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Abstract
EEG-based emotion recognition has attracted substantial attention from researchers due to its extensive application prospects, 
and substantial progress has been made in feature extraction and classification modelling from EEG data. However, insuf-
ficient high-quality training data are available for building EEG-based emotion recognition models via machine learning or 
deep learning methods. The artificial generation of high-quality data is an effective approach for overcoming this problem. 
In this paper, a multi-generator conditional Wasserstein GAN method is proposed for the generation of high-quality artifi-
cial that covers a more comprehensive distribution of real data through the use of various generators. Experimental results 
demonstrate that the artificial data that are generated by the proposed model can effectively improve the performance of 
emotion classification models that are based on EEG.
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Introduction

Emotion plays an important role in human cognition, 
namely, in rational decision-making, perception, interper-
sonal communication, and human intelligence [19]. Positive 
emotions help improve human health and work efficiency, 
while negative emotions may cause health problems. The 
development of devices and systems that can automati-
cally recognize human emotions is of substantial interest to 
researchers [26, 28].

Emotion recognition has high application prospects in 
various scenarios and has been widely used in safe driving; 
medical care, especially mental health monitoring; social 
security; and other fields [1]. Researchers usually study 
features that are used to identify human emotions from a 
variety of perspectives, such as facial expressions, posture, 
voice, and neurophysiological signals. Then, they extract 

features from many signals and use machine learning or 
deep learning methods to identify emotions [23]. For using 
machine learning or deep learning to build emotion recogni-
tion models that are based on EEG, insufficient high-quality 
training data are available. One of the major bottlenecks in 
EEG-based emotion recognition is the acquisition of relevant 
data [17]. This is due to the following main reasons: (a) it 
is expensive to build an experimental environment that can 
capture EEG. (b) experiments on EEG-based emotion recog-
nition are time-consuming and tedious, and the efficiency of 
signal acquisition is low. (c) The signal-to-noise ratio of the 
original EEG data is too low. (d) Emotion categories are dif-
ficult to label accurately. (e) Currently, in EEG-based emo-
tion recognition, the number and volume of public data sets 
are small. For example, SEED [37], DEAP [13], DREAMER 
[12], MAHNOB-HCI [27] and eNTERFACE’05 [20], which 
are common data sets in this field, contain relatively few 
samples and contain less than 30 subjects’ data on average. 
Therefore, the lack of high-quality EEG data limits the fur-
ther development and application of machine learning and 
deep learning methods in EEG-based emotion recognition.

A strategy for solving the problem of data scarcity is 
to transform the original data to generate artificial data, 
which is typically referred to as data augmentation [36]. 
By performing geometric transformations, noise addition, 
interpolation, and other operations on the original data, 
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without obtaining additional real data, the available data 
can produce values that are equivalent to additional data. 
A data augmentation method in which data are generated 
by geometrically transforming the original data has also 
been successfully applied in the field of EEG-based emo-
tion recognition. Deep learning-based methods provide 
effective and powerful approaches for learning the implicit 
expression of data distribution, such as the GAN [7], 
which can learn how to approach the real distribution of 
data. In emotion recognition and EEG applications, Hart-
mann et al. used deep generative models to artificially gen-
erate raw EEG data [10]. Yun et al. successfully applied 
CWGAN for the DE (differential entropy) feature of the 
SEED dataset, which improved the performance of the 
classifier [16]. Yun et al. provided a new method for EEG-
based emotion recognition and proposed a feasible scheme 
for measuring the quality of generated data, but the varia-
tion in the generated data was not considered further.

Although GAN-based methods can be used to generate 
realistic data to supplement the real data, since the origi-
nal EEG signal has a low signal-to-noise ratio, directly 
generating the original EEG data may introduce noise and 
artefacts, which would require noise reduction and artefact 
removals. In addition, in EEG-based emotion recognition 
tasks, the classifier usually must process the advanced 
features of EEG data. Morerio et al. and Yun et al. used a 
GAN to augment data in the data space [16, 31]. In EEG-
based emotion recognition tasks, classifiers usually must 
handle advanced features that have been extracted from 
raw EEG data, but training GANs in feature space easily 
leads to mode collapse [6], namely, the generator produces 
highly similar data, and since the discriminator cannot 
effectively distinguish the data that are generated by the 
generator from the real data and, thus, cannot guide the 
generator to learn the difference between the data, the arti-
ficial data that are generated at this time may be too simi-
lar. As the amount of artificially generated data increases 
gradually, more low-quality data will be generated in the 
artificial data, which will have a negative impact.

In response to the above problems, this paper uses a 
multiple generator conditional Wasserstein generative 
adversarial network to implement data augmentation based 
on EEG. The inclusion of label-based constraints into the 
model to guide the process of feature generation forces 
generators to learn various features and to learn the data 
patterns of real data from various perspectives. Most of 
the parameters of the generators are shared to reduce the 
computational burden of the model and share the under-
lying information. Modification of the gradient penalty 
term to a zero-centred gradient penalty term enhances the 
convergence of the model. As the models learn more real 
data patterns, they are expected to generate artificial fea-
ture data with less noise that are closer in distribution to 

the real data and retain more diversity in the same type 
of data.

The remainder of this paper is organized as follows: 
“Related work” introduces related work. “Multiple genera-
tor conditional Wasserstein GAN” introduces the multiple 
generator conditional Wasserstein GAN that is proposed in 
this paper. “Experiment and analysis” introduces the experi-
ments and presents the results. Finally, “Conclusions” sum-
marizes the findings.

Related work

EEG‑based emotion recognition

The latest development of and research on brain-computer 
interface (BCI) technology have promoted emotion detec-
tion and classification, and EEG-based emotion recognition 
has attracted widespread attention. The proliferation of port-
able wireless EEG devices, advanced computational intel-
ligence technologies, and machine learning have accelerated 
research in this field [2].

Zander et al. introduced affective factors into the tradi-
tional BCI [35] and defined the affective brain-computer 
interface (aBCI) [23]. Alarcao and Fonseca investigated 
EEG-based emotion recognition methods, starting from the 
physiological basis of emotion and psychological research, 
and compared the primary aspects that are involved in the 
process of emotion recognition, which includes subjects, 
acquisition equipment, modes of emotion stimulation, 
methods of feature extraction and classifiers [1]. Abeer et al. 
systematically reviewed the current status and development 
trend of EEG-based emotion recognition from two aspects: 
research methodology and classification methods [2].

In this research, various emotional stimulation methods 
are used to elicit emotional responses from the subjects. The 
common methods are the use of music [13], pictures [15] 
and video clips [37]. Among these stimuli, movie editing 
is considered to be one of the most effective ways to trig-
ger human emotions. Zheng and Lu recruited 15 subjects 
to watch 15 selected Chinese movie clips to induce three 
emotions (SEED data set) [37]. Koelstra et al. developed a 
public EEG-based emotion dataset, namely, DEAP [13], by 
recruiting 32 participants to watch 40 music videos.

EEG-based emotion recognition has been applied to two 
broad fields: medical and non-medical. In the medical field, 
EEG-based emotion recognition systems are used to assist, 
monitor, enhance or diagnose the emotional state of patients. 
Some are based on the automatic classification of normal 
and depression-related EEG signals, which are used as diag-
nostic and monitoring tools to detect depression [4]. Magli-
one et al. discussed an EEG-based emotion detection system 
for patients with cochlear implants [18]. Other medical cases 
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that are related to emotions, which include schizophrenia, 
autism, bipolar disorder, epilepsy, attention-deficit/hyper-
activity disorder, bulimia nervosa, borderline personality 
disorder and other mental illnesses, have also received atten-
tion from many researchers [2]. In addition, there are many 
products and applications in non-medical fields, such as lie 
detection, stress detection, alertness and attention detection, 
and detection of emotional feedback from language, pic-
tures, music and videos [2]. Various products can even be 
purchased in online shopping malls.

Generative adversarial networks

A generative model aims at learning a specified dataset’s 
data distribution through unsupervised learning, thereby 
generating fresh data with modifications. Generative mod-
els have been widely investigated and applied in the field of 
machine learning, with data that include images [33], text, 
and speech. The generative adversarial network (GAN) [7] 
is the most promising and effective generative model. The 
original GAN is a network that is composed of generators 
and discriminators. The two parts of the network compete 
and promote each other and eventually reach Nash equilib-
rium. The generator learns how to generate artificial data 
that are similar to the real data, while the discriminator 
evaluates the probability that a sample originates from the 
real data or artificial data. In the training of a GAN, the gen-
erator attempts to deceive the discriminator by generating 
realistic data, while the discriminator attempts to improve 
its discrimination performance to avoid being confused by 
artificial data. After a period of confrontational training, the 
generator can generate high-quality artificial data.

Mirza and Osindero et al. realized control over the gen-
erated data types by adding conditional information [22]. 
GANs also demonstrate the prospect of generating realistic 
data in various fields, and increasingly many researchers use 
GANs to supplement sample data [5]. GANs have been suc-
cessfully applied to EEG-related studies. For example, the 
EEG-GAN, which was proposed by Hartmann et al., could 
be used to generate raw EEG signals [10]. GANs have been 
used for the detection and diagnosis of brain diseases [34] 
and for the conversion of raw EEG signals into pictures [24], 
among other applications.

Although GANs show strong generative performance, 
many problems are encountered in the process of GAN 
training, which includes poor convergence, mode collapse, 
and gradient disappearance. The training instability (non-
convergence) that is caused by adversarial training is the 
most important problem of the original GAN. Researchers 
have changed the structure of the original GAN or the loss 
function to increase the stability of training. Arjovsky et al. 
used the Wasserstein distance to replace the loss function of 
the original GAN, which significantly increased the training 

stability of the GAN while maintaining the generating per-
formance of the GAN[3]. Moreover, WGANs can be easily 
used for data generation in various fields without profes-
sional transformations or special network structures [16].

Data augmentation methods with EEG

The objective of data augmentation is to generate fresh data 
for a provided data set by transforming the original data 
while retaining the label information [30]. Since the artificial 
data that are generated by GANs are similar to the original 
data in terms of data distribution and artificial data could 
be used to increase the number of training data to alleviate 
the lack of training data [32], this method is usually used to 
reduce the overfitting of the model and improve the perfor-
mance of the classifier [14]. Data augmentation technology 
has been widely used in computer vision, natural language 
processing, speech processing, and other fields.

In a study of Zheng et al., DCGAN was used to gener-
ate images, and the images were added to the training set 
to increase the performance of identity recognition tasks 
[38]. Their results proved the feasibility of data enhance-
ment based on a GAN, and the anti-overfitting ability of the 
classifier could be enhanced by adding the generated training 
samples. In terms of EEG data augmentation, EEG-GAN, 
which was proposed by Hartmann et al., could generate raw 
EEG data and established a new line of investigation [10]. 
In addition, they proposed evaluation indicators for evaluat-
ing the EEG data that are generated by GANs. However, 
they did not discuss the performance gain of the classifier. 
Yun et al. extended the GAN-based augmentation method to 
EEG-based emotion recognition [16], and the experimental 
results demonstrated that the GAN-based data augmentation 
method was effective for EEG-based emotion recognition.

Multiple generator conditional Wasserstein 
GAN

WGAN

GANs consist of two competing components which are both 
parameterized as deep neural networks [17]. Given noise 
(prior distribution) as input, a generator G generates artificial 
data, and a discriminator D attempts to distinguish whether 
the sample originates from the real data distribution Xr or the 
generated data distribution Xg . The generator is optimized 
to generate realistic data to confuse the discriminator. Both 
parts of the network are optimized simultaneously to reach 
the Nash equilibrium state. The objective function of the 
model is as follows [7]:
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where �G and �D represent the parameters of the generator 
and the discriminator, respectively, and z can be uniform 
noise or Gaussian noise.

Neither the Kullback–Leibler (KL) divergence nor the 
Jensen–Shannon (JS) divergence can provide sufficient 
gradients for the generator, which is the main reason for 
GAN training instability and gradient disappearance [3]. 
At the beginning of the training, the discriminator eas-
ily determines whether the received data are real data; 
hence, the discriminator in the GAN is easily trained as the 
(approximate) optimal discriminator. When the (approxi-
mate) optimal discriminator is trained, minimizing the loss 
of the generator is equivalent to minimizing the JS diver-
gence between Xr and Xg , and since it is almost impossible 
for Xr and Xg to have a non-negligible overlap, regardless 
of their distance, the JS divergence is constant log 2, which 
causes the gradient of the generator to be (approximately) 
0, which, in turn, causes the gradient to disappear.

Arjovsky et al. used the Wasserstein distance (which 
is also known as EMD) to measure the distance between 
two distributions, which is a substantial contribution to 
resolving the instability of GAN training and the gradient 
disappearance [3]. The Wasserstein distance is defined as 
follows:

where Π
(

Xr,Xg

)

 represents the collection of the joint prob-
ability distribution between Xr and Xg . Even if there is no 
overlap between the two distributions, the Wasserstein dis-
tance can still provide a useful and smooth gradient for GAN 
training. However, inf

�∼Π(Xr,Xg)
 in the Wasserstein distance defi-

nition (formula (2)) cannot be solved directly. One strategy 
for calculating the Wasserstein distance is to use its Kan-
torovich–Rubinstein duality:

where f  is the set of 1-Lipschitz functions and K is a con-
stant. In the implementation, the discriminator D replaces 
f  , and ∥ f∥L ≤ K is replaced by ∥ f∥L ≤ K.

Many methods can be used to enforce the 1-Lip-
schitz constraints in the implementation of WGAN. One 
approach to limit the parameters of the discriminator to 
a specified range, for example, − 0.1 ~ 0.1. However, this 
cutting method will result in various problems. Since clip-
ping reduces the capacity of the model, the model may 
generate low-quality data and have difficulty converging. 
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,

Another solution, which was proposed by Arjovsky et al., 
is to use a gradient penalty and add a penalty term to the 
loss function [9]:

� in formula (4) is a hyperparameter that controls the 
trade-off between the original target and the gradient pen-
alty. x̂  denotes that the real data distribution Xr and the 
generated data distribution Xg are sampled once and, sub-
sequently, another random sampling is conducted on the 
line that connects the two points:

Multiple generator conditional Wasserstein GAN 
(MG‑CWGAN)

Yun et al. proposed CWGAN and applied it to EEG-based 
emotion recognition signals, which generated emotion 
characteristic data of specified categories [16]. The for-
mula for CWGAN is as follows:

In formulas (6) and (7), Yr Yr represents the category of 
the real data, and x̂ is defined in formula (5). In their study, 
� is set to 10. The last term in formulas (6) indicates that if 
the gradient norm deviates from its target norm, a penalty 
is imposed on the model.

Training GANs in feature space is challenging, as they 
can easily become mired in the problem of mode collapse 
[6]. The generator generates samples with features that 
are concentrated in the real data, but the discriminator is 
unable to identify the differences between these features. 
An effective method is to use the mixture distribution that 
is generated by the mixture generator to approximate the 
feature distribution [11] and encourage the generators to 
learn the feature patterns of various distributions. How-
ever, the direct addition of multiple generators will harm 
the convergence of the model because many generators 
are computationally expensive to train continuously and 
there is no mechanism for forcing each generator to learn 
different features or enforcing divergence. Therefore, we 
introduced label-based conditional constraints to guide the 
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feature generation process. The discriminator learns real 
data based on label constraints and further forces genera-
tors to learn specified features.

The proposed model is illustrated in Fig. 1. The gen-
erator is composed of input layers and parameter sharing 
layers. It accepts a joint input of a prior distribution with 
guidance labels, while the discriminator accepts a joint 
input of real data with labels, along with artificial data 
with guidance labels. The discriminator returns gradients 
to guide the generator to learn features of the real data. 
The formula for MG-CWGAN is as follows:

where �D and �G1∶N
 represent the parameters of the dis-

criminator and number generators, respectively; Xg repre-
sents the distribution of the generated data; Xr represents 
the distribution of the real data; Yr represents the category 
distribution of the real data; and x̂  is defined in formula 
(5). For generator G1:N, the noise vector Z that is sam-
pled from Pz and the label information Y are connected as 
(

z ∣ yr
)

 as input and sent to different generators to generate 
a specified type of y feature x.

Formula (8) is obtained by modifying the gradient 
penalty in (6) according to the suggestions of Lars et al. 
[21]. On the basis of formula (7), formula (9) uses various 
types of data to train a discriminator and several genera-
tors in generator group G and forces the generator to learn 
the data patterns of various types of data. To increase the 
training efficiency of the model, a similar method to that 
in [32] was adopted for sharing all the parameters of the 
generator G1:N except those of the input layer. During the 
training process of the model, the model training expenses 
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,

were minimized while sharing the real data background 
information.

Experiment and analysis

First, we evaluate the learning efficiency and quality of the 
CWGAN model and the MG-CWGAN model under the 
same conditions. Second, we discuss whether the MMD 
distance can be a satisfactory measure of the quality of the 
generated data. Then, we apply various classifiers in semi-
supervised training to evaluate the performance of the gener-
ated method. Finally, the generated data are visualized and 
compared with the original data.

Data set

The SEED dataset [37] contains EEG signals from 15 par-
ticipants who watched 15 edited video clips, which could 
arouse three types of emotions: positive, neutral, and nega-
tive. Each participant participated in 3 experiments at least 
7 days apart, for a total of 45 experiments, in which an ESI 
NeuroScan system was used to sample the signal from a 
62-electrode headset at a frequency of 1000 Hz.

In this article, the first experiment in the SEED data set, 
in which each participant participated, was selected. The 
number of labelled samples per subject was 3394. The 
subjects in the original data set were divided into an origi-
nal training set and an original verification set at a ratio of 
2010:1384. The original training set was divided into a train-
ing set and a test set after fivefold cross-validation. The DE 
feature augmented data set that was processed by LDA in 
the SEED data set was selected.

Evaluation method

The quality of the generated EEG data was evaluated 
in terms of the MMD distance and the Wasserstein dis-
tance (discriminator loss) and via the TSNE visualization 

Fig. 1   Illustration of the pro-
posed MG-CWGAN

Multiple Generators
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method. Finally, a semi-supervised self-trained classifier 
was used to evaluate the average recognition accuracy of 
the data as the experimental accuracy.

1.	 Wasserstein distance [3] (discriminator loss): it repre-
sents the earth-mover distance (EMD) between the real 
data Xr and the generated data Xg when the network con-
verges. EMD is the minimum cost that is required to 
transform one distribution into another. Similar to the 
KL divergence, it can be used to characterize the simi-
larity between two distributions.

2.	 Maximum mean discrepancy (MMD): MMD [8] is often 
used to measure the distance between two distributions.

3.	 t-distributed stochastic neighbor embedding (TSNE) 
[29]: it is a machine learning method for dimension-
ality reduction that can map high-level data to a two-
dimensional space while maintaining the local structure 
of the data.

4.	 Semi-supervised self-training: in semi-supervised self-
training, the labelled initial data set ( Xtrain, Ytrain ) is used 
for training to obtain the initial classifier Cint, and Cint 
is used to classify the unlabelled data. The "pseudo-
labelled" data set ( Xg, Yc ), the "pseudo-labelled" data set 
( Xg, Yc ) and the labelled initial training set ( Xtrain, Ytrain ) 
are obtained, which are used to train the classifier C 
together, Finally, the performance of classifier C is 
validated on the initial validation set. However, some 
"pseudo-marked" data will definitely be incorrect during 
this process. When sufficiently many "pseudo-labels" 
are incorrect, the self-training algorithm will reinforce 
incorrect classification decisions, thereby degrading the 
performance of the classifier. Semi-supervised classi-
fiers can be used to distinguish the quality of the gener-
ated data.

Hyperparameter and network structure selection

In this section, experiments are conducted to evaluate the 
influence of various parameters and network structures on 
the model. A grid search is performed on the learning rate, 
the number of network layers and the batch size of the deep 
neural network classifier. The Adam optimizer is used to 
select the learning rate from 0.0005, 0.0001, 0.0005, and 
0.00001. The number of hidden layers is searched from 2 to 
5. The batch size is selected from 128, 256, and 512. Noise 
is sampled from the uniform distribution U [− 1,1]. For the 
parameter group, 10,000 iterations are conducted to fully 
compare the effects of the parameters. In addition, the input 
data is compared to determine whether it was shuffled. For 
the SEED dataset, the dimension of the label is 3, and the 
dimension of the data feature is 310. The ReLU activation 
function is used for all hidden layers. Before feeding DE 
features into the network, the data must be standardized. 
The experiment is conducted with the same network settings 
except for the variables (Fig. 2).

The relatively optimal learning rate is around the inter-
val [0.00005, 0.0001], and the fluctuation at approximately 
0.00005 is smaller. The deeper the network is, the slower the 
training and the stronger the instability. MG-CWGAN out-
performs CWGAN overall at various learning rates (Figs. 3, 
4).

The number of hidden layers has minimal effect on the 
MG-CWGAN model, whereas CWGAN is affected more 
strongly. CWGAN with only three hidden layers is unstable 
in the later stage (Fig. 5).

In an experiment on MG-CWGAN, it is clearly observed 
that the training speed with a batch size of 128 is the slowest 
and the stability is low, whereas satisfactory convergence 
with low divergence is realized with a batch size of 256, and 
fast and satisfactory convergence is realized with a batch size 
of 512 (Fig. 6).
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Simply adding generators for various types of signals 
slightly increases the stability of the network, but substan-
tially reduces the convergence speed of the model; hence, 
the gradient penalty is changed to address this problem. 
Inspired by a study of Lars et al. [21], the one-centered 
gradient penalties are modified to zero-centered gradient 
penalties, which substantially strengthens the network con-
vergence performance (Fig. 7).

Comparing the discriminator loss (Wasserstein distance) 
of CWGAN and MG-CWGAN under the same parameters, 
the overall convergence speed of MG-CWGAN is substan-
tially increased compared with that of CWGAN, and the 
Wasserstein distance after MG-CWGAN is stabilized fluc-
tuates within the range of [0.2, 0.4], while that of CWGAN 
fluctuates within the range of [0, 1] and even diverges. Thus, 

the MG-CWGAN model realizes larger improvements in 
convergence speed and stability than the CWGAN model.

MMD applicability

In this section, experiments are conducted to determine 
whether MMD can evaluate the quality of the generated data 
well. In this paper, interval sampling (strategy A) and ran-
dom data scrambling (strategy B) are used for data sampling. 
After sampling, the data are grouped, and the MMD distance 
between the groups are calculated. The MMD distance can 
prove that the model can shorten the distance between the 
real data and the generated data, but it may not be suitable 
for evaluating the quality of the generated EEG data alone. 
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Fig. 3   Impact of the number of hidden layers on D_loss
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Experimental results demonstrate that its sensitivity to the 
number of data points exceeds that between categories.

MMD distance between subjects

Among subjects, strategy A was used to extract 675 data 
items from each subject’s first experimental data to calcu-
late the MMD distance between pairs of subjects. The mean 
MMD distance between each subject and other subjects 
was 4.237, and the overall standard deviation was 0.94. The 
minimum value was 1.74, and the maximum value was 6.44.

MMD distance within subjects

For the same subject, strategy A is used to calculate the 
MMD distance in three scenarios: (1) the data are evenly dis-
tributed among 5 groups in order (675 data in each group), 
and the MMD distance between groups is calculated. The 
mean is 2.16736 and the standard deviation is 0.57. (2) The 
MMD distance is calculated between the same emotions of 
the selected subjects (185 data in each group). The mean 
and standard deviation of MMD between positive emotions 
are 4.79447 and 0.82729, respectively, and between neutral 
emotions, the mean and standard deviation of the MMD are 
4.96198 and 0.89172, respectively, whereas the mean and 
standard deviation of the MMD between negative emotions 
are 5.62587 and 0.72508, respectively. (3) For the MMD 
distance between the subjects’ emotions (185 data in each 
group), the mean and the standard deviation are 5.1502 and 
0.57701, respectively (Table 1).

For the same subject, strategy B is adopted, and this case 
is divided into three scenarios to calculate the MMD dis-
tance: (1) The data are divided into 5 groups (675 data points 
in each group), and the MMD distance between them is cal-
culated. The mean and standard deviation are 0.0077 and 
0.003, respectively. (2) The data are divided into 10 groups 
(330 data points in each group), and the MMD distance 
between them is calculated. The mean and standard devia-
tion are 0.01824 and 0.00613, respectively. (3) The data are 
divided into 15 groups (200 data points in each group), and 
the MMD distance between them is calculated. The mean 
and standard deviation are 0.0262 and 0.013, respectively. 
As the number of data in the group decrease, the MMD 
distance gradually increases (Table 2).
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Performance of the classifier

In this paper, the DE features that are processed via LDA 
in the SEED dataset are selected to train the network and 
generate artificial data to expand the dataset. In each experi-
ment, 3394 samples of all trials of a subject are selected. 
The first 2010 data are used as the original training set, and 
the last 1384 data are used as the original validation set. 
Artificial samples of sizes 0, 300, 600, 900, 1500, 3000, 
6000, 9000, and 15,000 are generated for DE features and 
added to the original training set as the training set of the 
classifier. SVM and KNN are used as the classifiers. These 
artificial data are added to the original training set to form 
a new training set, the classifiers are retrained on the new 

training set, and finally, the classification effect is evaluated 
on the original validation set. Here, "0" denotes that only 
the actual DE data are being used, without the addition of 
any human data.

The colours represent the amounts of additional data. 0 
represents negative emotions, 1 represents neutral emotions, 
and 2 represents positive emotions.

The classification performances of SVM and KNN were 
evaluated under the addition of various amounts of generated 
EEG data. After semi-supervised training by SVM, as shown 
in Fig. 8, the data that are generated by MG-CWGAN are 
beneficial to the algorithm in most cases. The classification 
performance is improved, but the classification accuracy of 
the algorithm for the data that were generated by CWGAN 
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Table 1   Strategy A for the same 
subject in scenario 1

Group 1 2 3 4 5 Mean/std

1 N/A 1.4256 2.4507 2.4855 2.6041 2.2415/0.47
2 1.4256 N/A 2.5744 2.5297 2.8039 2.3334/0.53
3 2.4507 2.5744 /N/A 0.9387 2.1391 2.0257/0.64
4 2.4855 2.5297 0.9387 N/A 1.7219 1.9189/0.65
5 2.6041 2.8039 2.1391 1.7219 N/A 2.3173/0.41

2.2415/0.47 2.3334/0.53 2.0257/0.64 1.9189/0.65 2.3173/0.41 2.1674/0.57

Table 2   Strategy B for the same 
subject in scenario 1

Group 1 2 3 4 5 Mean/std

1 N/A 0.0068 0.0154 0.0059 0.0097 0.0095/0.004
2 0.0068 N/A 0.0100 0.0055 0.0077 0.0075/0.002
3 0.0154 0.0100 N/A 0.0071 0.0050 0.0059/0.003
4 0.0059 0.0055 0.0071 N/A 0.0034 0.0055/0.001
5 0.0097 0.0077 0.0050 0.0034 N/A 0.0065/0.002

0.0095/0.004 0.0075/0.002 0.0059/0.003 0.0055/0.001 0.0065/0.002 0.0077/0.003
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has decreased; hence, the data that were generated by MG-
CWGAN are closer to the original data. Figure 9 shows the 
impacts of the data that were generated by MG-CWGAN on 
the precision and recall of the classifier (Fig. 10).

Figure 8 shows that the artificial data that were generated 
by the two methods can play a role in increasing the classifi-
cation accuracy of the KNN classifier. Since KNN is highly 
robust to noise in the training data, it is also highly effective 
when given a sufficiently large training set, and it is not sen-
sitive to a small number of outliers; in practice, KNN uses 
all the attributes of the instance (features) [25] to calculate 
the distance. Nonetheless, the distance between neighbours 
will be dominated by many irrelevant attributes, which will 
negatively affect the classification accuracy.

Visualization of the generated data

In this section, the data are visualized via the t-SNE 
[29] method, which plots the distributions of the real 
and generated DE features. The data that were generated 
by CWGAN and the data that were generated by MG-
CWGAN are compared to a manifold in two-dimensional 
space. A two-dimensional visualization of the emotions of 
the same subject in the latent space by the t-SNE method 
is shown in Fig. 11. A two-dimensional visualization of 
the generated data and real data in the latent space by the 
t-SNE method is shown in Fig. 12, according to which 
the generated data carry sufficient real information. The 
distribution of the generated data is similar to that of the 
real data. The red, yellow and purple data points represent 
negative, neutral and positive emotions respectively.

In Fig. 12a–c are generated by CWGAN, and d to f 
are generated by MG-CWGAN. The red, yellow, and pur-
ple data points represent negative, neutral, and positive 
emotions, respectively, and the blue data points represent 
generated data. The light blue circular area marks the low-
quality area.

After visualization by t-SNE, the distributions of the 
data that were generated by the two methods and the 
real data are compared. The data that were generated by 
CWGAN are mixed together; hence, low-quality artificial 
data were produced. From the data that were generated by 
MG-CWGAN, more features of the real data were learned, 
and the generated data are close to the corresponding real 
data; hence, the generated data carry more information 
about the real data, and there is less information when 
generating more data. The distributions of the generated 
data are mixed with each other.
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Conclusions

This paper proposes a multi generator conditionally 
Wasserstein GAN model for EEG data augmentation to 
enhance EEG-based emotion recognition. This paper uses 
the generated data to expand the original training data set 
and evaluates the quality of the generated data and the 
accuracy of the EEG-based emotion recognition model by 
semi-supervised self-training. The experimental results on 
two classifiers prove the satisfactory performance of this 
method. The generated data are visualized, and the reasons 
for the increased accuracy are discussed.

We believe that the proposed method can better supple-
ment the experimental data of relevant studies. However, dif-
ferent from images, sounds and texts that can be calculated 
manually, the generated data are too abstract, and how to 
evaluate the quality of these generated artificial data needs 
further research. Additionally, allowing the model to simul-
taneously learn the emotional data of different subjects so 
that more general data characteristics may be learned should 
be considered.
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Fig. 11   t-SNE visualization of feature distributions of one subject in 
the dataset
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