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Abstract
The distributed consensus control problem for nonlinear multi-agent systems (MASs) with external disturbances under
switching directed topologies is investigated. Distributed sliding-mode observers are designed considering both nonlinear
dynamics and disturbances in MASs. Utilizing estimated states information via sliding-mode observers, a control protocol is
constructed and analyzed to ensure the MASs reach consensus, and additionally guarantee the desired disturbance rejection
criterion. Furthermore, the simulation experiment is carried out by taking multiple simple-pendulum network systems. By
comparing this work with the related existing results, our designed observers are superior in estimating states information
simultaneously considering both nonlinear dynamics and external disturbances, and the experiment result analysis shows
validity of distributed consensus algorithm based on sliding-mode observers for MASs.
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Introduction

In recent years, as a significant research branch of distributed
artificial intelligence (DAI) and computational intelligence,
the distributed cooperative control for multi-agent systems
(MASs) has become a hot research topic. The related appli-
cations of DAI include mobile robots [1], vehicle fleet [2],
satellite formation [3], multiple biomimetic robotic fish [4],
unmanned aerial vehicle [5], unmanned ground vehicle [6],
and so on. Through information exchanges, a group of agents
can greatly enhance the intelligence degree of individual
behavior and work cooperatively to accomplish some com-
plex tasks that can not be successfully done by a single agent
[7–23]. Wen et al. [7] studied the consensus controller of
MASs with general linear dynamics and a fixed directed
topology. By constructing a reduced-order observer-based
protocol, Li et al. [8] devoted to the consensus problem
for linear MASs under directed communication topologies.
Wang et al. [9] researched the distributed tracking consensus
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problem for nonlinear leader-followingMASs. Zou et al. [11]
studied the adaptive output-feedback stabilization problem
of stochastic strict-feedback systems with sensor uncertainty
and unknown growth rate and stochastic disturbance. Liu et
al. [12–14] mainly devoted to resolve three types of fixed-
time event-triggered consensus problems for MASs.

From above literatures, we can see that the control pro-
tocol based on state feedback can resolve the consensus
problem effectively, with the premise, is that the neighboring
agents’ states are available. However, in practice, the states
of MASs are always unavailable and only the output can be
measured as feedback information [17–20]. Thus, it is nec-
essary to design a suitable observer to estimate system states
actually. [24] proposed a fuzzy observer for the periodic
tracking control problem of nonlinear systems. In addition,
a sliding-mode observer also can be devised to estimate the
unavailable state. Sliding-mode observers not only provide
practical possibilities for the technical implementation of
state feedback, but also have been applied in many aspects of
control engineering, e.g. replicating perturbation for achiev-
ing complete compensation to the disturbance and so on.
Furthermore, in sliding-mode observers, the sliding mode
can be designed artificially in advance, and its motion equa-
tion only depends on the selected switching function, while it
is independent of the system parameters and external distur-
bances. Therefore, it possesses strong robustness. In [25,26],
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sliding-mode observers with good robustness were designed
for uncertain systems. For second-order nonlinear MASs,
[27] studied consensus problems via sliding mode observer
and controller, and for nonlinear MASs with high-order inte-
gral chained differentiators, the distributed adaptive fuzzy
control via sliding-mode observers was proposed in [28].
In [29] and [30], sliding-observers based output consensus
control were designed for homogeneous multi-agent sys-
tems and heterogeneous multi-agent systems, respectively.
The observer-based output feedback control problem of net-
work physical systems with periodic denial of service (DoS)
attackswas studied in [31]. Inmost of the above existing liter-
atures, sliding-modeobserverswere always designedwithout
considering either external disturbances or nonlinear dynam-
ics for general MASs, which motivates us to do the further
work.

This work studies consensus control for MASs con-
sidering both nonlinearity and unknown disturbances via
observer-baseddynamicoutputmethodunder directed switch-
ing topologies. The main contributions of our work are sum-
marized as follows: (1) To estimate the actual and unavailable
states, a local sliding-mode observer is constructed for non-
linear MASs with disturbances. (2) A novel distributed
consensus controller under switching topologies is designed,
in which some parameters are computed via the inequality.
(3) Utilizing the Lyapunov function and LMI technique, suf-
ficient conditions for MASs, the controller gain and observer
gain matrices are obtained simultaneously. (4) The result
presented in this work can resolve the consensus for non-
linear MASs with unavailable states and disturbances under
directed switching topologies. Comparing with literatures
[12–14], we design a type of distributed consensus con-
trol protocol based on constructed sliding-mode observers
with considering unavailable states, nonlinear dynamics and
unknown disturbances, simultaneously. Our work is different
from [25,26], where the observers were designed for tra-
ditional single-systems, the sliding-mode observers in our
results could estimate states for MASs as one problem of
DAI. Compared to [19] which investigated consensus for
linear MASs via reduced-order observers, our theoretical
approach is able to solve the disturbances and nonlinear
dynamics. In contrast to the consensus protocol proposed in
[32] which imposed the constraint that the state information
is available, our controller based on sliding-mode observers
could resolve the unavailable states, as well as disturbances
and nonlinear dynamics.

Graph theory and problem formulation

Graph theory

The interaction topologies between agents is described by
the directed graph G = (v, ε, A), in which v = {v1, . . . , vn}
denotes the set of nodes, ε ⊂ v × v the set of edges and A =[
ai j

]
the adjacency matrix. If (i, j) ∈ ε, then ai j = 1, other-

wise ai j = 0. In particular, aii = 0. The Laplacian matrix for
graphG is L = D−A, with D = diag {d1, . . . , dn} is called
its degree matrix whose diagonal element of the matrix D is
di = ∑n

j=1 ai j , i = 1, . . . , n.
Here a piecewise constant switching signal functionς (t) :

[0,∞) �→ {1, 2, . . . ,m} Δ= Ω represents m variable
topologies. Let λς(t)i be the i th positive real eigenvalue
of Laplacian matrix Lς(t) corresponding to graph Gς(t),
in which λmax and λmin are the maximum and minimum
nonzero eigenvalues, respectively. Moreover, we assume
Gς(t) is directed and balanced in this work.

Lemma 1 [33] Define symmetric matrix Lc = [
Lci j

] ∈
Rn×n, where Lci j =

{
(n − 1) /n, i = j
−1/n, i �= j

, and some prop-

erties are as follows:

1. The eigenvalues of Lc include 1 with multiplicity n −
1 and 0 with multiplicity 1. 1Tn and 1n are respectively
the left and right eigenvectors of Lc related to the zero
eigenvalue.

2. There is an orthogonal matrix U, with 1n/
√
n as the

last column, and thus satisfying UT LcU =
[
In−1 0
0 0

]
.

Let L ∈ Rn×n be the Laplacian matrix of any balanced

graph, and hence UT LU =
[
L1 0
0 0

]
, with the posi-

tive definite matrix L1 ∈ R(n−1)×(n−1) in the connected
graph. Hence, there is an orthogonal matrix Π1, which
makes L1 = Π1Λ1Π

T
1 , with Λ1 = diag {λ1 . . . , λn−1},

in which λ1 . . . , λn−1 are n−1 eigenvalues of Laplacian
matrix.

Problem formulation

Consider the nonlinear MASs with the dynamic model as

{
ẋi (t) = Axi (t) + Bui (t) + f (xi (t)) + Dωi (t)
yi (t) = Cxi (t) , i = 1, 2, . . . , n

(1)

in which xi (t) ∈ Rr , ui (t) ∈ Rm and yi (t) ∈ Rp are
respectively the state, control input (control protocol) and
measurement output. f (xi (t)) is a nonlinear function and
ωi (t) ∈ L2(0,∞) is disturbance. A, B,C, D are constant
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matrices with the appropriate dimensions. B and C are full-
column rank and full-row rank matrices, respectively.

The controlled output function is chosen as

zi (t) = xi (t) − 1

n

n∑

j=1

x j (t), i = 1, . . . n, (2)

Definition 1 For a class ofMASs (1), if all the states of agents
satisfy

lim
t→∞

(
xi (t) − x j (t)

) = 0 , ∀i, j ∈ {1, 2, . . . , n}

the MASs (1) is asymptotically convergent, and reach state
consensus. And the control target is to construct the consen-
sus controller ui (t) such that

∫ ∞

0
‖z (t)‖2dt < γ 2

∫ ∞

0
‖ω̄ (t)‖2dt,

where z (t) = (
zT1 (t) , . . . , zTn (t)

)T
, ω (t) = (

ωT
1 (t) , . . . ,

ωT
n (t)

)T
, ω̄i (t) = ωi (t) − 1

n

n∑

j=1
ω j (t), ω̄ (t) = (

ω̄T
1 (t) ,

. . . , ω̄T
n (t)

)T
, ∀ω̄ (t) ∈ L2[0,∞), and γ > 0 is a given H∞

performance index.

Assumption 1 The nonlinear function f (xi (t)) satisfies the
Lipschitz condition with a Lispschitz constant μ > 0 , that
is

‖ f (x) − f (y)‖ ≤ μ ‖x − y‖ , ∀x, y ∈ Rr

Graph theory and problem formulation

For system (1), we propose the following sliding-mode
observers

˙̂xi (t) = Ax̂i (t)+Bui (t)+G
(
ŷi (t) − yi (t)

) + f
(
x̂i (t)

)+Dvi (t)

(3)

where x̂i (t) is the estimated state, and vi (t) ∈ R is the
nonlinear input (sliding-mode strategy) of the observer. G is
the gain matrix. D is a constant matrix with the appropriate
dimensions.

Set state error for the i th agent as

ei (t) = x̂i (t) − xi (t) (4)

and in this work, the nonlinear input is designed as

vi (t) =
{

−ρ
FΨi (t)‖FΨi (t)‖ , Ψi (t) �= 0
0, Ψi (t) = 0

(5)

Fig. 1 Distributed consensus control structure

where Ψi (t) = Cx̂i (t) − yi (t), F matrix to be solved, and ρ

is a given positive constant. From (3) and (4), we have

ėi (t) = (A + GC) ei (t) + f
(
x̂i (t)

) − f (xi (t))

+ D (vi (t) − ωi (t)) (6)

Set e (t) = (
eT1 (t) , . . . , eTn (t)

)T
, v (t) = (vT1 (t) , . . . ,

vTn (t))T and (6) is further rewritten as

ė (t) =[In ⊗ (A + GC)]e (t) +
⎡

⎢
⎣

f
(
x̂1 (t)

) − f (x1 (t))
...

f
(
x̂n (t)

) − f (xn (t))

⎤

⎥
⎦

+ (In ⊗ D) (v (t) − ω (t)) (7)

Consensus control protocol design based on
estimated system states

According to Definition 1, the following consensus control
protocol is constructed

ui (t) = K
∑

j∈Ni (t)

ai j (t)
(
x̂i (t) − x̂ j (t)

)
(8)

where K ∈ Rm×r represents the control gain matrix.
The structure for the proposed distributed consensus con-

trol (8) based on sliding-mode observers (3) of MASs (1) is
shown in Fig. 1. It is the distributed consensus control struc-
ture based on sliding-mode observers (3) ofMASs (1), which
is composed of agents, communication network, a sliding-
mode observer and a distributed consensus controller. The
main concern of this work is how to design and analyze
the distributed consensus controller based on sliding-mode
observers under directed switching topologies in networks.

According to Lemma 1, we have

u (t) = (
Lς(t) ⊗ K

)
x̂ (t) (9)

z (t) = (Lc ⊗ Ir ) x (t) (10)
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with u(t) = (uT1 (t), . . . , uTn (t))T , x(t) = (xT1 (t), . . . ,
xTn (t))T , x̂(t) = (x̂ T1 (t), . . . , x̂ Tn (t))T .

Based on (2), the derivative of controlled output zi (t) is

żi (t) =A

⎛

⎝xi (t) − 1

n

n∑

j=1

x j (t)

⎞

⎠ + B

⎛

⎝ui (t) − 1

n

n∑

j=1

u j (t)

⎞

⎠

+ f (xi (t)) − 1

n

n∑

j=1

f (x j (t)) + Dω̄i (t) (11)

The following main result is provided.

Theorem 1 For MASs (1), we set P2D = CT FT , ‖ωi (t)‖ ≤
ρ. If there exists positive definite matrices P1 ,P2 , positive
constants μ,γ and matrices Q1 , Q2 , the inequality

⎡

⎢⎢
⎢⎢⎢
⎣

Ω P1D λς(t)i Q1 0 P1
∗ −γ 2 I 0 0 0
∗ ∗ M P2 0
∗ ∗ ∗ − 1

μ
I 0

∗ ∗ ∗ ∗ − 1
μ
I

⎤

⎥⎥
⎥⎥⎥
⎦

< 0 (12)

is satisfied,whereΩ = P1A+AT P1+λς(t)i Q1+λς(t)i QT
1 +

(μ + 1) I , M = P2A + AT P2 + Q2 + QT
2 + μI , Q1 =

P1BK , Q2 = P2GC,P2D = CT FT , λς(t)i = λmin and
λmax. μ > 0 denotes the Lispschitz constant. The system
(1) is asymptotically stable, with H∞ performance index γ

satisfying Definition 1.

Proof Construct Lyapunov function

V (t) = zT (t) (In ⊗ P1) z (t) + eT (t) (In ⊗ P2) e (t) (13)

According to (10), (11) and Lemma 1, compute the derivative
of V (t) as

V̇ (t) =2zT (t) (In ⊗ P1) ż (t) + 2eT (t) (In ⊗ P2) ė (t)

=2zT (t) (Lc ⊗ P1A) x (t) + 2zT (t) (Lc ⊗ P1B) u (t)

+ 2
n∑

i=1

zTi (t) P1

⎡

⎣ f (xi (t)) − 1

n

n∑

j=1

f
(
x j (t)

)
⎤

⎦

+ 2zT (t) (In ⊗ P1D) ω̄ (t)

+ 2eT (t) [In ⊗ P2 (A + GC)] e (t)

+ 2
n∑

i=1

eTi (t) P2
[
f
(
x̂i (t)

) − f (xi (t))
]

+ 2eT (t) (In ⊗ P2D) (v (t) − ω (t)) (14)

Here, we set x (t) = 1
n

n∑

j=1
x j (t). Because

n∑

i=1
zi (t) = 0 ,

ones obtain

2
n∑

i=1

zTi (t) P1

⎡

⎣ f (xi (t)) − 1

n

n∑

j=1

f
(
x j (t)

)
⎤

⎦

= 2
n∑

i=1

zi
T (t) P1 [ f (xi (t)) − f (x (t))]

+ 2(
N∑

i=1

zi
T (t))P1

⎡

⎣ f (x (t)) − 1

n

n∑

j=1

f
(
x j (t)

)
⎤

⎦

= 2
n∑

i=1

zi
T (t) P1 [ f (xi (t)) − f (x (t))] (15)

According to Assumption 1, (15) can be transformed as

2
n∑

i=1

zTi (t) P1

⎡

⎣ f (xi (t)) − 1

n

n∑

j=1

f
(
x j (t)

)
⎤

⎦

≤ 2μ
n∑

i=1

∥
∥∥zTi (t) P1

∥
∥∥

∥∥
∥∥∥∥

⎛

⎝xi (t) − 1

n

n∑

j=1

x j (t)

⎞

⎠

∥∥
∥∥∥∥

= 2μ
n∑

i=1

∥∥∥zTi (t) P1
∥∥∥ ‖zi (t)‖

Set Q2 = P2GC , and based on Assumption 1, then combin-
ing (9),(10) and (14), we can get

V̇1 (t) ≤2xT (t)
(
LT
c Lc ⊗ P1A + LT

c LcLς(t) ⊗ P1BK
)
x (t)

+ 2xT (t)
(
LT
c LcLς(t) ⊗ P1BK

)
e (t)

+ xT (t)
(
LT
c Lc ⊗

(
μP2

1 + μI
))

x (t)

+ 2xT (t)
(
LT
c ⊗ P1D

)
ω̄ (t)

+ eT (t)
(
IN ⊗

(
P2A + AT P2 + Q2 + QT

2

))
e (t)

+ eT (t) (IN ⊗ (μI + μP2P2)) e (t)

+ 2
N∑

i=1

eTi (t)P2D (vi (t) − ωi (t)) (16)

Combining (5), P2D = CT FT and ‖ωi (t)‖ ≤ ρ, we have

2
n∑

i=1

eTi (t)P2D (vi (t) − ωi (t))

= 2
n∑

i=1

eTi (t)P2D

(

−ρ
F(Cx̂i (t) − yi (t))∥∥F(Cx̂i (t) − yi (t))

∥∥ − ωi (t)

)
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≤ 2
n∑

i=1

(
−ρ ·

∥∥
∥eTi (t) P2D

∥∥
∥ +

∥∥
∥eTi (t) P2D

∥∥
∥ · ‖ωi (t)‖

)

≤ 2
n∑

i=1

∥∥∥eTi (t) P2D
∥∥∥ · (−ρ + ρ)

= 0

So, we can obtain

V̇ (t) ≤2xT (t)
(
LTc Lc ⊗ P1A + LTc LcLς(t) ⊗ P1BK

)
x (t)

+ 2xT (t)
(
LTc LcLς(t) ⊗ P1BK

)
e (t)

+ xT (t)
(
LTc Lc ⊗

(
μ1P

2
1 + μI

))
x (t)

+ eT (t)
(
In ⊗

(
P2A + AT P2 + Q2 + QT

2 + μI + μP2
2

))
e (t)

+ 2xT (t)
(
LTc ⊗ P1D

)
ω̄ (t) (17)

Based on Lemma 2, ones have

UT
ς(t)LcUς(t) =

[
In−1 0
0 0

]
Δ= I ′

n

UT
ς(t)Lς(t)Uς(t) =

[
L1 0
0 0

]
Δ= L ′

in which, Uς(t) ∈ Rn is an orthogonal matrix, and L1 > 0
since the balanced and directed graph Gς(t) is connected.
Then we can define:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϕς(t) (t) =
(
ϕT
ς(t)1 (t) , . . . , ϕT

ς(t)n (t)
)T =

(
UT

ς(t) ⊗ Ir
)
x (t)

σς(t) (t) =
(
σ T
ς(t)1 (t) , . . . , σ T

ς(t)n (t)
)T =

(
UT

ς(t) ⊗ Ir
)

ω̄ (t)

χς(t) (t) =
(
χT

ς(t)1 (t) , . . . , χT
ς(t)n (t)

)T =
(
UT

ς(t) ⊗ Ir
)
e (t)

Then, (17) can be transformed as

V̇ (t) ≤ 2ϕT
ς(t) (t)

(
I ′n ⊗ P1A + L ′ ⊗ P1BK

)
ϕς(t) (t)

+ 2ϕT
ς(t) (t)

(
L ′ ⊗ P1BK

)
χς(t) (t)

+ ϕT
ς(t) (t)

(
I ′n ⊗ (μP1P1 + μI )

)
ϕς(t) (t)

+ 2ϕT
ς(t) (t)

(
I ′n ⊗ P1D

)
σς(t) (t)

+ χT
ς(t) (t)

(
In ⊗

(
P2A+AT P2+Q2+QT

2

))
χς(t) (t)

+ χT
ς(t) (t)

(
In ⊗

(
μI + μP2

2

))
χς(t) (t) (18)

Define
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Zς(t) (t) =
(
ZT

ς(t)1 (t) , . . . ,ZT
ς(t)n−1 (t)

)T

=
(
ΠT

1ς(t) ⊗ Ir−1

)
ϕς(t) (t)

Wς(t) (t) =
(
WT

ς(t)1 (t) , . . . ,WT
ς(t)n−1 (t)

)T

=
(
ΠT

1ς(t) ⊗ Ir−1

)
σς(t) (t)

Eς(t) (t) =
(
ET

ς(t)1 (t) , . . . ,ET
ς(t)n (t)

)T

=
(
ΠT

1ς(t) ⊗ Ir
)

χς(t) (t)

in which Π1ς(t) ∈ R(n−1)×(n−1) and Πς(t) ∈ Rn×n are
orthogonal matrices. Eq.(18) can be further formed as

V̇ (t) ≤ 2ZT
ς(t) (t) (In−1 ⊗ P1A + Λ1 ⊗ P1BK )Zς(t) (t)

+ 2ZT
ς(t) (t) (Λ1 ⊗ P1BK )Eς(t) (t)

+ ZT
ς(t) (t)

(
In−1 ⊗

(
μP2

1 + μI
))

Zς(t) (t)

+ 2ZT
ς(t) (t) (In−1 ⊗ P1D)Wς(t) (t)

+ ET
ς(t) (t)

(
In ⊗

(
P2A + AT P2 + Q2 + QT

2

))
Eς(t) (t)

+ ET
ς(t) (t)

(
In ⊗

(
μI + μP2

2

))
Eς(t) (t) (19)

The function is considered as follows for any T > 0

JT =
∫ T

0
ZT (t)Z (t) dt − γ 2

∫ T

0
WT (t)W (t) dt

With V (0) = 0 , we get

JT=
∫ T

0
ZT (t)Z (t) − γ 2WT (t)W (t) + V̇ (t)dt − V (T )

(20)

Set

φς(t)i (t) =
(
ZT

ς(t)i (t) ,WT
ς(t)i (t) ,ET

ς(t)i (t)
)T

and combining (19) and (20), we can get

JT ≤
∫ T

0

(
n−1∑

i=1

φT
ς(t)i (t)Θφς(t)i (t) + ET

ς(t)n

(
M + μP2

2

)
Eς(t)n

)

dt

− V (T )

in which

Θ =
⎡

⎣
Ω + μP2

1 P1D λς(t)i Q1

∗ −γ 2 I 0
∗ ∗ M + μP2

2

⎤

⎦

Utilizing Schur Lemma [34], inequality (12) can be equiva-
lently transformed as Θ < 0 and M + μP2

2 < 0. Hence we
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obtain JT < 0, and the consensus objective as in Definition
1 is completed.

Remark 1 Limited to switching frequency and action delay, it
is difficult to realize the slidingmode strategy (5) sometimes,
and itmay further cause chattering phenomenon. It is feasible
tomodify (5) to (21). In this situation, the error trajectories do
not slide perfectly to zero, but within a small boundary layer
around zero [35], the nonlinear input of the sliding-mode
observers (3) can be designed as

vi (t) =
{

−ρ
FΨi (t)‖FΨi (t)‖+δ

, Ψi (t) �= 0
0, Ψi (t) = 0

(21)

where δ > 0 is a small constant.

Remark 2 During calculatingG, F and controller gainmatrix
K , because the matrices C and B are not square matrices
actually, we can not directly obtain their inverse matrices.
Therefore, utilizing the pseudo inverse technology for the
matrices, we can get the observer gain matrix G , the con-
troller gain matrix K and F in the following:

G = P−1
2 Q2C

T
(
CCT

)−1

K =
(
BT B

)−1
BT P−1

1 Q1

F = (P2D)TCT
(
CCT

)−1

Remark 3 By solving the feasible solution of LMI (12), the
sliding-mode observer (3) reduces parameters’ constraints in
the design process. Furthermore, the consensus controller (8)
based on the designed observer (3) could complete the state
synchronization of MAS (1) with considering the unavail-
able states, nonlinear dynamics and external disturbances,
simultaneously.

Simulation example

Parameters calculation for multiple
simple-pendulum systems

In this section, we consider multiple simple-pendulum
systems described in MASs (1) with four simple-pendulums
[36], and the simple-pendulum system is shown in Fig. 2. For
the i th simple-pendulum, set xi1 = θi , xi2 = θ̇i , xi3 = iai
as angular displacement, angular velocity, and armature cur-
rent, respectively, and denote xi = [xTi1, xTi2, xTi3]. Then we
obtain the dynamics of the i th simple-pendulum as

ẋi (t) = Aẋi (t) + Bui (t) + f (xi (t)) + Dωi (t)

Fig. 2 Simple-pendulum system driven by DC motor

Fig. 3 Interaction graphs

where

A =
⎛

⎝
0 1 0
0 0 KT

ml2

0 − KE
L − R

L

⎞

⎠ ,B =
⎛

⎝
0
0
1
L

⎞

⎠

f (xi (t)) =
[
0,−g

l
sin xi1(t), 0

]T

u represents the terminal voltage, R and L the resistance and
inductance of the armature circuit respectively, ia and E the
armature current and the back electromotive force (EMF) of
DC motor. m and l denote as the mass of the pendulum ball
and the length of the pendulum rod, KT and KE represent
torque constant and back EMF constant respectively.

The following system parameters are

A =
⎛

⎝
0 1 0
0 0 0.8
0 −0.15 −1

⎞

⎠ , B =
⎛

⎝
0
0
1

⎞

⎠ ,C =
[
1 0 0
0 0 1

]

D =[
0 1 1

]T
, f (xi (t)) = [

0 −0.5 sin xi1(t) 0
]T

and the external disturbance is supposed as di = 0.02 cos t .
The switching communication topologies are considered

as the set G1,G2,G3 in Fig. 3 with ς (t) = 1, 2, 3 which is
switched every τ = 1 to the next topology as G1 → G2 →
G3 → G1 → · · · according to Fig. 4.

Set μ = 0.55 , γ=0.55, ρ = 1, δ = 0.01. By solving
asymptotical stability condition (12), the observer gain and
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Fig. 4 Switching signal ς (t)

controller gain matrices are obtained as

G =
⎡

⎣
−1.6991 0
−0.7219 0.8098

0 −0.6991

⎤

⎦

K = [−0.3036 −1.5322 −1.2078
]

and other related parameters are computed as

P1 =
⎡

⎣
0.4683 −0.1642 0.0659

−0.1642 0.4036 −0.3002
0.0659 −0.3002 0.5940

⎤

⎦

P2 =
⎡

⎣
1.3813 0 0

0 1.3813 0
0 0 1.3813

⎤

⎦

Q1 =
⎡

⎣
−0.6302 −0.0614 0.0282
−0.0632 −0.5808 −0.0744
0.0286 −0.0761 −0.3827

⎤

⎦

Q2 =
⎡

⎣
−2.3470 −0.3841 0
−0.9972 −2.3470 1.1186

0 −2.0165 −0.9657

⎤

⎦

F = [
0 1.3813

]

Simulation analysis

Due to the angular velocity of simple-pendulum systems
cannot be measured actually, the designed observer (3) is
mainly used to estimate it. In Fig. 4, ei2(i = 1, 2, 3, 4)
represents angular velocity error of four simple-pendulum
systems, and we can see that ei2(i = 1, 2, 3, 4) converges to
zero asymptotically, which concludes the designed sliding-
mode observer (3) can estimate the agents’ states effectively.

Furthermore, the angular velocity of four simple-pendulum
systems is also estimated by the observer designed in [19].
The nonlinearity and disturbance are considered in 8-25 sec-
onds and Fig. 6 displays the angular velocity error of the

Fig. 5 State errors of the angular velocity in this work

Fig. 6 State errors of the angular velocity in [19]

Fig. 7 Angular displacement under the controller (8)

observer in [19]. Comparing Figs. 5 and 6, the state error
curves in Fig. 6 show obvious fluctuation in 8-25 seconds,
and the observer designed in our work possesses the superior
in dealing with disturbances and nonlinearity.

Under the designed control protocol (8) with distributed
observers (3), Figs. 7, 8, 9 demonstrate respectively angular
displacement, angular velocity and armature current curves
of four simple pendulums could achieve the goal of con-
sensus control finally. By observing the simulation results
on designed sliding-mode observers (3) and distributed con-
troller (8), we can summarize that the proposed distributed
control protocol based on sliding-mode observers is effective
and asymptotically stable for nonlinear multi-agent systems
with disturbances in our work.

123



1896 Complex & Intelligent Systems (2022) 8:1889–1897

Fig. 8 Angular velocity under the controller (8)

Fig. 9 Armature current under the controller (8)

Conclusions

This work has solved distributed consensus control for a
class of MASs considering unavailable states, nonlinear-
ity and unknown disturbances under switching topologies.
The distributed sliding-mode observer has been proposed
to estimate states of nonlinear MASs with external distur-
bances. Then, the consensus control law has been designed
utilizing estimated state variables. The condition of robust
consensus has been obtained satisfying the anti-jamming
performance index. The simulation results about multiple
simple-pendulum systems further illustrate that our pro-
posed observer and controller are valid. Future work will be
deserved on distributed cooperative control in higher-order
nonlinear systems with unmeasurable states, external distur-
bances and communication delays under jointly connected
topologies.
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