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Abstract
Surrogate-assisted meta-heuristic algorithms have shown good performance to solve the computationally expensive problems
within a limited computational resource. Compared to the method that only one surrogate model is utilized, the surrogate
ensembles have shown more efficiency to get a good optimal solution. In this paper, we propose a bi-stage surrogate-assisted
hybrid algorithm to solve the expensive optimization problems. The framework of the proposed method is composed of two
stages. In the first stage, a number of global searches will be conducted in sequence to explore different sub-spaces of the
decision space, and the solution with the maximum uncertainty in the final generation of each global search will be evaluated
using the exact expensive problems to improve the accuracy of the approximation on corresponding sub-space. In the second
stage, the local search is added to exploit the sub-space, where the best position found so far locates, to find a better solution
for real expensive evaluation. Furthermore, the local and global searches in the second stage take turns to be conducted to
balance the trade-off of the exploration and exploitation. Two different meta-heuristic algorithms are, respectively, utilized
for the global and local search. To evaluate the performance of our proposed method, we conduct the experiments on seven
benchmark problems, the Lennard–Jones potential problem and a constrained test problem, respectively, and compare with
five state-of-the-art methods proposed for solving expensive problems. The experimental results show that our proposed
method can obtain better results, especially on high-dimensional problems.
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Introduction

Many real-world optimization problems, such as aircraft
design [25], rainfall prediction [13], and drug design [16],
often require minutes, hours or days to take one performance
evaluation on the designed parameters [12], which are called
computationally expensive or time-consuming optimization
problems. The meta-heuristic algorithms based on evolu-
tionary algorithms such as swarm optimization algorithms
have been shown to be efficient in solving discontinuous,
non-differentiable or black-box problems. However, they
are impeded to solve computationally expensive problems
because a large number of expensive fitness evaluations will
be required to seek an accepted solution. Surrogate models
(also known as meta-models or approximate models) have
been proposed to replace the expensive fitness evaluation in
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the meta-heuristic algorithms to save the computational cost,
because compared to the time-consuming fitness evaluation,
the time to train a surrogate model can be fully neglected.
Therefore, the surrogate models are also called the cheap
functions corresponding to the exact expensive fitness func-
tion in the surrogate-assisted optimization algorithms. The
commonly used surrogate models include support vector
regression (SVR) [3], polynomial response surface (PRS)
[17,22], artificial neural networks (ANNs) [8], radial basis
function (RBF) [9,10,23,30,31,41], and Gaussian process
(GP)(also called Kriging) models [14,20,39].

Many surrogate-assisted meta-heuristic algorithms
(SAMAs) have been proposed for solving computationally
expensive problems, which can be classified into two cate-
gories: SAMAs with a single surrogate model and SAMAs
with multiple surrogate models. In SAMAswith a single sur-
rogatemodel, only one kind of surrogatemodel, either global
or local model, is utilized. Liu et al. [20] proposed a global
GP-assisted evolutionary algorithm for medium-scale com-
putationally expensive optimization problems. Schneider et
al. [24] employed the Bayesian optimization with Gaussian
process model to optimize the optical structure with many
degrees of freedom. Tian et al. [33] developed a GP assisted
evolutionary algorithm and proposed to select individual for
exact fitness evaluation by a multi-objective infill criterion.
Yu et al. [37] integrated a restart strategy and a global RBF
model to offer a powerful optimizer for the computationally
expensive problems. In [32], Sun et al. proposed to use the
fitness estimation strategy to approximate the fitness of an
individual, and the individuals whose approximated values
obtained by the RBF model and the fitness estimation strat-
egy are both better than its personal best position will be
evaluated using the real expensive function. The method was
further extended to solve the large-scale expensive problems
in [29].

Different to SAMAs with a single surrogate model only,
in SAMAs with multiple surrogate models, multiple mod-
els (fallen either in the same or in different categories) are
proposed to solve the computationally expensive problems
cooperatively. It can be further utilized as the surrogate
ensembles or the hierarchical surrogate models. In the sur-
rogate ensemble methods, multiple surrogates approximate
the fitness value of a solution simultaneously. Lim et al. [19]
proposed to use a surrogate ensemble and a lower-order PR
model in the local search, and the positionwith better approx-
imated value will be the next position of the individual. Lu et
al. [21] proposed to employ the regression and classification
techniques in the DE algorithm to recognize the individuals
to be evaluated using the expensive fitness function. Sun et
al. [31] proposed to adaptively select the approximated val-
ues from either the global or the local model for assisting the
PSO algorithm to solve the computationally expensive prob-
lems. Wang et al. [35] built an ensemble surrogate based

on ensemble learning techniques and used it to deal with
offline optimization problems. Different from the surrogate
ensemble methods, in the hierarchical surrogate methods,
different surrogate models are used for different motivations.
The global surrogate models are usually expected to smooth
out the local optimum so that the population can be prevented
to get stuck in a local optimum. The local surrogate models
are normally used to generate reliable approximated fitness
values for the exact expensive problems.AglobalRBFmodel
was proposed by Sun et al. [30] to assist a PSO variant to look
for an optimal solution, which would be utilized to assist the
fitness estimation on each individual in the PSO. Yu et al.
[38] applied the SL-PSO algorithm to find the optimum of
the RBF surrogate model, which will be evaluated using the
exact expensive problem and used to update the RBF model
used in the PSO algorithm. Cai et al. [1] proposed to com-
bine the optima predicted by the global and local surrogate
models with a mutation operator to fasten the convergence
of the differential evolution.

In this paper, we propose a bi-stage surrogate-assisted
hybrid algorithm for solving the computationally expensive
problems, in which the social learning particle swarm opti-
mization (SL-PSO), a PSO variant proposed by Cheng and
Jin [2], is utilized to search for the optimal solution of the
surrogate ensemble in the first stage. The framework of the
ensemble has been shown to be better in assisting optimiza-
tion than a single surrogate model. Therefore, the surrogate
ensemble is used to assist preventing searching far away from
the region where the optimal solution locates. Normally, the
best solution of the surrogate model found by the global
search is often chosen for exact fitness evaluation; however,
the best positions found by different global searches may be
the same, which will waste the finite computational budget.
Therefore, the solution withmaximum approximation uncer-
tainty in the final population of a global search will be chosen
to be evaluated using the real expensive function instead of
the best solution found so far of the surrogate ensemble in
our method. Thus, different positions can be explored in the
first stage and correspondingly, the possibility to find a better
solution can be increased. In the second stage, a local search
on the RBF model using the differential evolution(DE) algo-
rithm is added to exploit the neighborhoodof the best solution
found so far to speed up finding a better solution. Note that
in our method, the local search means the search in a sub-
region of the decision space. The sub-region is defined to be
the space bounded by a number of closest neighbors of the
best solution found so far. The local search is normally used
to find a better position than the best solution found so far.
However, it is easy to fall into a local optimum if only the
sub-region around the best solution found so far is searched.
Thus, the global and local searches take turns in the second
stages to explore the whole decision space and exploit the
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sub-region of the decision space, respectively, to prevent the
premature convergence.

The rest of this paper is organized as follows. The next sec-
tion gives a brief overview of the related techniques used in
the proposed method. In the following section, the details of
the proposed method are described. Experimental results are
given and compared to some state-of-the-art methods pro-
posed for computationally expensive problems before the
final section. Finally, the paper concludes with a summary
and some ideas for future work.

Related techniques

Social learning particle swarm optimization

The social learning particle swarm optimization (SL-PSO)
[2] is a variant of the particle swarm optimization (PSO)
[15], which has been shown to have a good capability on the
exploration. In SL-PSO, an individual will be updated using
the following equations:

vi j (t + 1) = r1 ∗ vi j (t) + r2 ∗ (xk j (t)

−xi j (t)) + r3 ∗ ε ∗ (x̄ j (t) − xi j (t)) (1)

xi j (t + 1) = xi j (t) + vi j (t + 1), (2)

wherevi (t) = (vi1(t), vi2(t), ...vi D(t)) andxi (t) = (xi1(t), xi2(t), ...xiD(t))
are the velocity and position of individual i at generation t . k
represents an individual which has a better fitness value than
individual i , x̄(t) = (x̄1(t), x̄2(t), ..., x̄D(t)) is the average
position of the population at generation t . r1, r2 and r3 are
random numbers generated in the range of [0,1]. ε is called
the social influence factor which is used to control the influ-
ence of the average position of the population on the position
update of each individual.

Differential evolution algorithm

The differential evolution(DE) [27] algorithm is a very
efficient and robust stochastic real-parameter optimization
algorithms [5]. To improve the performance of the DE algo-
rithm, several variants have beenproposed [5]. In ourmethod,
the canonical version of DE will be used. The offspring will
be generated by sequentially executing the DE/rand/1 muta-
tion (Eq.(3)) and binomial crossover (Eq.(4)), and will be
used to update the positions of individuals in the population
(Eq.(5)).

vi (t + 1) = xk(t) + F · (xp(t) − xq(t)) (3)

ui, j (t + 1) =
{

vi, j (t + 1), if(r ≤ C or j = jrand),
xi, j (t), otherwise.

(4)

xi (t + 1) =
{
ui (t + 1), if( f (ui (t + 1)) < f (xi (t))),
xi (t), otherwise.

(5)

In Eqs. (3) and (4), xi (t) = (xi1(t), xi2(t), ...xiD(t))
is the position of individual i at generation t . vi (t) =
(vi1(t), vi2(t), ...vi D(t)) is an temporary solution andui (t) =
(ui1(t), ui2(t), ...uiD(t)) is the offspring of individual i . k,
p and q are three individuals randomly selected from the
population which are not same to individual i . F is a scaling
factor that typically lies in the interval [0.4, 1] [5],C is called
the crossover rate which is a constant in the range of [0,1].
jrand is a integer number randomly selected from the range
[1,D], which is used to ensure that at least one dimension of
an offspring is inherited from the solution vi . r is a random
number in the range [0, 1]. f (xi (t)) and f (ui (t +1)) are the
fitness values of solution xi (t) and ui (t + 1), respectively.

Radial basis function

The radial basis function (RBF) network has been shown
a good performance for problems with different fitness
landscape characteristics [7,11,36,40]. The Gaussian pro-
cess surrogate model has shown better performance for
low-dimensional problems; however, it is not suitable for
high-dimensional problems because more data are required
to train a GP model, which is not possible for expensive
optimization problems, and also, its training time will be
greatly increased since the whole training data needs to be
taken into account in the global search. For the polynomial
surrogate model, as the accuracy of a first-order polynomial
surrogatemodel is low,whichwe thinkwill affect the approx-
imation accuracy, and the second-order polynomial model
cannot approximate strong nonlinear problems. Therefore,
in our method, the RBF is adopted to be the surrogate model
used in our method. The RBF network is composed of an
input layer, a hidden layer and an output layer. Each node
in the hidden layer performs a non-linear radially symmetric
kernel function φ(x) = ϕ(‖x − ci‖) to measure the similar-
ity between the input and the center of the function, and the
output of the RBF network will be the weighted sum of the
output from the hidden layer, which is given in the following:

f̂ (x) =
nc∑
i=1

ωiϕ(‖x − ci‖), (6)

where nc is the number of nodes in the hidden layer.
Different kernel functions, such as Gaussian, multi-

quadric, thin-plate splines, cubic splines, invmulti-quadrics
splines, etc., have been proposed to be used as the similarity
function in the RBF. In our method, the cubic and invmulti-
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quadrics kernel functions are adopted to be used in the RBF
models for assisting both the global search and local search.

The bi-stage surrogate-assisted hybrid
algorithm

As is known to all, the trade-off between the exploration
and exploitation is important for the meta-heuristic algo-
rithms to find the global optimal solution, and it is especially
significant for algorithms when the computational budget is
very limited. Therefore, in this paper, we propose a bi-stage
surrogate-assisted hybrid algorithm, called BiS-SAHA, in
which a number of global searches will be conducted in
sequence in the first stage by a surrogate ensemble assisted
SL-PSO to explore different regions of decision space, while
in the second stage, a local search using an RBF-assisted
differential evolution algorithm will be conducted after each
global search to improve the exploitation capability to speed
up finding an optimal solution. Note that the surrogate mod-
els used in every global search are different to each other
because one solution in the population with the maximum
uncertainty on the approximated value would be evaluated
using the expensive problem and be used to update themodel.
The social learning particle swarm optimization is adopted
to be the algorithm for the global search because it has been
shown to have a good diversity to find the optimal solution
[2]; however, its performance of the convergence is not good.
Therefore, we adopted DE in our method instead of SL-PSO
since the differential evolution algorithm has quicker conver-
gence speed than SL-PSO.

Figure 1 gives a flowchart to show our proposed method.
In Fig. 1, an archive DB will be initialized by generating a
number of samples using the Latin hypercube sampling tech-
nique [26], which will be evaluated using the real expensive
fitness function and saved to DB. The best solution with the
minimum fitness value among all these samples, denoted as
xb, will be kept andwill be updated by the solutions, obtained
either in the global or local search, that have been evaluated
using the exact expensive function. Note that the local search
will start to be conducted alternating with the global search
when the transfer criterion is satisfied, i.e., a pre-defined com-
putational resource for the first stage is met. In the following,
we will describe the global and local search in detail.

The global search

Figure 2 gives the flowchart of the global search used in our
method.

Before themethod enters into the second stage, the follow-
ing process will be repeated. Nm RBF models with different
kernel functions, respectively, will firstly be trained using all
data of the archive DB. The maximum of the values approx-

Fig. 1 The flowchart of BiS-SAHA

Fig. 2 The flowchart of the global search

imated by Nm RBF models on position x will be its fitness
value, as is shown in Eq. (7). The approximation uncertainty
for each solution x will be calculated using Eq. (8), which is
the variance of the approximated fitness values on solution
x. In Eqs. (7) and (8), Nm is the number of surrogate mod-
els used for global search, f̂RBFi (x), i = 1, 2, . . . , Nm is the

value approximated by the i-th RBFmodel, ¯̂f (x) is the mean

value of Nm approximated values, i.e., ¯̂f (x) =
∑Nm

i=1 f̂RBFi (x)
Nm

.
Thus, from Eq. (8), we can see that larger the value U (x)
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is, more different the approximated values on position x
are, resulting in a larger approximation uncertainty on this
position.

f̂ (x) = max{ f̂RBF1(x), f̂RBF2(x), . . . , f̂RBFNm
(x)} (7)

U (x) =
∑Nm

i=1 ( f̂RBFi (x) − ¯̂f (x))2
Nm

. (8)

Next, an initial population of the global search will be
generated. To prevent the search deviating from the cor-
rect direction to find the global optimum of the surrogate
ensemble, a number of solutions, which are selected using
the clustering technique to ensure the diversity of a popu-
lation, will be chosen from the archive DB in our method
to be the initial population for the global search. Note that
the number of clusters is not set the same to the size of the
initial population, which we will give a sensitivity analysis
on different settings in “Parameter sensitivity analysis of the
BiS-SAHA”. Algorithm 1 gives the pseudocode of popula-
tion initialization. The initial population of SL-PSO popg is
set to null at first and then, individuals will be selected in a
round turn from each clusters which is not null and added
into popg until the size of population is met.

Algorithm 1 Pseudocode of population initialization/re-
initialization
Input:
DB: the archive saving all solutions that have been evaluated using the
exact fitness function;
N : the size of the population;
k : the number of clusters;

Output:
popg : an initial population of SL-PSO;
1: Classify the data in DB into k clusters, C = {C1,C2, . . . ,Ck},

using k-means method;
2: popg = ∅;
3: while |popg | < N do
4: for i = 1 to k do
5: if |Ci | �= 0 then
6: Randomly select one solution of Ci , put it into popg and

simultaneously remove it from Ci ;
7: if |popg | = N then
8: Exit;
9: end if
10: end if
11: end for
12: end while
13: Output popg

After that, the SL-PSO algorithm is utilized to search for
the optimal solution of the surrogate ensemble. To prevent
searching in a wrong direction that may deviate from the
optimal solution of the expensive optimization problem, a
pre-defined iteration g is given for each global search in the

first stage, and the individual in the population of t-th gen-
eration with the maximum uncertainty on the approximated
fitness will be evaluated using the exact expensive fitness
function. Note that the first stage is used to explore the whole
decision space and the search on the surrogate ensemble for
a number of generations is expected to find a region where a
good solution of the expensive problem may locate. Simul-
taneously, to decrease the approximation uncertainty of the
next surrogate model on this region, in our method, the indi-
vidual with the maximum uncertainty on the approximated
fitness is proposed to be evaluated using the real expensive
fitness function.

The local search

The trade-off between exploration and exploitation is signifi-
cantly essential for solving expensive optimization problems.
In our method, the global searches applied in the first and
second stages play the role to explore the decision space to
improve the probability to find the optimal solution. How-
ever, the exploitation capability of the global search is not
well because only the solution among the current population
whose approximation uncertainty is maximumwill be evalu-
ated using the expensive problem. Therefore, in our method,
we further employ a local search on a surrogate model to
exploit a local region around the best position found so far,
which is expected to locate accurately at the optimal solution
of the expensive problem. Different from the global search
that tries to find an optimal solution in the whole decision
space, the local search is conducted to find a local optimum
of the sub-space around the best position found so far. Fur-
thermore, one RBF model is used instead of RBF surrogate
ensemble for the local search, which is expected to prevent
the loss of chances to locate at the optimal solution of the
expensive optimization problem.

Figure 3 gives the flowchart of the local search. In the local
search, an RBF surrogate model with the cubic kernel func-
tion is trained on all data in DB. The region where the local
search is conductedwill then be defined, which is surrounded
by the maximum and minimum values on each dimension of
all Nn data in DB that is closest to the best solution found
so far. After that, an initial population will be generated ran-
domly in this region, and a DE algorithm will be used to find
a better solution in this region assisted by the RBF surro-
gate model. The individual in the population with the best
approximated fitness value will be evaluated using the real
expensive function and saved in DB for further usage.

Note that different from the method used in the global
search to select the individual for real expensive fitness
evaluation, in the local search, the individual with the best
approximated fitness will be evaluated using the real time-
consuming fitness function. The reason is that in the global
search, we would like to find a region that a solution with
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Fig. 3 The flowchart of the local search

good fitness value may locate. Therefore, it is essential to
improve the approximation accuracy in this region by evalu-
ating the solution, which has the maximum uncertainty in the
final generation of the global search, using the exact expen-
sive fitness function. While the motivation to use the local
search is to find a better solution than the best position found
so far, so it would be more meaningful to evaluate a solution
whose approximated fitness value is better than the current
best solution found so far.

Experimental study

To evaluate the performance of our proposed BiS-SAHA,
we conduct a number of experiments on seven benchmark
problems with either unimodal (F1) or multimodal (F2–F7)
characteristics, a real-world application and a constrained
problem with nonlinear constraints. The characteristics of
seven benchmark problems are listed in Table 1. Five state-
of-the-art algorithms, including the generation-basedoptimal
restart strategy for surrogate-assisted social learning particle
swarm optimization (GORS-SSLPSO) [37], the committee-
based active learning for surrogate-assisted particle swarm
optimization (CAL-SAPSO) [34], the offline data-driven
evolutionary optimization using selective surrogate ensem-
bles (DDEA-SE) [35], the surrogate-assisted hierarchical
particle swarm optimization (SHPSO) [38], and the mul-
tiobjective infill criterion driven Gaussian process-assisted
particle swarm optimization (MGP-SLPSO) [33], are used

to compare with our proposed method. Among these algo-
rithms, GORS-SSLPSO [37] and MGP-SLPSO [33] are the
surrogate-assisted meta-heuristics with a single surrogate
model. CAL-SAPSO [34], DDEA-SE [35] and SHPSO [38]
are the surrogate-assisted metaheuristics with multiple sur-
rogate models, in which DDEA-SE utilizes the surrogate
ensemble technique, SHPSO utilizes the hierarchical frame-
work, and CAL-SAPSO uses the ensemble technique in the
hierarchical framework. All parameters used in these algo-
rithms are the same as those given in their papers.

Parameter settings

Each algorithm will be run independently for 20 times. The
Wilcoxon rank sum test with Bonferroni correction for a sig-
nificance level of 0.05 will be applied to assess whether the
performance of a solution obtained by one of the two com-
pared algorithms is expected to be better than the other. The
signs, +, ≈, and − represent that the proposed BiS-SAHA
is significantly better, equivalent to, and worse than the com-
pared algorithms, respectively, according to the Wilcoxon
rank sum test on the median fitness values.

The parameters used in our proposed BiS-SAHA algo-
rithm are set as follows: the total number of exact expensive
fitness evaluations MaxFE , which is the stopping criterion
of each algorithm, is set the same as other algorithms given in
their papers to give a fair comparison with them, i.e., 11× D
on 10-, 20- and 30-dimensional problems, and 1000 on 50-
and 100-dimensional ones. � 5

11 × MaxFE	 initial solutions
will be generated and evaluated using the exact expensive
fitness function. � 1

11 × MaxFE	 fitness evaluations will be
allowed to be spent in the first stage, which is used as the con-
dition to transfer from the first stage to the second one, and
the remainderMaxFE−� 5

11 ×MaxFE	−� 1
11 ×MaxFE	

fitness evaluations will be spent in the second stage. The pop-
ulation size of the SL-PSO is set the same to the size of the
initial archive, i.e., � 5

11 × MaxFE	. The data in DB will be
classified into 10 clusters for selection of the initial popula-
tion in the first stage. The maximum iteration of the SL-PSO
for each global search is set to 100, and other parameters
used in SL-PSO are the same as those given in [2]. In the
local search, the number of the closest data to the best posi-
tion found so far is set to Nn = � D

2 	. Both the scaling factor
F and the mutation probability C of the DE algorithm are
set to 0.8. The population size and the maximum number
of iteration for each local search are set to 5 × D and 150,
respectively.

Parameter sensitivity analysis of the BiS-SAHA

The number of clusters k and the number of exact fitness
evaluation costed in the first stage are two key parameters that
may affect the performance the proposed method. Therefore,
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Table 1 Test problems

Problem Global optimum Characteristics

F1 Ellipsoid 0 Unimodal

F2 Rosenbrock 0 Multimodal with narrow valley

F3 Ackley 0 Multimodal

F4 Griewank 0 Multimodal

F5 Rastrigin 0 Multimodal

F6 Shifted rotated Rastrigin (F10 in [28]) −330 Very complicated multimodal

F7 Rotated hybrid composition function (F19 in [28]) 10 Very complicated multimodal

we conduct experiments on 5-, 10-, 20-, and 30-dimensional
F1 (unimodal), F5 (multimodal) and F7(very complicated
multimodal) test problemsusing different values on these two
parameters and try to get proper parameter values for BiS-
SAHA. Figure 4 shows the performance of BiS-SAHA using
5, 10, 20 and 30 clusters for selecting individuals of the initial
population in the global search. From Fig. 4, we can see that
the performanceofBiS-SAHAis bestwhen the archive DB is
classified into 10 clusters on 10-, 20-, and 30-dimensional F1,
F5 and F7 test problems. However, 5 clusters is much better
for 5-dimensional problems. Therefore, k = 10 is suggested
to be used in our method for problems with dimension is
larger than 10, and k = 5 for others.

The number of exact expensive fitness evaluation costed
in the first stage means how many rounds the global search
will be conducted in the first stages. The global search in our
method is used to explore the whole decision space to find
the optimal solution of the surrogate model. However, we
choose the solution with the maximum uncertainty instead
of the solution with the minimum approximated value in the
last generation of the global search to be evaluated using
the exact expensive fitness function, which is expected to
improve the correctness of the model to outline the fitness
landscape. Therefore, the number of exact expensive fitness
evaluation spent in the first stage is significant. From Fig. 5,
we can see thatwhenwe spend 1

11 of themaximumnumber of
fitness evaluations in the first stage, the performance of BiS-
SAHA is better than other settings on F1, F5 and F7 with
5, 10, 20, and 30 dimensions. Especially, the method spend-
ing 1

11 of the maximum number of fitness evaluations in the
first stage obtains best performance on all 5-dimensional and
30-dimensional F1, F5 and F7 problems. Therefore, in our
method, 1

11 of the maximum number of fitness evaluations
will be conducted in the first stage.

Experimental results in different strategies

Comparisons on the methods using different frameworks

Two stages are used in our proposed method, in which the
global searchwill be repeatedly conducted in the first stage to

explore the decision space to find a region where an optimal
solution may locate. The global and local searches will then
be run by turn in the second stage to balance the exploitation
and exploration of the search. To see whether it is an efficient
way to be organized like that in this paper, we conduct some
comparison experiments on F1 (unimodal) and F5 (multi-
modal) benchmark problems with the methods that only the
first stage is used (denoted as FS), that only the second stage
is used (denoted as SS), and that thefirst and second stages are
swapped (denoted as BiS-SAHA-swapped). Table 2 shows
the statistical results obtained by the algorithms with dif-
ferent frameworks on F1 and F5 problems with 10, 20 and
30 dimensions. From Table 2, we can see that the results
obtained by our proposed method on these problems are not
worse than any other three methods, which shows that the
framework of our method is best compared to other frame-
works.

Comparisons onmethods using different search algorithms

The SL-PSO and DE algorithms are utilized to assist the
global search and local search, respectively, in the pro-
posed BiS-SAHA. To see the efficiency of the method,
we further compare BiS-SAHA to its three variants which
are BiS-SAHA using the SL-PSO in both the global and
local search (denoted as BiS-SAHA-SL-PSO), BiS-SAHA
using the DE in both the global and local search (denoted
as BiS-SAHA-DE), and BiS-SAHA using the DE and SL-
PSO in the global and local search, respectively (denoted as
BiS-SAHA-DE-SL-PSO). The statistical results obtained by
these four algorithms on F1 and F5 are given in Table 3.
From Table 3, we can see that our BiS-SAHA obtains
better or competitive results than all other three variants.
More specifically, the BiS-SAHA gets 5/6, 3/6, and 4/6
better results than BiS-SAHA-DE, BiS-SAHA-SL-PSO and
BiS-SAHA-DE-SL-PSO, respectively. Furthermore, the pro-
posed BiS-SAHA algorithm obtains no worse results than
all of the other three algorithms. Thus, we can get that the
strategy used in BiS-SAHA is efficient for solving expensive
optimization problems.

123



1398 Complex & Intelligent Systems (2021) 7:1391–1405

Fig. 4 The Performances of BiS-SAHA with different number of clusters used for selecting individuals of the initial population

Comparisons on the methods with and without clusters in
the global search

In BiS-SAHA, the archive DB is classified into a number
of clusters, which is provided for data selection to form the
initial population of SL-PSO. To see the contribution of the
clustering, we compare two methods, called BiS-SAHA-RG

andBiS-SAHA-RS, respectively,whereBiS-SAHA-RG rep-
resents that the initial population of SL-PSO is generated
randomly in the decision space, and BiS-SAHA-RS denotes
that the individuals of an initial population are randomly
selected from the archive DB. Figure 6 plots the convergence
trends of different methods on 20-dimensional F1 and F5
test problems to generate the initial population of the global
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Fig. 5 The Performances of BiS-SAHA with different number of fitness evaluations expended in the first stage

search. From Fig. 6a, we can see that there is no obvious
difference between SAHA-RG and the other two algorithms
on the unimodal F1 problem. However, it is clearly shown
in Fig. 6b that on the multimodal F5 problem, our pro-
posed BiS-SAHA method can obtain better results and has
quicker convergence speed than both BiS-SAHA-RG and

BiS-SAHA-RS. Therefore, we can get that the diversity of
the initial population is better than randomly selecting in the
decision space or the archive DB for the global search by
selecting individuals round in turns from the clusters.
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Table 2 The statistical results (median and median absolute deviation) obtained by different algorithms with different frameworks on F1 and F5
problems with 10, 20 and 30 dimensions

D BiS-SAHA FS SS BiS-SAHA-swap

F1 10 1.33E−02(4.20E−02) 4.30E−02(4.01E−02)[+] 1.80E−02(4.55E−02)[≈] 6.29E−02(7.53E−02)[+]

20 1.48E−01(1.29E−01) 1.85E−01(1.42E−01)[≈] 3.68E−01(3.29E−01)[+] 3.78E−01(1.93E−01)[+]

30 4.14E−01(3.46E−01) 6.68E−01(3.92E−01)[+] 6.66E−01(6.04E−01)[+] 6.65E−01(4.56E−01)[+]

F5 10 2.79E+01(1.52E+01) 2.69E+01(2.23E+01)[≈] 4.10E+01(1.52E+01)[+] 3.16E+01(3.08E+01)[≈]

20 2.95E+01(2.50E+01) 4.66E+01(2.96E+01)[+] 4.94E+01(3.81E+01)[≈] 5.03E+01(3.91E+01)[+]

30 4.78E+01(4.03E+01) 5.68E+01(4.14E+01)[≈] 6.06E+01(7.03E+01)[≈] 7.33E+01(2.21E+01)[+]

+/≈/− 3/3/0 3/3/0 5/1/0

p value 2.52E−01 1.96E−01 3.74E−02

FS and SS represent the method that only the first stage and second stage is utilized, respectively. BiS-SAHA-swapped is a BiS-SAHA variant that
the first and second stages are swapped The best median results in each row is highlighted

Table 3 The statistical results (median and median absolute deviation) obtained by BiS-SAHA and its three variants on F1 and F5 problems with
10, 20 and 30 dimensions

D BiS-SAHA BiS-SAHA-DE BiS-SAHA-SL-PSO BiS-SAHA-DE-SL-PSO

F1 10 1.33E−02(4.20E−02) 1.03E−02(2.13E−02)[≈] 2.85E−02(1.67E−01)[≈] 8.39E−03(1.06E−02)[≈]

20 1.48E−01(1.29E−01) 2.75E−01(3.58E−01)[+] 3.81E−01(3.17E−01)[+] 1.86E−01(1.12E−01)[≈]

30 4.14E−01(3.46E−01) 4.67E+00(2.53E+00)[+] 1.07E+00(2.02E+00)[+] 2.45E+00(1.02E+00)[+]

F5 10 2.79E+01(1.52E+01) 6.51E+01(1.91E+01)[+] 4.45E+01(2.75E+01)[+] 6.14E+01(1.76E+01)[+]

20 2.95E+01(2.50E+01) 1.11E+02(2.57E+01)[+] 4.38E+01(3.82E+01)[≈] 1.32E+02(2.14E+01)[+]

30 4.78E+01(4.03E+01) 2.63E+02(2.87E+01)[+] 4.84E+01(6.28E+01)[≈] 1.55E+02(3.83E+01)[+]

+/≈/− 5/1/0 3/3/0 4/2/0

p value 4.17E−02 2.46E−01 8.25E−02

BiS-SAHA-DE is a BiS-SAHA variant that uses DE in both the global and local search, BiS-SAHA-SL-PSO is a BiS-SAHA variant that uses
SL-PSO in both the global and local search; and BiS-SAHA-DE-SL-PSO is a BiS-SAHA variant using DE and SL-PSO in the global and local
search, respectively. The best median results in each row is highlighted

Fig. 6 The convergence trends
of different methods to generate
the initial population of the
global search

Performance comparisons with other algorithms

To evaluate the performance of our proposed method, in this
subsection, we further conduct experiments on five bench-
mark problems with 10, 20, and 30 dimensions, and on six
problems with 50 and 100 dimensions, respectively. The
experimental results are compared to some state-of-the-art
algorithms, including GORS-SSLPSO [37], CAL-SAPSO

[34], DDEA-SE [35], SHPSO [38], and MGP-SLPSO [33].
The statisticalmedian value of the optimal solutions obtained
by all algorithms on 20 independent runs are given in Tables 4
and 5, respectively. Table 4 shows the results on 10-, 20-, and
30-dimensional problems, while Table 5 gives the results on
50- and 100-dimensional problems. The best results among
each row will be highlighted.
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From Tables 4 and 5, we can see that our proposed
BiS-SAHA method can obtain better or competitive results
than the other five algorithms proposed for expensive prob-
lems. In Table 4, our proposed BiS-SAHA method is only
compared to GORS-SSLPSO, CAL-SAPSO and DDEA-SE.
The SHPSO and MGP-SLPSO methods are not included in
Table 4 because both of them were proposed specially for
solving high-dimensional problems. From Table 4, we can
see that compared to CAL-SAPSO and DDEA-SE that uti-
lize the ensemble techniques, our BiS-SAHA method can
obtain 12 and 11 better results, respectively, among all 15
benchmark problems. Compared to GORS-SSLPSO, the
BiS-SAHA algorithm gets only 1/15 worse result on prob-
lems with lower dimensions (not more than 30 dimensions).
From Table 5, we can see that the CAL-SAPSO algorithm
does not compare to our method on high-dimensional prob-
lems (not less than 50 dimensions). The reason is that
CAL-SAPSO was proposed for solving the lower dimen-
sional problems. As seen from Table 5, we can see that
our BiS-SAHA method can obtain 8/12, 7/12, and 11/12
better results, respectively, than SHPSO, MGP-SLPSO and
DDEA-SE.While compared toGORS-SSLPSO, BiS-SAHA
achieves six better results of 12 high-dimensional problems,
from which we can further find that BiS-SAHA obtains 4/6
better results on 100-dimensional problems.

Furthermore, we also plot the convergence trends of each
method on 30- and 100-dimensional test problems, which are
shown in Figs. 7 and 8, respectively. From Fig. 7, we can see
that our proposed BiS-SAHA converge much quicker than
both GORS-SSLPSO and CAL-SAPSO on most of lower-
dimensional F1–F5 problems. From Fig. 8, we can find that
MGP-SLPSO converges much quicker than others on F1 and
F4 problems and GORS-SSLPSO does better on F2. The
MGP-SLPSO is pretty good for unimodal high-dimensional
problems. However, for the multimodal problems, our BiS-
HASA method has better convergence characters on four
among five test problems. Also, from Fig. 8, we can see
that the proposed BiS-HASA obtains better results on F6
and F7, which are very complicated multimodal problems,
than others, showing the efficiency of BiS-HASA for solving
multimodal problems.

Optimization of the Lennard–Jones potential
problem

To investigate the performance of BiS-SAHA, we further
conducted an experiment on a molecular conformation prob-
lem to minimize the Lennard–Jones potential [4,6]. In the
Lennard–Jones potential optimization problem, the potential
energy of a molecule is modeled by the sum of the potential
energies between pairs of atoms. The mathematical model
of the Lemmard–Jones potential optimization is given in the
following: Ta
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Table 4 The statistical results (median and median absolute deviation) obtained by BiS-SAHA, GORS-SSLPSO, CAL-SAPSO and DDEA-SE on
F1–F5 problems with 10, 20 and 30 dimensions

D BiS-SAHA GORS-SSLPSO CAL-SAPSO DDEA-SE

F1 10 1.33E−02(4.20E−02) 2.75E−02(5.35E−02)[≈] 8.84E−01(9.95E−01)[+] 9.38E−01(4.64E−01)[+]

20 1.48E−01(1.29E−01) 1.45E−01(2.12E−01)[≈] 1.60E+00(5.15E−01)[+] 2.40E+00(9.90E−01)[+]

30 4.14E−01(3.46E−01) 4.62E−01(3.85E−01)[≈] 3.45E+00(1.47E+00)[+] 4.39E+00(1.23E+00)[+]

F2 10 1.43E+01(4.99E+00) 1.62E+01(8.08E+00)[≈] 1.49E+01(3.54E+00)[≈] 2.56E+01(5.29E+00)[+]

20 5.26E+01(2.01E+01) 5.44E+01(1.54E+01)[≈] 3.39E+01(5.57E+00)[−] 4.39E+01(5.69E+00)[≈]

30 8.48E+01(1.87E+01) 9.85E+01(2.14E+01)[≈] 4.73E+01(9.98E+00)[−] 5.64E+01(7.18E+00)[−]

F3 10 5.68E+00(5.87E+00) 3.49E+00(2.77E+00)[−] 2.01E+01(4.43E−01)[+] 5.84E+00(8.87E−01)[≈]

20 4.64E+00(1.52E+00) 4.28E+00(1.92E+00)[≈] 2.01E+01(3.61E−15)[+] 5.07E+00(6.21E−01)[+]

30 3.88E+00(1.32E+00) 4.97E+00(1.28E+00)[+] 1.60E+01(5.62E−01)[+] 4.72E+00(3.78E−01)[+]

F4 10 8.13E−01(1.71E−01) 8.45E−01(1.58E−01)[≈] 1.13E+00(1.14E−01)[+] 1.30E+00(1.54E−01)[+]

20 3.35E−01(1.72E−01) 3.46E−01(1.35E−01)[≈] 1.04E+00(3.57E−02)[+] 1.22E+00(8.64E−02)[+]

30 1.87E−01(9.77E−02) 3.58E−01(1.13E−01)[+] 1.01E+00(4.36E−02)[+] 1.23E+00(9.87E−02)[+]

F5 10 2.79E+01(1.52E+01) 2.32E+01(1.93E+01)[≈] 8.99E+01(2.37E+01)[+] 5.23E+01(2.78E+01)[+]

20 2.95E+01(2.50E+01) 4.36E+01(2.01E+01)[≈] 7.36E+01(1.53E+01)[+] 4.39E+01(5.69E+00)[≈]

30 4.78E+01(4.03E+01) 6.68E+01(3.06E+01)[≈] 9.29E+01(1.93E+01)[+] 1.13E+02(2.81E+01)[+]

+/≈/− 2/12/1 12/1/2 11/3/1

p value 3.52E−01 2.75E−02 6.06E−02

The best median results in each row is highlighted

Fig. 7 Convergence profiles of GORS-SSLPSO, CAL-SAPSO and BiS-SAHA on benchmark problems with 30 dimensions

V =
N−1∑
i=1

N∑
j=1

(
d−12
i j − 2d−6

i j

)
, (9)

where N is the number of atoms in the molecule, di j rep-
resents the Euclidean distance between two points pi and
p j , where each point pi , i = 1, 2, . . . , N has three dimen-
sions. Therefore, the dimension of an optimization problem

is three times the number of atoms in the given molecule. In
our experiment, ten atoms is adopted. Thus, the number of
decision variable is 30. The upper and lower bounds of each
dimension is set to [0, 4], [0, 4], and [0, π ], respectively.

Table 6 gives the statistical results obtained by 20 inde-
pendent runs on the Lennard–Jones potential problem with
30 decision variables. The total number of exact fitness eval-
uations is set to 330. ‘Mean’, ‘median’, ‘worst’, and ‘best’
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Fig. 8 Convergence profiles of GORS-SSLPSO, SHPSO, MGP-SLPSO and BiS-SAHA on benchmark problems with 100 dimensions

represent the mean, the median, the worst, and the best result
among the results of 20 independent runs, respectively. ‘std’
represents the standard deviation of these 20 results. From
Table 6, we can see that compared to GORS-SSLPSO, CAL-
SAPSO and DDEA-SE, the proposed BiS-SAHA method
obtains better results on the best, the worst, the mean, and
the median values among the best solutions found so far of
20 independent runs, respectively, which further show the
competitive performance of our proposed BiS-SAHA.

Optimization of a constrained optimization problem
with nonlinear constraints

In the real-world engineering applications, most optimiza-
tion problems have a number of constraints. Therefore, in
this paper, we also evaluate the performance of our proposed
method by conducting experiment on g07 test problem given
in CEC 2006 special session on constrained real-parameter
optimization [18]. In g07 problems, there are totally eight lin-
ear or nonlinear inequality constraints. The dimension of g07
is 10. The mathematical model of g07 is given in Eq. (10).

min f (x) = x21 + x22 + x1x2 − 14x1

− 16x2 + (x3 − 10)2

+ 4(x4 − 5)2 + (x5 − 3)2 +
2(x6 − 1)2 + 5x27 + 7(x8 − 11)2

+ 2(x9 − 10)2 + (x10 − 7)2 + 45

s.t. g1(x) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0

g2(x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0

g3(x) = −8x1 + 2x2

+ 5x9 − 2x10 − 12 ≤ 0

g4(x) = 3(x1 − 2)2

+ 4(x2 − 3)2 + 2x23 − 7x4 − 120 ≤ 0

g5(x) = 5x21 + 8x2

+ (x3 − 6)2 − 2x4 − 40 ≤ 0

g6(x) = x21
+ 2(x2 − 2)2 − 2x1x2

+ 14x5 − 6x6 ≤ 0

g7(x) = 0.5(x1 − 8)2 + 2(x2 − 4)2

+ 3x25 − x6 − 30 ≤ 0

g8(x) = −3x1 + 6x2

+ 12(x9 − 8)2 − 7x10 ≤ 0

− 10 ≤ xi ≤ 10, i = 1, 2, . . . , 10. (10)

In the experiment, 20 independent runs are conducted on this
problem and the penalty function is utilized to transform the
constrained problem to an unconstrained one so that it can
be solved by our proposed method. Eq. (11) gives the uncon-
strained problem that will be solved by different algorithms.

G(x) = f (x) + ρ

8∑
i=1

max{gi (x), 0}, (11)
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Table 6 The statistical results
obtained by BiS-SAHA,
GORS-SSLPSO, CAL-SAPSO
and DDEA-SE on the
Lennard–Jones potential
problem

Mean Median Worst Best Std

BiS-SAHA −3.25E+00 −3.03E+00 −1.83E+00 −6.36E+00 1.06E+00

GORS-SSLPSO −2.12E+00 −2.05E+00 −1.53E+00 −3.38E+00 4.63E−01

CAL-SAPSO −2.42E+00 −2.34E+00 −1.66E+00 −3.34E+00 5.34E−01

DDEA-SE 3.17E+05 −3.33E−01 6.25E+06 −2.30E+00 1.40E+06

The best results in each column is highlighted

Table 7 The statistical results
obtained by BiS-SAHA,
GORS-SSLPSO, CAL-SAPSO
and DDEA-SE on g07
benchmark problem of CEC
2006 special session

N f s Mean Median Worst Best Std

BiS-SAHA 5 1.09E+03 1.28E+03 1.43E+03 3.17E+02 4.46E+02

GORS-SSLPSO 3 1.58E+03 1.65E+03 2.40E+03 6.81E+02 8.62E+02

CAL-SAPSO 0 – – – – –

DDEA-SE 0 – – – – –

The best results in each column is highlighted

where ρ is the penalty function. In our experiment, ρ is set to
1015. Table 7 gives the statistical results obtained by GORS-
SSLPSO, CAL-SAPSO, DDEA-SE and our proposed BiS-
SAHA method on g07 benchmark problem of CEC 2006
special session. N f s is the times that the algorithm finds
the feasible solution. ‘Mean’, ‘Median’, ‘Worst’ and ‘Best’
represent the mean, the median, the worst and the best fitness
value of the feasible optimal solutions, respectively. ‘Std’ is
the standard variance. ‘−’ represents the method does not
find a feasible solution. From Table 7, we can see that our
proposed BiS-SAHA method can find a feasible solution for
five times among 20 independent runs, GORS-SSLPSO can
obtain a feasible solution for three times, while both CAL-
SAPSO and DDEA-SE are not able to get feasible solutions
among all 20 independent runs. Furthermore, compared to
GORS-SSLPSO, our proposed BiS-SAHA can obtain better
feasible solution than GORS-SSLPSO.

Conclusion

A bi-stage surrogate-assisted hybrid algorithmwas proposed
in this paper to solve computationally expensive problems.
The proposed method tried to explore the decision space by
searching for the optimal solution of the surrogate ensem-
ble to improve the approximation accuracy of the sub-space
where the optimal solution may locate in the first stage. In
the second stage, the local search conducted by an RBF-
assisted DE algorithm is run by turn with the global search
to speed up finding the optimal solution. The comparisons
on the experimental results on seven benchmark problems,
the Lennard–Jones potential problem and g07 problem with
nonlinear constraints showed the better performance of our
proposedmethod thanothers.However, only global surrogate
models are built in both the global and local searches, which,

we think, may affect the precision of locating at the optimal
solution. Therefore, in the future, local surrogate models will
be considered to improve the precision of the optimal solu-
tion location.
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