
Vol.:(0123456789)1 3

Complex & Intelligent Systems (2022) 8:199–212
https://doi.org/10.1007/s40747-021-00355-4

ORIGINAL ARTICLE

A two‑agent one‑machine multitasking scheduling problem solving
by exact and metaheuristics

Chin‑Chia Wu1 · Ameni Azzouz2 · Jia‑Yang Chen1 · Jianyou Xu3 · Wei‑Lun Shen1 · Lingfa Lu4 · Lamjed Ben Said2 ·
Win‑Chin Lin1 

Received: 19 October 2020 / Accepted: 25 March 2021 / Published online: 15 April 2021
© The Author(s) 2021

Abstract
This paper studies a single-machine multitasking scheduling problem together with two-agent consideration. The objective
is to look for an optimal schedule to minimize the total tardiness of one agent subject to the total completion time of another
agent has an upper bound. For this problem, a branch-and-bound method equipped with several dominant properties and a
lower bound is exploited to search optimal solutions for small size jobs. Three metaheuristics, cloud simulated annealing
algorithm, genetic algorithm, and simulated annealing algorithm, each with three improvement ways, are proposed to find the
near-optimal solutions for large size jobs. The computational studies, experiments, are provided to evaluate the capabilities for
the proposed algorithms. Finally, statistical analysis methods are applied to compare the performances of these algorithms.

Keywords  Cloud simulated annealing algorithm · Genetic algorithm · Multitasking · Scheduling · Simulated annealing
algorithm · Two agent

Introduction

Multitasking means that there are a set of tasks processed at
the same time or within a limited time interval for a person
or a machine (a computer, a team, a center). Multitasking
phenomenon has been discussed in many disciplines, for
example, behavioral psychology [39], cognitive science [6],
community pharmacy [25], experimental psychology [33,
34], healthcare operations management [20], managerial
behavior [42], chemical engineering [23], computer science

(embedded systems, distribution system and parallel com-
puting), Noguera and Badia [31], Appasami and Suresh
Joseph [4], Kardos et al. [19], Lai et al. [24], and so on.

There are two models of multitasking [9, 38,46]. One is
the concurrent mode, i.e. to perform two or more tasks at the
same time, for example, media multitasking [40] and [32].
The other is the sequential mode, i.e. to perform tasks by
interleaving and switching from one task to other tasks [29].
The two types of multitasking are also seen in embedded

 *	 Win‑Chin Lin
	 linwc@fcu.edu.tw

	 Chin‑Chia Wu
	 cchwu@fcu.edu.tw

	 Ameni Azzouz
	 ameni.azzouz@isg.rnu.tn

	 Jia‑Yang Chen
	 m0523982@mail.fcu.edu.tw

	 Jianyou Xu
	 xujianyou@mail.neu.edu.cn

	 Wei‑Lun Shen
	 m0705918@mail.fcu.edu.tw

	 Lingfa Lu
	 lulingfa@zzu.edu.cn

	 Lamjed Ben Said
	 lamjed.bensaid@isg.rnu.tn

1	 Department of Statistics, Feng Chia University, No.
100, Wenhwa Road, Seatwen Dist., Taichung 40724,
Taiwan, ROC

2	 MART Lab., Insitut Supèrieur de Gestion de Tunis,
University of Tunis, 2000 Tunis, Tunisia

3	 College of Information Science and Engineering,
Northeastern University, Shenyang 110819,
People’s Republic of China

4	 School of Mathematics and Statistics, Zhengzhou University,
Zhengzhou 450001, Henan, People’s Republic of China

http://orcid.org/0000-0001-8237-8020
http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-021-00355-4&domain=pdf

200	 Complex & Intelligent Systems (2022) 8:199–212

1 3

computing system design employed in system-on-chip plat-
forms [31].

In job scheduling domain or manufacturing field, sev-
eral possible applications of multitasking were observed in,
for example, administration processing [12], manufactur-
ing [50]. In this paper, we study the sequential model of
multitasking for job scheduling problem, i.e. a ‘machine’ (a
team, a service center, and so on) processes a sequence of
jobs (tasks) by interleaving and switching from one job to
another during an interval of time. The operations for clas-
sical scheduling problem are to finish one job at one time
then process another job, until all the required jobs are fin-
ished. The operations for multitasking scheduling problem
(MSP) are also to perform a predetermined job (called a
primary job) on a job sequence at one time, however, before
the primary job to be fully finished, due to a certain rea-
son, operations switch to process all the unfinished jobs (or
called waiting jobs) by interleaving to finish a proportion
of each waiting job, afterwards, the primary job is finished
completely. Hall et al. [12,13], launched the multitasking
research in the scheduling problem area, carried on by Sum
and Ho [43], Zhu et al. [57, 58], Liu et al. [27], Ho and Sum
[14], Li and Chong [26], and Ji et al. [18]. More recently,
Zhu et al. [60] proposed optimal solution algorithms for
multitasking scheduling with multiple rate-modifying activi-
ties and analyzed some special cases of them. Xiong et al.
[48] applied an exact branch‐and‐price algorithm to solve an
unrelated parallel-machine multitasking scheduling problem.

Hall et al. [12] constructed a mathematical model incor-
porated the multitasking into the traditional single-machine
scheduling problem, and provided a summary of five moti-
vations for multitasking. The objective criteria investigated
were maximum lateness, the total weighted completion time,
and total number of late jobs. Hall et al. [13] studied two
models to accommodate two features that are possible hap-
pened on multitasking scheduling environment for human
workers. One model employed “alternate period processing”
for a disruption (and have to perform multitasks) owing to
workers’ tiredness situation and the other model employed
“shared processing” for a distraction (and have to perform
multitasks) owing to routine tasks situation. The studied cri-
teria were the maximum lateness, the total completion time,
and the number of late jobs. They discussed the complex-
ity of models and then developed algorithms to resolve the
considered problems.

Following the considered problem by Hall et al. [13],
Sum and Ho [43] derived the expected total (weighted)
completion time and provided statistical analysis on the
performance of multitasking for a human worker under
the assumptions that the switching cost is constant and the
amount of each interruption is proportional to the remaining
processing time of the waiting job. They gave an advice “that
multitasking should be avoided in a work place”. Ho and

Sum [14] investigated the MSP with asymmetric switch cost
functions and demonstrated that and the problem is unary
NP-hard for minimization of the total completion time or a
common due date assignment problem, and the problem is
binary NP-hard for the makespan. They also showed that if
a cost function has a special structure then the study prob-
lem can be solved in polynomial time for three common
adopted criteria. Zhu et al. [57,58], explored the MSP with
a (or multiply) rate-modifying activity (activities), respec-
tively. They formulated models and developed algorithms
to solve the MSP for criteria including the makespan, the
total completion time, the lateness, and a multi-criteria that
combines several criterions related to a common due date
assignment. Zhu [57] put forward several optimal algorithms
to solve the MSP with a deterioration effect to minimize the
makespan and the total absolute differences in completion
times. Liu et al. [27] added a common due date required for
jobs into the multitasking scheduling formulation investi-
gated by Hall et al. [12]. The objective function was a lin-
ear combination of the total earliness, the total tardiness,
and a common due date assignment. They provided some
theoretical results and developed an algorithm to solve the
problem with linear interruption functions. Moreover, they
suggested several future research topics for the MSP. Li and
Chong [26] developed a single-machine multitasking sched-
uling model to management the progress on the processing
jobs which can be split into subtasks to be processed, and
also considered to check the progress at different milestones
(time points). The main concern is to monitor or to control
the amount of jobs been processed. Ji et al. [18], motivated
from the service industry (internet service, medical ser-
vice), investigated the MSP under parallel-machine setting
with machine-dependent slack due window scenario. The
objective was to minimize a total cost function which is a
combination of criteria of the earliness, the tardiness and
the time related to slack due window assignment. The main
contribution of them was to represent the interruption func-
tion as a more general form that can reflect real service or
manufacturing situations.

On the other hand, two-agent or multi-agent scheduling
problem has been studied in the recent about 20 years. For
example, Baker and Smith [5] and Agnetis et al. [1] are among
the pioneers on this topic. In a two-agent single machine
scheduling problem, different agents share one processing
resource (machine) and each agent demands to optimize its
own optimality criterion concerning to its own set of jobs.
As the agents have its own optimality criterion, in general,
they have to compete for sharing a collaborative resource to
make the best their own criterion. Baker and Smith [5] inves-
tigated the problems of minimizing an aggregate of different
optimality criteria adopted by two agents, in which the opti-
mality criteria considered were the total weighted completion
time, the maximum lateness, and the makespan. Depending on

201Complex & Intelligent Systems (2022) 8:199–212	

1 3

the optimality criterion of each agent and on the processing
environment (single machine or job shop), Agnetis et al. [1]
addressed a constrained optimization problem, in which one
agent have to optimize its optimality criterion with respect to
its own jobs subject to a constraint on the other agent’s objec-
tive function. Since then, study on the multi-agent job sequenc-
ing problem has been developed in the area of scheduling.
For more discussing on two-agent or multi-agent scheduling
research, the reader may refer, Mor and Mosheiov [30], Gerstl
and Mosheiov [10], Kovalyovet al. [22], Yin et al. [51, 52,
53, 54], Li et al. [28], Zhang and Wang [56], Ahmadi-Darani
et al. [3] a review paper by Perez-Gonzalez and Framinan
[35], and the book by Agnetis et al. [2]. More recently, Yang
et al. [49] introduced due date assignment into a two-agent
scheduling problem to minimize the completion times of given
jobs. Wang et al. [45] studied several multitasking scheduling
models with multiple agents in which the objective functions
were included the maximum of a regular function (associated
with each task), the total completion time, and the weighted
number of late jobs.

To the best of authors’ knowledge, there is no research on
the machine multitasking scheduling problem (MSP) together
with two (or more) agents. This study tries to bridge the gap,
and also responds to one of the further research problems—
“Second, the classical scheduling literature contains a large
number of problems that remain to be studied in the presence
of multitasking.” mentioned in Hall et al. [12]. Moreover, one
of the future research directions in Agnetis et al. [1], in a multi-
agent scheduling problems environment, is to “Extension to
different resource usage modes (concurrent usage, preemption,
etc.) and/or different system structure (e.g. parallel machines).”
Therefore, we study the alliance of these two emerging top-
ics in the scheduling problem area. The objective is to mini-
mize the total tardiness of first agent’s jobs subject to an upper
bound constraint on the total completion time of the second
agent’s jobs.

The rest of this paper is organized as follows. The problem
statement is given in “Problem statement”. In “Properties and
a lower bound”, we derive several dominance properties and
a lower bound for the study problem. In “Metaheuristics GA,
SA, and CSA”, three commonly used metaheuristics [cloud
simulated annealing algorithm (CSA), genetic algorithm (GA),
simulated annealing algorithm (SA)] are adapted as tools to
search (approximate) optimal solutions. “Data simulation
analysis” is analysis of experimental simulation data, and con-
clusion and suggestions are in “Conclusion and suggestions”.

Problem statement

The proposed multitasking scheduling problem (MSP) in
this study is formulated as follows. Consider a set of n
jobs,

{
J1, J2,… , Jn

}
 , to be processed by a machine. For

convenient explanations, sometimes we use the job i or i
to represent Ji . The machine can operate at most one job
at a time. Suppose that there are two competing agents
denoted, respectively, by agents A and B . Besides, let
X ∈ {A,B} be the agent code. The jobs belong to agent X
are presented as X-jobs. Let JA and JB denote the sets of
jobs from agent A (or A-jobs) and jobs from agent B (or
B-jobs), respectively, meanwhile let Na and Nb denote the
number of A-jobs in JA and B-jobs in JB . That is
JA =

{
JA
1
, JA

2
,… , JA

Na

}
 , JB =

{
JB
1
, JB

2
,… , JB

Nb

}
 , a n d

JA ∪ JB =
{
J1, J2,… , Jn

}
 . Both of jobs in the set {A,B} are

available at the begin of operation (time zero). Both of the
processing time ( tX

j
 ) and due date ( dX

j
 ) for a job JX

j
 are

nonnegative integers. For a job schedules � , let CX
j
(�) , or

CX
j

 , be the complet ion t ime of job Jj  , and
TX
j
= max{CX

j
(�) − dX

j
, 0} be the tardiness of job j as in the

job sequence �.
The serial (sequential) multitasking environment means

that when a job is being processed, it is fractured by other
unfinished jobs that are waiting for processing. Every job
is assigned at any time point is represented as the primary
job, while the jobs that are ready and not fully processed
are denoted as waiting jobs. Under the multitasking situa-
tion, as a primary job is being processed, it is interrupted
by all the waiting jobs. Two more assumptions are required
to model the process on which the waiting jobs interrupt
the primary jobs. One is called “interruption time” that is
the time during which a waiting job interrupts the primary
job, which is independent of the characteristics of the pri-
mary job. Let tX′

i
 be the not yet finished processing time of

a waiting job i at the beginning of a time point when job j
is scheduled as a primary job. In this study, the amount of
time for which job i interrupts job j is given by g(tX�

i
) = DtX�

i

as in Hall et al. (12), where D is a ratio of interruption
(time) cost with 0 < D < 1 . The other assumption is called
“switching time” that is the amount of time prepared to
deal with the primary job is scheduled, which depends
only on the number of waiting jobs. Let Sj be the set of
waiting jobs when j is assigned to be the primary job and
f (
|||Sj

|||) be the amount of switching time for processing the
interrupting jobs. In this study, the switching time is
adopted as f

(|||Sj
|||
)
= |Sj| , which depends only on the num-

ber of waiting jobs. The objective function of this study is
to minimize the total tardiness of all the jobs of the agent
A subject to an upper bound, say Q, required on the total
completion time of jobs of agent B. The three-field nota-
tion for this problem in scheduling domain can be denoted
as 1∕‘mt’∕

∑
TA
j
∶
∑

CB
j
≤ Q , where ‘mt’ represents

multitasking.

202	 Complex & Intelligent Systems (2022) 8:199–212

1 3

Properties and a lower bound

The proposed problem is NP-hard, since the classical problem
without agent concept or multitasking phenomenon is NP-hard
(Pinedo 2014). To efficiently deal with this problem, a branch-
and-bound (B&B) algorithm is devised to find the optimal
solutions for small-size instances and three metaheuristics are
then utilized to quickly find the approximate solutions for rela-
tively large-size instances. It is noted that the dominance prop-
erties act a considerable role in a B&B algorithm for searching
an exact solution (schedule) because many lower nodes of the
instances can be cut down by applying these dominant proper-
ties. To help speeding up the search process of the B&B, sev-
eral dominance properties are established in this section. Let
σ = (�1, i, j,�2) and ��

= (�1, j, i,�2) be two job sequences
(schedules) in which �1 and �2 are two parts of subsequences
with k jobs and (n-k-2) jobs, respectively. The switching cost
function is f

(|||
{
i, j,�2

}|||
)
= n − k , k = n − 1, n − 2, …, 1, and

s denote the staring time of job i in σ = (�1, i, j,�2) and job j
in ��

= (�1, j, i,�2) . D denotes the ratio of interruption cost,
where tX�

i
= D × tX

i
 . To show that σ dominates �′ , the following

s u f f i c e s : max
{
CA
i
(σ) − dA

i
, 0
}
+max

{
CA
j
(σ) − dA

j
, 0

}
,

< max

{
CA
j

(
𝜎

�)
− dA

j
, 0

}
+max

{
CA
i

(
𝜎

�)
− dA

i
, 0
}

 a n d
CA
j
(σ) < CA

i

(
�

′) , w h e r eCX
j
(�) = s + (1 − D)k−1tX

j

+f (k) +
∑

v∈�
2

⋃
{j} D(1 − D)k−1tX

v
 . The proofs of following

properties are left out because they can be proved by apply-
ing a pairwise interchange method.

P r o p e r t y 1   I f s + (1 − D)k−1tA
i
+ f (k)+∑

v∈𝜋
2
∪{jA} D(1 − D)k−1tX

v
< dA

i
 < s + (1 − D)k−1tA

j
+ f (k)+

∑
v∈�

2
∪{iA} D(1 − D)k−1tX

v
+ (1 − D)ktA

i
+ f (k + 1) +

∑
v∈�

2

D(1 − D)ktX
v
 and

max{s + (1 − D)k−1tA
j
+ f (k) +

∑
v∈�2∪{i

A} D(1 − D)k−1tX
v
, s

+(1 − D)k−1tA
i
+ f (k) +

∑
v∈�

2
∪{jA} D(1 − D)k−1tX

v
+ (1 − D)ktA

j

+f (k + 1) +
∑

v∈𝜋
2

D(1 − D)ktX
v
} < dA

j
 , then � dominates �′.

P r o p e r t y 2   I f
s + (1 − D)k−1tA

i
+ f (k) +

∑
v∈𝜋2∪{j

A} D(1 − D)k−1tX
v
> dA

i
 and

s + (1 − D)k−1tX
i
+ f (k) +

∑
v∈�

2
∪{jA} D(1 − D)k−1tX

v
+

(1 − D)ktA
j
+ f (k + 1) +

∑
v∈�

2

D(1 − D)ktX
v
≤ dA

j
 , then �

dominates �′.

P r o p e r t y 3   I f
s + (1 − D)k−1tA

i
+ f (k) +

∑
v∈𝜋2∪{j

A} D(1 − D)k−1tX
v
> dA

i
  ,

s + (1 − D)k−1tA
j
+ f (k) +

∑
v∈𝜋2∪{i

A} D(1 − D)k−1tX
v
> dA

j
  ,

dA
i
< dA

j
 , and, dA

j
− dA

i
< tA

j
− tA

i
 , then � dominates �′.

For any uncompleted node (PS, US) in which PS is already
assigned partial sequence with k jobs and US is an undecided
subset of jobs with (n-k) jobs, the following two properties hold.

Property 4  Let CB
[l]

 be the completion time of the last job in PS.
If CB

[l]
> Q , then node (PS, US) should be an infeasible schedule.

Property 5  Let C[k] be the completion time of the last job in
P S . I f t h e re i s a ny B j o b i n U S a n d
C[k] + (1 − D)k−1tB

j
+ f (k) +

∑
v∈US�{jB} D(1 − D)k−1tX

v
> Q ,

then node (PS, US) should be eliminated.

The performance of the B&B algorithm is also related to
a good lower bound. In what follows, a simple lower bound
will be presented. Assume that PS is a partial sequence in
which the order of the first k jobs is determined and US be
the unscheduled part with ( n − k ) jobs. Furthermore, let
n − k = nA + nB, where nA denote the number of A-jobs while
nB denote the number of B-jobs in US. Let �dnote a com-
plete sequence obtained from PS. The completion time for the
(k + 1)th job to the (k + nA)th position in a σ = (PS,US) , if the
nA A-jobs schedule on the first nA positions in US, is given by

In a similar way, we have

CA
[k+1]

(�) = s + (1 − D)ktA
[k+1]

+ f (k + 1) +
∑

v∈US�{j[k+1]}

D(1 − D)ktX
v
,

CA
[k+2]

(�) = s + (1 − D)ktA
[k+1]

+ f (k + 1)

+
∑

v∈US�{jA
[k+1]

}

D(1 − D)ktX
v

+ (1 − D)k+1tA
[k+2]

+ f (k + 2)

+
∑

v∈US�{jA
[k+1]

,jA
[k+2]

}

D(1 − D)k+1tX
v
.

CA
[k+nA]

(�) = s + (1 − D)ktA
[k+1]

+ f (k + 1) +
∑

v∈US�{jA
[k+1]

}

D(1 − D)ktX
v

+ (1 − D)k+1tA
[k+2]

+ f (k + 2) +
∑

v∈US�{jA
[k+1]

,jA
[k+2]

}

D(1 − D)k+1tX
v

⋯

+ (1 − D)k+nA tA
[k+nA]

+ f (k + nA) +
∑

v∈US�{jA
[k+1]

,jA
[k+2]

,...,jA
[k+nA]

}

D(1 − D)k+nA−1tX
v
.

203Complex & Intelligent Systems (2022) 8:199–212	

1 3

According to the above definitions, those nA are arranged
in a non-decreasing order to obtain the least amount of the
completion times from nA A-jobs in US. Next problem is to
find the maximum due date (say dM) from nA A-jobs in US
and assign dM to be the due date for each A-job in US to
yield the least amount of tardiness for the unscheduled part.
It can be simplified as follows:

w h e r e CA
(k+i)

(�) = s + (1 − D)ktA
(k+1)

+ f (k + 1)

+
∑

v∈US�
�
jA
[k+1]

� D(1 − D)ktX
v

LB =
∑

i∈PS

max

{
0,CA

[i]
(�) − dA

[i]

}
+

nA∑

i=1

max

{
0,CA

(k+i)
(�) − dM

}
,

+(1 − D)k+1tA
(k+2)

+ f (k + 2) +
∑

v∈US�
{
jA
[k+1],

jA
[k+2]

}
D(1 − D)k+1tX

v

+⋯ + (1 − D)k+itA
(k+i)

+ f (k + i)

+
∑

v∈US�
{
jA
[k+1],

jA
[k+2],⋯,

jA
[k+i]

}
D(1 − D)k+itX

v
.

Metaheuristics GA, SA, and CSA

It is commonly known that the computation load can be
much saved by utilizing a heuristic or metaheuristic (to
quickly search a near optimal solution) to lay an (upper or
lower) bound on a scheduling problem proceeding to execute
a B&B (branch-and-bound) method. Thus, many research
paid more attention on developing and analysis of heuristic
or metaheuristic algorithms for finding optimal solutions for
scheduling problems. Moreover, it is noted that the search
for optimal solutions for large-size jobs is required much
CPU time. However, an effective heuristic or metaheuristic
can yield a good-quality approximate solution with a small
margin of error and least amount of CPU time. In light of
these observations, this study utilizes three metaheuris-
tics, including the genetic algorithm (GA), the simulated
annealing algorithm (SA), and the cloud simulated algorithm
(CSA), to solve the study problem. These metaheuristics
GA, SA, and CSA have been successfully used to deal with
a wide variety of discrete combinatorial optimization prob-
lems. The main steps of GA are to start with a set of feasible
population and iteratively to replace the current population
by a new population throughout encode, reproduction mech-
anism, a crossover operator, a mutation operator, and decode
(see [8, 11, 15, 41]). The details of the GA are given below.

204	 Complex & Intelligent Systems (2022) 8:199–212

1 3

The SA algorithm by Kirkpatrick et al. [21] is the most
commonly utilized metaheuristic algorithm for solving
problems from combinatorial optimization. The major
steps of SA are provided below.

The cloud simulated algorithm (CSA) put forward by
Torabzadeh and Zandieh [44] is also used to resolve the
study problem. The key parameters of CSA are including
the start (initial) temperature Ti , stop temperature Tf , and
the decay (cooling) factor λ. The major details of CSA are
provided below.

Note that TT(�1 ) and TT(�0 ) denote the total tardiness of
�1 and �0 , respectively, while Δ = (TT(�1) − TT(�0))∕TT(�0) .
To further improve the quality of the initial solutions (seeds)
used in GA, SA, and CSA, three local searches were applied
to improve each of the initial solutions in GA, SA, and CSA.

During generating an initial solution process, those B-jobs
are first generated and then A-jobs were generated and
appended after B-jobs to form as a feasible initial solution.
To get a good quality of solution, this initial solution is sepa-
rately employed three local search methods to improve it.
Those operations are the pairwise interchange (PI), extrac-
tion and backward-shifted reinsertion (EBSR), and extrac-
tion and forward-shifted reinsertion (EFSR), refer Della
Croce et al. [7]. The initial solutions improved by the PI,
EBSR, and EFSR are recorded as GA_p, GA_b, GA_f in
GA, as SA_p, SA_b, SA_f in SA, and as CSA_p, CSA_b,
CSA_f in CSA, respectively. Thus, three variants of each SA,
GA and CSA are utilized in this study. Additionally, follow-
ing the scheme of Wu et al. [47], the proposed properties,
a lower bound, and the best solution among all proposed
approximate solutions are utilized in a branch-and-bound
method (B&B).

For further testing, all parameters in proposed nine algo-
rithms, we examined parameters including the initial tem-
perature ( Ti ), cooling factor (Cf), and number of improve-
ment ( Nr ) in three SAs, three parameters including the
initial temperature ( Ti ), annealing index ( � ) and number of
improvement ( Nr ) in three CSAs, and the number of parents
(Nsize), genetic generation (Gsize) and mutation rate (P) in
three GAs, respectively. When fixed n = 12, we randomly
generated 100 instances and utilized all nine algorithms
and a B&B method equipped with the dominance proper-
ties derived in “Properties and a lower bound” to solve them,
and calculated the average error percentage (AEP) for the
differences between the results yielded from nine algorithms
and those yielded from the B&B method for determining
appropriate parameters.

In our pretests, we found that the larger values of tardi-
ness factor ( �) , due date range ( �) , number of B-jobs (NB) are
important factors that affected the algorithms to find a feasi-
ble schedule. The smaller value of interruption factor D and
a control variable, Qlevel (refer “Data simulation analysis”),
for bound above total completion time of B-jobs also had
effects on finding a feasible solution. In view of this obser-
vation, the initial tested instances are generated by setting
a design at n = 12 , NB = 10,D = 0.001, � = 0.75 , � = 0.50
and Qlevel = 1.6 . After parameters tuning process, the (Ti,
Cf, Nr ) is adopted as (0.85, 0.4, 20) in three SAs, the (Ti, � ,
Nr ) as (0.65, 0.3, 30) in three CSAs, the (Nsize, Gsize, P) as
(32, 140, 0.09) in three GAs, in the later experimental tests.

Data simulation analysis

The processing times of A-jobs, tA
j
 , or B-jobs, tB

j
 , on a

machine are generated randomly from uniformly distrib-
uted on integers between 1 and 100. The due date for each

205Complex & Intelligent Systems (2022) 8:199–212	

1 3

A-job is randomly generated from uniform distributions
TA × U

(
1 − � −

�

2
, 1 − � +

�

2

)
 , where TA =

∑
j∈JA

tA
j
 , the

control parameters of the due dates are tardiness factor �
and range of due dates � . In particular, � is set to 0.25 and
0.50, and � is set to 0.25, 0.50, and 0.75. Regarding the
setting of the upper bound for the B-jobs, we designate
Q = Qlevel ×

∑
j∈JB

tB
j
 , in which the control parameters are

Qlevel. Another parameter relevant to two-agent scenario
is the number of B-jobs, NB . In this study for small number
of jobs, fixed n = 12, three types of Qlevel is set at 1.6, 1.7,
and 1.8, while NB is set to be 2, 4, 6, 8 and 10, and the
levels of the interruption factor D are set at 0.1, 0.01, and
0.001. In total, there are 270 ( D × � × � × Qlevel × NB =
3 × 2 × 3 × 3 × 5) cases of test combinations and 100
instances are generated for each case. Note that if the num-
ber of nodes in B&B algorithm exceeds 108 , it is considered
as a failure and turns to next instance, otherwise, it is
recorded as a feasible case. The performances of the
branch-and-bound method and the proposed nine algo-
rithms over different parameters are summarized in
Tables 1, 2, and 3.

As shown in Table 2, it can be seen that B&B algorithm
consumes fewer nodes as the interruption factor, D, is at
higher value (D = 0.1). As for the impact of parameters � and
� , Table 2 shows that, on average, B&B method takes fewer
nodes or run less CPU time at the big value of � or at a small
value of � . Regarding the impact of NB over different size,
it can be seen in Table 2 that the average numbers of nodes
have significant changes, this is possibly, because based on
the fact that B-jobs have an upper limit constraint, the size of
the searching space directly shrinks as the big number of NB ,
say at 10. In other words, a smaller number of A-jobs reduce
the search difficulty, so the B&B algorithm can complete the
search process in fewer nodes. In contrast, as the values of
Qlevel increases, the average number of nodes is gradually
decreased, but the range of fluctuation affected by Qlevel is
less than that affected by Nb.

Regarding the performance of all proposed nine algo-
rithms, as show in Table 3, Figs. 1, 2, and 3, all nine
algorithms performed better at a big value of D or � than
those at a small value of D or � . For the value of D at
0.1, it not only has better AEP performance, but also has
a smaller variance on AEP than those of D at 0.01 and
0.001. All nine algorithms performed better at a small
value of � than those at a big value of �.

Over all, GA_f, GA_b , and GA_p performed worse on
average AEP than the rest of the algorithms did.

Regarding the effect of parameters Qlevel and Nb on
the AEP, it can be seen from the box plots in Fig. 4 that
for different levels of Qlevel the dispersions on the AEP
is not too large, meaning that the search ability for (near-)
optimal solutions were about the same for all 9 algorithms.

Meanwhile, as shown in Fig. 5, the impact on AEP for
different Nb , there are two trends occurred in three GAs,
where median and IQR of AEPs increase significantly as Nb
increases from 2 to 8, but AEP declines sharply as Nb is up
to 10. The other trend occurred in three SAs and three CSAs,
where the median of AEPs is about 1–3%, and the variances
is in general less than that of GAs. This is due to the charac-
teristic that GA is more sensitive to the initial solutions. As
the value of Nb is close to 6, the search space for A-jobs is
wider than the other values of Nb . Therefore, that only using
simple pairwise, forward or backward two-point interchange
methods cannot provide good initial solutions, resulting in
poor GA performance on the AEPs.

As shown in Table 3 and Fig. 6, GA_f, GA_b , and GA_p
generally have larger IQR and three CSAs perform better on
average AEP than other six algorithms do.

To examine whether the difference between nine algo-
rithms is statistically significant or not, we used the analysis
of variance (ANOVA) on AEPs and found that the obser-
vations from the experiments are not followed normal dis-
tributions. Thus, we performed the Kruskal–Wallis test (a
nonparametric statistical method) to examine the statistical
differences. The third column of Table 4 showed the mean
rank of AEPs for 9 algorithms. The p value was < 0.001 (and
the value of test statistic, Chi-Square distribution, was 198.6
with 8 degrees of freedom) of the Kruskal–Wallis (K–W)
test, thus the differences among the performances of the nine
algorithms are statistically significant.

For further multiple comparison the performances
among the 9 algorithms, the DSCF method (the
Dwass–Steel–Critchlow–Fligner procedure, Holland [15])
was employed and the algorithms were grouped (run on SAS
9.4). As shown in Table 5, it can be seen that the three initial
solutions used in GA, SA or CSA have no significant differ-
ence on AEP, but AEPs of GA and SA are significantly dif-
ferent with that of CSA. The CSAs did the best performance
in term of the mean of AEP.

For the large number of jobs, fixed n = 60, three levels of
D is set at 0.1, 0.01, and 0.001, three types of Qlevel is set
at 1.6, 1.7, and 1.8, while Nb is set at 10, 20, 30, 40, and 50.
In total, there are 270 test combinations and 100 instances
are generated for each combination. The results were sum-
marized in Table 6.

It can be observed from Table 6 that the three initial
solutions used in GA, SA or CSA have no significant dif-
ference on the RPD. The CSA seems have differences from
both GA and SA; the CSAs did the best performance in
term of the average of RPD.

As shown in Table 6 and Fig. 7, it can be seen that when
the level of interruption factor is at high level (i.e. D = 0.1), all
nine algorithms have smaller RPDs and smaller dispersions.
It means that for a bigger value of D, proposed algorithms not
only have a better RPD performance, but also have a lower

206	 Complex & Intelligent Systems (2022) 8:199–212

1 3

Table 1   Performances of
B&B over different parameters
(n = 12)

D Qlevel Nb Node CPU times

Mean Max Mean Max

0.1 1.6 2 1,262,030.02 5,867,625 18.01 68.8
4 1,265,873.77 6,288,987 19.15 88.05
6 19,391.90 1,794,245 0.42 27.11
8 287.64 4343 0.01 0.11
10 51.24 85 0 0.02

1.7 2 1,341,512.94 5,867,649 19.53 69.73
4 1,109,542.67 7,408,941 17.29 103.44
6 13,696.56 802,057 0.34 14.29
8 287.77 4344 0.01 0.08
10 51.31 85 0 0.02

1.8 2 1,468,471.79 5,430,421 21.73 67.22
4 831,246.54 9,578,716 13.53 133.43
6 13,696.62 802,057 0.34 14.4
8 287.81 4345 0.01 0.09
10 51.36 85 0 0.02

0.01 1.6 2 1,222,165.50 3,408,420 16.42 43.23
4 1,572,122.14 8,613,239 20.04 94.15
6 5,256,577.99 24,942,703 56.24 262.69
8 1,292,546.22 23,157,617 10.75 192.35
10 13.22 86 0 0.02

1.7 2 1,414,446.01 4,334,821 18.66 56.11
4 2,071,946.32 10,658,221 25.93 135.61
6 3,567,067.93 39,031,541 37.28 419.32
8 295,887.48 23,816,151 2.37 162.15
10 13.22 86 0 0.02

1.8 2 1,617,922.93 5,174,566 21.32 70.81
4 2,710,071.00 13,718,005 33.79 163.49
6 2,270,214.58 23,029,503 22.9 226.69
8 1517.08 70,007 0.03 0.77
10 13.22 86 0 0.02

0.001 1.6 2 1,304,847.14 4,140,059 16.14 46.14
4 1,570,536.46 10,411,040 18.27 94.99
6 6,221,690.88 24,838,378 60.49 222.75
8 2,712,333.58 54,472,393 19.9 325.34
10 32.95 154 0 0.02

1.7 2 1,491,661.00 4,844,055 17.07 46.2
4 2,173,290.81 11,929,326 23.3 101.52
6 5,144,872.28 32,920,768 45.9 270.27
8 1,626,005.25 32,465,999 11.42 205.28
10 32.99 154 0 0.02

1.8 2 1,717,811.47 6,207,522 19.14 62.03
4 2,819,090.68 15,858,631 28.96 137.3
6 4,557,010.50 53,091,766 38.32 403.41
8 164,245.73 23,330,099 1.15 137.69
10 33.01 154 0 0.02
Mean 1,380,499.99 11,073,767.44 15.03 99.27

207Complex & Intelligent Systems (2022) 8:199–212	

1 3

degree of variation on the values of RPD. As D becomes
smaller, the average RPDs and variances of RPDs became
larger for the nine algorithms, in particular, for the three GAs.

Regarding the effects of τ, and ρ on the performance of
each algorithm, as shown in Table 6, all nine algorithms
performed at τ = 0.5 better than they did at τ = 0.25. As ρ
increased the RPD of all three GAs increased, as seen in
Table 6, but there is no such pattern for three SAs and three
CSAs.

Regarding the impacts of Qlevel, and Nb on the perfor-
mance of each algorithm, it can be observed in Table 6 that
the differences of RPD between three GAs or three SAs or
three CSAs are very slight. It means that these nine algo-
rithms can effectively solve instances, not affecting by the
values of Qlevel. The RPDs of the nine algorithms increased
as Nb increased, as shown in Table 6.

To examine whether the difference between the nine
algorithms is statistically significant for the large size jobs,
we performed the K–W test to examine the statistical dif-
ferences among the nine algorithms. The fifth column of
Table 4 showed the mean rank of the nine algorithms. The p
value was < 0.001 (and the value of test statistic, Chi-square
distribution, was 813.9 with 8 degrees of freedom) of the
Kruskal–Wallis test, thus there are significant differences
among the performances of the nine algorithms.

Table 2   Performances of B&B over four parameters (n = 12)

Node CPU_time FS

D
 0.001 2,100,232.981 20.003 100
 0.01 1,552,834.989 17.714 100
 0.1 488,431.997 7.358 100

Qlevel
 1.6 1,580,033.377 17.055 100
 1.7 1,350,020.969 14.606 100
 1.8 1,211,445.621 13.414 100
�

 0.25 1,763,968.097 17.713 100
 0.5 997,031.881 12.337 100
�

 0.25 1,316,927.039 12.860 100
 0.5 1,365,103.422 15.548 100
 0.75 1,459,469.507 16.667 100

Nb

 2 1,426,763.200 18.669 100
 4 1,791,524.488 22.249 100
 6 3,007,135.470 29.136 100
 8 677,044.286 5.070 100
 10 32.502 0.001 100

Table 3   Performances of AEP
of algorithms for parameters as
n = 12

GA_p GA_f GA_b SA_p SA_f SA_b CSA_p CSA_f CSA_b

D
 0.001 6.462 6.551 6.344 3.163 3.061 2.789 1.953 2.375 1.849
 0.01 5.416 5.086 5.111 2.577 2.422 2.602 1.787 1.809 1.686
 0.1 1.615 1.692 1.693 1.221 1.252 1.226 0.891 0.835 0.819
�

 0.25 6.476 6.309 6.129 2.923 2.853 2.807 1.982 2.220 1.944
 0.5 2.519 2.577 2.636 1.718 1.637 1.605 1.105 1.126 0.958
�

 0.25 4.024 3.854 3.961 1.703 1.744 1.610 1.183 1.175 1.039
 0.5 4.170 4.238 4.051 2.303 2.141 2.190 1.578 1.577 1.460
 0.75 5.299 5.237 5.136 2.954 2.850 2.816 1.869 2.267 1.854

Qlevel
 1.6 4.057 4.114 3.991 2.325 2.162 2.140 1.405 1.643 1.409
 1.7 4.326 4.158 4.351 2.303 2.232 2.196 1.570 1.637 1.459
 1.8 5.110 5.058 4.806 2.334 2.340 2.281 1.655 1.739 1.486

Nb

 2 1.516 1.497 1.562 1.805 1.803 1.830 1.307 1.375 1.300
 4 5.197 5.122 5.281 1.771 1.729 1.800 1.238 1.240 1.209
 6 7.406 7.226 7.406 2.059 2.110 2.089 1.628 1.545 1.486
 8 6.319 6.699 5.901 3.165 3.167 3.078 2.143 2.447 2.195
 10 2.050 1.673 1.764 2.801 2.415 2.233 1.400 1.758 1.065
 Mean 4.498 4.443 4.383 2.320 2.245 2.206 1.543 1.673 1.451

208	 Complex & Intelligent Systems (2022) 8:199–212

1 3

Fig. 1   Impact of D on the AEPs of nine algorithms

Fig. 2   Impact of τ on the AEPs of nine algorithms

Fig. 3   Impact of ρ on the AEPs of nine algorithms

Fig. 4   AEP of nine algorithms over different levels of Qlevel

Fig. 5   AEP of nine algorithmsover different values of Nb

Fig. 6   Boxplots of AEP for nine algorithms

209Complex & Intelligent Systems (2022) 8:199–212	

1 3

The boxplot of RPDs for nine algorithms in Fig. 8 shows
that the RPD of CSA seems have difference from those of
GA and SA, the CSA did the best performance.

To examine the statistical difference among these nine
algorithms, we performed multiple comparisons and
groupings for algorithms using DSCF test. The result
shows that CSAs is the best one, SAs next, and GAs is
the worst; the group difference among GA, SA and CSA
is very clearly (also refer Fig. 8); CSA_f performed the
best among all proposed algorithms.

Regarding the CPU times, as showed in Fig. 9, GAs
costs the most, SAs next, and the CSAs the least, but all
were less one second.

Conclusion and suggestions

In this paper, we study the sequential mode of multi-
tasking for job scheduling together with two agents to
minimize the total tardiness of A-agent’s jobs subject
to a restriction (upper bound) on the total completion
time of the B-agent’s jobs. The study issue belongs to
the NP-hard set, thus, we derived five properties and a
lower bound to embed in a B&B method to search opti-
mal job sequences for small-sized jobs. Three variants
of each of metaheuristics, GA, SA, and CSA, i.e., nine
algorithms are employed to search optimal or approxi-
mate job sequences for large-sized jobs. Experimental
results show that the CSAs performed best among these
algorithms. For the future study, the complexity of mul-
titasking scheduling problem with two (or more)-agents
together with other criteria, for example the weighted
number of lateness for one of agents, would be an inter-
esting topic. Also, one can address the development of
efficient optimization algorithm and heuristics for those
hard problems.

Table 4   Mean ranks of algorithms in K–W test for small and large
size jobs

*Average scores were used for ties

Algorithm Small n Large n

Number of obs Mean rank Number of obs Mean rank

GA_p 270 1406.8 270 1763.4
GA_f 270 1397.5 270 1763.6
GA_b 270 1423.5 270 1761.7
SA_p 270 1313.8 270 1092.0
SA_f 270 1292.0 270 1092.3
SA_b 270 1279.6 270 1091.7
CSA_p 270 959.8 270 788.1
CSA_f 270 981.0 270 788.9
CSA_b 270 885.3 270 797.8
Total 2430 1215.5 2430 1215.5

Table 5   DSCF for nine
algorithms

Pairwise comparison DSCF Pairwise comparison DSCF

Between algorithms Statistic p value Sign Between algorithms Statistic p value Sign

GA_f–GA_b 0.2609 1.0000 GA_p–CSA_f − 8.6887 < 0.001 ***
GA_f–GA_p 0.1751 1.0000 GA_p–CSA_b − 9.9715 < 0.001 ***
GA_f–SA_f − 3.8092 0.1501 GA_p–CSA_p − 8.9660 < 0.001 ***
GA_f–SA_b − 4.0908 0.0904 SA_f–SA_b − 0.4017 1.0000
GA_f–SA_p − 3.5342 0.2324 SA_f–SA_p 0.8160 0.9997
GA_f–CSA_f − 8.5400 < 0.001 *** SA_f–CSA_f − 8.5240 < 0.001 ***
GA_f–CSA_b − 9.9407 < 0.001 *** SA_f–CSA_b − 11.2715 < 0.001 ***
GA_f–CSA_p − 8.8661 < 0.001 *** SA_f–CSA_p − 9.4839 < 0.001 ***
GA_b–GA_p 0.0090 1.0000 SA_b–SA_p 1.1069 0.9973
GA_b–SA_f − 4.6735 0.0266 * SA_b–CSA_f − 8.1492 < 0.001 ***
GA_b–SA_b − 4.8233 0.0188 * SA_b–CSA_b − 11.0090 < 0.001 ***
GA_b–SA_p − 4.3069 0.0590 SA_b–CSA_p − 9.1118 < 0.001 ***
GA_b–CSA_f − 9.3041 < 0.001 *** SA_p–CSA_f − 8.9800 < 0.001 ***
GA_b–CSA_b − 10.7138 < 0.001 *** SA_p–CSA_b − 11.6612 < 0.001 ***
GA_b–CSA_p − 9.7441 < 0.001 *** SA_p–CSA_p − 9.8849 < 0.001 ***
GA_p–SA_f − 4.2503 0.0663 CSA_f–CSA_b − 2.5337 0.6880
GA_p–SA_b − 4.3276 0.0565 CSA_f–CSA_p − 0.2570 1.0000
GA_p–SA_p − 3.8927 0.1299 CSA_b–CSA_p 2.4499 0.7267

210	 Complex & Intelligent Systems (2022) 8:199–212

1 3

Table 6   Performances of RPD
of algorithms for parameters as
n = 60

GA_p GA_f GA_b SA_p SA_f SA_b CSA_p CSA_f CSA_b

D
 0.001 50.741 50.752 50.843 10.715 10.505 10.765 6.885 6.655 6.931
 0.01 39.848 39.543 40.272 9.355 9.098 8.946 5.874 5.790 6.031
 0.1 10.279 10.279 10.037 4.010 4.012 4.067 2.582 2.551 2.607

Qlevel
 1.6 32.547 32.430 32.659 7.993 7.808 7.841 5.091 4.988 5.165
 1.7 33.866 33.768 33.972 8.048 7.885 7.973 5.134 5.003 5.201
 1.8 34.455 34.377 34.522 8.038 7.921 7.964 5.117 5.004 5.203
�

 0.25 37.909 37.781 38.029 8.909 8.705 8.899 5.572 5.548 5.851
 0.5 29.336 29.268 29.406 7.144 7.038 6.953 4.656 4.450 4.528

ρ
 0.25 32.717 32.509 32.952 7.563 7.340 7.572 5.092 4.986 5.096
 0.5 33.443 33.301 33.486 8.054 8.248 7.893 4.872 5.065 5.056
 0.75 34.708 34.765 34.714 8.462 8.026 8.313 5.377 4.945 5.417

Nb

 10 5.257 5.273 5.258 1.843 1.829 1.838 0.750 0.783 0.770
 20 22.349 22.294 22.354 3.737 3.756 3.773 1.670 1.712 1.688
 30 32.458 32.255 32.163 5.196 5.266 5.095 2.672 2.668 2.695
 40 40.775 40.912 40.920 8.366 8.307 8.595 5.272 5.264 5.543
 50 67.274 66.891 67.893 20.991 20.199 20.330 15.205 14.565 15.253
 Mean 33.623 33.525 33.718 8.027 7.871 7.926 5.114 4.998 5.190

Fig. 7   RPD of nine algorithms over different levels of D Fig. 8   Boxplots of RPD for nine algorithms

211Complex & Intelligent Systems (2022) 8:199–212	

1 3

Acknowledgements  We thank the editor and two referees for their
positive comments and useful suggestions. This study was supported
in part by the Ministry of Science and Technology of Taiwan, MOST
109-2410-H-035-019.

Funding  There are none.

Availability of data and materials  The data used to support the findings
of this study are available from the corresponding author upon request.

Declarations 

Conflict of interest  All of the authors declare that they have no conflict
of interest.

Ethical approval  This paper does not contain any studies with human
participants or animals performed by any of the authors.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Agnetis A, Mirchandani PB, Pacciarelli D, Pacifici A (2004)
Scheduling problems with two competing agents. Oper Res
52:229–242

	 2.	 Agnetis A, Billaut J-C, Gawiejnowicz S, Pacciarelli D, Soukhal
A (2014) Multiagent scheduling. Springer, Berlin

	 3.	 Ahmadi-Darani M-H, Moslehi G, Reisi-Nafchi M (2018) A two-
agent scheduling problem in a two-machine flowshop. Int J Ind
Eng Comput 9:289–306

	 4.	 Appasami G, Joseph KS (2011) Optimization of operating sys-
tems towards green computing. Int J Comb Optim Probl Inform
2(3):39–51

	 5.	 Baker KR, Smith JC (2003) A multiple criterion model for
machine scheduling. J Sched 6:7–16

	 6.	 Charron S, Koechlin E (2010) Divided representation of concur-
rent goals in the human frontal lobes. Science 328(5976):360–363

	 7.	 Della Croce F, Narayan V, Tadei R (1996) The two-machine total
completion time flowshop problem. Eur J Oper Res 90:227–237

	 8.	 Essafi I, Mati Y, Dauzère-Pérès S (2008) A genetic local search
algorithm for minimizing total weighted tardiness in the job-shop
scheduling problem. Comput Oper Res 35(8):2599–2616

	 9.	 Fischer R, Plessow F (2015) Efficient multitasking: parallel versus
serial processing of multiple tasks. Front Psychol. https://​doi.​org/​
10.​3389/​fpsyg.​2015.​01366

	10.	 Gerstl E, Mosheiov G (2012) Scheduling problems with two com-
peting agents to minimize weighted earliness-tardiness. Comput
Oper Res 40:109–116

	11.	 Gao K, Huang Y, Sadollah A, Wang L (2020) A review of energy-
efficient scheduling in intelligent production systems. Complex
Intell Syst 6:237–249

	12.	 Hall NG, Leung JY-T, Li CL (2015) The effects of multitasking
on operations scheduling. Prod Oper Manag 24(8):1248–1265

	13.	 Hall NG, Leung JY-T, Li C-L (2016) Multitasking via alternate
and shared processing: algorithms and complexity. Discrete Appl
Math 208:41–58

	14.	 Ho KI-J, Sum J (2017) Scheduling jobs with multitasking and
asymmetric switching costs. In: Proceedings of the IEEE inter-
national conference on systems, man, and cybernetics (SMC ’17),
Banff Center, Banff, Canada, October 5–8, 2017. http://​www.​
smc20​17.​org/​SMC20​17_​Papers/​media/​files/​0184.​pdf

	15.	 Holland JH (1984) Genetic algorithms and adaptation. Adaptive
control of ill-defined systems. Springer, pp 317–333

	16.	 Hollander MD, Wolfe A, Chicken E (2014) Nonparametric statisti-
cal methods, 3rd edn. Wiley, Hoboken

	17.	 Iyer SK, Saxena B (2004) Improved genetic algorithm for the
permutation flowshop scheduling problem. Comput Oper Res
31(4):593–606

	18.	 Ji M, Zhang W, Liao L, Cheng TCE, Tan Y (2019) Multitasking
parallel-machine scheduling with machine-dependent slack due-
window assignment. Int J Prod Res 57:1667–1684. https://​doi.​org/​
10.​1080/​00207​543.​2018.​14973​12

	19.	 Kardos C, Kovács A, Váncza J (2020) A constraint model for
assembly planning. J Manuf Syst 54:196–203

	20.	 Kc DS (2014) Does multitasking improve performance? Evi-
dence from the emergency department. Manuf Serv Oper Manag
16(2):168–183

	21.	 Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by
simulated annealing. Science 220:671–680

	22.	 Kovalyov MY, Oulamara A, Soukhal A (2015) Two-agent sched-
uling with agent specific batches on an unbounded serial batching
machine. J Sched 18:423–434

	23.	 Lagzi S, Fukasawa R, Ricardez-Sandoval L (2017) A multitasking
continuous time formulation for short-term scheduling of opera-
tions in multipurpose plants. Comput Chem Eng 97:135–146.
https://​doi.​org/​10.​1016/j.​compc​hemeng.​2016.​11.​012

	24.	 Lai ZH, Tao W, Leu MC, Yin Z (2020) Smart augmented reality
instructional system for mechanical assembly towards worker-
centered intelligent manufacturing. J Manuf Syst 55:69–81

	25.	 Lea VM, Corlett SA, Rodgers RM (2015) Describing interrup-
tions, multi-tasking and task-switching in communitypharmacy:
a qualitative study in England. Int J Clin Pharm 37:1086–1094

Fig. 9   CPU time for nine algorithms for large-size instances

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpsyg.2015.01366
https://doi.org/10.3389/fpsyg.2015.01366
http://www.smc2017.org/SMC2017_Papers/media/files/0184.pdf
http://www.smc2017.org/SMC2017_Papers/media/files/0184.pdf
https://doi.org/10.1080/00207543.2018.1497312
https://doi.org/10.1080/00207543.2018.1497312
https://doi.org/10.1016/j.compchemeng.2016.11.012

212	 Complex & Intelligent Systems (2022) 8:199–212

1 3

	26.	 Li C-L, Chong W (2018) Task scheduling with progress control.
IISE Trans 50:54–61

	27.	 Liu M, Wang S, Zheng F, Chu C (2017) Algorithms for the joint
multitasking scheduling and common due date assignment prob-
lem. Int J Prod Res 55(20):6052–6066

	28.	 Li S, Cheng TCE, Ng CT, Yuan J (2017) Two-agent scheduling
on a single sequential and compatible batching machine. Nav Res
Logist 64:628–641

	29.	 Logie RH, Law A, Trawley W, Nissan J (2010) Multitasking,
working memory and remembering intensions. Psychologica
Belgica 50(3 & 4):309–326

	30.	 Mor B, Mosheiov G (2011) Single machine batch scheduling with
two competing agents to minimize total flowtime. Eur J Oper Res
215:524–531

	31.	 Noguera J, Badia RM (2004) Multitasking on reconfigurable
architectures: micro architecture support and dynamic schedul-
ing. ACM Trans Embed Comput Syst 3(2):385–406

	32.	 Ophir E, Nass C, Wagner AD (2009) Cognitive control in media
multitaskers. Psychol Cogn Sci 106(37):15583–15587

	33.	 Pashler HE (1994) Dual-task interference in simple tasks: data
and theory. Psychol Bull 116(2):220–244. https://​doi.​org/​10.​1037/​
0033-​2909.​116.2.​220

	34.	 Pashler HE (2000) Task switching and multitask performance. In:
Control of cognitive processes: attention and performance XVIII,
2000, pp 277–307

	35.	 Perez-Gonzalez P, Framinan JM (2014) A common framework
and taxonomy for multicriteria scheduling problems with interfer-
ing and competing jobs: multi-agent scheduling problems. Eur J
Oper Res 235(1):1–16

	36.	 Pinedo M (2014) Scheduling: theory, algorithms, and systems,
3rd edn. Prentice Hall, Upper Saddle River

	37.	 Reeves C (2003) Genetic algorithms. Handbook of metaheuristics.
Springer, pp 55–82

	38.	 Reissland J, Manzey D (2016) Serial or overlapping processing in
multitasking as individual preference: effects of stimulus preview
on task switching and concurrent dual-task performance. Acta
Physiol (Oxf) 168:27–40. https://​doi.​org/​10.​1016/j.​actpsy.​2016.​
04.​010

	39.	 Rubinstein JS, Meyer DE, Evans JE (2001) Executive control of
cognitive processes in task switching. J Exp Psychol Hum Percept
Perform 27(4):763–797

	40.	 Rosen C (2008) The myth of multitasking. New ATLANTIS
2008:105–110

	41.	 Sayed GI, Hassanien AE (2018) A hybrid SA-MFO algorithm for
function optimization and engineering design problems. Complex
Intell Syst 4:195–212

	42.	 Seshadri S, Shapira Z (2001) Managerial allocation of time and
effort: the effects of interruptions. Manag Sci 47(5):647–662

	43.	 Sum J, Ho K (2015) Analysis on the effect of multitasking. In;
Proceedings of the IEEE international conference on systems,
man, and cybernetics (SMC’15), pp 204–209, IEEE, Hong Kong,
October 2015. https://​doi.​org/​10.​1109/​SMC.​2015.​48

	44.	 Torabzadeh E, Zandieh M (2010) Cloud theory-based simulated
annealing approach for scheduling in the two-stage assembly
flowshop. Adv Eng Softw 41:1238–1243

	45.	 Wang D, Yu Y, Yin Y, Cheng TCE (2020) Multi-agent scheduling
problems under multitasking. Int J Prod Res. https://​doi.​org/​10.​
1080/​00207​543.​2020.​17489​08

	46.	 Wickens CD, McCareley JS (2008) Applied attention theory. Erl-
baum, Mahwah

	47.	 Wu CC, Lin WC, Zhang XG, Bai DY, Tsai YW, Ren T, Cheng
SR (2020) Cloud theory-based simulated annealing for a single-
machine past sequence setup scheduling with scenario-dependent
processing times. Complex Intell Syst. https://​doi.​org/​10.​1007/​
s40747-​020-​00196-7

	48.	 Xiong X, Zhou P, Yin Y, Cheng TCE, Li D (2019) An exact
branch-and-price algorithm for multitasking scheduling on unre-
lated parallel machines. Nav Res Logist 66:502–516

	49.	 Yang Y, Yin G, Wang C, Yin Y (2020) Due date assignment and
two-agent scheduling under multitasking environment. J Comb
Optim. https://​doi.​org/​10.​1007/​s10878-​020-​00600-5

	50.	 Yavari S (2018) Machine scheduling for multitask machining.
Electronic Theses and Dissertations 2018, p 7409. https://​schol​
ar.​uwind​sor.​ca/​etd/​7409.

	51.	 Yin Y, Cheng TCE, Wang DJ, Wu C-C (2016) Just-in-time sched-
uling with two competing agents on unrelated parallel machines.
Omega 63:41–47

	52.	 Yin Y, Wang DJ, Wu C-C, Cheng TCE (2016) CON/SLK due date
assignment and scheduling on a single machine with two agents.
Nav Res Logist 63:416–429

	53.	 Yin Y, Cheng TCE, Wang DJ, Wu C-C (2017) Two-agent
flowshop scheduling to maximize the weighted number of just-
in-time jobs. J Sched 20:313–335

	54.	 Yin Y, Wang WY, Wang DJ, Cheng TCE (2017) Multi-agent
single-machine scheduling and unrestricted due date assignment
with a fixed machine unavailability interval. Comput Ind Eng
111:202–215

	55.	 Zhang F, Cao J, Tan W, Khan SU, Li K, Zomaya AY (2014) Evo-
lutionary scheduling of dynamic multitasking workloads for big
data analytics in elastic cloud. IEEE Trans Emerg Top Comput
2(3):338–351

	56.	 Zhang X, Wang Y (2017) Two-agent scheduling problems on a
single-machine to minimize the total weighted late work. J Comb
Optim 33(3):945–955

	57.	 Zhu Z, Li J, Chu C (2017) Multitaskingschedulingproblemswith-
deteriorationeffect. Math Probl Eng 2017:1–10

	58.	 Zhu Z, Liu M, Chu C, Li L (2017) Multitasking scheduling with
multiple rate-modifying activities. Int Trans Oper Res 00:1–21.
https://​doi.​org/​10.​1111/​itor.​12393

	59.	 Zhu Z, Zheng F, Chu C (2017) Multitasking scheduling problems
with a rate-modifying activity. Int J Prod Res 55(1):296–312

	60.	 Zhu ZG, Liu M, Chu CB, Li JL (2019) Multitasking schedul-
ing with multiple rate-modifying activities. Int Trans Oper Res
26(5):1956–1976

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations

https://doi.org/10.1037/0033-2909.116.2.220
https://doi.org/10.1037/0033-2909.116.2.220
https://doi.org/10.1016/j.actpsy.2016.04.010
https://doi.org/10.1016/j.actpsy.2016.04.010
https://doi.org/10.1109/SMC.2015.48
https://doi.org/10.1080/00207543.2020.1748908
https://doi.org/10.1080/00207543.2020.1748908
https://doi.org/10.1007/s40747-020-00196-7
https://doi.org/10.1007/s40747-020-00196-7
https://doi.org/10.1007/s10878-020-00600-5
https://scholar.uwindsor.ca/etd/7409
https://scholar.uwindsor.ca/etd/7409
https://doi.org/10.1111/itor.12393

	A two-agent one-machine multitasking scheduling problem solving by exact and metaheuristics
	Abstract
	Introduction
	Problem statement
	Properties and a lower bound
	Property 1
	Property 2
	Metaheuristics GA, SA, and CSA
	Data simulation analysis
	Conclusion and suggestions
	Acknowledgements
	References

