studies, experiments, are provided to evaluate the capabilities for 
the proposed algorithms. Finally, statistical analysis methods are applied to compare the performances of these algorithms.

Keywords  Cloud simulated annealing algorithm · Genetic algorithm · Multitasking · Scheduling · Simulated annealing 
algorithm · Two agent

Introduction

Multitasking means that there are a set of tasks processed at 
the same time or within a limited time interval for a person 
or a machine (a computer, a team, a center). Multitasking 
phenomenon has been discussed in many disciplines, for 
example, behavioral psychology [39], cognitive science [6], 
community pharmacy [25], experimental psychology [33, 
34], healthcare operations management [20], managerial 
behavior [42], chemical engineering [23], computer science 

(embedded systems, distribution system and parallel com-
puting), Noguera and Badia [31], Appasami and Suresh 
Joseph [4], Kardos et al. [19], Lai et al. [24], and so on.

There are two models of multitasking [9, 38,46]. One is 
the concurrent mode, i.e. to perform two or more tasks at the 
same time, for example, media multitasking [40] and [32]. 
The other is the sequential mode, i.e. to perform tasks by 
interleaving and switching from one task to other tasks [29]. 
The two types of multitasking are also seen in embedded 
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computing system design employed in system-on-chip plat-
forms [31].

In job scheduling domain or manufacturing field, sev-
eral possible applications of multitasking were observed in, 
for example, administration processing [12], manufactur-
ing [50]. In this paper, we study the sequential model of 
multitasking for job scheduling problem, i.e. a ‘machine’ (a 
team, a service center, and so on) processes a sequence of 
jobs (tasks) by interleaving and switching from one job to 
another during an interval of time. The operations for clas-
sical scheduling problem are to finish one job at one time 
then process another job, until all the required jobs are fin-
ished. The operations for multitasking scheduling problem 
(MSP) are also to perform a predetermined job (called a 
primary job) on a job sequence at one time, however, before 
the primary job to be fully finished, due to a certain rea-
son, operations switch to process all the unfinished jobs (or 
called waiting jobs) by interleaving to finish a proportion 
of each waiting job, afterwards, the primary job is finished 
completely. Hall et al. [12,13], launched the multitasking 
research in the scheduling problem area, carried on by Sum 
and Ho [43], Zhu et al. [57, 58], Liu et al. [27], Ho and Sum 
[14], Li and Chong [26], and Ji et al. [18]. More recently, 
Zhu et al. [60] proposed optimal solution algorithms for 
multitasking scheduling with multiple rate-modifying activi-
ties and analyzed some special cases of them. Xiong et al. 
[48] applied an exact branch‐and‐price algorithm to solve an 
unrelated parallel-machine multitasking scheduling problem.

Hall et al. [12] constructed a mathematical model incor-
porated the multitasking into the traditional single-machine 
scheduling problem, and provided a summary of five moti-
vations for multitasking. The objective criteria investigated 
were maximum lateness, the total weighted completion time, 
and total number of late jobs. Hall et al. [13] studied two 
models to accommodate two features that are possible hap-
pened on multitasking scheduling environment for human 
workers. One model employed “alternate period processing” 
for a disruption (and have to perform multitasks) owing to 
workers’ tiredness situation and the other model employed 
“shared processing” for a distraction (and have to perform 
multitasks) owing to routine tasks situation. The studied cri-
teria were the maximum lateness, the total completion time, 
and the number of late jobs. They discussed the complex-
ity of models and then developed algorithms to resolve the 
considered problems.

Following the considered problem by Hall et al. [13], 
Sum and Ho [43] derived the expected total (weighted) 
completion time and provided statistical analysis on the 
performance of multitasking for a human worker under 
the assumptions that the switching cost is constant and the 
amount of each interruption is proportional to the remaining 
processing time of the waiting job. They gave an advice “that 
multitasking should be avoided in a work place”. Ho and 

Sum [14] investigated the MSP with asymmetric switch cost 
functions and demonstrated that and the problem is unary 
NP-hard for minimization of the total completion time or a 
common due date assignment problem, and the problem is 
binary NP-hard for the makespan. They also showed that if 
a cost function has a special structure then the study prob-
lem can be solved in polynomial time for three common 
adopted criteria. Zhu et al. [57,58], explored the MSP with 
a (or multiply) rate-modifying activity (activities), respec-
tively. They formulated models and developed algorithms 
to solve the MSP for criteria including the makespan, the 
total completion time, the lateness, and a multi-criteria that 
combines several criterions related to a common due date 
assignment. Zhu [57] put forward several optimal algorithms 
to solve the MSP with a deterioration effect to minimize the 
makespan and the total absolute differences in completion 
times. Liu et al. [27] added a common due date required for 
jobs into the multitasking scheduling formulation investi-
gated by Hall et al. [12]. The objective function was a lin-
ear combination of the total earliness, the total tardiness, 
and a common due date assignment. They provided some 
theoretical results and developed an algorithm to solve the 
problem with linear interruption functions. Moreover, they 
suggested several future research topics for the MSP. Li and 
Chong [26] developed a single-machine multitasking sched-
uling model to management the progress on the processing 
jobs which can be split into subtasks to be processed, and 
also considered to check the progress at different milestones 
(time points). The main concern is to monitor or to control 
the amount of jobs been processed. Ji et al. [18], motivated 
from the service industry (internet service, medical ser-
vice), investigated the MSP under parallel-machine setting 
with machine-dependent slack due window scenario. The 
objective was to minimize a total cost function which is a 
combination of criteria of the earliness, the tardiness and 
the time related to slack due window assignment. The main 
contribution of them was to represent the interruption func-
tion as a more general form that can reflect real service or 
manufacturing situations.

On the other hand, two-agent or multi-agent scheduling 
problem has been studied in the recent about 20 years. For 
example, Baker and Smith [5] and Agnetis et al. [1] are among 
the pioneers on this topic. In a two-agent single machine 
scheduling problem, different agents share one processing 
resource (machine) and each agent demands to optimize its 
own optimality criterion concerning to its own set of jobs. 
As the agents have its own optimality criterion, in general, 
they have to compete for sharing a collaborative resource to 
make the best their own criterion. Baker and Smith [5] inves-
tigated the problems of minimizing an aggregate of different 
optimality criteria adopted by two agents, in which the opti-
mality criteria considered were the total weighted completion 
time, the maximum lateness, and the makespan. Depending on 
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the optimality criterion of each agent and on the processing 
environment (single machine or job shop), Agnetis et al. [1] 
addressed a constrained optimization problem, in which one 
agent have to optimize its optimality criterion with respect to 
its own jobs subject to a constraint on the other agent’s objec-
tive function. Since then, study on the multi-agent job sequenc-
ing problem has been developed in the area of scheduling. 
For more discussing on two-agent or multi-agent scheduling 
research, the reader may refer, Mor and Mosheiov [30], Gerstl 
and Mosheiov [10], Kovalyovet al. [22], Yin et al. [51, 52, 
53, 54], Li et al. [28], Zhang and Wang [56], Ahmadi-Darani 
et al. [3] a review paper by Perez-Gonzalez and Framinan 
[35], and the book by Agnetis et al. [2]. More recently, Yang 
et al. [49] introduced due date assignment into a two-agent 
scheduling problem to minimize the completion times of given 
jobs. Wang et al. [45] studied several multitasking scheduling 
models with multiple agents in which the objective functions 
were included the maximum of a regular function (associated 
with each task), the total completion time, and the weighted 
number of late jobs.

To the best of authors’ knowledge, there is no research on 
the machine multitasking scheduling problem (MSP) together 
with two (or more) agents. This study tries to bridge the gap, 
and also responds to one of the further research problems—
“Second, the classical scheduling literature contains a large 
number of problems that remain to be studied in the presence 
of multitasking.” mentioned in Hall et al. [12]. Moreover, one 
of the future research directions in Agnetis et al. [1], in a multi-
agent scheduling problems environment, is to “Extension to 
different resource usage modes (concurrent usage, preemption, 
etc.) and/or different system structure (e.g. parallel machines).” 
Therefore, we study the alliance of these two emerging top-
ics in the scheduling problem area. The objective is to mini-
mize the total tardiness of first agent’s jobs subject to an upper 
bound constraint on the total completion time of the second 
agent’s jobs.

The rest of this paper is organized as follows. The problem 
statement is given in “Problem statement”. In “Properties and 
a lower bound”, we derive several dominance properties and 
a lower bound for the study problem. In “Metaheuristics GA, 
SA, and CSA”, three commonly used metaheuristics [cloud 
simulated annealing algorithm (CSA), genetic algorithm (GA), 
simulated annealing algorithm (SA)] are adapted as tools to 
search (approximate) optimal solutions. “Data simulation 
analysis” is analysis of experimental simulation data, and con-
clusion and suggestions are in “Conclusion and suggestions”.

Problem statement

The proposed multitasking scheduling problem (MSP) in 
this study is formulated as follows. Consider a set of n 
jobs,  

{
J1, J2,… , Jn

}
 , to be processed by a machine. For 

convenient explanations, sometimes we use the job i or i 
to represent Ji . The machine can operate at most one job 
at a time. Suppose that there are two competing agents 
denoted, respectively, by agents A and B . Besides, let 
X ∈ {A,B} be the agent code. The jobs belong to agent X 
are presented as X-jobs. Let JA and JB denote the sets of 
jobs from agent A (or A-jobs) and jobs from agent B (or 
B-jobs), respectively, meanwhile let Na and Nb denote the 
number of A-jobs in JA and B-jobs in JB . That is 
JA =

{
JA
1
, JA

2
,… , JA

Na

}
 ,  JB =

{
JB
1
, JB

2
,… , JB

Nb

}
 ,  a n d 

JA ∪ JB =
{
J1, J2,… , Jn

}
 . Both of jobs in the set {A,B} are 

available at the begin of operation (time zero). Both of the 
processing time ( tX

j
 ) and due date ( dX

j
 ) for a job JX

j
 are 

nonnegative integers. For a job schedules � , let CX
j
(�) , or 

CX
j

 ,  be  the  complet ion t ime of  job  Jj  ,  and 
TX
j
= max{CX

j
(�) − dX

j
, 0} be the tardiness of job j as in the 

job sequence �.
The serial (sequential) multitasking environment means 

that when a job is being processed, it is fractured by other 
unfinished jobs that are waiting for processing. Every job 
is assigned at any time point is represented as the primary 
job, while the jobs that are ready and not fully processed 
are denoted as waiting jobs. Under the multitasking situa-
tion, as a primary job is being processed, it is interrupted 
by all the waiting jobs. Two more assumptions are required 
to model the process on which the waiting jobs interrupt 
the primary jobs. One is called “interruption time” that is 
the time during which a waiting job interrupts the primary 
job, which is independent of the characteristics of the pri-
mary job. Let tX′

i
 be the not yet finished processing time of 

a waiting job i at the beginning of a time point when job j 
is scheduled as a primary job. In this study, the amount of 
time for which job i interrupts job j is given by g(tX�

i
) = DtX�

i
 

as in Hall et al. (12), where D is a ratio of interruption 
(time) cost with 0 < D < 1 . The other assumption is called 
“switching time” that is the amount of time prepared to 
deal with the primary job is scheduled, which depends 
only on the number of waiting jobs. Let Sj be the set of 
waiting jobs when j is assigned to be the primary job and 
f (
|||Sj

|||) be the amount of switching time for processing the 
interrupting jobs. In this study, the switching time is 
adopted as f

(|||Sj
|||
)
= |Sj| , which depends only on the num-

ber of waiting jobs. The objective function of this study is 
to minimize the total tardiness of all the jobs of the agent 
A subject to an upper bound, say Q, required on the total 
completion time of jobs of agent B. The three-field nota-
tion for this problem in scheduling domain can be denoted 
as 1∕‘mt’∕

∑
TA
j
∶
∑

CB
j
≤ Q , where ‘mt’ represents 

multitasking.
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Properties and a lower bound

The proposed problem is NP-hard, since the classical problem 
without agent concept or multitasking phenomenon is NP-hard 
(Pinedo 2014). To efficiently deal with this problem, a branch-
and-bound (B&B) algorithm is devised to find the optimal 
solutions for small-size instances and three metaheuristics are 
then utilized to quickly find the approximate solutions for rela-
tively large-size instances. It is noted that the dominance prop-
erties act a considerable role in a B&B algorithm for searching 
an exact solution (schedule) because many lower nodes of the 
instances can be cut down by applying these dominant proper-
ties. To help speeding up the search process of the B&B, sev-
eral dominance properties are established in this section. Let 
σ = (�1, i, j,�2) and ��

= (�1, j, i,�2) be two job sequences 
(schedules) in which �1 and �2 are two parts of subsequences 
with k jobs and (n-k-2) jobs, respectively. The switching cost 
function is f

(|||
{
i, j,�2

}|||
)
= n − k , k = n − 1, n − 2, …, 1, and 

s denote the staring time of job i in  σ = (�1, i, j,�2) and job j 
in ��

= (�1, j, i,�2) . D denotes the ratio of interruption cost, 
where tX�

i
= D × tX

i
 . To show that σ dominates �′ , the following 

s u f f i c e s :  max
{
CA
i
(σ) − dA

i
, 0
}
+max

{
CA
j
(σ) − dA

j
, 0

}
,

< max

{
CA
j

(
𝜎

�)
− dA

j
, 0

}
+max

{
CA
i

(
𝜎

�)
− dA

i
, 0
}

 a n d 
CA
j
(σ)   <   CA

i

(
�

′) ,  w h e r eCX
j
(�) = s + (1 − D)k−1tX

j

+f (k) +
∑

v∈�
2

⋃
{j} D(1 − D)k−1tX

v
 . The proofs of following 

properties are left out because they can be proved by apply-
ing a pairwise interchange method.

P r o p e r t y  1   I f  s + (1 − D)k−1tA
i
+ f (k)+∑

v∈𝜋
2
∪{jA} D(1 − D)k−1tX

v
< dA

i
 < s + (1 − D)k−1tA

j
+ f (k)+

∑
v∈�

2
∪{iA} D(1 − D)k−1tX

v
+ (1 − D)ktA

i
+ f (k + 1) +

∑
v∈�

2

D(1 − D)ktX
v
 and 

max{s + (1 − D)k−1tA
j
+ f (k) +

∑
v∈�2∪{i

A} D(1 − D)k−1tX
v
, s

+(1 − D)k−1tA
i
+ f (k) +

∑
v∈�

2
∪{jA} D(1 − D)k−1tX

v
+ (1 − D)ktA

j

+f (k + 1) +
∑

v∈𝜋
2

D(1 − D)ktX
v
} < dA

j
 , then � dominates �′.

P r o p e r t y  2   I f 
s + (1 − D)k−1tA

i
+ f (k) +

∑
v∈𝜋2∪{j

A} D(1 − D)k−1tX
v
> dA

i
 and 

s + (1 − D)k−1tX
i
+ f (k) +

∑
v∈�

2
∪{jA} D(1 − D)k−1tX

v
+

(1 − D)ktA
j
+ f (k + 1) +

∑
v∈�

2

D(1 − D)ktX
v
≤ dA

j
 ,  then � 

dominates �′.

P r o p e r t y  3   I f 
s + (1 − D)k−1tA

i
+ f (k) +

∑
v∈𝜋2∪{j

A} D(1 − D)k−1tX
v
> dA

i
  , 

s + (1 − D)k−1tA
j
+ f (k) +

∑
v∈𝜋2∪{i

A} D(1 − D)k−1tX
v
> dA

j
  , 

dA
i
< dA

j
 , and, dA

j
− dA

i
< tA

j
− tA

i
 , then � dominates �′.

For any uncompleted node (PS, US) in which PS is already 
assigned partial sequence with k jobs and US is an undecided 
subset of jobs with (n-k) jobs, the following two properties hold.

Property 4  Let CB
[l]

 be the completion time of the last job in PS. 
If CB

[l]
> Q , then node (PS, US) should be an infeasible schedule.

Property 5  Let C[k] be the completion time of the last job in 
P S .  I f  t h e re  i s  a ny  B  j o b  i n  U S  a n d 
C[k] + (1 − D)k−1tB

j
+ f (k) +

∑
v∈US�{jB} D(1 − D)k−1tX

v
> Q , 

then node (PS, US) should be eliminated.

The performance of the B&B algorithm is also related to 
a good lower bound. In what follows, a simple lower bound 
will be presented. Assume that PS is a partial sequence in 
which the order of the first k jobs is determined and US be 
the unscheduled part with ( n − k ) jobs. Furthermore, let 
n − k = nA + nB, where nA denote the number of A-jobs while 
nB denote the number of B-jobs in US. Let �dnote a com-
plete sequence obtained from PS. The completion time for the 
(k + 1)th job to the (k + nA)th position in a σ = (PS,US) , if the 
nA A-jobs schedule on the first nA positions in US, is given by

In a similar way, we have

CA
[k+1]

(�) = s + (1 − D)ktA
[k+1]

+ f (k + 1) +
∑

v∈US�{j[k+1]}

D(1 − D)ktX
v
,

CA
[k+2]

(�) = s + (1 − D)ktA
[k+1]

+ f (k + 1)

+
∑

v∈US�{jA
[k+1]

}

D(1 − D)ktX
v

+ (1 − D)k+1tA
[k+2]

+ f (k + 2)

+
∑

v∈US�{jA
[k+1]

,jA
[k+2]

}

D(1 − D)k+1tX
v
.

CA
[k+nA]

(�) = s + (1 − D)ktA
[k+1]

+ f (k + 1) +
∑

v∈US�{jA
[k+1]

}

D(1 − D)ktX
v

+ (1 − D)k+1tA
[k+2]

+ f (k + 2) +
∑

v∈US�{jA
[k+1]

,jA
[k+2]

}

D(1 − D)k+1tX
v

⋯

+ (1 − D)k+nA tA
[k+nA]

+ f (k + nA) +
∑

v∈US�{jA
[k+1]

,jA
[k+2]

,...,jA
[k+nA ]

}

D(1 − D)k+nA−1tX
v
.
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According to the above definitions, those nA are arranged 
in a non-decreasing order to obtain the least amount of the 
completion times from nA A-jobs in US. Next problem is to 
find the maximum due date (say dM) from nA A-jobs in US 
and assign dM to be the due date for each A-job in US to 
yield the least amount of tardiness for the unscheduled part. 
It can be simplified as follows:

w h e r e  CA
(k+i)

(�) = s + (1 − D)ktA
(k+1)

+ f (k + 1)

+
∑

v∈US�
�
jA
[k+1]

� D(1 − D)ktX
v

LB =
∑

i∈PS

max

{
0,CA

[i]
(�) − dA

[i]

}
+

nA∑

i=1

max

{
0,CA

(k+i)
(�) − dM

}
,

+(1 − D)k+1tA
(k+2)

+ f (k + 2) +
∑

v∈US�
{
jA
[k+1],

jA
[k+2]

}
D(1 − D)k+1tX

v

+⋯ + (1 − D)k+itA
(k+i)

+ f (k + i)

+
∑

v∈US�
{
jA
[k+1],

jA
[k+2],⋯,

jA
[k+i]

}
D(1 − D)k+itX

v
.

Metaheuristics GA, SA, and CSA

It is commonly known that the computation load can be 
much saved by utilizing a heuristic or metaheuristic (to 
quickly search a near optimal solution) to lay an (upper or 
lower) bound on a scheduling problem proceeding to execute 
a B&B (branch-and-bound) method. Thus, many research 
paid more attention on developing and analysis of heuristic 
or metaheuristic algorithms for finding optimal solutions for 
scheduling problems. Moreover, it is noted that the search 
for optimal solutions for large-size jobs is required much 
CPU time. However, an effective heuristic or metaheuristic 
can yield a good-quality approximate solution with a small 
margin of error and least amount of CPU time. In light of 
these observations, this study utilizes three metaheuris-
tics, including the genetic algorithm (GA), the simulated 
annealing algorithm (SA), and the cloud simulated algorithm 
(CSA), to solve the study problem. These metaheuristics 
GA, SA, and CSA have been successfully used to deal with 
a wide variety of discrete combinatorial optimization prob-
lems. The main steps of GA are to start with a set of feasible 
population and iteratively to replace the current population 
by a new population throughout encode, reproduction mech-
anism, a crossover operator, a mutation operator, and decode 
(see [8, 11, 15, 41]). The details of the GA are given below.
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The SA algorithm by Kirkpatrick et al. [21] is the most 
commonly utilized metaheuristic algorithm for solving 
problems from combinatorial optimization. The major 
steps of SA are provided below.

The cloud simulated algorithm (CSA) put forward by 
Torabzadeh and Zandieh [44] is also used to resolve the 
study problem. The key parameters of CSA are including 
the start (initial) temperature Ti , stop temperature Tf , and 
the decay (cooling) factor λ. The major details of CSA are 
provided below.

Note that TT(�1 ) and TT(�0 ) denote the total tardiness of 
�1 and �0 , respectively, while Δ = (TT(�1) − TT(�0))∕TT(�0) . 
To further improve the quality of the initial solutions (seeds) 
used in GA, SA, and CSA, three local searches were applied 
to improve each of the initial solutions in GA, SA, and CSA. 

During generating an initial solution process, those B-jobs 
are first generated and then A-jobs were generated and 
appended after B-jobs to form as a feasible initial solution. 
To get a good quality of solution, this initial solution is sepa-
rately employed three local search methods to improve it. 
Those operations are the pairwise interchange (PI), extrac-
tion and backward-shifted reinsertion (EBSR), and extrac-
tion and forward-shifted reinsertion (EFSR), refer Della 
Croce et al. [7]. The initial solutions improved by the PI, 
EBSR, and EFSR are recorded as GA_p, GA_b, GA_f in 
GA, as SA_p, SA_b, SA_f in SA, and as CSA_p, CSA_b, 
CSA_f in CSA, respectively. Thus, three variants of each SA, 
GA and CSA are utilized in this study. Additionally, follow-
ing the scheme of Wu et al. [47], the proposed properties, 
a lower bound, and the best solution among all proposed 
approximate solutions are utilized in a branch-and-bound 
method (B&B).

For further testing, all parameters in proposed nine algo-
rithms, we examined parameters including the initial tem-
perature ( Ti ), cooling factor (Cf), and number of improve-
ment ( Nr ) in three SAs, three parameters including the 
initial temperature ( Ti ), annealing index ( � ) and number of 
improvement ( Nr ) in three CSAs, and the number of parents 
(Nsize), genetic generation (Gsize) and mutation rate (P) in 
three GAs, respectively. When fixed n = 12, we randomly 
generated 100 instances and utilized all nine algorithms 
and a B&B method equipped with the dominance proper-
ties derived in “Properties and a lower bound” to solve them, 
and calculated the average error percentage (AEP) for the 
differences between the results yielded from nine algorithms 
and those yielded from the B&B method for determining 
appropriate parameters.

In our pretests, we found that the larger values of tardi-
ness factor ( �) , due date range ( �) , number of B-jobs (NB) are 
important factors that affected the algorithms to find a feasi-
ble schedule. The smaller value of interruption factor D and 
a control variable, Qlevel (refer “Data simulation analysis”), 
for bound above total completion time of B-jobs also had 
effects on finding a feasible solution. In view of this obser-
vation, the initial tested instances are generated by setting 
a design at n = 12 , NB = 10,D = 0.001, � = 0.75 , � = 0.50 
and Qlevel = 1.6 . After parameters tuning process, the (Ti, 
Cf, Nr ) is adopted as (0.85, 0.4, 20) in three SAs, the (Ti, � , 
Nr ) as (0.65, 0.3, 30) in three CSAs, the (Nsize, Gsize, P) as 
(32, 140, 0.09) in three GAs, in the later experimental tests.

Data simulation analysis

The processing times of A-jobs, tA
j
 , or B-jobs, tB

j
 , on a 

machine are generated randomly from uniformly distrib-
uted on integers between 1 and 100. The due date for each 
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A-job is randomly generated from uniform distributions 
TA × U

(
1 − � −

�

2
, 1 − � +

�

2

)
 , where TA =

∑
j∈JA

tA
j
 , the 

control parameters of the due dates are tardiness factor � 
and range of due dates � . In particular, � is set to 0.25 and 
0.50, and � is set to 0.25, 0.50, and 0.75. Regarding the 
setting of the upper bound for the B-jobs, we designate 
Q = Qlevel ×

∑
j∈JB

tB
j
 , in which the control parameters are 

Qlevel. Another parameter relevant to two-agent scenario 
is the number of B-jobs, NB . In this study for small number 
of jobs, fixed n = 12, three types of Qlevel is set at 1.6, 1.7, 
and 1.8, while NB is set to be 2, 4, 6, 8 and 10, and the 
levels of the interruption factor D are set at 0.1, 0.01, and 
0.001. In total, there are 270 ( D × � × � × Qlevel × NB = 
3 × 2 × 3 × 3 × 5) cases of test combinations and 100 
instances are generated for each case. Note that if the num-
ber of nodes in B&B algorithm exceeds 108 , it is considered 
as a failure and turns to next instance, otherwise, it is 
recorded as a feasible case. The performances of the 
branch-and-bound method and the proposed nine algo-
rithms over different parameters are summarized in 
Tables 1, 2, and 3.

As shown in Table 2, it can be seen that B&B algorithm 
consumes fewer nodes as the interruption factor, D, is at 
higher value (D = 0.1). As for the impact of parameters � and 
� , Table 2 shows that, on average, B&B method takes fewer 
nodes or run less CPU time at the big value of � or at a small 
value of � . Regarding the impact of NB over different size, 
it can be seen in Table 2 that the average numbers of nodes 
have significant changes, this is possibly, because based on 
the fact that B-jobs have an upper limit constraint, the size of 
the searching space directly shrinks as the big number of NB , 
say at 10. In other words, a smaller number of A-jobs reduce 
the search difficulty, so the B&B algorithm can complete the 
search process in fewer nodes. In contrast, as the values of 
Qlevel increases, the average number of nodes is gradually 
decreased, but the range of fluctuation affected by Qlevel is 
less than that affected by Nb.

Regarding the performance of all proposed nine algo-
rithms, as show in Table 3, Figs. 1, 2, and 3, all nine 
algorithms performed better at a big value of D or � than 
those at a small value of D or � . For the value of D at 
0.1, it not only has better AEP performance, but also has 
a smaller variance on AEP than those of D at 0.01 and 
0.001. All nine algorithms performed better at a small 
value of � than those at a big value of �.

Over all, GA_f, GA_b , and GA_p performed worse on 
average AEP than the rest of the algorithms did.

Regarding the effect of parameters Qlevel and Nb on 
the AEP, it can be seen from the box plots in Fig. 4 that 
for different levels of Qlevel the dispersions on the AEP 
is not too large, meaning that the search ability for (near-) 
optimal solutions were about the same for all 9 algorithms. 

Meanwhile, as shown in Fig. 5, the impact on AEP for 
different Nb , there are two trends occurred in three GAs, 
where median and IQR of AEPs increase significantly as Nb 
increases from 2 to 8, but AEP declines sharply as Nb is up 
to 10. The other trend occurred in three SAs and three CSAs, 
where the median of AEPs is about 1–3%, and the variances 
is in general less than that of GAs. This is due to the charac-
teristic that GA is more sensitive to the initial solutions. As 
the value of Nb is close to 6, the search space for A-jobs is 
wider than the other values of Nb . Therefore, that only using 
simple pairwise, forward or backward two-point interchange 
methods cannot provide good initial solutions, resulting in 
poor GA performance on the AEPs.

As shown in Table 3 and Fig. 6, GA_f, GA_b , and GA_p 
generally have larger IQR and three CSAs perform better on 
average AEP than other six algorithms do.

To examine whether the difference between nine algo-
rithms is statistically significant or not, we used the analysis 
of variance (ANOVA) on AEPs and found that the obser-
vations from the experiments are not followed normal dis-
tributions. Thus, we performed the Kruskal–Wallis test (a 
nonparametric statistical method) to examine the statistical 
differences. The third column of Table 4 showed the mean 
rank of AEPs for 9 algorithms. The p value was < 0.001 (and 
the value of test statistic, Chi-Square distribution, was 198.6 
with 8 degrees of freedom) of the Kruskal–Wallis (K–W) 
test, thus the differences among the performances of the nine 
algorithms are statistically significant.

For further multiple comparison the performances 
among the 9 algorithms, the DSCF method (the 
Dwass–Steel–Critchlow–Fligner procedure, Holland [15]) 
was employed and the algorithms were grouped (run on SAS 
9.4). As shown in Table 5, it can be seen that the three initial 
solutions used in GA, SA or CSA have no significant differ-
ence on AEP, but AEPs of GA and SA are significantly dif-
ferent with that of CSA. The CSAs did the best performance 
in term of the mean of AEP.

For the large number of jobs, fixed n = 60, three levels of 
D is set at 0.1, 0.01, and 0.001, three types of Qlevel is set 
at 1.6, 1.7, and 1.8, while Nb is set at 10, 20, 30, 40, and 50. 
In total, there are 270 test combinations and 100 instances 
are generated for each combination. The results were sum-
marized in Table 6.

It can be observed from Table 6 that the three initial 
solutions used in GA, SA or CSA have no significant dif-
ference on the RPD. The CSA seems have differences from 
both GA and SA; the CSAs did the best performance in 
term of the average of RPD.

As shown in Table 6 and Fig. 7, it can be seen that when 
the level of interruption factor is at high level (i.e. D = 0.1), all 
nine algorithms have smaller RPDs and smaller dispersions. 
It means that for a bigger value of D, proposed algorithms not 
only have a better RPD performance, but also have a lower 
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Table 1   Performances of 
B&B over different parameters 
(n = 12)

D Qlevel Nb Node CPU times

Mean Max Mean Max

0.1 1.6 2 1,262,030.02 5,867,625 18.01 68.8
4 1,265,873.77 6,288,987 19.15 88.05
6 19,391.90 1,794,245 0.42 27.11
8 287.64 4343 0.01 0.11
10 51.24 85 0 0.02

1.7 2 1,341,512.94 5,867,649 19.53 69.73
4 1,109,542.67 7,408,941 17.29 103.44
6 13,696.56 802,057 0.34 14.29
8 287.77 4344 0.01 0.08
10 51.31 85 0 0.02

1.8 2 1,468,471.79 5,430,421 21.73 67.22
4 831,246.54 9,578,716 13.53 133.43
6 13,696.62 802,057 0.34 14.4
8 287.81 4345 0.01 0.09
10 51.36 85 0 0.02

0.01 1.6 2 1,222,165.50 3,408,420 16.42 43.23
4 1,572,122.14 8,613,239 20.04 94.15
6 5,256,577.99 24,942,703 56.24 262.69
8 1,292,546.22 23,157,617 10.75 192.35
10 13.22 86 0 0.02

1.7 2 1,414,446.01 4,334,821 18.66 56.11
4 2,071,946.32 10,658,221 25.93 135.61
6 3,567,067.93 39,031,541 37.28 419.32
8 295,887.48 23,816,151 2.37 162.15
10 13.22 86 0 0.02

1.8 2 1,617,922.93 5,174,566 21.32 70.81
4 2,710,071.00 13,718,005 33.79 163.49
6 2,270,214.58 23,029,503 22.9 226.69
8 1517.08 70,007 0.03 0.77
10 13.22 86 0 0.02

0.001 1.6 2 1,304,847.14 4,140,059 16.14 46.14
4 1,570,536.46 10,411,040 18.27 94.99
6 6,221,690.88 24,838,378 60.49 222.75
8 2,712,333.58 54,472,393 19.9 325.34
10 32.95 154 0 0.02

1.7 2 1,491,661.00 4,844,055 17.07 46.2
4 2,173,290.81 11,929,326 23.3 101.52
6 5,144,872.28 32,920,768 45.9 270.27
8 1,626,005.25 32,465,999 11.42 205.28
10 32.99 154 0 0.02

1.8 2 1,717,811.47 6,207,522 19.14 62.03
4 2,819,090.68 15,858,631 28.96 137.3
6 4,557,010.50 53,091,766 38.32 403.41
8 164,245.73 23,330,099 1.15 137.69
10 33.01 154 0 0.02
Mean 1,380,499.99 11,073,767.44 15.03 99.27
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degree of variation on the values of RPD. As D becomes 
smaller, the average RPDs and variances of RPDs became 
larger for the nine algorithms, in particular, for the three GAs.

Regarding the effects of τ, and ρ on the performance of 
each algorithm, as shown in Table 6, all nine algorithms 
performed at τ = 0.5 better than they did at τ = 0.25. As ρ 
increased the RPD of all three GAs increased, as seen in 
Table 6, but there is no such pattern for three SAs and three 
CSAs.

Regarding the impacts of Qlevel, and Nb on the perfor-
mance of each algorithm, it can be observed in Table 6 that 
the differences of RPD between three GAs or three SAs or 
three CSAs are very slight. It means that these nine algo-
rithms can effectively solve instances, not affecting by the 
values of Qlevel. The RPDs of the nine algorithms increased 
as Nb increased, as shown in Table 6.

To examine whether the difference between the nine 
algorithms is statistically significant for the large size jobs, 
we performed the K–W test to examine the statistical dif-
ferences among the nine algorithms. The fifth column of 
Table 4 showed the mean rank of the nine algorithms. The p 
value was < 0.001 (and the value of test statistic, Chi-square 
distribution, was 813.9 with 8 degrees of freedom) of the 
Kruskal–Wallis test, thus there are significant differences 
among the performances of the nine algorithms.

Table 2   Performances of B&B over four parameters (n = 12)

Node CPU_time FS

D
 0.001 2,100,232.981 20.003 100
 0.01 1,552,834.989 17.714 100
 0.1 488,431.997 7.358 100

Qlevel
 1.6 1,580,033.377 17.055 100
 1.7 1,350,020.969 14.606 100
 1.8 1,211,445.621 13.414 100
�

 0.25 1,763,968.097 17.713 100
 0.5 997,031.881 12.337 100
�

 0.25 1,316,927.039 12.860 100
 0.5 1,365,103.422 15.548 100
 0.75 1,459,469.507 16.667 100

Nb

 2 1,426,763.200 18.669 100
 4 1,791,524.488 22.249 100
 6 3,007,135.470 29.136 100
 8 677,044.286 5.070 100
 10 32.502 0.001 100

Table 3   Performances of AEP 
of algorithms for parameters as 
n = 12

GA_p GA_f GA_b SA_p SA_f SA_b CSA_p CSA_f CSA_b

D
 0.001 6.462 6.551 6.344 3.163 3.061 2.789 1.953 2.375 1.849
 0.01 5.416 5.086 5.111 2.577 2.422 2.602 1.787 1.809 1.686
 0.1 1.615 1.692 1.693 1.221 1.252 1.226 0.891 0.835 0.819
�

 0.25 6.476 6.309 6.129 2.923 2.853 2.807 1.982 2.220 1.944
 0.5 2.519 2.577 2.636 1.718 1.637 1.605 1.105 1.126 0.958
�

 0.25 4.024 3.854 3.961 1.703 1.744 1.610 1.183 1.175 1.039
 0.5 4.170 4.238 4.051 2.303 2.141 2.190 1.578 1.577 1.460
 0.75 5.299 5.237 5.136 2.954 2.850 2.816 1.869 2.267 1.854

Qlevel
 1.6 4.057 4.114 3.991 2.325 2.162 2.140 1.405 1.643 1.409
 1.7 4.326 4.158 4.351 2.303 2.232 2.196 1.570 1.637 1.459
 1.8 5.110 5.058 4.806 2.334 2.340 2.281 1.655 1.739 1.486

Nb

 2 1.516 1.497 1.562 1.805 1.803 1.830 1.307 1.375 1.300
 4 5.197 5.122 5.281 1.771 1.729 1.800 1.238 1.240 1.209
 6 7.406 7.226 7.406 2.059 2.110 2.089 1.628 1.545 1.486
 8 6.319 6.699 5.901 3.165 3.167 3.078 2.143 2.447 2.195
 10 2.050 1.673 1.764 2.801 2.415 2.233 1.400 1.758 1.065
 Mean 4.498 4.443 4.383 2.320 2.245 2.206 1.543 1.673 1.451
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Fig. 1   Impact of D on the AEPs of nine algorithms

Fig. 2   Impact of τ on the AEPs of nine algorithms

Fig. 3   Impact of ρ on the AEPs of nine algorithms

Fig. 4   AEP of nine algorithms over different levels of Qlevel

Fig. 5   AEP of nine algorithmsover different values of Nb

Fig. 6   Boxplots of AEP for nine algorithms
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The boxplot of RPDs for nine algorithms in Fig. 8 shows 
that the RPD of CSA seems have difference from those of 
GA and SA, the CSA did the best performance.

To examine the statistical difference among these nine 
algorithms, we performed multiple comparisons and 
groupings for algorithms using DSCF test. The result 
shows that CSAs is the best one, SAs next, and GAs is 
the worst; the group difference among GA, SA and CSA 
is very clearly (also refer Fig. 8); CSA_f performed the 
best among all proposed algorithms.

Regarding the CPU times, as showed in Fig. 9, GAs 
costs the most, SAs next, and the CSAs the least, but all 
were less one second.

Conclusion and suggestions

In this paper, we study the sequential mode of multi-
tasking for job scheduling together with two agents to 
minimize the total tardiness of A-agent’s jobs subject 
to a restriction (upper bound) on the total completion 
time of the B-agent’s jobs. The study issue belongs to 
the NP-hard set, thus, we derived five properties and a 
lower bound to embed in a B&B method to search opti-
mal job sequences for small-sized jobs. Three variants 
of each of metaheuristics, GA, SA, and CSA, i.e., nine 
algorithms are employed to search optimal or approxi-
mate job sequences for large-sized jobs. Experimental 
results show that the CSAs performed best among these 
algorithms. For the future study, the complexity of mul-
titasking scheduling problem with two (or more)-agents 
together with other criteria, for example the weighted 
number of lateness for one of agents, would be an inter-
esting topic. Also, one can address the development of 
efficient optimization algorithm and heuristics for those 
hard problems.

Table 4   Mean ranks of algorithms in K–W test for small and large 
size jobs

*Average scores were used for ties

Algorithm Small n Large n

Number of obs Mean rank Number of obs Mean rank

GA_p 270 1406.8 270 1763.4
GA_f 270 1397.5 270 1763.6
GA_b 270 1423.5 270 1761.7
SA_p 270 1313.8 270 1092.0
SA_f 270 1292.0 270 1092.3
SA_b 270 1279.6 270 1091.7
CSA_p 270 959.8 270 788.1
CSA_f 270 981.0 270 788.9
CSA_b 270 885.3 270 797.8
Total 2430 1215.5 2430 1215.5

Table 5   DSCF for nine 
algorithms

Pairwise comparison DSCF Pairwise comparison DSCF

Between algorithms Statistic p value Sign Between algorithms Statistic p value Sign

GA_f–GA_b 0.2609 1.0000 GA_p–CSA_f − 8.6887 < 0.001 ***
GA_f–GA_p 0.1751 1.0000 GA_p–CSA_b − 9.9715 < 0.001 ***
GA_f–SA_f − 3.8092 0.1501 GA_p–CSA_p − 8.9660 < 0.001 ***
GA_f–SA_b − 4.0908 0.0904 SA_f–SA_b − 0.4017 1.0000
GA_f–SA_p − 3.5342 0.2324 SA_f–SA_p 0.8160 0.9997
GA_f–CSA_f − 8.5400 < 0.001 *** SA_f–CSA_f − 8.5240 < 0.001 ***
GA_f–CSA_b − 9.9407 < 0.001 *** SA_f–CSA_b − 11.2715 < 0.001 ***
GA_f–CSA_p − 8.8661 < 0.001 *** SA_f–CSA_p − 9.4839 < 0.001 ***
GA_b–GA_p 0.0090 1.0000 SA_b–SA_p 1.1069 0.9973
GA_b–SA_f − 4.6735 0.0266 * SA_b–CSA_f − 8.1492 < 0.001 ***
GA_b–SA_b − 4.8233 0.0188 * SA_b–CSA_b − 11.0090 < 0.001 ***
GA_b–SA_p − 4.3069 0.0590 SA_b–CSA_p − 9.1118 < 0.001 ***
GA_b–CSA_f − 9.3041 < 0.001 *** SA_p–CSA_f − 8.9800 < 0.001 ***
GA_b–CSA_b − 10.7138 < 0.001 *** SA_p–CSA_b − 11.6612 < 0.001 ***
GA_b–CSA_p − 9.7441 < 0.001 *** SA_p–CSA_p − 9.8849 < 0.001 ***
GA_p–SA_f − 4.2503 0.0663 CSA_f–CSA_b − 2.5337 0.6880
GA_p–SA_b − 4.3276 0.0565 CSA_f–CSA_p − 0.2570 1.0000
GA_p–SA_p − 3.8927 0.1299 CSA_b–CSA_p 2.4499 0.7267
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Table 6   Performances of RPD 
of algorithms for parameters as 
n = 60

GA_p GA_f GA_b SA_p SA_f SA_b CSA_p CSA_f CSA_b

D
 0.001 50.741 50.752 50.843 10.715 10.505 10.765 6.885 6.655 6.931
 0.01 39.848 39.543 40.272 9.355 9.098 8.946 5.874 5.790 6.031
 0.1 10.279 10.279 10.037 4.010 4.012 4.067 2.582 2.551 2.607

Qlevel
 1.6 32.547 32.430 32.659 7.993 7.808 7.841 5.091 4.988 5.165
 1.7 33.866 33.768 33.972 8.048 7.885 7.973 5.134 5.003 5.201
 1.8 34.455 34.377 34.522 8.038 7.921 7.964 5.117 5.004 5.203
�

 0.25 37.909 37.781 38.029 8.909 8.705 8.899 5.572 5.548 5.851
 0.5 29.336 29.268 29.406 7.144 7.038 6.953 4.656 4.450 4.528

ρ
 0.25 32.717 32.509 32.952 7.563 7.340 7.572 5.092 4.986 5.096
 0.5 33.443 33.301 33.486 8.054 8.248 7.893 4.872 5.065 5.056
 0.75 34.708 34.765 34.714 8.462 8.026 8.313 5.377 4.945 5.417

Nb

 10 5.257 5.273 5.258 1.843 1.829 1.838 0.750 0.783 0.770
 20 22.349 22.294 22.354 3.737 3.756 3.773 1.670 1.712 1.688
 30 32.458 32.255 32.163 5.196 5.266 5.095 2.672 2.668 2.695
 40 40.775 40.912 40.920 8.366 8.307 8.595 5.272 5.264 5.543
 50 67.274 66.891 67.893 20.991 20.199 20.330 15.205 14.565 15.253
 Mean 33.623 33.525 33.718 8.027 7.871 7.926 5.114 4.998 5.190

Fig. 7   RPD of nine algorithms over different levels of D Fig. 8   Boxplots of RPD for nine algorithms
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