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Abstract
This article presents a new control chart for monitoring reliability using sudden death testing under the neutrosophic statistics 
(NS). The average run lengths of the in-control and the out-of-control process have been determined for evaluating the quick 
detection ability for small and moderate shifts. For the industrial use, tables and figures have been presented for different 
parameters. The proposed control chart is efficient in comparison with the existing control chart under classical statistics 
and value addition in the toolkit of the quality control personnel.

Keywords Neutrosophic statistics · Life test · Weibull distribution · Average run length · Incomplete data

Introduction

A control chart is an important tool of statistical process 
control for maintaining and improving the quality of the 
product to compete in the market [1]. An efficient control 
chart is one, which quickly indicates any special cause 
of variation in the process so that the engineers can take 
immediate action to remove the fault and avoid the burden 
of rework and defective items. This objective can only be 
achieved if we have complete, crisp, and authentic informa-
tion/data about the manufacturing unit under study. Life test-
ing experiments are very common in the statistical process 
control literature when a random sample of items is selected 
and put on testing for possible failure [2]. The sudden death 
testing is repeatedly applied by many parts manufacturers 
with the objective of reduced time of test, see [3]. In this 
technique, a sample of items is first spread in g groups with 
each group having r items. Sudden death testing in groups 
is preferred over the single tester as it reduces the testing 
cost of the product. Sudden death testing technique has 

been explored by many quality control researchers includ-
ing [3–6]. It is common to use the Weibull distribution for 
modeling lifetime phenomena. The density function of the 
Weibull distribution is typically written as

where � and m are the scale and shape parameters, respec-
tively. When the shape parameter is one, then this distribu-
tion tends to form the exponential distribution. The Weibull 
distribution has been explored by many quality control 
researchers including [7] developed life-testing sampling 
plan for the two-parameter Weibull distribution, [8] devel-
oped bootstrap control chart for Weibull percentiles, [3] 
developed a variables sampling plans for Weibull distrib-
uted lifetimes under sudden death testing, [9] given progres-
sively censored reliability sampling plans for the Weibull 
distribution, [10] suggested a group acceptance sampling 
plan for truncated life test having Weibull distribution, [11] 
developed acceptance sampling plans for multi-stage process 
based on a time-truncated test for Weibull distribution.

Average run length (ARL) is a traditionally used tech-
nique in the literature of the control charts for evaluating 
the efficiency of the proposed control chart [1]. It is defined 
as the average number of samples when the process is in 
control until the process falsely shows an out-of-control 
signal and is denoted by ARL0 , see [12]. To keep the level 
of  ARL0 at an acceptable level, it should be large enough. 
Another characteristic of ARL is used for the out-of-control 
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process which should be smaller enough for the efficient 
control chart scheme and is denoted by ARL1 . ARL for the 
evaluation of a better control chart scheme has been used by 
many authors including [13–24].

In practice, however, the observations about the manu-
facturing process are imprecise, incomplete, uncertain, or 
fuzzy [25]. Fuzzy-based control charts are applied in indus-
try for the monitoring of the process when some observa-
tions/parameters are unknown or imprecise. The traditional 
control chart based on the assumption that all observations 
should be determined cannot be applied for the process 
monitoring when some values are fuzzy. Several authors 
contributed in this area by designing a fuzzy control chart 
for various situations, see for example, [26–34, 35]. More 
details can be seen in [36].

[37] developed the notion of neutrosophic statistics (NS) 
using the idea of neutrosophic logic was given by Sma-
randache [38]. The difference between fuzzy logic and 
neutrosophic logic can be seen in [39]. [40–42] discussed 
neutrosophic logic in a variety of fields. The neutrosophic 
statistics is applied when the data in hand are uncertain, 
imprecise, and indeterminate. The neutrosophic statistics is 
more informative than classical statistics. The neutrosophic 
statistics gives the information about the measure of inde-
terminacy. In addition, it gives the estimated values in the 
indeterminate intervals which are required in uncertain envi-
ronment, see [37]. Several authors studied the neutrosophic 
statistics including [43] used the neutrosophic interval sta-
tistical numbers for expressions rock joint roughness coef-
ficients, [44] studied the anisotropy for neutrosophic num-
bers of rock joint roughness using the neutrosophic statistics, 
[2] proposed a plan for neutrosophic statistics for testing of 
grouped product using the Weibull distribution, [45] devel-
oped the monitoring methodology for process variability 
using the neutrosophic statistics, [46] developed a sampling 
plan using the neutrosophic regression estimator. Recently, 
[47] introduced the NS in the area of statistical quality con-
trol. [45, 48, 49] proposed attribute np, X-bar, and variance 
control charts using NS, respectively. More details on NS-
based control charts can be seen in [50, 51].

[2] designed the sudden death sampling plan using 
the NS. By exploring the literature and to the best of our 
knowledge, there is no work on the control sudden death 
control chart for monitoring the process of having incom-
plete, imprecise, and vague production data. In this paper, 
we will propose the sudden death control chart for monitor-
ing the reliability when the lifetime of the product follows 
the Weibull distribution under the uncertainty environment. 
We will present some necessary measures to evaluate the 
performance of the proposed control chart under the neu-
trosophic statistical interval method (NSIM). We hope that 
the proposed control chart will be more adequate, adequate, 
and informative than the sudden death chart under classical 

statistics in an uncertain environment. The rest of the paper 
is organized as follows: the design of the proposed chart is 
given in "Design of proposed control chart". The advan-
tages of the proposed chart are given in "Advantages of the 
proposed control chart". In "Example", an example is given 
and some concluding remarks are given in the last section.

Design of proposed control chart

Suppose that XN = X + uI ; I ∈
[
inf,sup

]
 be a neutrosophic 

random variable having a variable X under classical statis-
tics (determinate part) and uI;I ∈

[
inf,sup

]
 is a indeterminate 

part. Let XN ∈
[
XL,XU

]
 denote the lifetime of a part, where 

XL is lower value of indeterminacy interval and XU be the 
upper value of the indeterminacy interval, which follows, the 
neutrosophic Weibull distribution with neutrosophic scale 
parameter �N ∈

[
�L, �L

]
 and neutrosophic shape parameter 

mN ∈
[
mL,mL

]
 , then the cumulative distribution function can 

be written as:

The operational procedure of the proposed neutrosophic 
control chart for monitoring reliability using sudden death 
testing under Weibull distribution is stated as follows:

Step-1 Select a random sample of size nN;nN ∈
[
nL, nU

]
 

having neutrosophic numbers from a manufacturing process 
and distribute rN;rN ∈

[
rL, rU

]
 items into gN;gN ∈

[
gL, gU

]
 

groups having nN = rNgN.
Step-2 Perform sudden death testing and detect YiN , the 

time to the first failure from the ith group 
(
i = 1, 2,… gN

)
 

and compute the value vN =
∑gN

i=1
Y
mN

iN
;vN ∈

[
vL, vU

]
 and con-

vert it to v∗
N
= v

1∕3

N
 ; v∗

N
∈
[
v∗
L
,v∗
U

]
.

Step-3 Plot v∗
N

 on the control chart. Declare the process 
i n - c o n t r o l  i f  LCL

1∕3

N
< v∗

N
< UCL

1∕3

N
 .  I f 

v∗
N
≤ LCL

1∕3

N
or v∗

N
≥ UCL

1∕3

N
 , then declare the process out-

of-control.  Two control l imits,  namely LCL
1∕3

N

; LCL1∕3

N
∈
[
LCL

1∕3

L
, LCL

1∕3

U

]
 a n d  UCL

1∕3

N

;UCL1∕3

N
∈
[
UCL

1∕3

L
, UCL

1∕3

U

]
 , for the proposed control 

chart have been constructed.
Following Jun et al. [3], the quantity vN ∈

[
vL, vU

]
 follows 

the neutrosophic Weibull distribution with shape parameter 
gN ∈

[
gL, gU

]
 and scale parameter rN�

mN

N
 . For developing 

symmetric Shewhart-type control limits, we must transform 
vN ∈

[
vL, vU

]
 into a random variable having a neutrosophic 

symmetric distribution. [52] mentioned that transformation 
of v∗

N
= v

1∕3

N
 leads to an approximately neutrosophic normal 

distribution with neutrosophic mean

(2)
F
(
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)
= 1 − exp

(
−
(
�NxN

)mN
)
; mN ∈

[
mL,mL

]
, �N ∈

[
�L, �L

]
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And neutrosophic variance

where ΓN(x) denotes the neutrosophic gamma function.
Therefore, the control limits for the proposed control chart 

are given as:

Note here that kN ∈
[
kL, kU

]
 is neutrosophic control limits 

coefficient and �0N is the neutrosophic scale parameter of the 
in-control process.

For the proposed control chart, the process is declared to be 
out-of-control if v∗

N

⟨
LCL

1∕3

N
or v∗

N

⟩
UCL

1∕3

N
 . Therefore, the 

probability that the process is declared as out-of-control when 
the process is actually in-control is given as follows:

(3)�v∗N =

(
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N

)1∕3
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(
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)

ΓN

(
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where

or

and

So, the average run length (ARL) using the neutrosophic 
statistical interval method (NSIM) is known as the neutro-
sophic average run length (NARL) is denoted by ARLN which 
was introduced by [45] as follows:

When the process faces a shift, then the NARL is denoted 
by ARL1N , then

where

or

and
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Therefore, the neutrosophic average run length for the 
shifted process is given by

Let d0N ∈
[
d0L, d0U

]
 denotes the specified NARL. 

The values of kN ∈
[
kL, kU

]
 will be determined such 

that ARL0N ∈
[
ARL0L,ARL0U

]
 should be very close to 

d0N ∈
[
d0L, d0U

]
 . The values of ARL1N ∈

[
ARL1L,ARL1U

]
 

fo r  va r ious  va lues  o f  mN ∈
[
mL,mL

]
 rN ∈ [5, 5]

,�N ∈
[
�L, �L

]
 and d0N ∈

[
d0L, d0U

]
 are determined and are 

shown in Tables 1, 2, 3 and 4. From Tables 1, 2, 3 and 4, 
we note the following trend in neutrosophic parameters.

1. For all other the same neutrosophic parameters, 
the values of ARL1N ∈

[
ARL1L,ARL1U

]
 increase 

P
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(12)

ARL1N =
1

P

{
v
∗
N

⟨
LCL

1∕3

N

|||𝜆1N = c𝜆0N

}
+ P

{
v
∗
N
> UCL3|𝜆1N = c𝜆0N

} ;

ARL1N ∈
[
ARL1L,ARL1U

]

when �N ∈
[
�L, �L

]
 increases from �N ∈ [0.5, 0.5] to 

�N ∈ [1, 1].
2. For all other the same neutrosophic parameters, 

the values of ARL1N ∈
[
ARL1L,ARL1U

]
 decrease 

when �N ∈
[
�L, �L

]
 increases from �N ∈ [1.5, 1.5] to 

�N ∈ [2.0, 2.0].
3. From the above observations, we note the increas-

ing the trend in ARL1N ∈
[
ARL1L,ARL1U

]
 when 

�N ∈
[
�L, �L

]
≤ 1 and decreasing trend when 

𝜆N ∈
[
𝜆L, 𝜆L

]
> 1.

4. From these Tables 1, 2, 3 and 4, it can be seen that the 
value of  ARLN decreases as the shifts from 1.0 to 6.0 
increases.

The following algorithm is used to find the values of 
kN ∈

[
kL, kU

]
 and ARL1N ∈

[
ARL1L,ARL1U

]
.

Step-1: determine the suitable range of kN ∈
[
kL, kU

]
 

and prefix the values of d0N ∈
[
d0L, d0U

]
 , mN ∈

[
mL,mL

]
 

and �N ∈
[
�L, �L

]
.

Step-2: Determine the values kN ∈
[
kL, kU

]
 such that 

ARL0N ≥ d0N . During the simulation, we note that sev-
eral combinations are available which satisfy the given 
condition. Select those values of kN ∈

[
kL, kU

]
 , where 

ARL0N ∈
[
ARL0L,ARL0U

]
 is very close to d0N ∈

[
d0L, d0U

]
.

Table 1  The values of NARL when rN ∈ [5, 5] , mN ∈ [2, 2.1] and 
various ARL1N

kN [2.746493, 3.548525] [2.848831, 3.636265] [2.925756, 
3.938605]

�N [0.45, 0.55] [0.45, 0.55] [0.45, 0.55]
gN [4,  6] [3,  6] [4,  8]
mN [2, 2.1] [2,2.1] [2, 2.1]
c ARLN

1.0 [200.33, 215.34] [306.14, 304.81] [372.56, 374.62]
1.1 [181.79, 85.53] [342.51, 118.82] [343.12, 117.25]
1.2 [106.04, 38.73] [230.25, 52.72] [195.8, 43.99]
1.3 [62.52, 19.64] [149.42, 26.17] [113.37, 19.31]
1.4 [38.84, 11.01] [100.15, 14.33] [69.14, 9.74]
1.5 [25.33, 6.74] [69.4, 8.56] [44.22, 5.54]
1.6 [17.25, 4.46] [49.55, 5.53] [29.5, 3.52]
1.7 [12.21, 3.16] [36.32, 3.83] [20.44, 2.45]
1.8 [8.95, 2.39] [27.27, 2.82] [14.65, 1.85]
1.9 [6.77, 1.9] [20.92, 2.19] [10.83, 1.51]
2.0 [5.28, 1.59] [16.36, 1.79] [8.23, 1.3]
2.5 [2.15, 1.06] [6.1, 1.09] [2.96, 1.01]
3.0 [1.35, 1] [3.09, 1.01] [1.64, 1]
4.0 [1.02, 1] [1.45, 1] [1.06, 1]
5.0 [1] [1.09, 1] [1]
6.0 [1] [1.01, 1] [1]

Table 2  The values of NARL when rN ∈ [5, 5] , mN ∈ [0.85, 0.95] and 
various ARL1N

kN [2.470595, 3.771832] [2.507942, 3.831339] [2.520868, 
3.858911]

�N [0.45, 0.55] [0.45, 0.55] [0.45, 0.55]
gN [1,  3] [1,  3] [1,  3]
mN [0.85, 0.95] [0.85, 0.95] [0.85, 0.95]
c ARLN

1.0 [205.79, 211.75] [315.48, 317.88] [371.48, 387.03]
1.1 [189.82, 165.16] [290.97, 247.16] [342.61, 300.52]
1.2 [176.32, 131.88] [270.26, 196.75] [318.22, 238.91]
1.3 [164.76, 107.4] [252.52, 159.75] [297.32, 193.72]
1.4 [154.73, 88.95] [237.13, 131.9] [279.2, 159.74]
1.5 [145.94, 74.74] [223.65, 110.5] [263.33, 133.65]
1.6 [138.18, 63.6] [211.74, 93.74] [249.3, 113.23]
1.7 [131.26, 54.71] [201.13, 80.41] [236.8, 97.01]
1.8 [125.06, 47.54] [191.62, 69.66] [225.6, 83.92]
1.9 [119.47, 41.66] [183.03, 60.87] [215.49, 73.24]
2.0 [114.39, 36.8] [175.25, 53.61] [206.31, 64.42]
2.5 [94.72, 21.72] [145.06, 31.2] [170.76, 37.26]
3.0 [81.19, 14.38] [124.3, 20.36] [146.31, 24.17]
4.0 [63.69, 7.80] [97.45, 10.76] [114.68, 12.62]
5.0 [52.77, 5.05] [80.7, 6.79] [94.96, 7.88]
6.0 [45.27, 3.66] [69.19, 4.8] [81.4, 5.51]
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Step-3: Using the selected values of kN ∈
[
kL,kU

]
 , deter-

mine the values of ARL1N ∈
[
ARL1L,ARL1U

]
 for various c.

Advantages of the proposed control chart

In this section, we will discuss the advantages of the pro-
posed control chart under neutrosophic statistics over the 
existing control chart under classical statistics proposed by 
[53]. [43, 44] mentioned that a method which provides the 
output in indeterminate interval under uncertainty is known 
as the most an effective and adequate method. To compare 
the proposed chart with [53], we will fix the same values of 
the control chart parameters. The values of NARL of the 
proposed control chart and [53] chart are shown in Table 5 
for various values of control chart parameters.

From Table 5, it can be noted that all values of [53] 
chart are within the indeterminacy interval of the pro-
posed control chart. The NARL values of the proposed 
control chart become the same as in [53] if no uncertain 
observation is recorded in the data. For example, when 
c = 1.1 and �N ∈ [2, 2] , the indeterminacy interval of 
NARL for the proposed chart is from 172nd sample to 
the 317th sample. It means that one can expect that the 
proposed control chart indicates that on average, the pro-
cess will be shifted between 172nd to 317th samples. On 
the other hand, [53] indicates that the first out-of-control 
will be detected at the 317th sample. From this study, it 
can be seen that the proposed chart gives smaller values 
of NARL as compared to the existing chart. In addition, 
from this comparison, it is clear that the proposed control 
chart gives the results in indeterminate interval; therefore, 

Table 3  The values of 
NARL when rN ∈ [5, 5] , 
mN ∈ [1.45, 1.55] and various 
ARL1N

kN [2.366358,3.433075] [2.412716, 3.820856] [2.981687, 
3.86765]

�N [0.45, 0.55] [0.45, 0.55] [0.45, 0.55]
gN [1,  3] [1,  4] [2,  4]
mN [1.45, 1.55] [1.45, 1.55] [1.45, 1.55]
c ARLN

1.0 [207.58, 210.12] [304.71, 301.92] [378.51, 387.3]
1.1 [181.24, 140.24] [266.06, 180.12] [289.21, 229.92]
1.2 [159.87, 97.47] [234.67, 113.53] [226.43, 144.18]
1.3 [142.42, 70.1] [209.02, 74.97] [180.95, 94.7]
1.4 [127.96, 51.91] [187.78, 51.52] [147.15, 64.72]
1.5 [115.82, 39.43] [169.95, 36.66] [121.49, 45.79]
1.6 [105.52, 30.63] [154.81, 26.89] [101.63, 33.39]
1.7 [96.68, 24.26] [141.83, 20.26] [86.01, 25.01]
1.8 [89.03, 19.56] [130.59, 15.64] [73.54, 19.19]
1.9 [82.36, 16.01] [120.78, 12.33] [63.46, 15.04]
2.0 [76.49, 13.3] [112.16, 9.92] [55.21, 12.02]
2.5 [55.49, 6.25] [81.29, 4.22] [30.41, 4.96]
3.0 [42.71, 3.63] [62.52, 2.41] [18.94, 2.73]
4.0 [28.32, 1.85] [41.37, 1.33] [9.29, 1.42]
5.0 [20.63, 1.31] [30.07, 1.08] [5.56, 1.11]
6.0 [15.96, 1.11] [23.21, 1.01] [3.78, 1.02]

Table 4  The values of NARL when rN ∈ [5, 5] ,  mN ∈ [2.1, 2.3] and 
various ARL1N

kN [2.785936, 3.654638] [2.39096, 3.434913] [2.418024,  
3.773643]

�N [0.55,  0.65] [0.55,  0.65] [0.55,  0.65]
gN [2,  4] [1,  3] [1,  4]
mN [2.1, 2.3] [2.1, 2.3] [2.1, 2.3]
c ARLN

1.0 [205.3, 206.33] [300.76, 302.71] [379.18, 372.29]
1.1 [139.68, 97.49] [251.72, 165.29] [317.96, 172.57]
1.2 [98.53, 50.47] [210.24, 96.18] [265.58, 87.46]
1.3 [71.68, 28.28] [177.83, 59.11] [224.61, 47.88]
1.4 [53.54, 16.99] [152.27, 38.09] [192.31, 28.04]
1.5 [40.93, 10.86] [131.8, 25.59] [166.44, 17.44]
1.6 [31.93, 7.33] [115.16, 17.85] [145.41, 11.44]
1.7 [25.36, 5.21] [101.45, 12.87] [128.09, 7.88]
1.8 [20.46, 3.87] [90.03, 9.57] [113.66, 5.68]
1.9 [16.76, 3] [80.42, 7.31] [101.51, 4.25]
2.0 [13.9, 2.41] [72.26, 5.73] [91.2, 3.31]
2.5 [6.43, 1.26] [45.42, 2.33] [57.27, 1.47]
3.0 [3.65, 1.03] [31.13, 1.42] [39.21, 1.09]
4.0 [1.79, 1] [17.24, 1.03] [21.66, 1]
5.0 [1.25, 1] [10.98, 1] [13.75, 1]
6.0 [1.07, 1] [7.66, 1] [9.54, 1]
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it is flexible, informative, and adequate and concurs with 
the theory of [43, 44]. Hence, the proposed control chart 
under neutrosophic statistics is a better alternative of [53] 
chart under classical statistics when there is Neutrosophy 
in the data.

Now, we present the efficiency of the proposed control 
chart over [53] using the simulated data. Using the neu-
trosophic Weibull distribution, the neutrosophic data were 
generated in which the first 20 observations belong to the 
in-control process while the next 20 observations from the 
shifted process with c = 2.0. Now according to Table 3, 
ARL1N ∈ [55.21, 12.02] when kN ∈ [2.981687, 3.86765]

,�N ∈ [0.45, 0.55], gN ∈ [2, 4] a n d  mN ∈ [1.45, 1.55] . 
According to the proposed chart, it can be expected a 
shift between 55th sample and 12th sample. The values 
of statistic v∗

N
∈
[
v∗
L
, v∗

U

]
 are plotted in Fig. 1 for the pro-

posed chart and in Fig. 2 for [53] chart under classical 
statistics. We note from Fig. 1 that the 29th sample is 
at the neutrosophic lower limit which indicates that the 
process has shifted. From the figure, it can be seen that 
all plotting values are within the control limits and do 
not show any shift in the process. From Figs. 1, 2, it is 
clear that the proposed control chart detects a shift in the 
process at the 29th sample while the existing control chart 
indicates that the process is an in-control state. Figure 2 
also shows several values of v∗

N
∈
[
v∗
L
, v∗

U

]
 within the inde-

terminacy interval. From this comparison, it is quite clear 

that the proposed chart has the ability to detect a shift in 
the process.

Example

Suppose that a ball bearing company is interested to apply 
the proposed control chart for the monitoring of the ball 
bearing reliability. The company found that the reliabil-
ity data follow the neutrosophic Weibull distribution with 

Table 5  The comparison in NARL

c NARL ARL

Proposed chart when � = 1.0 Proposed chart when � = 1.5 Proposed chart when � = 2.0 Existing chart 
when � = 1.0

Existing chart 
when � = 1.5

Existing chart 
when � = 2.0

1.0 [371.48, 387.03] [378.51, 387.3] [379.18, 372.29] 371.48 378.51 379.18
1.1 [342.61, 300.52] [289.21, 229.92] [317.96, 172.57] 342.61 289.21 317.96
1.2 [318.22, 238.91] [226.43, 144.18] [265.58, 87.46] 318.22 226.43 265.58
1.3 [297.32, 193.72] [180.95, 94.7] [224.61, 47.88] 297.32 180.95 224.61
1.4 [279.2, 159.74] [147.15, 64.72] [192.31, 28.04] 279.2 147.15 192.31
1.5 [263.33, 133.65] [121.49, 45.79] [166.44, 17.44] 263.33 121.49 166.44
1.6 [249.3, 113.23] [101.63, 33.39] [145.41, 11.44] 249.3 101.63 145.41
1.7 [236.8, 97.01] [86.01, 25.01] [128.09, 7.88] 236.8 86.01 128.09
1.8 [225.6, 83.92] [73.54, 19.19] [113.66, 5.68] 225.6 73.54 113.66
1.9 [215.49, 73.24] [63.46, 15.04] [101.51, 4.25] 215.49 63.46 101.51
2.0 [206.31, 64.42] [55.21,  12.02] [91.2, 3.31] 206.31 55.21 91.2
2.5 [170.76, 37.26] [30.41, 4.96] [57.27, 1.47] 170.76 30.41 57.27
3.0 [146.31, 24.17] [18.94,2.73] [39.21, 1.09] 146.31 18.94 39.21
4.0 [114.68, 12.62] [9.29, 1.42] [21.66, 1] 114.68 9.29 21.66
5.0 [94.96, 7.88] [5.56, 1.11] [13.75, 1] 94.96 5.56 13.75
6.0 [81.4, 5.51] [3.78, 1.02] [9.54, 1] 81.4 3.78 9.54

Fig. 1  The proposed chart for the simulated data
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mN�[2.1,2.3] and �N�[0.55,0.65] . For this experiment, let 
rN�[5, 5] and ARL1N�[370, 370] . For these parameters, 
gN�[4, 4] from Table 4. The experimenter will select a 
random sample of 20 balls and distribute them into 4-sub-
group size. During the experiment, it is found that the 
reliability values of ball bearing are neutrosophic numbers 
rather than the exact numbers. Therefore, the monitoring 
of the process will be done using the proposed control 
chart. The neutrosophic data are shown in Table 6.

The values of statistic v∗
N
�
[
v∗
L
, v∗

U

]
 are plotted in Fig. 3 

for the proposed control chart and in Fig. 4 for the exist-
ing control chart proposed by [53] under classical statistics. 
From Figs. 3, 4, we note that the proposed control chart 
provides the values in indeterminacy interval rather than the 
exact values. In addition, the proposed control chart shows 
that three plotting statistics are near the control limit which 
should be a problem in the process.

Conclusion

In this article, a neutrosophic control chart for monitoring 
the reliability using sudden death testing under Weibull 
distribution has been presented. The NSIM has been used 
for the required measures to apply the proposed control 
chart. A simulation study was made to show the compara-
tive efficiency of the proposed chart for the uncertainty 
environment. From the comparative study, it was noted 
that the proposed chart is efficient than the existing chart. 
In addition, on comparing the proposed chart, it can be 
observed that it is adequate, more flexible, and more effi-
cient for use in an uncertain environment. In nutshell, the 
proposed chart is a valuable addition in the toolkit of the 
quality control personnel when there are unclear, uncer-
tain, vague, or fuzzy observations in the sample. The pro-
posed chart can be extended for the cost models or some 
other sampling schemes as future research.

Fig. 2  [53] chart for the simulated data

Table 6  The mN = [2.1, 2.3] , 
�N = [0.55, 0.65] in-control 
process data generated from 
Weibull distribution

Sr.# Sample V*[N]

1 [0.0178, 0.0178] [0.5117, 0.6457] [0.7653, 0.7653] [0.8343, 0.8734] [1.1012, 1.1599]
2 [0.4935, 0.4935] [0.6793, 0.6793] [0.9169, 0.9169] [1.0457, 1.0457] [1.3526, 1.3526]
3 [0.1535, 0.1535] [0.4894, 0.4894] [0.6024, 0.6024] [0.6175, 0.6175] [0.9119, 0.9119]
4 [0.4487, 0.4636] [0.7130, 0.7130] [0.7811, 0.7811] [0.8199, 0.8199] [1.1963, 1.1989]
5 [0.5741, 0.5741] [0.7975, 0.7975] [0.8576, 0.8576] [0.8578, 0.8578] [1.2967, 1.2967]
6 [0.3445, 0.3445] [0.5629, 0.5629] [0.5748, 0.5748] [0.6710, 0.8392] [0.9750, 1.0636]
7 [0.5875, 0.5875] [0.8473, 0.5624] [1.0369, 1.0369] [1.2262, 1.2262] [1.54460, 1.483]
8 [0.3616, 0.3616] [0.4614, 0.7704] [0.6973, 0.8543] [0.9236, 0.9236] [1.1316, 1.2794]
9 [0.4093, 0.3518] [0.7233, 0.7179] [0.9794, 0.9794] [1.0072, 1.0072] [1.3607, 1.3531]
10 [0.1626, 0.1626] [0.4519, 0.4519] [0.7953, 0.7953] [0.8459, 0.8459] [1.1107, 1.1107]
11 [0.3981, 0.3981] [0.5113, 0.5113] [0.8941, 0.8941] [0.9158, 0.9158] [1.2266, 1.2266]
12 [0.5814, 0.5814] [0.6823, 0.6823] [0.8180, 0.8180] [0.8316, 0.9851] [1.2338, 1.3027]
13 [0.1800, 0.1800] [0.3272, 0.3272] [0.5806, 0.5806] [0.9519, 0.9519] [1.0673, 1.0673]
14 [0.5739, 0.5739] [0.6138, 0.6138] [0.6609, 0.6609] [0.8334, 0.8334] [1.1533, 1.1533]
15 [0.2634, 0.2634] [0.4254, 0.4254] [0.5915, 0.5915] [0.8646, 0.8646] [1.0378, 1.0378]
16 [0.3777, 0.3777] [0.4797, 0.4797] [0.6254, 0.6254] [0.7428, 0.9642] [1.0106, 1.1369]
17 [0.3264, 0.1707] [0.4104, 0.4104] [0.6024, 0.6024] [0.6308, 0.6308] [0.9151, 0.8953]
18 [0.4717, 0.4717] [0.8010, 0.8010] [0.9415, 1.2846] [1.0895, 1.0895] [1.4138, 1.5654]
19 [0.5016, 0.7292] [0.5697, 0.5697] [0.6646, 0.6646] [0.7038, 0.7038] [1.0623, 1.1382]
20 [0.6478, 0.6478] [0.6580, 0.6580] [0.8051, 0.8051] [1.0139, 1.0139] [1.3211, 1.3211]
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