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Abstract
This paper studies a real-world manufacturing problem, which is modeled as a bi-objective integer programming problem.
The variables and constraints involved are usually numerous and dramatically vary according to the manufacturing data. It is
very challenging to directly solve such large-scale problems using heuristic algorithms or commercial solvers. Considering
that the decision space of such problems is usually sparse and has a block-like structure, we propose to use decomposition
methods to accelerate the optimization process. However, the existing decomposition methods require that the problem has
strict block structures, which is not suitable for our problem. To deal with problems with such block-like structures, we
propose a game theory based decomposition algorithm. This new method can overcome the large-scale issue and guarantee
convergence to some extent, as it can narrow down the search space and accelerate the convergence. Extensive experimental
results on real-world industrial manufacturing planning problems show that our method is more effective than the world
fastest commercial solver Gurobi. The results also indicate that our method is less sensitive to the problem scale comparing
with Gurobi.

Keywords Large-scale optimization · Game theory · Decomposition

Introduction

This paper focuses on the solving of large-scale manufac-
turing planning problems from the industrial applications,
which can be modeled as bi-objective Integer Programming
(IP) problems. One objective is to maximize the order fillrate
(i.e., maximize the satisfaction of requirements). The other is
to minimize the total cost (i.e., minimize the operation cost,
including inventory cost, production cost and transportation
cost). Our goal is to schedule the future manufacture in fac-
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tories every day. In practical scenarios, the IP problems can
easily have over 1 billion decision variables and constraints.
It is challenging for commercial solvers such as Gurobi and
CPLEX to deal with such large-scale problems efficiently.
The larger the problem scale is, the more serious situation
becomes.

On one hand, one natural approach to handle the large-
scale problems is decomposition. Many decomposition
methods such as Benders decomposition [5] and
DantzigCWolfe decomposition [14] have been well devel-
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oped. There are also many tricks to accelerate the decom-
position methods [5,8,12]. However, these decomposition
methods require that the problems satisfy the strict blocked
structures. Most practical problems are too complicated to
meet the requirement.

On the other hand, there are many heuristic methods
have been proposed. The most related work is [6]. It has
replaced part of integer variables with heuristic constraints.
Experimental results on facility location tasks show its advan-
tage over CPLEX. In this paper, we adopt the similar idea
of heuristic constraints. Another related work is [7], in
which data-driven algorithms have been proposed to boost
solvers. Nevertheless, these approaches are to solve rela-
tively small problems. The problem scale involved in this
paper is much larger than previous ones. A new method
based on symmetry-breaking constraints have been utilized
for both reformulation and reduction of model in solving
large-scale LP and IP [9,10]. Otherwise, there also exists
some related research from the field of game [1,4]. They have
combined different games with various decomposition algo-
rithms.However, their problems are still farmore smaller and
simpler than practical ones. To the best of our knowledge, this
paper is the firstwork to use game-based decomposition algo-
rithm to solve billion scale manufacturing planning problem
from industrial practice.

Considering the above challenges, we propose a game-
based decomposition algorithm and apply it to big man-
ufacturing planning problems. In this algorithm, we firstly
reformulate the IP problem from game perspective. The two
objectives are regarded as two players. One is the leader
and the other is the follower. Apparently, both two players
have relatively small scales, compared to original problem.
Then optimizing IP problem is transformed into finding the
equilibrium between two players. Different from others, our
algorithm is more flexible to deal with non-strict blocked
structure.

This paper makes the following major contributions:

(1) We propose a novel decomposition algorithm inspired by
game, for those non-strict blocked problems.

(2) We transform the optimization of IP problem into finding
equilibrium between two players, which overcomes the
large scale and guarantees the convergence.

(3) We construct heuristic constraints, which narrows down
the search space, and hence accelerates the convergence.

Experiments are conducted on practical industrial manu-
facturing planning problems. The results show significant
improvements over the best commercial solver Gurobi. It
can also be observed that the running time of our algorithm
increases much slower than that of Gurobi when problem
size increases, which indicates that the proposed algorithm
is more friendly to large-scale problems.

Fig. 1 Structure of constraint matrix. Clearly, the constraint matrix is
not rigorously blocked. Rank of constraints is adjusted, to show the
structure clearly

Model for large-scale manufacturing
planning

In general, the manufacturing planning problem can be mod-
eled as a bi-objective integer programming as below:

max F(z,m), (1a)

min G(x, y) = cT1 x + cT2 y, (1b)

where the x, y, z, andm are the decision variables, and they
are all positive integers whichmust satisfy the following con-
straints:

Ax ≤ b, (2a)

U1z + U2m = β, (2b)

P1x + P2y = γ, (2c)

N1z + N2x + N3y = ζ. (2d)

x ≥ 0, y ≥ 0, z ≥ 0, m ≥ 0. (2e)

Hereby, G(x and y) are both linear, but there are no extra
requirements on F(z,m). Meanwhile, c1, c2, b, β, γ , and
ζ are constant vectors, and A, U1, U2, P1, P2, N1, N2,
and N3 are constraint matrices. All the constant vectors and
constraint matrices are with corresponding dimensions. In
practice, both the objectives and constraints have specific
meanings.

Figure 1 indicates themathematical structure ofmodel (1),
from which we can find that there exist two main charac-
teristics of the original IP model (1): (1) it has separable
objectives. Clearly, one objective is of z and m, while the
other only depends on x and y. It indicates that we can design
an alternative and iterative decomposition method to replace
the direct optimization. (2) Its constraint matrix is non-strict
blocked. It indicates that the decomposition method must
guarantee to converge to the sameoptima as the original prob-
lem. Thus, the conventional decomposition methods cannot
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be utilized directly. Considering above, a new decomposition
algorithm based on the above properties is proposed in this
paper.

Game-based algorithm

Design flow

New decomposition from game

We first decompose the original problem (1) into two sub-
problems I and II, and both its objective as well as constraints
are divided into two parts. It should be noticed that owing to
the structure of model, there exists an overlap between the
constraints of two subproblems. Assuming that subproblem
I could be optimized firstly, and subproblem II is optimized
subsequently after the convergence of subproblem I, there
exists an apparent alternative and iterative process during the
total optimization. Now, we reconsider the two subproblems
from game perspective, and then, the two subproblems are
treated as two competed players. Let us consider the order
during optimization, and we consider subproblem I as the
leader, while subproblem II serves as the follower. As men-
tioned above, we can give the respective mathematical forms
as follows:

Leader: max F(z,m),

s.t., U1z +U2m = β,

N1z + N2x + N3y = ζ.

x ≥ 0, y ≥ 0, z ≥ 0, m ≥ 0. (3)

Follower: min G(x, y) = cT1 x + cT2 y,

s.t., Ax ≤ b,

P1x + P2y = γ,

N1z + N2x + N3y = ζ.

x ≥ 0, y ≥ 0, z ≥ 0, m ≥ 0. (4)

Apparently, comparing with the original model, both prob-
lems (3) and (4) have relatively small scales. It is relatively
easy for solvers to optimize them sequentially. Owing to the
definitions of leader and follower, we call such approach as
a game-based decomposition.

Optimization and convergence

Based on the decomposition and definitions above, we can
naturally convert the optimization of the original problem
into finding the equilibrium between leader (3) and fol-
lower (4). We consider the following alternative and iterative
process to optimize leader and follower and find the equilib-
rium between them:

1) Solve problem (3) with optimal solutions (z∗,m∗). From
game perspective, that is the leader moves first.

2) Solve problem (4) after substituting (z∗,m∗) with opti-
mal solutions (x∗, s∗, v∗). It indicates that the follower
finds a best response to the decision of leader.

3) Solve problem (3) again after fixing (x∗, s∗, v∗) and an
additional constraint given by the follower’s response,
with new solutions (z∗1,m∗

1). It denotes the leader’s
adjustment according to the response of follower.

4) Problem (4) is solved again with (z∗1,m∗
1) substituted.

That implies the follower modifies response according to
leader’s latest strategy.

The two players will stop when they cannot find better strate-
gies in the next loop. It should be mentioned that after the
follower’sfirst response,wemust add an additional constraint
to the leader and such constraint does not exist in the original
problem. In practice, we usually obtain the additional con-
straint in the following steps. We first give the approximate
dual form of problem (4) as below:

max
x̃,ỹ

{
max
x̃

bT x̃, max
x̃

σ x̃, max
ỹ

σ ỹ
}

s.t., AT x̃ ≥ c1, PT
1 x̃ = c1, NT

2 x̃ = c1

PT
2 ỹ = c2, NT

3 ỹ = c2
ỹ ≥ 0, x̃ ≥ 0, (5)

where σ = [
γ + (ζ − N1̂z)T

]
, x̃ and ỹ are the dual variables

corresponding with x and y, respectively, and ẑ is fixed by
leader in the last loop. Assuming that x̃∗ and ỹ∗ are the opti-
mal solutions of (5), we can add the following constraints to
problem (3):

F(z,m) + α ≥ max
{
bT x∗, σ x̃∗, σ ỹ∗} , (6)

where α is a hyperparameter with corresponding dimension
and works as an interface. From optimization perspective,
Constraint (6) serves as a heuristic bound and it is apparently
additional constraints for leader. It can be understood as that
we only merge the intersections of all the dual forms. In
practice, they can narrow the search space and accelerate
the convergence with a high probability. Solid lines in Fig. 3
show the results of heuristic constraints. It is observed that in
a shorter time, heuristic constraints lead to larger F(z,m) and
smallerG(x, y). Thus, we argue that the heuristic constraints
can lead to improvements on both the convergence speed and
solution quality.

Algorithm

Based on above discussions, we can give the algorithmic flow
for proposed game-based decomposition in Algorithm 1.

123



2722 Complex & Intelligent Systems (2022) 8:2719–2730

Algorithm 1 Game-based decomposition algorithm
1: Input: raw optimization problem (1), tolerance value ε, iteration

counter γ = 1.
2: Construct two players, i.e., subproblem (3) and (4)
3: Update rule:
4: while Strategy difference > ε do
5: Optimize problem (3)
6: Optimize problem (4)
7: Optimize approximate dual (5)
8: if γ > 1 then
9: Update Lagrangian dual parameter in subgradient direction
10: end if
11: Add heuristic constraints (6)
12: Optimize problem (3)
13: Optimize problem (4)
14: γ = γ + 1
15: end while
16: Output: Optimal solutions.

Illustrations on algorithmic advantage

Figure 2 shows the overview of our game-based algorithm.
Notice that the additional constraints, which are given by the
response of follower, are displayed with a different color in
this figure.

Back to other given alternative and iterative algorithms
[5,15] in solving large-scale optimization problem, the new
proposed game-based decomposition method has the follow-
ing different points:

(a) Different from the given decomposition algorithm, the
order of different subproblems does matter during the
optimization. Recall that the two subproblems are leader
and follower, respectively. It should be mentioned that
for leader, its solution matters for the total iterative pro-
cess, since it provides the initial point for optimizing the
follower; while for follower, its response is added to the

leader and it reflects the convergence efficiency. In prac-
tice, we prefer to choose the subproblem that is relatively
easy to be solved as the leader.

(b) Different from the given alternative and iterative algo-
rithm, we must add the response of follower as the addi-
tional constraints during optimization. Figure 3 shows the
effect of additional constraints. The abscissa is F(z,m)

and ordinate is G(x, y). They change along the given
directions. Based on the settings, higher quality solutions
mean larger F(z,m) but smaller G(x, y). Assume that
Gurobi optimize original problem (1) in a weight-sum
way. The dotted curve is obtained by Gurobi with differ-
ent weights adjusted. Although the curve is similar as the
Pareto front, no one can guarantee its Pareto optima. The
dashed lines represent the results of game-based decom-
position. It is clear that as F(z,m) increases and G(x, y)
decreases, the game-based decomposition can converge
to a solution, whose quality is no lower than the solutions
given by Gurobi directly.

(c) Different from thegivendecomposition algorithmswhich
aim at finding the Nash equilibrium between sub-
problems, our algorithm focuses on the Stackelberg
equilibrium. According to the game theory [3,11], the
Stackelberg equilibrium between the leader and follower
guarantees the convergence and solution quality. More
discussions are given in Sect. 4.

Theoretical guarantee

Preliminaries of game

Figure 4 shows the difference between Nash and Stackelberg
equilibrium.

Fig. 2 Graphical illustration for
the flow of game-based
decomposition
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Fig. 3 Results of the
game-based algorithm and
heuristic constraints. Abscissa is
F(z,m), while ordinate is
G(x, y). The dotted curve
denotes the solutions given by
Gurobi in a weight-sum way
directly. The dashed and solid
lines are from our algorithm
with and without heuristic
constraints, respectively. It
shows the convergence of
game-based decomposition.
Moreover, heuristic constraints
not only accelerate the
convergence but also lead to
higher quality solutions

Fig. 4 Graphical illustration for the flow of game-based decomposition

(i) if the leader A chooses the strategy a first, then the opti-
mal solutions of FB can be expressed as f (a) which
goes across its global optimal strategy Q, and Stackel-
berg equilibrium (aS, bS) denotes the tangent of FA and
f (a). Obviously, the follower will choose the strategy
which is the most favorable for leader.

(ii) if players A and B do not share information before deci-
sion, (aN , bN ) is a Nash equilibrium, since FA has a
horizontal tangent at this point, while FB has a vertical
tangent. It denotes that one cannot increase his payoff by
single-mindedly changing his own strategy, as long as the
other sticks to the Nash equilibrium.

Back to our problem, the leader (3) (i.e., A in Fig. 4) adopts
the strategya, and the follower (4) (i.e., B inFig. 4) requires to
maximize FB(a, b) and chooses a best reply b∗ = f (a), the
goal of leader is now to maximize FA(a, f (a)). Assuming
that player A servers as the leader and announces his strategy
in advance, then player B makes his decisions accordingly.
In Pareto optima, one cannot increase its own payoff strictly
without decreasing the payoff of the other.

Theoretical discussions

Theorem1first guarantees the solutionquality of game-based
decomposition under strict mathematical sense. It denotes
that the game-based decomposition can converge to the opti-
mal solution of original problem under certain mathematical
assumptions, where the two players cannot find better strat-
egy in the next loop.

Theorem 1 When ∃B1, B2 s.t. B1u1 + B2u2 = 0, the leader
and follower can converge to Stackelberg equilibrium, which
is the optima of original problem.

Proof Supposing that the two players are differentiable, we
label the follower via u1, while u2 refers to the leader. Due
to that, they are differentiable, and the cost functions for u1
and u2, respectively, can be given as:

J1(x, u1, u2) = 1

2

∫ ∞

0
r1(x, u1, u2)dt,

J2(x, u1, u2) = 1

2

∫ ∞

0
r2(x, u1, u2)dt,
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where

r1(x, u1, u2) = xT Q1x + uT1 R11u1 − uT2 R12u2,

r2(x, u1, u2) = xT Q2x − uT1 R21u1 + uT2 R22u2,

and Q j and R jk are both positive definite and symmetric. It is
clear that the cost function of every player hopes to optimize
its own function and minimize the partner’s. Owing to the
different levels of u1 and u2, we can first obtain the optimal
solutions of follower as:

J ∗
1 (x, u1, u2) = minu1

1

2

∫ ∞

t
r1(x, u1, u2)dt, (7)

and the follower’s Hamiltonian is:

Hu1 = r1(x, u1, u2)

+ (∇ J1)
T (Ax + B1u1 + B2u2). (8)

Thus, the optimal controller can be obtained as
∂Hu1
∂u1

= 0,
that is:

u∗
1 = − 1

2
(R11)

−1 BT
1 ∇ J1. (9)

Since the follower’s optimal solutions can affect the opti-
mization of leader, the optimal solutions of leader can be
expressed as:

J ∗
2 (x, J ∗

1 , u2) = minu2
1

2

∫ ∞

t
r2(x, J

∗
1 , u2)dt, (10)

with r2(x, J ∗
1 , u2) = r2(x, u1, u2)

∣∣∣∣
u1=J∗

1

. Utilizing the gra-

dient of follower’s Hamiltonian:

∂Hu1

∂x
= (Q1 + QT

1 )x + AT∇ J1,

we can obtain the optimal cost function of leader:

J ∗
2 (x, J ∗

1 , u2) =minu2
1

2

∫ ∞

t

[
xT Q2x + (

u∗
1

)T
R21u

∗
1

+ uT2 R22u2 + λ
∂Hu1

∂x

]
dt .

Set r2(x, J ∗
1 , u2) = xT Q2x + (

u∗
1

)T
R21u∗

1 + uT2 R22u2 +
γ

∂Hu1
∂x , we have the leader’s Hamiltonian as:

Hu2 = γ
[
(Q1 + QT

1 )x + AT∇ J1
]

+ r2(x, J
∗
1 , u2)

+ (∇ J2)
T (Ax + B1 J

∗
1 + B2u2), (11)

with γ as the real vector.1 To get the optimal controller, we

have
∂Hu2
∂u2

= 0, which leads to:

u∗
2 = −1

2
(R22)

−1 BT
2 ∇ J2. (12)

Obviously, we also have:

∇uHstack =
(

∂Hu1

∂u1
,
∂Hu2

∂u2

)
,

and gradients of Hamiltonians for leader and follower also
satisfy:

〈ξ(u1, u2), (∇uHstack)
T 〉 = 0,

with ξ(u1, u2) = (2R11u1, 2R22u2) and B1u1 + B2u2 = 0,
i.e., the gradients on follower’s and leader’s Hamiltonians
converge to the equilibrium from game perspective. 
�

Considering the complicated circumstance in practice,
Theorem 2 then guarantees the solution quality with a com-
pact upper bound.

Theorem 2 The proposed game-based decomposition can
approximate the optima of original problem, since optimal
solutions of leader can be bounded by the dual form and
optimal solutions of follower.

Proof . To prove Theorem 2, we first construct a toy model:

min cT x + dT y + hT z,

s.t., Ax ≤ b,

Mx + Ny +Uz ≥ v, (13)

to show why we can add a constraint to leader with the opti-
mal solutions and dual form of follower. Hereby, x, y, and z
are the decision variables, c andd are constant vectors, and A,
M , and N are constant matrices with corresponding dimen-
sions. Now, as the settings in our game-based decomposition
algorithm, problem (13) is decomposed into two problems:
the leader:

min cT x + α,

s.t., Ax ≤ b,

α ≥ αdown, (14)

and the follower:

min dT y + hT z,

s.t., Ny +Uz ≤ v − M x̂, (15)

1 Considering the optimization process, it serves as a Lagrangian mul-
tiplier.
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where x̂ is given by the optimal solutions of leader (14).
Different from [5], there exist two variables in the follower.
A naive method is to use the nested form to give the dual
form, which only has one decision variable in one loop, as
nested Benders decomposition [13]. However, we think this
method costs toomuch time in large-scale problem. Next, we
give the dual form of follower (15) in an approximate way:

min [v − M x̂]T (ỹ + z̃) ,

s.t., NT ỹ ≤ d,

UT z̃ ≤ h,

ỹ ≥ 0, (16)

where ỹ and z̃ are the dual variables corresponding with y
and z, respectively. Then, for the original problem (13), we
have:

min
x

{
cT x + min

y

{
dT y + hT z

∣∣∣∣NT ỹ ≤ d,UT z̃ ≤ h
}}

= min
x

{
cT x + max

{
max
ỹ

{
[v − M x̂]T ỹ

}
,

max
z̃

{
[v − M x̂]T z̃

}}}

≤ min
x

{
cT x + max

{
[v − M x̂]T ỹ∗, [v − M x̂]T z̃∗,

}}

where ỹ∗ and z̃∗ are the optimal solutions of corresponding
dual problems. Thus, Theorem 2 is proved. 
�

Experimental evaluation

Now, we take a practical manufacturing planning task from
our company as an example, to show the deployment details
for the proposed game-based decomposition algorithm. In
this example, i ∈ I = IP ∪ IAI denotes all kinds of products;
p and p′ are both for plant; and t ∈ [0, T ] refers to the time
period. IP and IAI represent the sets of semi-finished and
finished products, respectively. Other related notations are
presented in Table 1.

Model

In this subsection, we ignore the problem details and focus
on demonstrating the core problem structure. Hereby, the two
objectives are embodied as the order fillrate F(z,m) and total
cost G(x, s, v), respectively:

max F(z,m) =
∑

i∈I ,t∈T

∑
p∈P↓

i

(
zi,p,t − mi,t−1

)
Di,t + Fi,t

(17)

min G(x, s, v) = g1(x) + g2(s) + g3(x, s, v), (18)

Table 1 Variables and notations

Variables Notations

zi,p,t Supply quantity of item i of plant p

s p
′

i,p,t Transportation quantity of item i of plant p at time t

xi,p,t Planning production quantity of item i of plant p at
time t

mi,t Delay quantity of item i at time t

r i
′
i,p,t Replacement quantity of item i of plant p at time t

vi,p,t Inventory constraint of item i of plant p at time t

ini,p,t inbound constraint of item i of plant p at time t

outi,p,t outbound constraint of item i of plant p at time t

Di,t Aggregate demand at time t

Fi,t Predicted demand at time t

P↓
i Plants set of item i

P↓
i,p Plants set of item i of plant p

LT p′
p Lead time

PCi,p Processing cost of item i of plant p

PTi,p Processing time of item i of plant p

TCp′
i,p Transportation cost of item i from plant p to plant p′

MCi Material cost of item i

Vi,p Initial inventory of item i of plant p

Bi ′
i,p,t Cost for unit quantity

Ui,p,c Unit occupancy of item i of plant p

CAPp,t,s,c Upper limit for production

MLSi,p,t Minimal production quantity of item i of plant p at
time t

PAIRp′
i,p Processing ratio of item i from plant p to plant p′

Ri,p,t Total replacement quantity of item i of plant p at
time t

�1, �2 Delay owing to holidays

where g1(x), g2(s), and g3(x, s, v) refer to the manufactur-
ing, transportation, and holding costs, respectively:

g1(x) =
∑
i∈IAI

∑
p∈P↓

PCi,p ·
(∑

t

PMi · xi,p,t
)

g2(s) =
∑
i∈I

∑
p∈P↓

⎡
⎣ ∑

p∈{P↓\p′}
TCp′

i,p ·
(∑

t

s p
′

i,p,t

)⎤
⎦

g3(x, s, v) =
∑
i∈I

∑
p∈P↓

HCi,p ·
(∑

t

vi,p,t

)

+
∑
i∈I

∑
p∈P↓

HCi,p ·
(
LT p

p′ ·
∑
t

s pi,p′,t

)

+
∑
i∈IAI

∑
p∈P↓

HCi,p ·
(
PTi,p ·

∑
t∈T

PMi · xi,p,t
)

.
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Meanwhile, there are many constraints to be considered.
Among them, three are corresponding with constraint (2a):

∑
i∈I↑

s

Ui,p,c · (
PMi · xi,p,t

) ≤ CAPp,t,s,c (19)

PMi ′ · xi ′,p,t = PAI Ri ′
i,p · (

PMi · xi,p,t
)
, i ′ �= i (20)

PMi · xi,p,t ∈ {0, MLSi,p,t , MLSi,p,t + 1, . . .} (21)

Constraint (19) is the limitation of production capac-
ity. Constraint (20) is for the lot size of each productivity,
which means that the goods must be produced in pair. Con-
straint (21) denotes the minimal production of every plant.
The limitation on delay corresponds with constraint (2b):

mi,t =
{

Mi , t = 0
mi,t−1 + Di,t − ∑

p∈P↓
i
zi,p,t , otherwise.

(22)

Limitations on inventory and inbound correspond with
constraint (2c):

vi,p,t =
{

Vi,p, t = 0
vi,p,t−1 + ini,p,t − outi,p,t otherwise.

(23)

ini,p,t =
∑

p′∈P↓
i,p

s p
′

i,p,t−LT p′
p −�1

+ PMi · xi,p,t−PTi,p−�2 + POi,p,t . (24)

Limitations on outbound and replacements relate to con-
straint (2d):

outi,p,t =
∑

p′∈P↑
i,p

s pi,p′,t +
[ ∑
i ′∈{I↑

i,p∩I↑
p }

(
Bi ′
i,p,t · PMi · xi ′,p,t

)

+ zi,p,t −
∑

i ′∈I R↑
i

r i
′
i,p,t

]
+

∑
i ′∈I R↓

i

r ii ′,p,t (25)

∑
i ′∈{I↑

i,p∩I↑
p }
x̂ri ′ + zi,p,t −

∑
i ′∈I R↑

i

r i
′
i,p,t ≤ 0, (26)

with x̂ri ′ = Bi ′
i,p,t · (

PMi · xi ′,p,t
)
. Note that constraint (26)

denotes that item i ′ should first satisfy its own father node,
and then serves for other leaf nodes as the replacement. All
the related variables are positive.

Implementation details

According to Algorithm 1, the implementation details for
such example is given below:

– Input: Manufacturing planning problem.
– Output: Optimal solutions.

– Step 0: Initialization :

– Step 0.1): Tolerance value ε, iteration counter γ = 1,
and hyperparameter αinitial.

– Step 0.2): We reformulate this problem from game
perspective:
Leader:max F(z,m), with constraints (22), (23) (24)
and (25). Follower: min G(x, s, v), with all con-
straints apart from (22).

– Step 1. Solve the modified leader as below:

max F(z,m) + α,

s.t. Constraint delay, inventory, outbound and inbound

α ≥ αinitial, 0 ≤ x ≤ xup, (27)

Fixed the solutions z = z(γ ) and m = m(γ ).
– Step 2. Solve follower G(x, s, v) with fixed z = z(γ )

and m = m(γ ) and obtain x = x (γ ), s = s(γ ), v = v(γ ),
r = r (γ ), in = in(γ ) and out = out(γ ).

– Step 3: Convergence check.

– Step 3.1. Compute an upper bound (UB) as below:

�
(γ )
upper = β

(γ )
1

[
g1(x

(γ )) + g2(s
(γ )) + g3(x

(γ ), s(γ ), v(γ ))
]

+ β
(γ )
2

∑
p∈P↓

i

(
z(γ )

i,p,t − mγ

i,t−1

)
Di,t + Fi,t

,

where β
(γ )
1 and β

(γ )
2 are two hyperparameters.

– Step 3.2. Compute a lower bound (LB) as below:

�
(γ )

lower = β
(γ )
1 α(γ ) + β

(γ )
2

∑
p∈P↓

i

(
z(γ )

i,p,t − mγ

i,t−1

)
Di,t + Fi,t

.

– Step 3.3. If �
(γ )
upper − �

(γ )

lower < ε, stop, the opti-
mal solutions are obtained. Otherwise, the algorithm
continues to the next step.

– Step 4: Calculate dual problems.We obtain the approx-
imate dual form (I) of follower G(x, s, v), according
to (5).

– Step 5: Update Leader, i.e., resolve Leader (27) with
heuristic constraints,

max F(z,m) =
∑

i∈I ,t∈T

∑
p∈P↓

i

(
zi,p,t − mi,t−1

)
Di,t + Fi,t

+ α,

s.t. mi,t =
{

Mi , t = 0
mi,t−1 + Di,t − ∑

p∈P↓
i
zi,p,t , otherwise

α ≥ αinitial, 0 ≤ x ≤ xup,

g1(x
(k)) + g2(s

(k)) + g3(x
(k), s(k), v(k))
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Table 2 Experimental datasets

Dataset no. Item Plant Time span Scale

Dataset I-1 996 11 30 Million

Dataset I-2 996 11 30 Million

Dataset II-1 4409 20 30 10 million

Dataset II-2 4409 20 30 10 million

Dataset III 66110 68 30 Billion

+
∑
i∈I

λ
(k)
1,i

(
zi − z(k)i

)
+

∑
i∈I

λ
(k)
2,i

(
mi − m(k)

i

)
≤ α,

where λ
(k)
1,i and λ

(k)
1,i (k = 1, · · · , γ ) are Lagrangian dual

parameters, and they change along the corresponding
subgradient direction in each last iteration.

– Step 6: Update γ = γ + 1, and back to Step 1.

It is worth mentioning that in practice, we always choose a
relative easy player as the leader.

Numerical results

In this section, we evaluate the game-based decomposition
algorithm in industrial applications. All baselines are given
by Gurobi 8.1 [2,16]. To simplify, we only evaluate the linear
relaxation of IP problems 2.

Datasets

The experimental datasets are from real-world manufactur-
ing planning applications, and their statistics are shown in
Table 2. Here, column Item denotes the number of products
to be manufactured. Column Scale lists the number of vari-
ables in the problem. Here, we also evaluate our algorithm on
problems with millions of variables, to test its effectiveness
on a variety of problems. Datasets I-1, II-1, and III are from
normal manufacturing instances, where the order demand
and production capacity of related factories are both with
regular quantities. Datasets I-2 and II-2 are from irresistible
marketing and employment situation, with limited produc-
tion capacity and large demand.3

2 Based on theory of IP, people can obtain the IP solutions based on its
relaxation.
3 We take an example to show their difference: in normal cases, the order
needs a product i with the quantity 1800, while production capacity of
all related factories can reach 9e11. However, in unnormal cases, the
order needs a product i with the quantity 1e6, but the production capacity
of every related factory is less than 200.

Solution quality evaluation

We first evaluate the algorithm on solution quality, as shown
in Figs. 5, 6, 7, 8, and 9. Horizontal axis refers to the order
fillrate, and vertical axis refers to the total cost. Clearly, our
game approach can lead to higher quality solutions, with
higher order fillrate and smaller cost than that obtained from
Gurobi. It is easy to understand that higher fillrate always
costs more. There is no standard trade-off between fillrate
and cost. In this sense, the higher quality solutions denote
higher fillrate but with smaller cost.

Obviously, in most cases, our algorithm can dominate
Gurobi on solution quality. In additions, we also find that in
some special days, our algorithm leads to higher fillrate with
more cost, e.g., 11/30-12/29 and 01/02-02/01 in Dataset I-1,
11/21-12/20 and 11/28-12/27 in Dataset II-1. We consider
the latter case as our additional advantage over Gurobi, since
in some specific manufacturing planning tasks, maximizing
the order fillrate is more important than minimizing the cost.
Therefore, we can claim that the proposed algorithm outper-
forms the best commercial solver Gurobi on solution quality.

Efficiency evaluation

Figure 10 shows the comparison of computational efficiency.
The upper part is from our algorithm, and the lower part is
from Gurobi. Clearly, when the problem is small, Gurobi is
much more efficient than ours. However, with the increasing
of problem scale, our algorithm’s efficiency improves sharply
comparing with Gurobi. Figure 11 shows the comparison
on time increment when problem scale increases. We can
observe that as the running time of Gurobi has 1682-fold
increment, while the running time of our algorithm only has
517-fold increment. Our algorithm’s efficiency drops much
slower than Gurobi’s when the problem scale increases.

It is because the computation of dual problems and con-
struction of heuristic bounds would cost a certain amount of
time. It is very expensive in a relatively small-scale problem.
However, with scale increasing, the percentage of time con-
sumed by calculating dual forms and constructing heuristic
constraints drops relatively. Therefore, our algorithm is less
sensitive to the problem scale comparing with Gurobi.

Conclusions

Big industrial manufacturing planning problems bring great
challenges to commercial solvers. In practice, these problems
have up to billion decision variables and constraints. This
paper has proposed a game-based decomposition algorithm
to deal with these big problems. Experiments on industrial
datasets have shown our improvements on solution quality
and robustness. Furthermore, it can be observed that our algo-
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Fig. 5 Evaluation on Dataset I-1

Fig. 6 Evaluation on Dataset I-2

Fig. 7 Evaluation on Dataset II-1

Fig. 8 Evaluation on Dataset II-2

Fig. 9 Evaluation on Dataset III

rithm’s efficiency decreases much slower than Gurobi’s as
problem scale increases.

Different from other decomposition algorithms, our algo-
rithm can deal with non-strict blocked problems. Our major
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Fig. 10 Computational time comparison between our algorithm and
Gurobi on Datasets I-1 (11/24-12-23), II-1 (11/24-12/23), and III
(06/09-07/08)

Fig. 11 Comparison on time increments as problem scale increases.
It is shown that our algorithm’s efficiency decreases much slower than
Gurobi’s when the problem scale increases

contributions include: (1) a new decomposition algorithm
inspired by game,which is different from previousworks and
can deal with non-strict blocked problems; (2) new optimiza-
tion process, which overcomes the large scale and converge
to a solution; (3) construction of heuristic constraints, which
can narrow down the search space and accelerate the conver-
gence.

To the best of our knowledge, this is the first work to
apply game-based decomposition algorithm for billion scale
industrial manufacturing planning problems. The algorithm
demonstrates significant improvement over state-of-the-art
commercial solver Gurobi on solution quality, robustness,
and extensibility to large-scale problems. In the future, we
will continue to study the efficient algorithms for industrial

large-scale tasks in supply chain management and schedul-
ing.
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