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Abstract
This paper considers how an online food delivery platform can improve last-mile delivery services’ performance using 
multi-source data. The delivery time is one critical but uncertain factor for online platforms that also regarded as the main 
challenges in order assignment and routing service. To tackle this challenge, we propose a data-driven optimization approach 
that combines machine learning techniques with capacitated vehicle routing optimization. Machine learning methods can 
provide more accurate predictions and have received increasing attention in the operations research field. However, different 
from the traditional predict-then-optimize paradigm, we use a new smart predict-then-optimize framework, whose prediction 
objective is constructed by decision error instead of prediction error when implementing machine learning. Using this type 
of prediction, we can obtain a more accurate decision in the following optimization step. Efficient mini-batching gradient 
and heuristic algorithms are designed to solve the joint order assignment and routing problem of last-mile delivery service. 
Besides, this paper considers the mutual effect between routing decision and deliverytime, and provides the corresponding 
solution algorithm. In addition, this paper conducts a computational study and finds that the proposed method’s performance 
has an approximate 5% improvement compared with other methods.

Keywords  Data-driven optimization · Last-mile delivery · Machine learning · Prediction · Routing behavior

Introduction

The last 20 years have witnessed an explosion of e-com-
merce, which has prompted customers to purchase online 
instead of visiting physical stores. Platforms like MeiTuan 
and UberEATS are selling many foods every day and have 
become more and more popular because of their conveni-
ent online catering service. These platforms provide end-
to-end services for customers and restaurants, This means 
that after customers make requests on platforms, restaurants 
prepare food in the central kitchen once they receive orders 
from platforms, find drivers to deliever the food, and finally 
deliver the food from restaurants to customers according 
to the arrangement of platforms [1]. There is no doubt that 

platforms play an essential role in this food delivery ser-
vice; however, one key challenge they have to face is how 
quickly and efficiently they deliver food from restaurants to 
customers with limited drivers. This problem is consistent 
with the well-known Last-Mile Problem (LMP) [2], which 
transports goods from a public node to customers and can be 
formulated by a modified VRP (Vehicle Routing Problem) 
model. In our case, the public node could be the nearest local 
logistics service center or central kitchen, and the transport 
means of food LMP include walking, taking a taxi, or driv-
ing a private vehicle.

LMP is potentially very expensive and accounts for a 
large part expenditure of the whole business activity of 
food platforms [3]. With the increasing business competi-
tion and fast delivery requirement, online platforms have to 
improve the performance of Last-Mile Transportation Sys-
tems (LMTS), to gain a large market share, control cost and 
ensure delivery timeliness. So, it is a vital task for online 
food platforms to solve LMP effectively. What’s more, the 
last-mile delivery problem is a computational challenge 
because VRP is an NP-hard problem in theory, and there are 
many uncertainty factors in practice that affect the parameter 
values [4]. Using optimization theories and methods, related 
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managers can make order assignment and routing decisions 
for LMP by solving an improved VRP, which has been 
solved effectively by exact or heuristic algorithms. How-
ever, realistic uncertain factors in last-mile delivery, such 
as drivers’ behavior characteristics and traffic conditions, 
are difficult to be predicted exactly using general statistical 
methods for their inherent complexities, This leads to the 
inaccurate estimation of optimization parameters, such as 
service time or service cost. Consequently, the uncertain fac-
tors will result in an unreasonable optimization formulation 
and ineffective management decision.

Early related studies usually assume that optimization 
models’ parameters are constant and estimate those param-
eters by sample statistics or specialist experience. In those 
works, researchers focus on how to design efficient algo-
rithms to derive exact or satisfactory solutions. Consider-
ing the existence of uncertainties in practice, optimization 
problems involving uncertain factors began to receive more 
attention. In the beginning, stochastic programming theory 
is proposed to handle the randomness of parameters [5]. For 
example, as one of the widely used stochastic programming 
measures, chance constraint requires the probability of refer-
ence target to satisfy a given threshold. In the past decade, 
robust optimization (RO) and distributionally robust optimi-
zation (DRO) have been drawing more and more attention 
for their advantages in using real data by combining statisti-
cal techniques [6–8]. In the robust optimization framework, 
it is crucial to construct the uncertain set of parameters 
based on the sample data, which also has a significant impact 
on the optimization results and decision.

Nowadays, with the development of information technol-
ogy, massive data have been accumulated in many fields. In 
the meanwhile, AI technologies include machine learning, 
deep learning, and reinforcement learning have exhibited 
high effectiveness in prediction, classification, and other 
problems for many practical applications. Sequentially, data-
driven optimization, which combines traditional optimiza-
tion methods with AI prediction tools, has become a new 
research frontier in the operations research field. Typically, 
the optimization decision can be improved dramatically due 
to the accessibility and excellence in parameter estimation 
of the machine learning method. The data-driven combi-
nation form has been applied in many real analytics fields 
[9–11]. However, most of the present studies execute the 
procedures of machine learning and optimization separately. 
More specifically, the machine learning method is only used 
to generate parameters’ prediction, and the optimization 
model is only used to generate an optimal decision based on 
the estimated parameters given by machine learning. This 
procedure takes the same paradigm as stochastic program-
ming, robust optimization, and distributionally robust opti-
mization. The paradigm is defined as predict-then-optimize 
[12]. In essence, the predict-then-optimize paradigm does 

not account for how the predictions would be used in the 
downstream optimization model, no matter how the predic-
tion methods are used. This asynchronous procedure leads to 
an inconsistency phenomenon in the predict-then-optimize 
paradigm, that is, the quality of a prediction is not equivalent 
to the quality of a decision.

To overcome the shortcomings of the predict-then-opti-
mize paradigm, Elmachtoub and Grigas [12] propose a smart 
predict-then-optimize (SPO) framework. Although the SPO 
approach also maintains the sequence that first prediction 
then optimization, but the quality of parameter prediction is 
measured by decision error rather than prediction error. The 
authors also present some simple examples to demonstrate 
the SPO strongly outperforms the ordinary optimization 
models with regular machine learning prediction.

In this paper, we aim to improve online platforms’ last-
mile delivery performance using the SPO framework. We 
consider a simplified scenario: an online delivery service 
provider first prepares packages at his central depot and 
then deliver all packages to the customers by drivers within 
a certain radius from the depot. Each driver has a limited 
capacity, and the service provider needs to ensure that each 
driver’s total travel time is less than a given threshold. This 
setting is a typical and straightforward LMP case for online 
food platforms or logistics companies, and the problem can 
be formulated by a Capacitated Vehicle Routing Problem 
(CVRP) model. However, different from the previous con-
ventional models, we assume the travel time between any 
two customers is uncertain and can be predicted by the large 
volume and multi-source data. The data may incorporate 
the distance, weather, season, driver’s profile, and real-time 
traffic data from mobile applications. The booming online 
platforms provide a convenient shopping experience for cus-
tomers and accumulate enough relevant data for smart deci-
sions. Therefore, adequate data guarantee the basic require-
ments of our methods.

What’s more, this paper assumes that the driver’s behav-
ior impacts his travel time, which leads to a mutual effect 
between parameters and decision variables. The problem 
setting is similar to [1], which integrates order assignment 
optimization with a travel time prediction model. However, 
they do not take the decision error caused by inaccurate 
prediction into consideration, while our work involving 
this point by using a different mathematic formulation and 
SPO data-driven optimization implementation framework. 
Furthermore,this work provides a specific solution algorithm 
to handle the coupled problem of parameters and decision 
variables.

The remainder of this paper is organized as follows: we 
review the relevant studies about data-driven optimization 
and LMP in Sect. 2. Then Sect. 3 provides the correspond-
ing model and the solving algorithms. In Sect. 4, we com-
pare the proposed model with other methods to indicate our 
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model’s advantage by numerical studies. Finally, the conclu-
sion and future research directions are presented in Sect. 5.

Related literature

There are several literature streams relevant to our work. 
This section presents a brief overview of those researches 
from two domains: LMP and data-driven optimization.

Last‑mile problem

The classical LMP can be described schematically as Fig. 1, 
which contains a central depot that prepares packages and 
several customers distributed around the central depot in a 
fixed area. A fleet of vehicles visit customers and return to 
the central depot after all the packages are delivered. There 
are also some variants of the classical LMP. For example, 
Wang and Odoni [2] study the last-mile problem for passen-
ger transportation in a stochastic setting. This paper studies 
the last-mile problem following a classical VRP framework, 
which is a packages’ assignment and delivery problem and 
has been widely studied in the operations research literature 
[13]. Jiang et al. [14] consider a similar last-mile delivery 
problem and aim to reduce the total costs and carbon emis-
sions, their model is a variant of the traveling salesman prob-
lem. Zhou et al. [15] study a green VRP considering dual 
last-mile delivery services with stochastic travel times. How-
ever, both of them do not consider the prediction problem 
with multivariate data. VRP is first introduced by Dantzig 
and Ramser [16], they concern the gasoline delivery prob-
lem for a gas station by truck. After their seminal paper, a 

vast number of various extensional works of VRP have been 
published, range from stochastic context [17], dynamic envi-
ronment [18], delivery time constraint [19] to time window 
constraint [20]. For a broad overview of VRP variants, the 
readers are recommended to refer to Toth and Vigo [13].

Due to the complexity and NP-hard of VRP, designing 
an effective algorithm is always a critical job in this field. 
Various heuristic or exact algorithms have been proposed 
and verified. The history of VRP heuristic algorithms is as 
old as the problem itself. Dantzig and Ramser [16] sketch 
a simple heuristic based on successive matchings of verti-
ces through the solution of relaxed linear programs. Clarke 
and Wright [21] propose a useful greedy heuristic to derive 
the approximate solution of VRP. Since then, a wide vari-
ety of constructive and improvement heuristics have been 
proposed. Such as constructive heuristics provide a starting 
solution to improve algorithms [22, 23], classical improve-
ment heuristics perform intra-route and inter-route moves 
[24, 25], metaheuristics include local search methods [26] 
and population-based heuristics [27]. In essence, VRP is a 
combinatorial optimization which can also be solved by clas-
sical exact algorithms, such as brand-and-bound algorithms 
with assignment problem relaxation [28, 29], brand-and-
bound algorithms with shortest spanning tree [30], branch-
and-cut algorithms [31] and column generation algorithms 
[32]. This paper’s proposed LMP model is a kind of capaci-
tated VRP, but it has a prominent characteristic that there are 
mutual effects between parameters and decision variable. In 
this paper, a data-driven SPO framework and design-related 
algorithm is used for the proposed complex model.

Fig. 1   Schematic of the last-
mile transportation

: Central depot 

: Customer point 
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Data‑driven optimization

The main purpose of this study is to improve the opti-
mal vehicle routing decision for last-mile delivery using 
real data. Therefore, this paper is also closely related to 
the stream of data-driven optimization. Generally speak-
ing, data-driven optimization approaches find suboptimal 
solutions from data and highlight the importance of real 
data on the decision. Previous data-driven optimization 
approaches can be roughly classified as operational statis-
tics, sample average approximation, and robust optimiza-
tion. Operational statistics are recognized as the beginning 
work of data-driven optimization in operational research, 
this approach integrates parameter estimation and optimi-
zation to obtain better solutions compared with the tradi-
tional approach. Liyanage and Shanthikumar [33] apply it 
to a single period newsvendor problem, and Chu et al. [34] 
investigate how to find the optimal operational statistic with 
a similar problem setting. The sample average approxima-
tion’s (SAA) basic idea is using sample average function 
to approximate expected value function, and then solving 
sample average optimization problem to derive an optimal 
solution. Kleywegt et al. [35] introduce this approach and 
present the convergence rates, stopping rules, and compu-
tational complexity of this procedure. After then, the SAA 
approach is widely used in different problems. For example, 
Schütz et al. [36] use SAA to solve a two-stage supply chain 
design problem for a Norwegian meat industry, Chang et al. 
[37] apply SAA scheme to solve a flood emergency logistics 
problem. Mathematical programming’s solution is usually 
incorrect when there are random parameters. The reason is 
that we cannot use a specific distribution to describe the 
ambiguity of uncertainty parameters. Robust optimization, 
and its extension distributionally robust optimization are 
proposed to overcome this shortcoming. Those approaches 
represent random parameters by some uncertainty sets which 
do not have a specific distribution expression but can be 
constructed by historical data. Delage and Ye [8] propose a 
distributionally robust model that describes the uncertainty 
by mean and covariance matrix constraints, then provide 
probabilistic arguments to design optimization model. Bert-
simas et al. [38] develop a tractable framework for solving 
an adaptive distributionally robust linear optimization prob-
lem, they minimize the worst-case objective over a class of 
second-order conic representable ambiguity set.

Although the above data-driven approaches perform well 
with real data, they do not have a clear way to use feature 
data. The machine learning model has a prominent advan-
tage in exploiting multi-source data, so recent advanced 
researches attempt to integrate the machine learning model 
with the optimization model. Most of this integration fol-
lows a predict-then-optimize framework mentioned in the 
introduction, such as Ferreira et al. [9] first adopt regression 

tree to estimate lost sales and predict future demand using 
historical sale data, then develop an algorithm to solve mul-
tiproduct price optimization for the online retailer. Liu et al. 
[1] use a class of machine learning models, such as LASSO 
regression, ridge regression, and support vector machine 
(SVM), to predict travel time, then integrate the predic-
tors within the optimization model to solve the last-mile 
delivery problem. However, in those papers, the machine 
learning method only accounts for exact prediction, and does 
not guarantee optimal decisions in uncertain environments. 
Therefore, researchers begin to consider improving the pre-
diction model by the decision error instead of prediction 
error. Kao et al. [39] seek to train a machine learning model 
that minimizes loss for a nominal unconstraint optimization 
problem. Considering a similar problem with [39], Donti 
et al. [40] develop a heuristic algorithm to address a more 
general setting. Unfortunately, both Kao et al.[39] and Donti 
et al.[40] focus on the unconstrained optimization models. 
More recently, Elmachtoub and Grigas [12] design a new 
predictive framework to incorporate the general optimization 
problem structure, which enables robust performance against 
model Misspecification. This paper investigates the LMDP 
using the SPO framework presented in [12], and proposes 
an algorithm to deal with the mutual effect between decision 
variables and uncertainty parameters.

Problem description and assumptions

We first provide an overview of the concerned online plat-
forms in the last-mile delivery problem, then introduce the 
SPO framework to integrate prediction model and optimiza-
tion formulation. Finally, we present relevant algorithms to 
solve the proposed SPO-LMP model.

A. LMP modeling

In the beginning, we describe the LMP of the online plat-
forms shown in Fig. 1 in detail. One single provider (plat-
form or logistics company) takes charge of LMP service 
for a given area. The delivered item can be food or pack-
age which has been prepared in the central depot. The pro-
vider has known the location and demand quantity of each 
custom before the delivery service. Furthermore, the pro-
vider’s LMP consists of two procedures: first, the provider 
should assign the delivery task to a fleet of vehicles and then 
decides the delivery sequence for each vehicle. The vehicles 
are assumed to be heterogeneous with different capacities. 
The drivers have different driving habits and preferences, 
which will lead to different travel durations in the same ser-
vice arc. Once the provider schedules an arrangement plan, 
the driver will execute a given delivery route, i.e., visiting 
each customer’s destination, and then return to central deport 
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to pick up the items for the next delivery tour. Delays are 
inevitable, primarily when the orders are poorly assigned to 
drivers. For this reason, the provider’s primary focus on the 
timeliness of delivery due to the intense market competition 
and customer faster delivery expectation. According to the 
above explanation, the concerned last-mile problem could 
be formulated as a capacitated vehicle routing problem with 
the on-time delivery objective function, whose notations and 
formulation are presented in the following.

We denote the central depot as node 0, and all customers 
are given by a set N = {1, 2,… , n} . The demand of cus-
tomer i(i ∈ N) is given by a scalar di ≥ 0 , e.g., the weight or 
number of the goods needed to deliver. Suppose there are k 
drivers who have diverse vehicles with different capacity Qk 
and fixed identical operating cost C , and the set of drivers 
is defined as k ∈ {1, 2,… ,K} . The drivers make deliveries 
for customers’ pooling N starting from central depot node 0, 
the traveling time from customer node i to node j is denoted 
by tij . We need to find the optimal routing for each vehicle 
to minimize the total delivery time and total operating cost 
under vehicle capacity constraints.

With the above-given notations, we can construct a 
delivery model by network optimization framework. 
Let V = {0} ∪ N = {0, 1,… , n} be the set of nodes and 
E = {(ij) ∶ i, j ∈ V , i ≠ jand(ij) ≠ (ji)} be the set of edges, 
then we get a directed graph G = (V ,E) . Notice that 
|E| = n(n + 1) since tij ≠ tji . It is reasonable because of the 
complex road conditions in reality, which make the trip 
between two customers has different travel time in a different 
direction. In sum, the last-mile delivery problem is defined 
by a directed and weighted graph G =

(
V ,E, tij, di

)
 together 

with a driver set K , each vehicle has a delivery capacity Q.
To present the corresponding formulation concisely, some 

condensed notations will be further defined. Suppose S is 
an arbitrary non-empty subset of V ,S ⊆ V  , let the in-arcs 
and out-arcs of S be �−(S) = {(i, j) ∈ E ∶ i ∉ S, j ∈ S} and 
�+(S) = {(i, j) ∈ E ∶ i ∈ S, j ∉ S} . the in-arcs and out-arcs 
of a node i are calculated by setting S = {i} . For a customer 
subset S , it is assumed that the minimum number of driv-
ers used to serve S is r(S) . It is clear that r(S) is dependent 
on customer demand di,i ∈ S and vehicle capacity Q , and 
r(S) can be computed by solving a bin packing problem. A 
simple formulation without considering the heterogeneity 
of drivers can be presented by two-index decision variable 
xij with (i, j) ∈ E , xij is binary variable indicating a driver 
first deliver i then j if xij = 1 , no driver moves from i to 
j if xij = 0 . Another decision variable is the exact number 
of used drivers, m . With the above notations, the last-mile 
delivery model can be given as follows:

(1)min
m≤K,x

∑

(i,j)∈E

tijxij + �Cm,

In this model, � is a constant parameter that adjusts ser-
vice quality and operating cost. The objective function (1) 
contains the total travel time cost and total operating cost. 
Constraints (2) and (3) ensure that each customer can be 
visited precisely once in a route. Constraint (4) ensures that 
the number of drivers at work is no more than k . Constraint 
(5) works for eliminating illegal routes and serves as capac-
ity constraints.

Following the assumptions commonly used in previ-
ous researches, travel time t  is assumed to be uncertain. 
However, unlike previous studies that define travel time as 
continuous or discrete random variables, this study tends 
to emphasize the predictability of random travel time. In 
reality, travel time is highly dependent on several relevant 
factors, such as road conditions, weather, transportation dis-
tance, and driver characteristics. One of the difficulties in 
our LMP is that the travel time is dependent on the driver’s 
behavior. Therefore, we introduce a three-index decision 0–1 
variable x =

(
xijk

)
 to describe the driver’s behavior. xijk = 1 

if driver k services customer i and customer j successively; 
otherwise, xijk = 0 . Let yik = 1 if driver k services customer 
i , else yik = 0 for i ∈ {1,… , n }, and y0k = m represents that 
every driver must start from a central depot. For simplifica-
tion, let t =

(
tij
)
 and the proposed LMP can be formulated as:

(2)s.t.
∑

j∈�+(i)

xij = 1, ∀i ∈ N,

(3)
∑

i∈�−(j)

xij = 1, ∀j ∈ N,

(4)
∑

j∈�+(0)

x0j = m,

(5)
∑

i,j∈𝛿+(S)

xij ≥ r(S), ∀S ⊆ V ,

(6)xij ∈ {0, 1},∀(i, j) ∈ E.

(7)min
m≤K,x

∑

i

∑

j

∑

k

tijxijk + �Cm,

(8)s.t.
∑

j

xijk = 1, ∀i ∈ N, k = 1,… ,m,

(9)
∑

i

xijk = 1, ∀j ∈ N, k = 1,… ,m,

(10)
∑

i

diyik ≤ Qk, k = 1,… ,m,
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As mentioned above, online platforms have abundant avail-
able data for prediction to make more accurate decisions. 
Therefore, how to generate a smart decision by exploiting 
real data is a crucial problem. In this paper, an SPO frame-
work is adopted to solve the LMDP of online platforms.

B. SPO paradigm

The SPO framework trains prediction models based on a 
new loss function represented by decision error instead 
of decision error. In our setting, actual travel time t  is not 
known when the service provider makes a delivery deci-
sion, but some associated features can be observed. We 
assume p available features are denoted by vector f ∈ Rp , 
such as the above-mentioned driver’s profile, routing 
length, weather, season or traffic information. Let F(t, x,m) 
be the objective function represented by Eq.  (7), i.e., 
F(t, x,m) =

∑
(i,j)∈E,k tijxijk + �mC . For simplicity, we con-

dense the decision variable x ∶= (x,m) , then the objective 
function is simplified to F(t, x) . Traditional optimization 
frameworks usually figure out the conditional distribution of 
t with given feature data f  , and then solve the corresponding 
model with the expected objective function. For example, 
stochastic programming uses chance constraints or a two-
stage model to handle the random variables. However, the 
SPO framework we adopted integrates the machine learn-
ing method with optimization programming. Next, some 
notations are replinshed and the key ingredients of the SPO 
paradigm are introduced.

Assume that 
(
f1, t1

)
,
(
f2, t2

)
,… ,

(
fs, ts

)
 denotes the train-

ing data for machine learning, where fi ∈ 𝜒 ⊂ Rp is a fea-
ture vector representing contextual information associated 
with travel time ti . A hypothesis class of travel time vec-
tor prediction models is H ∶ � → Rq , which predicts travel 
time t̂ associated with feature f  by t̂ ∶= H(f ) . A loss func-
tion l

(
t̂, t

)
 quantifies the error in predicting t̂ when the real-

ized true travel time is t . In general, given the training data (
f1, t1

)
,
(
f2, t2

)
,… ,

(
fs, ts

)
 , an optimal prediction model H∗ is 

derived to minimize the empirical loss function:

After deriving the prediction model H∗ , we can solve the 
LMP model (7–12) and induce an optimal decision X∗(f ) 
according to an observed feature vector f .

In the traditional predict-then-optimize framework, the 
loss function is usually wholly independent of the LMP 

(11)
∑

k

yik =

{
1, i = 1,… , n

m, i = 0

(12)xijk ∈ {0, 1}, ∀(i, j) ∈ E, k = 1,… ,m.

(13)min
H

1

n

n∑

i=1

l
(
H
(
fi
)
, ti
)
.

optimization problem. For example, the mean squared error 
loss function l

(
t̂, t

)
=

t̂−t2
2

2
 is widely used in the linear regres-

sion models of machine learning. The corresponding predic-
tion problem is to find the best linear model H∗ to minimize 
1

n

∑n

i=1
H∗fi − ti2

2
 without considering the underlying structure 

of the optimization problem.
The SPO framework takes advantage of problem structure 

to train the prediction model, predict travel time, and then 
construct the loss function intelligently. According to the 
defined notations, p is the dimension of the feature vector,s 
is the number of training samples, and q is the dimension 
of the decision matrix, i.e., q = i ∗ j , i, j ∈ V  . The nominal 
LMP model (1–5) can be simplified as

In this model, Γ is a non-empty feasible region generated 
by constraints (8–12). F(t, x) is a linear function concerning 
x with redefining t ∶= (t, �C) , then the optimal solution set 
can be expressed as X∗(t) ∶= argminx∈Γ t

Tx.
The SPO loss function is lX∗

spo
(t̂, t) ∶= tTX∗(t̂) − F∗(t) , in 

which t̂ is a travel time prediction and X∗
(
t̂
)
 is a decision 

obtained by solving (11–12). After implementing the rout-
ing decision X∗

(
t̂
)
 , the actual travel time t  and objective 

cost F∗(t) is realized, then excess cost tTX∗
(
t̂
)
− F∗(t) can 

be derived. Since X∗
(
t̂
)
 may contain more than one solution, 

another definition that does not depend on the particular 
choice of the optimization oracle X∗

(
t̂
)
 is provided by

Given the training data and definition of SPO loss func-
tion, we need to determine a travel time prediction model 
with minimal SPO loss function lSPO

(
t̂, t

)
 . The prediction 

model would be determined by empirical risk minimization 
principle similar to Eq. (13), which leads to the following 
optimization problem:

To overcome the difficulty in solving the above optimiza-
tion problem, Elmachtoub and Grigas [12] provide a useful 
approximate loss function. Indeed, the SPO loss function 
lSPO

(
t̂, t

)
 may not be continuous with t̂ because X∗

(
t̂
)
 cannot 

be guaranteed to be continuous with respect to t̂ . However, 
the approximate surrogate loss function is convex and can 
be defined as

(14)min
x

F(t, x),

(15)s.t.x ∈ Γ.

(16)lSPO
(
t̂, t

)
= max

x∈X∗(t̂)
tTx − F∗(t).

(17)min
H

1

n

n∑

i=1

lSPO
(
H
(
fi
)
, ti
)
.

(18)lSPO+
(
t̂, t

)
= 𝜉Γ

(
t − 2t̂

)
+ 2t̂TX∗(t) − F∗(t).
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In Eq.  (18), the support function of feasible region Γ , 
�Γ(t) = maxx∈S

{
tTx

}
 is convex in t . �Γ(⋅) is finite and for all 

t ∈ Rq , there is �Γ(t) = −F∗(−t) = tTx∗(−t) . Consequently, 
the optimization problem (17) has the following empirical 
risk counterpart:

This paper uses the linear prediction function 
H(f ) = B∗f ,B ∈ Rq×p to predict travel time. To improve 
accuracy and preserve convexity of the prediction model, 
we incorporate ridge penalty Ω(B) = B2

F
∕2 into Eq. (19), 

where BF denotes the Frobenius norm of matrix B . These 
presumptions lead to the following version of the risk model:

(19)min
H

1

n

n∑

i=1

lSPO+
(
H
(
fi
)
, t
)
.

(20)min
B∈Rd×p

1

n

n∑

i=1

lSPO+
(
Bfi, ti

)
+ �Ω(B),

where � ≥ 0 is a regularization parameter and selected by 
adjusting. The above optimization problem (20) is a convex 
optimization since both Ω(B) and SPO + loss function lSPO+ 
are convex.

The classical gradient approach can be used to solve the 
SPO+ problem due to the convexity of (20). For conveni-
ence, let �i(B) = lSPO+

(
Bfi, ti

)
+ �Ω(B) , then the optimiza-

tion objective function is reformulated as 
n∑
i=1

�i(B) . As men-

tioned above, lSPO+(⋅, t) is convex for a given t , and Ω(B) is 
a convex ridge penalty function, then the sum of �i(B) is also 
convex. Furthermore, the sub-gradients of �i(B) is 
2
(
X∗(t) − X∗

(
2t̂ − t

))
xT
i
+ 𝜆∇Ω(B) , and according to Nemi-

rovski et al. [41], we set the i-th update step-size from the 
reverse gradient direction to be Υi = 2∕�(i + 2) . Given the 
travel information data 

(
f1, t1

)
,
(
f2, t2

)
,… ,

(
fs, ts

)
 , problem 

(20) can be solved by the mini-batching gradient descent 
approach. The algorithm is as follows:

Algorithm 1: 
Step 1. Initialize prediction matrix  and the integer mini-batch size , . 
Step 2. Pick up samples ( ), ( )  and compute  

as follows: 
For : 

∗  
∗ ( ) 

Update  with = : 

=
1

 

 
 

Step 3. Stop if accuracy requirement is satisfied or all the samples are used. 
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In Algorithm 1, we use the sample data successively, 
resulting in early stopping if there is large-scale sample data. 
Therefore, the batch data can also be constructed uniformly 
at random from a given sample set a standard application 
of the stochastic gradient descent approach. It is important 
to emphasize that the optimal solution of the LMP problem 
is required several times in each iteration of Algorithm 1. 
To guarantee efficiency, we need to choose a suitable algo-
rithm for LMP to accelerate the convergent speed. This 
paper adopts a simulated annealing (SA) algorithm to com-
pute X∗(⋅) in each iteration step of Algorithm 1. Because 
the travel time and optimal routing have a mutual effect on 
each other, after implementing the prediction Algorithm 1, 
we leverage the idea of classical improvement heuristics of 
VRP to retrieve the final optimal routing.

Classical local search descent methods do not accept 
non-improvement moves at each iteration, whereas the SA 
algorithm does with specific probabilities. Therefore, the SA 
method can reach a satisfactory suboptimal solution much 
faster than local search descent methods. However, the SA 
algorithm is still based on a local search mechanism for iter-
ating. We first present two commonly used exchange opera-
tors and the classical local search descent method of VRP.

Suppose a feasible routing solution for LMP have been 
already obtained, X =

{
R1,… ,Ri,… ,Rj,…Rk

}
 , where Ri 

is the ordered set of customers serviced by driver i . The fol-
lowing procedure easily derives the initial feasible solution: 
let each customer being served by a driver, and then compute 
travel time-saving t0i + t0j − tij about customers i and j which 
are served by one vehicle from the central deport. These 
savings are sorted in decreasing order. Finally, this proce-
dure merges customers corresponding to the highest saving 
without violating the capacity restriction until no further 
merges are possible.

Define a non-empty subset of Ri and Rj as S1 and S2 , 
respectively. An interchange between Ri and Rj is a replace-
ment by R�

i
=
(
Ri − S1

)
∪ S2 and R�

j
=
(
Rj − S2

)
∪ S1 . Then 

w e  g e t  a  n e w  n e i g h b o r i n g  s o l u t i o n 
X� =

{
R1,… ,R

�

i
,… ,R

�

j
,…Rk

}
 . In general, the interchange 

is defined according to the threshold size of the subset. For 
example, if the size of S1 and S2 is less than � , i.e., ||S1|| ≤ � 
and ||S2|| ≤ � , the interchange is called �-exchange. In this 
paper, we set � = 1 . Correspondingly, the search order of a 
given pair 

(
Ri,Rj

)
 has two standard operators described in 

Fig. 2. The 1–0 exchange wipes off a customer in a route and 
relocates the customer to another route. The 1–1 exchange 
swaps two customers in a routing pair.

For a given routing pair, the above exchange operators 
will generate a series of neighbors. In practical calculation, 
we can specify the searching order of neighbors following 
the permutation of routing pairs, which has a total number 
of k(k − 1)∕2 different pairs:

Following the above searching order of neighborhood, 
local search algorithms improve solution performance from 
the current Xt to another Xt+1 in its neighborhood N

(
Xt

)
 if 

the objective value F
(
Xt+1

)
 is less than F

(
Xt

)
 . However, the 

SA algorithm accepts the improvement according to prob-
abilities that are determined by a temperature parameter. The 
temperature parameter tends to zero following a determin-
istic cooling schedule. We adopt SA with a 1-interchange 
mechanism to solve X∗(⋅) in Algorithm 1, and the SA is 
introduced as Algorithm 2:

(21)
(
R1,R2

)
,… ,

(
R1,Rk

)
,
(
R2,R3

)
,… ,

(
Rk−1,Rk

)
.

Fig. 2   exchange local search operators for the VRP
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Step 1: Initial a feasible solution , search over the neighborhood ( ), record the largest 
change  and smallest change  in objective function values. Let the starting temperatures 

 and final temperatures . Define the total number of feasible exchanges in 
cycling is . Set iteration number , the iteration temperature , optimal solution ∗ , 
and optimal temperature ∗ . 

Step 2: Select a solution  from ( ) to search and compute difference ( ) ( ).  
If ∆≥ 0 , then set . If ∆< 0 , compute acceptable probability −( pxe=

∆
)  and 

sample  randomly from [0,1], set  if . If ( ) ( ∗), then ∗  and 
∗ . 

Otherwise, . 
Step 3: Update the temperatures according to 

= =
+ √

, 

and set . 
Step 4: Stop if the optimal temperature ∗ is close enough to . 

Algorithms 1 and 2 provide a detailed procedure for linear regression prediction and optimal routing 
of LMP. However, as we have said previously, the travel time is affected by the driver’s behavior, which 
is not involved in Algorithms 1 and 2. Therefore, we should make some adjustments to derive the optimal 
routing solution after getting the best linear regression  by Algorithms 1 and 2. The optimal routing 
solution of LMP is generated by Algorithm 3. 

Algorithm 2 

Algorithm 3 
Step 1. Initial the regression ( )  by sample training as described in algorithm 1 and 2. 
Step 2. Initial a feasible routing solution , combine with other feature data to form .  
Step 3. Predict travel time by ( ) , then solve the LMP by algorithm 2. The objective value 
 of algorithm 2 is calculated according to a new travel time vector for the feature  is changed in 

each interchange search. 
Step 4. Stop if the stopping criterion is met. 

f̂i is a part of the total feature vector fi =
(
f̂i, f

k
i

)
 , f k

i
 repre-

sents the driver’s feature.
2. The travel time vector tij is generated by employing a 

polynomial kernel function and is according to 

tij =

���
1√
p
(B∗f ) + 3

�deg

+ 1

�
∗�

�

(i−1)j+j

 , where � is a 

multiplicative noise matrix whose entries are generated inde-
pendently from the uniform distribution on 

[
1 − �, 1 + �

]
 for 

some given parameter � ≥ 0.
The parameter deg controls the amount of model mis-

specification. When deg = 1 , the expected value of travel 
time t  is indeed a linear function. When deg takes a large 
value, the traditional regression methods will be sensitive 
to outliers and have poor performance. In this experiment, 
we set deg = 2 which will generate enough outliers to com-
pare SPO + framework against the normal loss approach. 

Experimental design

This section presents numerical experiments to show the 
performance of the data-driven SPO + framework for solv-
ing LMP. Specifically, we use Matlab R2017b to implement 
the programming of Algorithms 1–3. To provide suitable 
training samples, we generate experimental data according 
to Elmachtoub and Grigas [12]. Notice that there are n cus-
tomers and one central depot, the dimension of the travel 
time vector is q = n × (n − 1) . We firstly determine a matrix 
B∗ ∈ Rq×p whose entries is generated by Bernoulli distribu-
tion with probability 0.5, and then generate the training data 
as follows:

1. Generate the feature vector f̂i ∈ Rp−1 by a multivariate 
Gaussian distribution with i.i.d. standard regular entries, i.e., 
f̂i ∼ N

(
0, Ip−1

)
 , where Ip−1 is an identity matrix. Notice that 
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Furthermore, we set f k
i
=
√
�i + j − k� which construct a 

larger expectation value tij if i + j is far away from k , and tij 
is small if i + j closes to k.

Following the generating process above, experi-
ments are implemented whose specific procedure and 
parameters setting are described as follows. Assum-
ing there are p = 5 features, and the nodes-vehicles 
pair is (15, 3) in which further entry is a total number 
of customers and the latter is the number of total driv-
ers. The customer demand is random generated as 
di = [24, 20, 20, 25, 24, 13, 16, 20, 25, 25, 16, 17, 22, 19, 15] 
and vehicle capacity vector is Q = [94, 108, 100] . We gen-
erate customers’ positions in a 100*100 region and suppose 
the initial deport is situated in the central position. In case 
(15, 5) , the travel time dimension is q = 15∗14 , and B has 
q × p parameters to estimate. For the sample size that has a 
heavy impact on the practical performance, we choose the 
training set size S = 10000 , i.e., for a driver, we generate s∕k 
training data and let mini-batching be 100. The other param-
eters are set as follows: discounted operating cost �C = 10 , 
� = 0.5 , and the regularization parameter λ is selected by 

validating the ten different values evenly spaced between 
0 and 1.

After training the prediction model by algorithms 1 and 
2, we generate random testing data (f , t) and compute the 
optimal routing solution X∗ . We compare our model with 
the general least square predict and optimization model, the 
expected optimization model. The results are summarized 
in Figs. 3, 4, 5, 6.

Figures 3, 4, 5 present the online platforms’ detailed rout-
ing decisions by SPO, Least Square and expectation meth-
ods, respectively. In these figures, the customer deports 
represented by the circles, the square is the central service 
deport, and each polyline with the same color is the routing 
path of a given driver. We can see that the routing results 
of the three models have significant differences; even the 
driver visits the same customer set. For example, the top 
right corner customer point is connected with a different 
customer set. The SPO model assigns a driver to take charge 
of the bottom right five customers, which is in line with the 
results in the expectation model; however, comparing Fig. 3 

Fig. 3   The LMP routing of SPO
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and Fig. 5, it is clear that the service sequence of the SPO 
solution is quite different from that of the expected solution.

Furthermore, we make a thousand simulation that con-
tains 1000 feature vectors for prediction. After predicting 
and optimizing, we compute the travel costs of three routing 
solutions according to actual travel time. Box plots in Fig. 6 
draw the results. It is clear that the SPO model has a lower 
travel cost compare with the other two methods; the gap is 
about 5%. From the box plots, we can also find that the least 
square model has a similar performance as the expectation 
model, which indicates the traditional predict-then-optimize 
paradigm has a bottleneck, although the prediction model is 
effective in our numerical setting.

Conclusion

In this paper, a novel SPO framework is adopted to solve the 
emerging LMP of online food platforms. Our study mainly 
contains two innovations, the first one is that we provide a 

completed data-driven framework to solve the LMP more 
effectively, the second one is that we consider the drivers’ 
behavior in the model and propose the corresponding solv-
ing algorithms. The experimental results indicate that the 
proposed SPO framework provides a more effective delivery 
routing than the other methods.

Prediction and optimization are two significant challenges 
in analyzing real world problems. In the era of big data, a 
new regulatory principle to decide is combing data from 
Multi-Dimension. Data-driven optimization methods, espe-
cially the combination of optimization models and machine 
learning methods, are causing more and more attention. This 
work provides an effective model for LMP, and the imple-
mentation framework can be embedded to the management 
system for the daily operation of food delivery platforms.

Naturally, this work has many further improvement direc-
tions for future studies. First, this paper does not consider the 
pickup problem, which will make the LMP more difficult to 
solve. Second, a faster and more effective algorithm should 
be proposed for other more complex conditions, such as 

Fig. 4   The LMP routing of least 
square
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Fig. 5   The LMP routing of 
expectation

Fig. 6   The LMP routing results 
of SPO, least-square and expec-
tation methods
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unknown parameters in the constraints, nonlinear objective 
function, and so on.
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